
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 1 / 538



Introduction: Overview

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 32 / 538



Syntax

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 33 / 538



Syntax

Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 34 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 :- a1, . . . , am, not am+1, . . . , not an.

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules
A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an
where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n
Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}
A(P) =

⋃
r∈P

(
{h(r)} ∪ B(r)+ ∪ B(r)−

)
B(P) = {B(r) | r ∈ P}
h(P) = {h(r) | r ∈ P}

A literal is an atom or a negated atom
A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 35 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 37 / 538



Semantics

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 38 / 538



Semantics

Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 39 / 538



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 40 / 538



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 40 / 538



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 40 / 538



Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 40 / 538



Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 41 / 538



Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 41 / 538



Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 41 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 42 / 538



Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Remarks

Cn(PX ) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 43 / 538



Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Remarks

Cn(PX ) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 43 / 538



Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Remarks

Cn(PX ) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 43 / 538



Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Remarks

Cn(PX ) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 43 / 538



Semantics

A closer look at PX

Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 44 / 538



Semantics

A closer look at PX

Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 44 / 538



Examples

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 45 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example one

P = {p ← p, q ← ¬p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 4

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 46 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example two

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 47 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Example three

P = {p ← ¬p}

X PX Cn(PX )

{ } p ← {p} 8

{p} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 48 / 538



Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 49 / 538



Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 49 / 538



Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 49 / 538



Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 49 / 538



Examples

Exemplars

Logic program Answer sets

a. {a}
a :- b. {}
a :- b. b. {a,b}
a :- b. b :- a. {}
a :- not c. {a}
a :- not c. c. {c}
a :- not c. c :- not a. {a}, {c}
a :- not a.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 50 / 538



Reasoning

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 51 / 538



Reasoning

Reasoning modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 52 / 538



Reasoning

Reasoning modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 53 / 538



Language

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 54 / 538



Language

Extended syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 55 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Multi-objective optimization

Weak constraints :∼ q(X), p(X,C) [C@42]

Statements #minimize { C@42 : q(X), p(X,C) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 56 / 538



Variables

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 57 / 538



Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X ), d(X )

r(X )← ∼q(X ), d(X )

s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 58 / 538



Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X ), d(X )

r(X )← ∼q(X ), d(X )

s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 58 / 538



Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 59 / 538



Variables

Grounding instantiation

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T
(also called alphabet or Herbrand base)

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 59 / 538



Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 59 / 538



Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 59 / 538



Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 59 / 538



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 60 / 538



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 60 / 538



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 60 / 538



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 60 / 538



Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← , t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 60 / 538



Variables

Safety

A normal rule is safe, if each of its variables also occurs in some
positive body literal

A normal program is safe, if all of its rules are safe

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 61 / 538



Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a) 4

q(b) 4

q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a) 4

q(b) 4

q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ) 8

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ), d(X ) 4

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ), d(X ) 4

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ), d(X ) 4

r(X )← ∼q(X ), d(X ) 4

s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ), d(X ) 4

r(X )← ∼q(X ), d(X ) 4

s(X )← ∼r(X ), p(X ,Y ), q(Y )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Example

Safe ?
d(a) 4

d(c) 4

d(d) 4

p(a, b) 4

p(b, c) 4

p(c , d) 4

p(X ,Z )← p(X ,Y ), p(Y ,Z ) 4

q(a) 4

q(b) 4

q(X )← ∼r(X ), d(X ) 4

r(X )← ∼q(X ), d(X ) 4

s(X )← ∼r(X ), p(X ,Y ), q(Y ) 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 62 / 538



Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 63 / 538



Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 63 / 538



Variables

[1] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[2] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

[3] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[4] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[5] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[6] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.
In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[7] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

IOS Press, 2009.

[9] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[10] G. Brewka, I. Niemelä, and M. Truszczyński.
Answer set optimization.
In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 867–872. Morgan Kaufmann Publishers, 2003.

[11] K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[12] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[14] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[16] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
Answer sets for propositional theories.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub.
Abstract Gringo.
Theory and Practice of Logic Programming, 15(4-5):449–463, 2015.
Available at http://arxiv.org/abs/1507.06576.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538

http://arxiv.org/abs/1507.06576


Variables

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele.
Potassco User Guide.
University of Potsdam, second edition edition, 2015.

[28] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[30] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [49], pages 250–264.

[31] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [3], pages 260–265.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [3], pages 136–148.

[34] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [74], pages 386–392.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

[35] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[36] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[37] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[38] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [49], pages 235–249.

[39] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

[41] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[42] M. Gelfond and Y. Kahl.
Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach.
Cambridge University Press, 2014.

[43] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[44] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[45] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[46] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

[47] K. Gödel.
Zum intuitionistischen Aussagenkalkül.
Anzeiger der Akademie der Wissenschaften in Wien, page 65–66,
1932.

[48] A. Heyting.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

Die formalen Regeln der intuitionistischen Logik.
In Sitzungsberichte der Preussischen Akademie der Wissenschaften,
page 42–56. Deutsche Akademie der Wissenschaften zu Berlin, 1930.
Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der
Modernen Logik, Akademie-Verlag, 1986.

[49] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[50] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [74], pages 2318–2323.

[51] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[52] J. Lee.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

[53] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[54] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[55] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[56] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[57] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[58] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[59] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[60] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [8], chapter 4, pages 131–153.

[61] J. Marques-Silva and K. Sakallah.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[62] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[63] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[64] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

[65] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[66] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[67] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[68] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[69] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[70] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[71] T. Son and E. Pontelli.
Planning with preferences using logic programming.
Theory and Practice of Logic Programming, 6(5):559–608, 2006.

[72] T. Syrjänen.
Lparse 1.0 user’s manual, 2001.

[73] A. Van Gelder, K. Ross, and J. Schlipf.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538



Variables

The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[74] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[75] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In R. Ernst, editor, Proceedings of the International Conference on
Computer-Aided Design (ICCAD’01), pages 279–285. IEEE Computer
Society Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 538 / 538


	Introduction
	Syntax
	Semantics
	Examples
	Reasoning
	Language
	Variables


