
Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 1 / 32

Rough Roadmap

1 Introduction

2 Language

3 Modeling

4 Grounding

5 Foundations

6 Solving

7 Systems

8 Applications

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 2 / 32

Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 3 / 32

http://www.cs.uni-potsdam.de/wv/lehre
http://moodle.cs.uni-potsdam.de
http://potassco.sourceforge.net/teaching.html
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.sourceforge.net/book.html

http://potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 4 / 32

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 5 / 32

Language Extensions: Overview

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 6 / 32

Two kinds of negation

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 7 / 32

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 32

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 32

Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 32

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32

Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 32

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 32

Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 32

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 32

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 32

Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 32

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 32

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 32

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 32

Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 32

Disjunctive logic programs

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 32

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 32

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 32

Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 32

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 32

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 32

Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 32

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 32

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 32

Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 32

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

color(X,r) | color(X,b) | color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 32

Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

col(r). col(b). col(g).

color(X,C) : col(C) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 32

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 32

Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 32

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 32

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 32

Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X) ; c(Y) ← a(X ,Y),∼c(Y)

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 32

Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), c(2)}
We get min⊆(ground(P)X) = { {a(1, 2)} }
X is no stable model of P because X 6∈ min⊆(ground(P)X)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 32

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 24 / 32

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 24 / 32

Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 24 / 32

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 32

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 32

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 32

Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 32

Propositional theories

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 32

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 27 / 32

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 27 / 32

Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 27 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 32

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 32

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 32

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 32

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 32

Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX)

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2) = {{q, r}} 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 32

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 32

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 32

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 32

Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] K. Clark.
Negation as failure.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[13] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[15] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [44], pages 250–264.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[30] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[31] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [68], pages 386–392.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[34] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[35] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[36] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [44], pages 235–249.

[37] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

[39] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[40] M. Gelfond and N. Leone.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[41] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[42] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[43] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[44] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[45] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [68], pages 2318–2323.

[46] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[47] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[48] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[49] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[50] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[51] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[52] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[53] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[54] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

[61] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 32

	Organization
	Language Extensions
	Two kinds of negation
	Disjunctive logic programs
	Propositional theories

	References

