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Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train
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Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬
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Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537



Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537



Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537



Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P
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Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model
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Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules
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Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX )
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Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}
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Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

assign(X,r) ; assign(X,b) ; assign(X,g) :- node(X).

:- edge(X,Y), assign(X,C), assign(Y,C).
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assign(X,C) : color(C) :- node(X).
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Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}
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Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If a ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
B(r)+ ⊆ X , B(r)− ∩ X = ∅, and H(r) ∩ X = {a}
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Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X ) ; c(Y ) ← a(X ,Y ),∼c(Y )

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅
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Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X ) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X )
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Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P
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Propositional theories

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language
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Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas
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Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX ) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}
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Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX )

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX ) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!
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Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1 ) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2 ) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2 ) = {{q, r}} 4
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Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r ] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]
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Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}
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The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}
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Aggregates

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language
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Aggregates

Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values

Popular aggregate (functions)

average
count
maximum
minimum
sum

Cardinality and weight constraints rely on count and sum aggregates
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Aggregates

Syntax

An aggregate has the form:

α {w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an} ≺ k

where for 1 ≤ i ≤ n

α stands for a function mapping multisets over Z to Z ∪ {+∞,−∞}
≺ stands for a relation between Z ∪ {+∞,−∞} and Z
k ∈ Z
ai are atoms and
wi are integers

Example sum {30 : hd(a), . . . , 50 : hd(m)} ≤ 300
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Aggregates

Semantics

A (positive) aggregate α {w1 : a1, . . . ,wn : an} ≺ k
can be represented by the formula:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k

∧
i∈I

ai →
∨
i∈I

ai


where I = {1, . . . , n} \ I and 6≺ is the complement of ≺
Then, α {w1 : a1, . . . ,wn : an} ≺ k is true in X iff
the above formula is true in X
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Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1
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Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!
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∑
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Aggregates

Monotonicity

Monotone aggregates
For instance,

B(r)+

sum{1 : p, 1 : q} > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},α{wi |i∈I}6≺k
∨

i∈I ai

Anti-monotone aggregates
For instance,

B(r)−

sum{1 : p, 1 : q} < 1 amounts to ¬p ∧ ¬q
We get a simpler characterization:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k ¬

∧
i∈I ai

Non-monotone aggregates

For instance, sum{1 : p, 1 : q} 6= 1 is non-monotone.
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Non-monotone aggregates
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Gringo language

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language
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Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2
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Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t are formed from
constant symbols, eg c, d, . . .
function symbols, eg f, g, . . .
numeric symbols, eg 1, 2, . . .
variable symbols, eg X, Y, . . . ,
parentheses (, )
tuple delimiters 〈, 〉 (omitted whenever possible)

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a
Literals
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Terms and literals

Terms t are formed from
constants, eg c, d, . . .
functions, eg f, g, . . .
numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (, )
tuple delimiters 〈, 〉

eg f(3,c,Z), g(42, , ), or f((3,c),X)
Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t of terms

Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
(Negated) Atoms a, ¬a are formed from

predicate symbols, eg p, q, . . .
parentheses (, )
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (, )
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
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Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (, )
tuples of terms

eg -p(f(3,c,Z),g(42, , )) or q() written as q

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
viz #false and #true

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
eg p(a,X), ‘not p(a,X)’, ‘not not p(a,X)’

Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

eg 3<1 or f(42)=X

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L of literals

Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals
l : L is written as l whenever L is empty

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

eg ‘p(X,Y):q(X),r(Y)’ or p(42) or ‘#false:q’

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
one (or both) of ‘s1 ≺1’ and ‘≺2 s2’ can be omitted

Aggregate literals a, ∼a, ∼∼a
Literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
omitting ≺1 or ≺2 defaults to ≤

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 <= #sum {6,C:course(C); 3,S:seminar(S)} <= 20

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

eg not 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals
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Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

For a detailed account please consult the user’s guide!
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Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).
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whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).
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Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.
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Gringo language

Shortcuts

The expression

s1 {l1 : L1; . . . ; lk : Lk} s2

is a shortcut for

s1 ≤ count{t1 : l1 : L1; . . . ; tk : lk : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : l1,L1; . . . ; tk : lk ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted
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Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }
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Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.
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Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.
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Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3
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