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Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de
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Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.
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Motivation

Motivation

Many real-world applications, having exponential state spaces,
like

bio-informatics,
planning,
model checking,
etc

have associated PSPACE-decision problems

Example

The plan existence problem of deterministic planning is
PSPACE-complete
But the problem of whether there is a plan having a length
bounded by a given polynomial is in NP
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Motivation

Motivation

Iterative deepening search

Consider one problem instance after another by gradually increasing
the bound on the solution size

Problem This approach

is prone to redundancies (in grounding and solving), and
cannot harness modern look-back techniques in
conflict-driven learning and heuristics

Incremental approach

Idea Avoid redundancy by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended
problem
ASP An incremental approach to both grounding and solving is needed
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Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i ] = B ∪
⋃

1≤j≤iP[k/j ] ∪ Q[k/i ]

has a stable model for some (minimum) integer i ≥ 1

We write R[i ] rather than R[k/i ] whenever clear from the context
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Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i ]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4
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Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i ]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4
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Incremental modularity

Module

A module P is a triple (P, I ,O) consisting of

a (ground) program P over grd(A) and
sets I ,O ⊆ grd(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)
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Incremental modularity

Ground Instantiation

The ground instantiation of a program P is defined as

grd(P) = {rθ | r ∈ P, θ : var(r)→ T , var(rθ) = ∅}

where T is a set of variable-free terms

Analogously, grd(A) = {a ∈ A | var(a) = ∅} is the set of ground
atoms

Note that in an incremental setting T includes the natural numbers !
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Incremental modularity

Formal Setting

For a program P over grd(A) and a set X ⊆ grd(A),
define

P|X = {head(r)←body(r)+ ∪ L | r ∈ P,

body(r)+ ⊆ X , L = {∼c | c ∈ body(r)− ∩ X}}

Note P|X projects the bodies of rules in P to the atoms of X

For a program P over A and I ⊆ grd(A), define P(I )
as the module

( grd(P)|Y , I , head(grd(P)|X ) )

where X = I ∪ head(grd(P)) and Y = I ∪ head(grd(P)|X )

For P(I ) = (P ′, I ,O), we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪ O
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Incremental modularity

A Simple Example

Consider

P[k] = {p(k)← p(Y ),∼p(2) p(k)← p(2)}

and note that grd(P[1]) is infinite !

For P[1] and I = {p(0)}, we get the module

( grd(P[1])|{p(0),p(1)} , {p(0)} , {p(1)} )

where grd(P[1])|{p(0),p(1)} = {p(1)← p(0) , p(1)← p(1)}
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Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

( P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q) ) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i ](O(Pi−1)) and Qi = Pi tQ[i ](O(Pi ))

are defined for i ≥ 1, where P0 = B(∅)
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Incremental modularity

A pragmatic approach

An incremental program (B,P[k],Q[k]) is modular, if

atoms defined in B comprise dedicated predicates or 0 as argument,
atoms defined in P[k] comprise k as argument, and
atoms defined in Q[k] comprise dedicated predicates and k as argument

The above conditions can be formalized as follows:

atom(grd(B)) ∩
(⋃

1≤i head(grd(P[i ] ∪ Q[i ]))
)

= ∅ ,(⋃
1≤i atom(grd(P[i ]))

)
∩
(⋃

1≤j head(grd(Q[j ]))
)

= ∅ ,

atom(grd(P[i ])) ∩
(⋃

i<j head(grd(P[j ]))
)

= ∅ for all 1 ≤ i , and

atom(grd(Q[i ])) ∩
(⋃

i<j head(grd(Q[j ]))
)

= ∅ for all 1 ≤ i
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Incremental ASP solving

Incremental ASP Solving (made very easy)

Grounding For a program P over A and I ⊆ grd(A), an incremental
grounder is a partial function

Ground : (P, I ) 7→ (P ′,O) ,

where P ′ is a program over grd(A) and O ⊆ grd(A)

Solving For programs R,R ′ over grd(A) and a set L of literals over
grd(A), an incremental solver is a pair of total functions

Add : R 7→ R ′ and Solve : L 7→ χ,

where χ is a subset of the power set of grd(A)
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Incremental ASP solving

Making rules volatile

For a program Q over grd(A) and a new atom α /∈ grd(A),
define

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q}

Deletion is provoked by adding the integrity constraint ← α

Note No modification to internal data structures upon deletion
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Incremental ASP solving

Algorithm 1: iSolve

Input : An incremental program (B,P[k],Q[k])
Output : A nonempty set of stable models
Internal : A grounder Grounder
Internal : A solver Solver

i ← 0
(P0,O)← Grounder.Ground(B, ∅)
Solver.Add(P0)
loop

i ← i + 1
(Pi ,Oi )← Grounder.Ground(P[i ],O)
Solver.Add(Pi )
O ← O ∪ Oi

(Qi ,O
′
i )← Grounder.Ground(Q[i ],O)

Solver.Add(Qi (αi ) ∪ {{αi} ←} ∪ {← αi−1})
χ← Solver.Solve({αi})
if χ 6= ∅ then return {X \ {αi} | X ∈ χ}
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In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
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