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Resources

Course material

http://www.cs.uni-potsdam.de/wv/lehre

http://moodle.cs.uni-potsdam.de

http://potassco.sourceforge.net/teaching.html

Systems

clasp http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

clingo http://potassco.sourceforge.net

iclingo http://potassco.sourceforge.net

oclingo http://potassco.sourceforge.net

asparagus http://asparagus.cs.uni-potsdam.de
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Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39



Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39



Motivation

Basic language extensions

The expressiveness of a language can be enhanced by introducing
new constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 8 / 39



Core language

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 9 / 39



Core language Integrity constraint
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Core language Integrity constraint

Integrity constraint

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n

Example :- edge(3,7), color(3,red), color(7,red).

Embedding The above integrity constraint can be turned into the
normal rule

x ← a1, . . . , am,∼am+1, . . . ,∼an,∼x

where x is a new symbol, that is, x 6∈ A.

Another example P = {a← ∼b, b ← ∼a}
versus P ′ = P ∪ {← a} and P ′′ = P ∪ {← ∼a}
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Core language Choice rule
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Core language Choice rule

Choice rule

Idea Choices over subsets

Syntax A choice rule is of the form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

where 0 ≤ m ≤ n ≤ o and each ai is an atom for 1 ≤ i ≤ o

Informal meaning If the body is satisfied by the stable model at hand,
then any subset of {a1, . . . , am} can be included in the stable model

Example { buy(pizza), buy(wine), buy(corn) } :- at(grocery).

Another Example P = {{a} ← b, b ←} has two stable models:
{b} and {a, b}
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Core language Choice rule

Embedding in normal rules

A choice rule of form

{a1, . . . , am} ← am+1, . . . , an,∼an+1, . . . ,∼ao

can be translated into 2m + 1 normal rules

a′ ← am+1, . . . , an,∼an+1, . . . ,∼ao

a1 ← a′,∼a1 . . . am ← a′,∼am
a1 ← ∼a1 . . . am ← ∼am

by introducing new atoms a′, a1, . . . , am.
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Core language Cardinality rule

Cardinality rule

Idea Control (lower) cardinality of subsets

Syntax A cardinality rule is the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l is a non-negative integer.

Informal meaning The head atom belongs to the stable model,
if at least l elements of the body are included in the stable model

Note l acts as a lower bound on the body

Example pass(c42) :- 2 { pass(a1), pass(a2), pass(a3) }.
Another Example P = {a← 1{b, c}, b ←} has stable model {a, b}
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Core language Cardinality rule

Embedding in normal rules

Replace each cardinality rule

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an }

by a0 ← ctr(1, l)

where atom ctr(i , j) represents the fact that at least j of the literals
having an equal or greater index than i , are in a stable model

The definition of ctr/2 is given for 0 ≤ k ≤ l by the rules

ctr(i , k+1) ← ctr(i + 1, k), ai
ctr(i , k) ← ctr(i + 1, k) for 1 ≤ i ≤ m

ctr(j , k+1) ← ctr(j + 1, k),∼aj
ctr(j , k) ← ctr(j + 1, k) for m + 1 ≤ j ≤ n

ctr(n + 1, 0) ←
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Core language Cardinality rule

An example

Program {a←, c ← 1 {a, b}} has the stable model {a, c}
Translating the cardinality rule yields the rules

a ← c ← ctr(1, 1)
ctr(1, 2) ← ctr(2, 1), a
ctr(1, 1) ← ctr(2, 1)
ctr(2, 2) ← ctr(3, 1), b
ctr(2, 1) ← ctr(3, 1)
ctr(1, 1) ← ctr(2, 0), a
ctr(1, 0) ← ctr(2, 0)
ctr(2, 1) ← ctr(3, 0), b
ctr(2, 0) ← ctr(3, 0)
ctr(3, 0) ←

having stable model {a, ctr(3, 0), ctr(2, 0), ctr(1, 0), ctr(1, 1), c}
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Core language Cardinality rule

. . . and vice versa

A normal rule

a0 ← a1, . . . , am,∼am+1, . . . ,∼an,

can be represented by the cardinality rule

a0 ← n {a1, . . . , am,∼am+1, . . . ,∼an}
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Core language Cardinality rule

Cardinality rules with upper bounds

A rule of the form

a0 ← l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

stands for

a0 ← b,∼c
b ← l { a1, . . . , am,∼am+1, . . . ,∼an }
c ← u+1 { a1, . . . , am,∼am+1, . . . ,∼an }

where b and c are new symbols

The single constraint in the body of the above cardinality rule is
referred to as a cardinality constraint
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Core language Cardinality rule

Cardinality constraints

Syntax A cardinality constraint is of the form

l { a1, . . . , am,∼am+1, . . . ,∼an } u

where 0 ≤ m ≤ n and each ai is an atom for 1 ≤ i ≤ n;
l and u are non-negative integers

Informal meaning A cardinality constraint is satisfied by a stable
model X , if the number of its contained literals satisfied by X is
between l and u (inclusive)

In other words, if

l ≤ | ({a1, . . . , am} ∩ X ) ∪ ({am+1, . . . , an} \ X ) | ≤ u
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Core language Cardinality rule

Cardinality constraints as heads

A rule of the form

l {a1, . . . , am,∼am+1, . . . ,∼an} u ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap

where 0 ≤ m ≤ n ≤ o ≤ p and each ai is an atom for 1 ≤ i ≤ p;
l and u are non-negative integers

stands for

b ← an+1, . . . , ao ,∼ao+1, . . . ,∼ap
{a1, . . . , am} ← b

c ← l {a1, . . . , am, ,∼am+1, . . . ,∼an} u
← b,∼c

where b and c are new symbols

Example 1 { color(v42,red),color(v42,green),color(v42,blue) } 1.
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Core language Cardinality rule

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

where for 0 ≤ i ≤ n each li Si ui

stands for 0 ≤ i ≤ n

a ← b1, . . . , bn,∼c1, . . . ,∼cn

S0
+ ← a
← a,∼b0 bi ← li Si

← a, c0 ci ← ui+1 Si

where a, bi , ci are new symbols
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Core language Weight rule

Outline

1 Motivation

2 Core language
Integrity constraint
Choice rule
Cardinality rule
Weight rule

3 Extended language
Conditional literal
Optimization statement

4 smodels format

5 ASP language standard
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Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi

Note A cardinality rule is a weight rule where wi = 1 for 0 ≤ i ≤ n

M. Gebser and T. Schaub (KRR@UP) Answer Set Solving in Practice July 13, 2013 25 / 39



Core language Weight rule

Weight rule

Syntax A weight rule is the form

a0 ← l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn }

where 0 ≤ m ≤ n and each ai is an atom;
l and wi are integers for 1 ≤ i ≤ n

A weighted literal, `i = wi , associates each literal `i with a weight wi
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Core language Weight rule

Weight constraints

Syntax A weight constraint is of the form

l { a1 = w1, . . . , am = wm,∼am+1 = wm+1, . . . ,∼an = wn } u

where 0 ≤ m ≤ n and each ai is an atom;
l , u and wi are integers for 1 ≤ i ≤ n

Meaning A weight constraint is satisfied by a stable model X , if

l ≤
(∑

1≤i≤m,ai∈X wi +
∑

m<i≤n,ai 6∈X wi

)
≤ u

Note (Cardinality and) weight constraints amount to constraints on
(count and) sum aggregate functions

Example 10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20
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Extended language Conditional literal
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Extended language Conditional literal

Conditional literals (in lparse & gringo 3)

Syntax A conditional literal is of the form

` : `1 : · · · : `n

where ` and `i are literals for 0 ≤ i ≤ n

Informal meaning A conditional literal can be regarded as the list of
elements in the set {` | `1, . . . , `n}
Note The expansion of conditional literals is context dependent

Example Given ‘ p(1). p(2). p(3). q(2).’

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

is instantiated to

r(1); r(3) :- r(1), r(3), 1 {r(1), r(3)}.
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Extended language Optimization statement

Optimization statement

Idea Express cost functions subject to minimization and/or
maximization

Syntax A minimize statement is of the form

minimize{ `1 = w1@p1, . . . , `n = wn@pn }.

where each `i is a literal; and wi and pi are integers for 1 ≤ i ≤ n

Priority levels, pi , allow for representing lexicographically ordered
minimization objectives

Meaning A minimize statement is a directive that instructs the ASP
solver to compute optimal stable models by minimizing a weighted
sum of elements
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Extended language Optimization statement

Optimization statement

A maximize statement of the form

maximize{ `1 = w1@p1, . . . , `n = wn@pn }

stands for minimize{ `1 = −w1@p1, . . . , `n = −wn@pn }

Example When configuring a computer, we may want to maximize
hard disk capacity, while minimizing price

#maximize[ hd(1)=250@1, hd(2)=500@1, hd(3)=750@1, hd(4)=1000@1 ].

#minimize[ hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2 ].

The priority levels indicate that (minimizing) price is more important
than (maximizing) capacity
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smodels format

smodels format

Logic programs in smodels format consist of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by grounders lparse and gringo
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ASP language standard

ASP-Core-2

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

smodels formatASP-Core-2

smodels format is a machine-oriented standard for ground programs

ASP-Core-2 is a user-oriented standard for (non-ground) programs,
extending the input languages of dlv and gringo series 3
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ASP language standard

Aggregates

Syntax ASP-Core-2 aggregates are of the form

t1 ≺1 #A{t11 , . . . , tm1 : `11 , . . . , `n1} ≺2 t2

where
#A ∈ {#count,#sum,#max,#min}
≺1,≺2 ∈ {<,≤,=, 6=, >,≥}
t11 , . . . , tm1 and t1, t2 are terms
`11 , . . . , `n1 are literals

Example Weight constraint

10 [course(db)=6,course(ai)=6,course(project)=8,course(xml)=3] 20

is written as an ASP-Core-2 aggregate as

10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20
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10 ≤ #sum{6,db:course(db); 6,ai:course(ai);

8,project:course(project); 3,xml:course(xml)} ≤ 20
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ASP language standard

Weak constraints

Syntax A weak constraint is of the form

� a1, . . . , am,∼am+1, . . . ,∼an. [w@p, t1, . . . , tm]

where
a1, . . . , an are atoms
t1, . . . , tm, w , and p are terms

a1, . . . , an may contain ASP-Core-2 aggregates

w and p stand for a weight and priority level (p = 0 if ‘@p’ is omitted)

Example Minimize statement

#minimize[ hd(1)=30@2, hd(2)=40@2, hd(3)=60@2, hd(4)=80@2 ].

can be written in terms of weak constraints as

� hd(1). [30@2,1] � hd(3). [60@2,3]

� hd(2). [40@2,2] � hd(4). [80@2,4]
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ASP language standard

gringo 4

The input language of gringo series 4 comprises

ASP-Core-2
concepts from gringo 3 (conditional literals, #show directives, . . . )

Example The gringo 3 rule

r(X):p(X):not q(X) :- r(X):p(X):not q(X), 1 {r(X):p(X):not q(X)}.

can be written as follows in the language of gringo 4:

r(X):p(X),not q(X) :- r(X):p(X),not q(X);

1 <= #count{X:r(X),p(X),not q(X)}.

New Term-based #show directives as in
#show. #show hello. #show X : p(X). 1 {p(earth);p(mars);p(venus)} 1.

Attention The languages of gringo 3 and 4 are not fully compatible

Many example programs given in this tutorial are written for gringo 3
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