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Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP
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Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}
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Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)
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Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P
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Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′
)

U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′
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Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every stable model X of P
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Computation from first principles

The simplistic expand algorithm

expandP
tightens the approximation on stable models
is stable model preserving
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Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P
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Computation from first principles
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Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})
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Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms
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A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms
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Outline

1 Consequence operator

2 Computation from first principles

3 Complexity
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Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete
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Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete
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Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452


	Computational Aspects
	Consequence operator
	Computation from first principles
	Complexity


