
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 1 / 537

Language Extensions: Overview

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 125 / 537

Two kinds of negation

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 126 / 537

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 127 / 537

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 127 / 537

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 127 / 537

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 128 / 537

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 128 / 537

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 128 / 537

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 128 / 537

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c
b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c
c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 129 / 537

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 130 / 537

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 130 / 537

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 130 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 131 / 537

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 132 / 537

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 132 / 537

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 132 / 537

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | h(r) 6= ∼a}
∪ {← B(r) ∪ {∼ã} | r ∈ P and h(r) = ∼a}
∪ {ã← ∼a | r ∈ P and h(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 132 / 537

Disjunctive logic programs

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 133 / 537

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 134 / 537

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 134 / 537

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

H(r) = {a1, . . . , am}
B(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

B(r)+ = {am+1, . . . , an}
B(r)− = {an+1, . . . , ao}
A(P) =

⋃
r∈P

(
H(r) ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}

A program is called positive if B(r)− = ∅ for all its rules

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 134 / 537

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 135 / 537

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 135 / 537

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, H(r) ∩ X 6= ∅ whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {H(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 135 / 537

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 136 / 537

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 136 / 537

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 136 / 537

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

assign(X,r) ; assign(X,b) ; assign(X,g) :- node(X).

:- edge(X,Y), assign(X,C), assign(Y,C).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 137 / 537

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

color(r). color(b). color(g).

assign(X,C) : color(C) :- node(X).

:- edge(X,Y), assign(X,C), assign(Y,C).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 137 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 138 / 537

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If a ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
B(r)+ ⊆ X , B(r)− ∩ X = ∅, and H(r) ∩ X = {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 139 / 537

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If a ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
B(r)+ ⊆ X , B(r)− ∩ X = ∅, and H(r) ∩ X = {a}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 139 / 537

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 140 / 537

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 140 / 537

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 140 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 141 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 141 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 141 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 141 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 141 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 142 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 142 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 142 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 142 / 537

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 142 / 537

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 143 / 537

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 143 / 537

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {H(r)+ ← B(r) ∪ {∼ã | a ∈ H(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ H(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 143 / 537

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 144 / 537

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 144 / 537

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 144 / 537

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 144 / 537

Propositional theories

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 145 / 537

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 146 / 537

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 146 / 537

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 146 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is defined
recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ ϕX) if X |= φ and φ = (ψ ◦ ϕ) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 147 / 537

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 148 / 537

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 148 / 537

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 148 / 537

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 148 / 537

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 148 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 149 / 537

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 150 / 537

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 150 / 537

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 150 / 537

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 150 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 151 / 537

Aggregates

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 152 / 537

Aggregates

Motivation

Aggregates provide a general way to obtain a single value from a
collection of input values

Popular aggregate (functions)

average
count
maximum
minimum
sum

Cardinality and weight constraints rely on count and sum aggregates

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 153 / 537

Aggregates

Syntax

An aggregate has the form:

α {w1 : a1, . . . ,wm : am,wm+1 : ∼am+1, . . . ,wn : ∼an} ≺ k

where for 1 ≤ i ≤ n

α stands for a function mapping multisets over Z to Z ∪ {+∞,−∞}
≺ stands for a relation between Z ∪ {+∞,−∞} and Z
k ∈ Z
ai are atoms and
wi are integers

Example sum {30 : hd(a), . . . , 50 : hd(m)} ≤ 300

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 154 / 537

Aggregates

Semantics

A (positive) aggregate α {w1 : a1, . . . ,wn : an} ≺ k
can be represented by the formula:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k

∧
i∈I

ai →
∨
i∈I

ai


where I = {1, . . . , n} \ I and 6≺ is the complement of ≺
Then, α {w1 : a1, . . . ,wn : an} ≺ k is true in X iff
the above formula is true in X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 155 / 537

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 156 / 537

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 156 / 537

Aggregates

Example

Consider sum{1 : p, 1 : q} 6= 1
That is, a1 = p, a2 = q and w1 = 1, w2 = 1

Calculemus!

I {wi | i ∈ I}
∑
{wi | i ∈ I}

∑
{wi | i ∈ I} = 1

∅ {} 0 false
{1} {1} 1 true
{2} {1} 1 true
{1, 2} {1, 1} 2 false

We get (p → q) ∧ (q → p)

Analogously, we obtain (p ∨ q) ∧ ¬(p ∧ q) for sum{1 : p, 1 : q} = 1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 156 / 537

Aggregates

Monotonicity

Monotone aggregates
For instance,

B(r)+

sum{1 : p, 1 : q} > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},α{wi |i∈I}6≺k
∨

i∈I ai

Anti-monotone aggregates
For instance,

B(r)−

sum{1 : p, 1 : q} < 1 amounts to ¬p ∧ ¬q
We get a simpler characterization:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k ¬

∧
i∈I ai

Non-monotone aggregates

For instance, sum{1 : p, 1 : q} 6= 1 is non-monotone.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 157 / 537

Aggregates

Monotonicity

Monotone aggregates
For instance,

B(r)+

sum{1 : p, 1 : q} > 1 amounts to p ∧ q

We get a simpler characterization:
∧

I⊆{1,...,n},α{wi |i∈I}6≺k
∨

i∈I ai

Anti-monotone aggregates
For instance,

B(r)−

sum{1 : p, 1 : q} < 1 amounts to ¬p ∧ ¬q
We get a simpler characterization:

∧
I⊆{1,...,n},α{wi |i∈I}6≺k ¬

∧
i∈I ai

Non-monotone aggregates

For instance, sum{1 : p, 1 : q} 6= 1 is non-monotone.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 157 / 537

Gringo language

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

4 Aggregates

5 Gringo language

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 158 / 537

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 159 / 537

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 159 / 537

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 159 / 537

Gringo language

Gringo language

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

aspif formatgringo format

aspif format is a machine-oriented standard for ground programs

gringo format is a user-oriented language for (non-ground) programs
extending the ASP language standard ASP-Core-2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 159 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t are formed from
constant symbols, eg c, d, . . .
function symbols, eg f, g, . . .
numeric symbols, eg 1, 2, . . .
variable symbols, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉 (omitted whenever possible)

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t are formed from
constants, eg c, d, . . .
functions, eg f, g, . . .
numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉

Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t are formed from
constants, eg c, d, . . .
functions, eg f, g, . . .
numerics, eg 1, 2, . . .
variables, eg X, Y, . . . ,
parentheses (,)
tuple delimiters 〈, 〉

eg f(3,c,Z), g(42, ,), or f((3,c),X)
Tuples t
Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t of terms

Atoms a, ¬a
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
(Negated) Atoms a, ¬a are formed from

predicate symbols, eg p, q, . . .
parentheses (,)
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (,)
tuples of terms

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a are formed from

predicates, eg p, q, . . .
parentheses (,)
tuples of terms

eg -p(f(3,c,Z),g(42, ,)) or q() written as q

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
viz #false and #true

Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
eg p(a,X), ‘not p(a,X)’, ‘not not p(a,X)’

Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2 where

t1 and t2 are terms
≺ is a comparison symbol

eg 3<1 or f(42)=X

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L of literals

Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals
l : L is written as l whenever L is empty

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L where

l is a symbolic or arithmetic literal
L is a tuple of symbol or arithmetic literals

eg ‘p(X,Y):q(X),r(Y)’ or p(42) or ‘#false:q’

Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
one (or both) of ‘s1 ≺1’ and ‘≺2 s2’ can be omitted

Aggregate literals a, ∼a, ∼∼a
Literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms
omitting ≺1 or ≺2 defaults to ≤

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 <= #sum {6,C:course(C); 3,S:seminar(S)} <= 20

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2
Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2 where

α is an aggregate name
t1 : L1, . . . , tn : Ln are conditional literals
≺1 and ≺2 are comparison symbols
s1 and s2 are terms

eg 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2
Aggregate literals a, ∼a, ∼∼a where

a is an aggregate atom

eg not 10 #sum {6,C:course(C); 3,S:seminar(S)} 20
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Terms and literals

Terms t

Tuples t, L
Atoms a, ¬a, ⊥, >
Symbolic literals a, ∼a, ∼∼a
Arithmetic literals t1 ≺ t2

Conditional literals l : L
Aggregate atoms s1 ≺1 α{t1 : L1; . . . ; tn : Ln} ≺2 s2

Aggregate literals a, ∼a, ∼∼a
Literals are conditional or aggregate literals

For a detailed account please consult the user’s guide!

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 160 / 537

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 161 / 537

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 161 / 537

Gringo language

Rules

Rules are of the form

l1 ; . . . ; lm ← lm+1, . . . , ln (2)

where

li is a conditional literal for 1 ≤ i ≤ m and
li is a literal for m + 1 ≤ i ≤ n

Note Semicolons ‘;’ must be used in (2) instead of commas ‘,’
whenever some li is a (genuine) conditional literal for 1 ≤ i ≤ n

Example a(X) :- b(X) : c(X), d(X); e(x).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 161 / 537

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 162 / 537

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 162 / 537

Gringo language

Shortcuts

A rule of the form

s1 ≺1 α{t1 : l1 : L1; . . . ; tk : lk : Lk} ≺2 s2 ← lm+1, . . . , ln

where

α, ≺i , si , t j are as given above for i = 1, 2 and 1 ≤ j ≤ k
lj : Lj is a conditional literal for 1 ≤ j ≤ k
li is a literal for m + 1 ≤ i ≤ n (as in (2))

is a shorthand for the following k + 1 rules

{lj} ← lm+1, . . . , ln,Lj for 1 ≤ j ≤ k

← lm+1, . . . , ln,∼ s1 ≺1 α{t1 : l1,L1; . . . ; tk : lk ,Lk} ≺2 s2

Example 10 < #sum { C,X,Y : edge(X,Y) : cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 162 / 537

Gringo language

Shortcuts

The expression

s1 {l1 : L1; . . . ; lk : Lk} s2

is a shortcut for

s1 ≤ count{t1 : l1 : L1; . . . ; tk : lk : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : l1,L1; . . . ; tk : lk ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 163 / 537

Gringo language

Shortcuts

The expression

s1 {l1 : L1; . . . ; lk : Lk} s2

is a shortcut for

s1 ≤ count{t1 : l1 : L1; . . . ; tk : lk : Lk} ≤ s2

if it appears in the head of a rule and

s1 ≤ count{t1 : l1,L1; . . . ; tk : lk ,Lk} ≤ s2

if it appears in the body of a rule

where ti 6= tj whenever Li 6= Lj for i 6= j and 1 ≤ i , j ≤ k

Note one (or both) of s1 and s2 can be omitted

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 163 / 537

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 164 / 537

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 164 / 537

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 164 / 537

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 164 / 537

Gringo language

Examples

{a; b}

$ gringo --text <(echo "{a;b}.")

#count{1,0,a:a;1,0,b:b}.

gringo generates two distinct term tuples 1,0,a and 1,0,b

1 = { q(X,Y): p(X), p(Y), X < Y; q(X,X): p(X) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 164 / 537

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 165 / 537

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 165 / 537

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 165 / 537

Gringo language

Weak constraints

Syntax A weak constraint is of the form

� l1, . . . , ln. [w@p, t1, . . . , tm]

where
l1, . . . , ln are literals
t1, . . . , tm, w , and p are terms

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example The weak constraint

� hd(I,P,C). [C@2,I]

amounts to the minimize statement

#minimize{ C@2,I : hd(I,P,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 165 / 537

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 166 / 537

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 166 / 537

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 166 / 537

Gringo language

Some more directives

Output

#show. #show p/n. #show t : l1, . . . , ln.

Projection

#project p/n. #project a : l1, . . . , ln.

Heuristics

#heuristic a : l1, . . . , ln. [k@p,m]

Acyclicity

#edge (u, v) : l1, . . . , ln.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 166 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 <= #count { 1,r(X) : r(X), p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

gringo 3 versus 4/5

The input language of gringo series 4/5 comprises

ASP-Core-2
concepts from lparse and gringo 3

Example The gringo 3 rule

r(X) : p(X) : not q(X) :- r(X) : p(X) : not q(X),

1 { r(X) : p(X) : not q(X) }.

can be written as follows in the language of gringo 4/5:

r(X) : p(X), not q(X) :- r(X) : p(X), not q(X);

1 { r(X) : p(X), not q(X) }.

Note Directives #compute, #domain, and #hide are discontinued

Attention

The languages of gringo 3 and 4/5 are not fully compatible
Many example programs in the literature are written for gringo 3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 167 / 537

Gringo language

[1] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[2] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

[3] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[4] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[5] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[6] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.
In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[7] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

IOS Press, 2009.

[9] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[10] G. Brewka, I. Niemelä, and M. Truszczyński.
Answer set optimization.
In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 867–872. Morgan Kaufmann Publishers, 2003.

[11] K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[12] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[14] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[16] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
Answer sets for propositional theories.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub.
Abstract Gringo.
Theory and Practice of Logic Programming, 15(4-5):449–463, 2015.
Available at http://arxiv.org/abs/1507.06576.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

http://arxiv.org/abs/1507.06576

Gringo language

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele.
Potassco User Guide.
University of Potsdam, second edition edition, 2015.

[28] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[30] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [49], pages 250–264.

[31] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [3], pages 260–265.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [3], pages 136–148.

[34] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [74], pages 386–392.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

[35] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[36] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[37] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[38] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [49], pages 235–249.

[39] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

[41] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[42] M. Gelfond and Y. Kahl.
Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach.
Cambridge University Press, 2014.

[43] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[44] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[45] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[46] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

[47] K. Gödel.
Zum intuitionistischen Aussagenkalkül.
Anzeiger der Akademie der Wissenschaften in Wien, page 65–66,
1932.

[48] A. Heyting.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

Die formalen Regeln der intuitionistischen Logik.
In Sitzungsberichte der Preussischen Akademie der Wissenschaften,
page 42–56. Deutsche Akademie der Wissenschaften zu Berlin, 1930.
Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der
Modernen Logik, Akademie-Verlag, 1986.

[49] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[50] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [74], pages 2318–2323.

[51] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[52] J. Lee.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

[53] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[54] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[55] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[56] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[57] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[58] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[59] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[60] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [8], chapter 4, pages 131–153.

[61] J. Marques-Silva and K. Sakallah.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[62] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[63] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[64] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

[65] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[66] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[67] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[68] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[69] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[70] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[71] T. Son and E. Pontelli.
Planning with preferences using logic programming.
Theory and Practice of Logic Programming, 6(5):559–608, 2006.

[72] T. Syrjänen.
Lparse 1.0 user’s manual, 2001.

[73] A. Van Gelder, K. Ross, and J. Schlipf.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

Gringo language

The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[74] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[75] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In R. Ernst, editor, Proceedings of the International Conference on
Computer-Aided Design (ICCAD’01), pages 279–285. IEEE Computer
Society Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 14, 2018 537 / 537

	Language Extensions
	Two kinds of negation
	Disjunctive logic programs
	Propositional theories
	Aggregates
	Gringo language

