
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 1 / 452



Computational Aspects: Overview

1 Consequence operator

2 Computation from first principles

3 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 234 / 452



Consequence operator

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 235 / 452



Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 236 / 452



Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 236 / 452



Consequence operator

Consequence operator

Let P be a positive program and X a set of atoms

The consequence operator TP is defined as follows:

TPX = {head(r) | r ∈ P and body(r) ⊆ X}

Iterated applications of TP are written as T j
P for j ≥ 0,

where

T 0
PX = X and

T i
PX = TPT

i−1
P X for i ≥ 1

For any positive program P, we have

Cn(P) =
⋃

i≥0 T
i
P∅

X ⊆ Y implies TPX ⊆ TPY

Cn(P) is the smallest fixpoint of TP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 236 / 452



Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 237 / 452



Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 237 / 452



Consequence operator

An example

Consider the program

P = {p ←, q ←, r ← p, s ← q, t, t ← r , u ← v}

We get

T 0
P∅ = ∅

T 1
P∅ = {p, q} = TPT

0
P∅ = TP∅

T 2
P∅ = {p, q, r} = TPT

1
P∅ = TP{p, q}

T 3
P∅ = {p, q, r , t} = TPT

2
P∅ = TP{p, q, r}

T 4
P∅ = {p, q, r , t, s} = TPT

3
P∅ = TP{p, q, r , t}

T 5
P∅ = {p, q, r , t, s} = TPT

4
P∅ = TP{p, q, r , t, s}

T 6
P∅ = {p, q, r , t, s} = TPT

5
P∅ = TP{p, q, r , t, s}

Cn(P) = {p, q, r , t, s} is the smallest fixpoint of TP because
TP{p, q, r , t, s} = {p, q, r , t, s} and
TPX 6= X for each X ⊂ {p, q, r , t, s}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 237 / 452



Computation from first principles

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 238 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

First Idea Approximate a stable model X by two sets of atoms
L and U such that L ⊆ X ⊆ U

L and U constitute lower and upper bounds on X
L and (A \ U) describe a three-valued model of the program

Observation

X ⊆ Y implies PY ⊆ PX implies Cn(PY ) ⊆ Cn(PX )

Properties Let X be a stable model of normal logic program P

If L ⊆ X , then X ⊆ Cn(PL)

If X ⊆ U, then Cn(PU) ⊆ X

If L ⊆ X ⊆ U, then L ∪ Cn(PU) ⊆ X ⊆ U ∩ Cn(PL)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 239 / 452



Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 240 / 452



Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 240 / 452



Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 240 / 452



Computation from first principles

Approximating stable models

Second Idea

repeat
replace L by L ∪ Cn(PU)
replace U by U ∩ Cn(PL)

until L and U do not change anymore

Observations
At each iteration step

L becomes larger (or equal)
U becomes smaller (or equal)

L ⊆ X ⊆ U is invariant for every stable model X of P

If L 6⊆ U, then P has no stable model

If L = U, then L is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 240 / 452



Computation from first principles

The simplistic expand algorithm

expandP(L,U)
repeat

L′ ← L
U ′ ← U

L← L′ ∪ Cn(PU′
)

U ← U ′ ∩ Cn(PL′)

if L 6⊆ U then return

until L = L′ and U = U ′

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 241 / 452



Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 242 / 452



Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 242 / 452



Computation from first principles

An example

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a} {a} {a, b, c , d , e} {a, b, d , e} {a, b, d , e}
2 {a} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}
3 {a, b} {a, b} {a, b} {a, b, d , e} {a, b, d , e} {a, b, d , e}

Note We have {a, b} ⊆ X and (A \ {a, b, d , e}) ∩ X = ({c} ∩ X ) = ∅
for every stable model X of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 242 / 452



Computation from first principles

The simplistic expand algorithm

expandP
tightens the approximation on stable models
is stable model preserving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 243 / 452



Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 244 / 452



Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 244 / 452



Computation from first principles

Let’s expand with d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 {d} {a} {a, d} {a, b, c , d , e} {a, b, d} {a, b, d}
2 {a, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}
3 {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d} {a, b, d}

Note {a, b, d} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 244 / 452



Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 245 / 452



Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 245 / 452



Computation from first principles

Let’s expand with ∼d !

P =


a←
b ← a,∼c
d ← b,∼e
e ← ∼d


L′ Cn(PU′

) L U ′ Cn(PL′) U

1 ∅ {a, e} {a, e} {a, b, c , e} {a, b, d , e} {a, b, e}
2 {a, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}
3 {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e} {a, b, e}

Note {a, b, e} is a stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 245 / 452



Computation from first principles

A simplistic solving algorithm

solveP(L,U)

(L,U)← expandP(L,U) // propagation

if L 6⊆ U then failure // failure

if L = U then output L // success

else choose a ∈ U \ L // choice

solveP(L ∪ {a},U)

solveP(L,U \ {a})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 246 / 452



Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 247 / 452



Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 247 / 452



Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 247 / 452



Computation from first principles

A simplistic solving algorithm

Close to the approach taken by the ASP solver smodels, inspired by
the Davis-Putman-Logemann-Loveland (DPLL) procedure

Backtracking search building a binary search tree
A node in the search tree corresponds to a three-valued interpretation

The search space is pruned by

deriving deterministic consequences and detecting conflicts (expand)
making one choice at a time by appeal to a heuristic (choose)

Heuristic choices are made on atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 247 / 452



Complexity

Outline

1 Consequence operator

2 Computation from first principles

3 Complexity

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 248 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 249 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 249 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 249 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive normal logic program P:

Deciding whether X is the stable model of P is P-complete
Deciding whether a is in the stable model of P is P-complete

For a normal logic program P:

Deciding whether X is a stable model of P is P-complete
Deciding whether a is in a stable model of P is NP-complete

For a normal logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is co-NP-complete
Deciding whether a is in an optimal stable model of P is ∆p

2-complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 249 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 250 / 452



Complexity

Complexity

Let a be an atom and X be a set of atoms

For a positive disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P:

Deciding whether X is a stable model of P is co-NP-complete
Deciding whether a is in a stable model of P is NPNP -complete

For a disjunctive logic program P with optimization statements:

Deciding whether X is an optimal stable model of P is
co-NPNP -complete
Deciding whether a is in an optimal stable model of P is ∆p

3-complete

For a propositional theory Φ:

Deciding whether X is a stable model of Φ is co-NP-complete
Deciding whether a is in a stable model of Φ is NPNP -complete

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 250 / 452



Complexity

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] K. Clark.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[13] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[15] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam.
A computing procedure for quantification theory.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Journal of the ACM, 7:201–215, 1960.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[26] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [44], pages 250–264.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[30] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[31] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [68], pages 386–392.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[34] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[35] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[36] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [44], pages 235–249.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[37] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

[39] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[40] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[41] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[42] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[43] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Journal of Automated Reasoning, 36(4):345–377, 2006.

[44] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[45] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [68], pages 2318–2323.

[46] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[47] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[48] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[49] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[50] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[51] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[52] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[53] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[54] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

[61] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452



Complexity

In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 452 / 452


	Computational Aspects
	Consequence operator
	Computation from first principles
	Complexity


