
Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 1 / 23

Rough Roadmap

1 Introduction

2 Language

3 Modeling

4 Grounding

5 Foundations

6 Solving

7 Systems

8 Applications

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 2 / 23

Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 3 / 23

http://www.cs.uni-potsdam.de/wv/lehre
http://moodle.cs.uni-potsdam.de
http://potassco.sourceforge.net/teaching.html
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.sourceforge.net/book.html

http://potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 4 / 23

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 5 / 23

Incremental Grounding and Solving:
Overview

1 Motivation

2 Incremental modularity

3 Incremental ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 6 / 23

Motivation

Outline

1 Motivation

2 Incremental modularity

3 Incremental ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 7 / 23

Motivation

Motivation

Many real-world applications, having exponential state spaces,
like

bio-informatics,
planning,
model checking,
etc

have associated PSPACE-decision problems

Example

The plan existence problem of deterministic planning is
PSPACE-complete
But the problem of whether there is a plan having a length
bounded by a given polynomial is in NP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 23

Motivation

Motivation

Many real-world applications, having exponential state spaces,
like

bio-informatics,
planning,
model checking,
etc

have associated PSPACE-decision problems

Example

The plan existence problem of deterministic planning is
PSPACE-complete
But the problem of whether there is a plan having a length
bounded by a given polynomial is in NP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 23

Motivation

Motivation

Many real-world applications, having exponential state spaces,
like

bio-informatics,
planning,
model checking,
etc

have associated PSPACE-decision problems

Example

The plan existence problem of deterministic planning is
PSPACE-complete
But the problem of whether there is a plan having a length
bounded by a given polynomial is in NP

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 23

Motivation

Motivation

Iterative deepening search

Consider one problem instance after another by gradually increasing
the bound on the solution size

Problem This approach

is prone to redundancies (in grounding and solving), and
cannot harness modern look-back techniques in
conflict-driven learning and heuristics

Incremental approach

Idea Avoid redundancy by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended
problem
ASP An incremental approach to both grounding and solving is needed

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 23

Motivation

Motivation

Iterative deepening search

Consider one problem instance after another by gradually increasing
the bound on the solution size

Problem This approach

is prone to redundancies (in grounding and solving), and
cannot harness modern look-back techniques in
conflict-driven learning and heuristics

Incremental approach

Idea Avoid redundancy by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended
problem
ASP An incremental approach to both grounding and solving is needed

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 23

Motivation

Motivation

Iterative deepening search

Consider one problem instance after another by gradually increasing
the bound on the solution size

Problem This approach

is prone to redundancies (in grounding and solving), and
cannot harness modern look-back techniques in
conflict-driven learning and heuristics

Incremental approach

Idea Avoid redundancy by gradually processing the extensions to a
problem rather than repeatedly re-processing the entire extended
problem
ASP An incremental approach to both grounding and solving is needed

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Incremental program

An incremental program is a triple (B,P,Q) of logic programs,
among which P and Q contain a (single) parameter k ranging over
the natural numbers

The base program B is meant to describe static knowledge,
independent of parameter k
The role of P is to capture knowledge accumulating with increasing k
The rules in Q are specific for each value of k

We sometimes denote P and Q by P[k] and Q[k]

Intuitively, we want to decide whether the program

R[k/i] = B ∪
⋃

1≤j≤iP[k/j] ∪ Q[k/i]

has a stable model for some (minimum) integer i ≥ 1

We write R[i] rather than R[k/i] whenever clear from the context

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, iteratively

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B ∪ P[1] ∪ Q[1] and Solve B ∪ P[1] ∪ Q[1] 8

2 Ground B ∪ P[1] ∪ P[2] ∪ Q[2] and Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

3 Ground B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] and
Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3] 8

i etc. until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Motivation

Grounding and Solving, incrementally

Input An incremental program R[k] = (B,P[k],Q[k])

Output A non-empty set of stable models of R[k/i]

1 Ground B and Keep B

2 Ground P[1] ∪ Q[1], Solve B ∪ P[1] ∪ Q[1] 8

Keep B ∪ P[1], and Discard Q[1]

3 Ground P[2] ∪ Q[2], Solve B ∪ P[1] ∪ P[2] ∪ Q[2] 8

Keep B ∪ P[1] ∪ P[2], and Discard Q[2]

4 Ground P[3] ∪ Q[3], Solve B ∪ P[1] ∪ P[2] ∪ P[3] ∪ Q[3], 8

Keep B ∪ P[1] ∪ P[2] ∪ P[3], and Discard Q[3]

i etc, until a stable model is obtained 4

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 23

Incremental modularity

Outline

1 Motivation

2 Incremental modularity

3 Incremental ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 23

Incremental modularity

Module

A module P is a triple (P, I ,O) consisting of

a (ground) program P over grd(A) and
sets I ,O ⊆ grd(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 23

Incremental modularity

Module

A module P is a triple (P, I ,O) consisting of

a (ground) program P over grd(A) and
sets I ,O ⊆ grd(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 23

Incremental modularity

Ground Instantiation

The ground instantiation of a program P is defined as

grd(P) = {rθ | r ∈ P, θ : var(r)→ T , var(rθ) = ∅}

where T is a set of variable-free terms

Analogously, grd(A) = {a ∈ A | var(a) = ∅} is the set of ground
atoms

Note that in an incremental setting T includes the natural numbers !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 23

Incremental modularity

Ground Instantiation

The ground instantiation of a program P is defined as

grd(P) = {rθ | r ∈ P, θ : var(r)→ T , var(rθ) = ∅}

where T is a set of variable-free terms

Analogously, grd(A) = {a ∈ A | var(a) = ∅} is the set of ground
atoms

Note that in an incremental setting T includes the natural numbers !

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 23

Incremental modularity

Formal Setting

For a program P over grd(A) and a set X ⊆ grd(A),
define

P|X = {head(r)←body(r)+ ∪ L | r ∈ P,

body(r)+ ⊆ X , L = {∼c | c ∈ body(r)− ∩ X}}

Note P|X projects the bodies of rules in P to the atoms of X

For a program P over A and I ⊆ grd(A), define P(I)
as the module

(grd(P)|Y , I , head(grd(P)|X))

where X = I ∪ head(grd(P)) and Y = I ∪ head(grd(P)|X)

For P(I) = (P ′, I ,O), we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪ O

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 23

Incremental modularity

Formal Setting

For a program P over grd(A) and a set X ⊆ grd(A),
define

P|X = {head(r)←body(r)+ ∪ L | r ∈ P,

body(r)+ ⊆ X , L = {∼c | c ∈ body(r)− ∩ X}}

Note P|X projects the bodies of rules in P to the atoms of X

For a program P over A and I ⊆ grd(A), define P(I)
as the module

(grd(P)|Y , I , head(grd(P)|X))

where X = I ∪ head(grd(P)) and Y = I ∪ head(grd(P)|X)

For P(I) = (P ′, I ,O), we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪ O

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 23

Incremental modularity

Formal Setting

For a program P over grd(A) and a set X ⊆ grd(A),
define

P|X = {head(r)←body(r)+ ∪ L | r ∈ P,

body(r)+ ⊆ X , L = {∼c | c ∈ body(r)− ∩ X}}

Note P|X projects the bodies of rules in P to the atoms of X

For a program P over A and I ⊆ grd(A), define P(I)
as the module

(grd(P)|Y , I , head(grd(P)|X))

where X = I ∪ head(grd(P)) and Y = I ∪ head(grd(P)|X)

For P(I) = (P ′, I ,O), we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪ O

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 23

Incremental modularity

Formal Setting

For a program P over grd(A) and a set X ⊆ grd(A),
define

P|X = {head(r)←body(r)+ ∪ L | r ∈ P,

body(r)+ ⊆ X , L = {∼c | c ∈ body(r)− ∩ X}}

Note P|X projects the bodies of rules in P to the atoms of X

For a program P over A and I ⊆ grd(A), define P(I)
as the module

(grd(P)|Y , I , head(grd(P)|X))

where X = I ∪ head(grd(P)) and Y = I ∪ head(grd(P)|X)

For P(I) = (P ′, I ,O), we have O ⊆ grd(A) and atom(P ′) ⊆ I ∪ O

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 23

Incremental modularity

A Simple Example

Consider

P[k] = {p(k)← p(Y),∼p(2) p(k)← p(2)}

and note that grd(P[1]) is infinite !

For P[1] and I = {p(0)}, we get the module

(grd(P[1])|{p(0),p(1)} , {p(0)} , {p(1)})

where grd(P[1])|{p(0),p(1)} = {p(1)← p(0) , p(1)← p(1)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 23

Incremental modularity

A Simple Example

Consider

P[k] = {p(k)← p(Y),∼p(2) p(k)← p(2)}

and note that grd(P[1]) is infinite !

For P[1] and I = {p(0)}, we get the module

(grd(P[1])|{p(0),p(1)} , {p(0)} , {p(1)})

where grd(P[1])|{p(0),p(1)} = {p(1)← p(0) , p(1)← p(1)}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

Modular Incremental Program

Define the join, P tQ, of two modules P and Q as the module

(P(P) ∪ P(Q) , I (P) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q)) ,

provided that (I (P) ∪ O(P)) ∩ O(Q) = ∅
Note

Recursion between two modules to be joined is disallowed
Recursion is allowed within each module

An incremental program (B,P[k],Q[k]) is modular, if the modules

Pi = Pi−1 t P[i](O(Pi−1)) and Qi = Pi tQ[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 23

Incremental modularity

A pragmatic approach

An incremental program (B,P[k],Q[k]) is modular, if

atoms defined in B comprise dedicated predicates or 0 as argument,
atoms defined in P[k] comprise k as argument, and
atoms defined in Q[k] comprise dedicated predicates and k as argument

The above conditions can be formalized as follows:

atom(grd(B)) ∩
(⋃

1≤i head(grd(P[i] ∪ Q[i]))
)

= ∅ ,(⋃
1≤i atom(grd(P[i]))

)
∩
(⋃

1≤j head(grd(Q[j]))
)

= ∅ ,

atom(grd(P[i])) ∩
(⋃

i<j head(grd(P[j]))
)

= ∅ for all 1 ≤ i , and

atom(grd(Q[i])) ∩
(⋃

i<j head(grd(Q[j]))
)

= ∅ for all 1 ≤ i

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 23

Incremental modularity

A pragmatic approach

An incremental program (B,P[k],Q[k]) is modular, if

atoms defined in B comprise dedicated predicates or 0 as argument,
atoms defined in P[k] comprise k as argument, and
atoms defined in Q[k] comprise dedicated predicates and k as argument

The above conditions can be formalized as follows:

atom(grd(B)) ∩
(⋃

1≤i head(grd(P[i] ∪ Q[i]))
)

= ∅ ,(⋃
1≤i atom(grd(P[i]))

)
∩
(⋃

1≤j head(grd(Q[j]))
)

= ∅ ,

atom(grd(P[i])) ∩
(⋃

i<j head(grd(P[j]))
)

= ∅ for all 1 ≤ i , and

atom(grd(Q[i])) ∩
(⋃

i<j head(grd(Q[j]))
)

= ∅ for all 1 ≤ i

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 23

Incremental ASP solving

Outline

1 Motivation

2 Incremental modularity

3 Incremental ASP solving

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 23

Incremental ASP solving

Incremental ASP Solving (made very easy)

Grounding For a program P over A and I ⊆ grd(A), an incremental
grounder is a partial function

Ground : (P, I) 7→ (P ′,O) ,

where P ′ is a program over grd(A) and O ⊆ grd(A)

Solving For programs R,R ′ over grd(A) and a set L of literals over
grd(A), an incremental solver is a pair of total functions

Add : R 7→ R ′ and Solve : L 7→ χ,

where χ is a subset of the power set of grd(A)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 23

Incremental ASP solving

Incremental ASP Solving (made very easy)

Grounding For a program P over A and I ⊆ grd(A), an incremental
grounder is a partial function

Ground : (P, I) 7→ (P ′,O) ,

where P ′ is a program over grd(A) and O ⊆ grd(A)

Solving For programs R,R ′ over grd(A) and a set L of literals over
grd(A), an incremental solver is a pair of total functions

Add : R 7→ R ′ and Solve : L 7→ χ,

where χ is a subset of the power set of grd(A)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 23

Incremental ASP solving

Incremental ASP Solving (made very easy)

Grounding For a program P over A and I ⊆ grd(A), an incremental
grounder is a partial function

Ground : (P, I) 7→ (P ′,O) ,

where P ′ is a program over grd(A) and O ⊆ grd(A)

Solving For programs R,R ′ over grd(A) and a set L of literals over
grd(A), an incremental solver is a pair of total functions

Add : R 7→ R ′ and Solve : L 7→ χ,

where χ is a subset of the power set of grd(A)

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 23

Incremental ASP solving

Making rules volatile

For a program Q over grd(A) and a new atom α /∈ grd(A),
define

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q}

Deletion is provoked by adding the integrity constraint ← α

Note No modification to internal data structures upon deletion

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 23

Incremental ASP solving

Making rules volatile

For a program Q over grd(A) and a new atom α /∈ grd(A),
define

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q}

Deletion is provoked by adding the integrity constraint ← α

Note No modification to internal data structures upon deletion

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 23

Incremental ASP solving

Making rules volatile

For a program Q over grd(A) and a new atom α /∈ grd(A),
define

Q(α) = {head(r)← body(r) ∪ {α} | r ∈ Q}

Deletion is provoked by adding the integrity constraint ← α

Note No modification to internal data structures upon deletion

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 23

Incremental ASP solving

Algorithm 1: iSolve

Input : An incremental program (B,P[k],Q[k])
Output : A nonempty set of stable models
Internal : A grounder Grounder
Internal : A solver Solver

i ← 0
(P0,O)← Grounder.Ground(B, ∅)
Solver.Add(P0)
loop

i ← i + 1
(Pi ,Oi)← Grounder.Ground(P[i],O)
Solver.Add(Pi)
O ← O ∪ Oi

(Qi ,O
′
i)← Grounder.Ground(Q[i],O)

Solver.Add(Qi (αi) ∪ {{αi} ←} ∪ {← αi−1})
χ← Solver.Solve({αi})
if χ 6= ∅ then return {X \ {αi} | X ∈ χ}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] K. Clark.
Negation as failure.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[13] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[15] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [44], pages 250–264.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[30] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[31] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [68], pages 386–392.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[34] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[35] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[36] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [44], pages 235–249.

[37] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

[39] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[40] M. Gelfond and N. Leone.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[41] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[42] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[43] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[44] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[45] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [68], pages 2318–2323.

[46] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[47] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[48] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[49] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[50] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[51] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[52] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[53] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[54] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

[61] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 23

	Organization
	Incremental Grounding and Solving
	Motivation
	Incremental modularity
	Incremental ASP solving

	References

