
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 1 / 538



Introduction: Overview

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 32 / 538



Syntax

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 33 / 538



Syntax

Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 34 / 538



Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

h(r) = a0

B(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
B(r)+ = {a1, . . . , am}
B(r)− = {am+1, . . . , an}

A literal is an atom or a negated atom

A program P is positive if B(r)− = ∅ for all r ∈ P
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Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Examples

Example rules

a← b,∼c
a← ∼c , b

a←
a← b
a← ∼c

bachelor(joe)← male(joe),∼married(joe)

Example literals

a, b, c , bachelor(joe),male(joe),married(joe)

∼c ,∼married(joe)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 36 / 538



Syntax

Notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬
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Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, h(r) ∈ X whenever B(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P
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Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses

Definite clauses are disjunctions with exactly one positive atom:

a0 ∨ ¬a1 ∨ · · · ∨ ¬am

A set of definite clauses has a (unique) smallest model

Horn clauses are clauses with at most one positive atom

Every definite clause is a Horn clause but not vice versa
Non-definite Horn clauses can be regarded as integrity constraints

A set of Horn clauses has a smallest model or none

This smallest model is the intended semantics of such sets of clauses

Given a positive program P, Cn(P) corresponds to the smallest model
of the set of definite clauses corresponding to P
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Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P
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Semantics

Formal definition
Stable models of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {h(r)← B(r)+ | r ∈ P and B(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Remarks

Cn(PX ) is the ⊆–smallest (classical) model of PX

Each atom in X is justified by an “applying rule from P”
Set X is stable under “applying rules from P”
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Semantics

A closer look at PX

Alternatively, given a set X of atoms from P,

PX is obtained from P by deleting

1 each rule having ∼a in its body with a ∈ X
and then

2 all negative atoms of the form ∼a
in the bodies of the remaining rules

Note Only negative body literals are evaluated
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Examples

Example one

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅
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Examples

Example one

P = {p ← p, q ← ¬p}

X PX Cn(PX )
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Examples

Example two

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX )

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅
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Examples

Example three

P = {p ← ∼p}

X PX Cn(PX )
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Examples

Some properties

A logic program may have zero, one, or multiple stable models

If X is a stable model of a logic program P,
then X ⊆ h(P)

If X is a stable model of a logic program P,
then X is a (classical) model of P

If X and Y are stable models of a normal program P,
then X 6⊂ Y
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Examples

Exemplars

Logic program Answer sets

a. {a}
a :- b. {}
a :- b. b. {a,b}
a :- b. b :- a. {}
a :- not c. {a}
a :- not c. c. {c}
a :- not c. c :- not a. {a}, {c}
a :- not a.
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Reasoning

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables
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Reasoning

Reasoning modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Reasoning

Reasoning modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration
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Language

Outline

1 Syntax

2 Semantics

3 Examples

4 Reasoning

5 Language

6 Variables
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Language

Extended syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }
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Language

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Multi-objective optimization

Weak constraints :∼ q(X), p(X,C) [C@42]

Statements #minimize { C@42 : q(X), p(X,C) }
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1 Syntax
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4 Reasoning
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Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X ), d(X )

r(X )← ∼q(X ), d(X )

s(X )← ∼r(X ), p(X ,Y ), q(Y )
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Variables

Grounding instantiation

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructible from T

A variable-free atom is also called ground

Ground instances of r ∈ P : Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground instantiation of P : ground(P) =
⋃

r∈P ground(r)
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Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Grounding aims at reducing the ground instantiation
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Variables

Safety

A normal rule is safe, if each of its variables also occurs in some
positive body literal

A normal program is safe, if all of its rules are safe
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Variables

Example

d(a)
d(c)
d(d)

p(a, b)
p(b, c)
p(c , d)
p(X ,Z )← p(X ,Y ), p(Y ,Z )

q(a)
q(b)
q(X )← ∼r(X )

r(X )← ∼q(X ), d(X )
s(X )← ∼r(X ), p(X ,Y ), q(Y )
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Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X
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