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What is ASP?
ASP is an approach for declarative problem solving

What is ASP good for?
Solving knowledge-intense combinatorial (optimization) problems

What problems are this?
Problems consisting of (many) decisions and constraints

What are ASP’s distinguishing features?

High level, versatile modeling language
High performance solvers

Any industrial impact?

ASP Tech companies: dlv systems and potassco solutions

Anything not so good for ASP?
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Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Evolution

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.
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Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.
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Evolution

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.
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Evolution

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.
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Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}
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Evolution

SAT-style playing with blocks

Formula

on(a, b)
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Evolution

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}
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Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Evolution

Paradigm shift

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)
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Evolution

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Evolution

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Evolution

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Evolution

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Evolution

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models
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Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Evolution

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Evolution

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing
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Evolution

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP
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Foundation

Outline

1 Motivation

2 Nutshell

3 Evolution

4 Foundation

5 Workflow

6 Engine

7 Usage

8 Summary
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Foundation

Propositional Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P
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Foundation

Normal Logic Programs

A logic program P is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of P justifying each true atom by some rule in P

Disclaimer The following formalities apply to normal logic programs
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Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T
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Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)
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Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F→ F)
F F T F ∧ (F→ T)
F T F (F→ F) ∧ F
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ F
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Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ T
F F T F ∧ T
F T F T ∧ F
F T T T ∧ T
T F F T ∧ T
T F T T ∧ T
T T F T ∧ F
T T T T ∧ T
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Foundation

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

We get four models: {b, c}, {a}, {a, c}, and {a, b, c}
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Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T
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Foundation

Some truth tabling, and now ASP
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Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
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T T F (b → c)
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Foundation

Some truth tabling, and now ASP
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Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
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F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}
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Foundation

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}
Stable models = Smallest models of (respective) reducts
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Workflow

ASP modeling, grounding, and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 32 / 540



Workflow

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving
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Workflow

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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Workflow

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving
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Engine

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation
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Usage

Two sides of a coin

ASP as High-level Language

Express problem instance as sets of facts
Encode problem class as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a set of facts and rules
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs
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Two and a half sides of a coin
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Summary

Upcoming experience

ASP is a viable tool for Knowledge Representation and Reasoning

Integration of DB, LP, KR, and SAT techniques
Combinatorial search problems in the realm of NP and NPNP

Succinct, elaboration-tolerant problem representations

rapid application development tool

Easy handling of knowledge-intensive applications

data, defaults, exceptions, frame axioms, reachability etc

ASP offers efficient and versatile off-the-shelf solving technology

http://potassco.org

winning ASP, CASC, MISC, PB, and SAT competitions

ASP has a growing range of applications, and its’s good fun!

ASP = DB+LP+KR+SAT
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Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[67] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[68] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 20, 2018 540 / 540



Summary

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[69] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[70] P. Simons, I. Niemelä, and T. Soininen.
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