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Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de
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Language Extensions: Overview

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories
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Two kinds of negation

Motivation

Classical versus default negation

Symbol ¬ and ∼
Idea

¬a ≈ ¬a ∈ X
∼a ≈ a /∈ X

Example

cross ← ¬train
cross ← ∼train
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Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32



Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32



Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32



Two kinds of negation

Classical negation

We consider logic programs in negation normal form

That is, classical negation is applied to atoms only

Given an alphabet A of atoms, let A = {¬a | a ∈ A} such that
A ∩A = ∅
Given a program P over A, classical negation is encoded by adding

P¬ = {a← b,¬b | a ∈ (A ∪A), b ∈ A}

A set X of atoms is a stable model of a program P over A ∪A,
if X is a stable model of P ∪ P¬

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 32



Two kinds of negation

An example

The program

P = {a← ∼b, b ← ∼a} ∪ {c ← b, ¬c ← b}

induces

P¬ =



a ← a,¬a a ← b,¬b a ← c ,¬c
¬a ← a,¬a ¬a ← b,¬b ¬a ← c,¬c

b ← a,¬a b ← b,¬b b ← c,¬c
¬b ← a,¬a ¬b ← b,¬b ¬b ← c ,¬c

c ← a,¬a c ← b,¬b c ← c ,¬c
¬c ← a,¬a ¬c ← b,¬b ¬c ← c ,¬c


The stable models of P are given by the ones of P ∪ P¬, viz {a}
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Two kinds of negation

Properties

The only inconsistent stable “model” is X = A ∪A
Note Strictly speaking, an inconsistemt set like A ∪A is not a model

For a logic program P over A ∪A, exactly one of the following two
cases applies:

1 All stable models of P are consistent or
2 X = A ∪A is the only stable model of P
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Two kinds of negation

Train spotting

P1 = {cross ← ∼train}
stable model: {cross}

P2 = {cross ← ¬train}
stable model: ∅

P3 = {cross ← ¬train, ¬train←}
stable model: {cross,¬train}

P4 = {cross ← ¬train, ¬train←, ¬cross ←}
stable model: {cross,¬cross, train,¬train}

P5 = {cross ← ¬train, ¬train← ∼train}
stable model: {cross,¬train}

P6 = {cross ← ¬train, ¬train← ∼train, ¬cross ←}
no stable model
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Two kinds of negation

Default negation in rule heads

We consider logic programs with default negation in rule heads

Given an alphabet A of atoms, let Ã = {ã | a ∈ A} such that
A ∩ Ã = ∅
Given a program P over A, consider the program

P̃ = {r ∈ P | head(r) 6= ∼a}
∪ {← body(r) ∪ {∼ã} | r ∈ P and head(r) = ∼a}
∪ {ã← ∼a | r ∈ P and head(r) = ∼a}

A set X of atoms is a stable model of a program P (with default
negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Disjunctive logic programs

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories
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Disjunctive logic programs

Disjunctive logic programs

A disjunctive rule, r , is of the form

a1 ; . . . ; am ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 0 ≤ i ≤ o

A disjunctive logic program is a finite set of disjunctive rules

Notation

head(r) = {a1, . . . , am}
body(r) = {am+1, . . . , an,∼an+1, . . . ,∼ao}

body(r)+ = {am+1, . . . , an}
body(r)− = {an+1, . . . , ao}
atom(P) =

⋃
r∈P

(
head(r) ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program is called positive if body(r)− = ∅ for all its rules
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Disjunctive logic programs

Stable models

Positive programs

A set X of atoms is closed under a positive program P iff
for any r ∈ P, head(r) ∩ X 6= ∅ whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The set of all ⊆-minimal sets of atoms being closed under a positive
program P is denoted by min⊆(P)

min⊆(P) corresponds to the ⊆-minimal models of P (ditto)

Disjunctive programs

The reduct, PX , of a disjunctive program P relative to a set X of
atoms is defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a disjunctive program P,
if X ∈ min⊆(PX )
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Disjunctive logic programs

A “positive” example

P =

{
a ←
b ; c ← a

}

The sets {a, b}, {a, c}, and {a, b, c} are closed under P

We have min⊆(P) = {{a, b}, {a, c}}
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Disjunctive logic programs

Graph coloring (reloaded)

node(1..6).

edge(1,2;3;4). edge(2,4;5;6). edge(3,1;4;5).

edge(4,1;2). edge(5,3;4;6). edge(6,2;3;5).

color(X,r) | color(X,b) | color(X,g) :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).
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Disjunctive logic programs

More Examples

P1 = {a ; b ; c ←}
stable models {a}, {b}, and {c}

P2 = {a ; b ; c ← , ← a}
stable models {b} and {c}

P3 = {a ; b ; c ← , ← a , b ← c , c ← b}
stable model {b, c}

P4 = {a ; b ← c , b ← ∼a,∼c , a ; c ← ∼b}
stable models {a} and {b}
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Disjunctive logic programs

Some properties

A disjunctive logic program may have zero, one, or multiple stable
models

If X is a stable model of a disjunctive logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a disjunctive logic program P,
then X 6⊂ Y

If A ∈ X for some stable model X of a disjunctive logic program P,
then there is a rule r ∈ P such that
body(r)+ ⊆ X , body(r)− ∩ X = ∅, and head(r) ∩ X = {A}
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Disjunctive logic programs

An example with variables

P =

{
a(1, 2) ←
b(X ) ; c(Y ) ← a(X ,Y ),∼c(Y )

}

ground(P) =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


For every stable model X of P, we have

a(1, 2) ∈ X and

{a(1, 1), a(2, 1), a(2, 2)} ∩ X = ∅
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Disjunctive logic programs

An example with variables

ground(P)X =


a(1, 2) ←
b(1) ; c(1) ← a(1, 1),∼c(1)
b(1) ; c(2) ← a(1, 2),∼c(2)
b(2) ; c(1) ← a(2, 1),∼c(1)
b(2) ; c(2) ← a(2, 2),∼c(2)


Consider X = {a(1, 2), b(1)}
We get min⊆(ground(P)X ) = { {a(1, 2), b(1)}, {a(1, 2), c(2)} }
X is a stable model of P because X ∈ min⊆(ground(P)X )
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Disjunctive logic programs

Default negation in rule heads

Consider disjunctive rules of the form

a1 ; . . . ; am ;∼am+1 ; . . . ;∼an ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 0 ≤ i ≤ p

Given a program P over A, consider the program

P̃ = {head(r)+ ← body(r) ∪ {∼ã | a ∈ head(r)−} | r ∈ P}
∪ {ã← ∼a | r ∈ P and a ∈ head(r)−}

A set X of atoms is a stable model of a disjunctive program P
(with default negation in rule heads) over A,
if X = Y ∩ A for some stable model Y of P̃ over A ∪ Ã
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Disjunctive logic programs

An example

The program

P = {a ; ∼a←}

yields

P̃ = {a← ∼ã} ∪ {ã← ∼a}

P̃ has two stable models, {a} and {ã}
This induces the stable models {a} and ∅ of P
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Propositional theories

Outline

1 Two kinds of negation

2 Disjunctive logic programs

3 Propositional theories
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Propositional theories

Propositional theories

Formulas are formed from

atoms in A
⊥

using

conjunction (∧)
disjunction (∨)
implication (→)

Notation

> = (⊥ → ⊥)

∼φ = (φ→ ⊥)

A propositional theory is a finite set of formulas
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Propositional theories

Reduct

The satisfaction relation X |= φ between a set X of atoms and
a (set of) formula(s) φ is defined as in propositional logic

The reduct, φX , of a formula φ relative to a set X of atoms is
defined recursively as follows:

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ HX ) if X |= φ and φ = (ψ ◦ H) for ◦ ∈ {∧,∨,→}

If φ = ∼ψ = (ψ → ⊥),
then φX = (⊥ → ⊥) = >, if X 6|= ψ, and φX = ⊥, otherwise

The reduct, ΦX , of a propositional theory Φ relative to a set X of
atoms is defined as ΦX = {φX | φ ∈ Φ}
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Propositional theories

Stable models

A set X of atoms satisfies a propositional theory Φ, written X |= Φ,
if X |= φ for each φ ∈ Φ

The set of all ⊆-minimal sets of atoms satisfying a propositional
theory Φ is denoted by min⊆(Φ)

A set X of atoms is a stable model of a propositional theory Φ,
if X ∈ min⊆(ΦX )

If X is a stable model of Φ, then

X |= Φ and
min⊆(ΦX ) = {X}

Note In general, this does not imply X ∈ min⊆(Φ)!
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Propositional theories

Two examples

Φ1 = {p ∨ (p → (q ∧ r))}
For X = {p, q, r}, we get

Φ
{p,q,r}
1 = {p ∨ (p → (q ∧ r))} and min⊆(Φ

{p,q,r}
1 ) = {∅} 8

For X = ∅, we get
Φ∅1 = {⊥ ∨ (⊥ → ⊥)} and min⊆(Φ∅1) = {∅} 4

Φ2 = {p ∨ (∼p → (q ∧ r))}
For X = ∅, we get
Φ∅2 = {⊥} and min⊆(Φ∅2) = ∅ 8
For X = {p}, we get

Φ
{p}
2 = {p ∨ (⊥ → ⊥)} and min⊆(Φ

{p}
2 ) = {∅} 8

For X = {q, r}, we get

Φ
{q,r}
2 = {⊥ ∨ (> → (q ∧ r))} and min⊆(Φ

{q,r}
2 ) = {{q, r}} 4
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Propositional theories

Relationship to logic programs

The translation, τ [(φ← ψ)], of a rule (φ← ψ) is defined as follows:

τ [(φ← ψ)] = (τ [ψ]→ τ [φ])
τ [⊥] = ⊥
τ [>] = >
τ [φ] = φ if φ is an atom
τ [∼φ] = ∼τ [φ]
τ [(φ, ψ)] = (τ [φ] ∧ τ [ψ])
τ [(φ;ψ)] = (τ [φ] ∨ τ [ψ])

The translation of a logic program P is τ [P] = {τ [r ] | r ∈ P}

Given a logic program P and a set X of atoms,
X is a stable model of P iff X is a stable model of τ [P]
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Propositional theories

Logic programs as propositional theories

The normal logic program P = {p ← ∼q, q ← ∼p}
corresponds to τ [P] = {∼q → p, ∼p → q}

stable models: {p} and {q}

The disjunctive logic program P = {p ; q ←}
corresponds to τ [P] = {> → p ∨ q}

stable models: {p} and {q}

The nested logic program P = {p ← ∼∼p}
corresponds to τ [P] = {∼∼p → p}

stable models: ∅ and {p}
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In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
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