
Answer Set Solving in Practice

Martin Gebser and Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 1 / 39

Rough Roadmap

1 Introduction

2 Language

3 Modeling

4 Grounding

5 Foundations

6 Solving

7 Systems

8 Applications

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 2 / 39

Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 3 / 39

http://www.cs.uni-potsdam.de/wv/lehre
http://moodle.cs.uni-potsdam.de
http://potassco.sourceforge.net/teaching.html
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.sourceforge.net/book.html

http://potassco.sourceforge.net/teaching.html

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 4 / 39

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [29], [53]

Surveys [50], [2], [39], [21], [11]

Articles [41], [42], [6], [61], [54], [49], [40], etc.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 5 / 39

Language: Overview

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 6 / 39

Motivation

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 7 / 39

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39

Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39

Core language

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 39

Core language Integrity constraint

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 10 / 39

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 39

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 39

Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 11 / 39

Core language Choice rule

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 12 / 39

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 39

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 39

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 39

Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 13 / 39

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am
a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 39

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am
a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 39

Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am
a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 14 / 39

Core language Cardinality rule

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 15 / 39

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 39

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 39

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 39

Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 16 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 17 / 39

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 39

Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 18 / 39

Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an,

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 19 / 39

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 39

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 39

Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 20 / 39

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 39

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 39

Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X) ∪ ({am+1, . . . , an} \ X) | ≤ u

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 21 / 39

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 39

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 39

Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 22 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 23 / 39

Core language Weight rule

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 24 / 39

Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 39

Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 39

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 39

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 39

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 39

Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 26 / 39

Extended language

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 27 / 39

Extended language Conditional literal

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 28 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 29 / 39

Extended language Optimization statement

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 30 / 39

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 39

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 39

Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 31 / 39

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1].

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 39

Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1].

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 32 / 39

smodels format

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 33 / 39

smodels format

smodels format

Logic programs in smodels format consist of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by grounders lparse and gringo

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 34 / 39

ASP language standard

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 35 / 39

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 36 / 39

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 36 / 39

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 36 / 39

ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 36 / 39

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 and t1, t2 are terms
`11 , . . . , `n1 are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 39

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k , . . . , tmk
: `1k , . . . , `nk} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k , . . . , tmk

, and t1, t2 are terms
`11 , . . . , `n1 , . . . , `1k , . . . , `nk are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 39

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k , . . . , tmk
: `1k , . . . , `nk} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k , . . . , tmk

, and t1, t2 are terms
`11 , . . . , `n1 , . . . , `1k , . . . , `nk are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 39

ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1 ; . . . ; t1k , . . . , tmk
: `1k , . . . , `nk} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 , . . . , t1k , . . . , tmk

, and t1, t2 are terms
`11 , . . . , `n1 , . . . , `1k , . . . , `nk are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 37 / 39

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 38 / 39

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 38 / 39

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 38 / 39

ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 38 / 39

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . .)

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] K. Clark.
Negation as failure.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[13] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[14] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[15] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[16] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [44], pages 250–264.

[29] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[30] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[31] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [68], pages 386–392.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[34] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[35] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[36] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [44], pages 235–249.

[37] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[38] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

[39] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[40] M. Gelfond and N. Leone.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[41] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[42] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[43] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[44] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[45] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [68], pages 2318–2323.

[46] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[47] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[48] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[49] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[50] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[51] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[52] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[53] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[54] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

[61] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[62] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[63] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[64] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

Master’s thesis, Simon Fraser University, 2004.

[65] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 39 / 39

	Organization
	Language
	Motivation
	Core language
	Integrity constraint
	Choice rule
	Cardinality rule
	Weight rule

	Extended language
	Conditional literal
	Optimization statement

	smodels format
	ASP language standard

	References

