
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 1 / 661

Preferences and optimization: Overview

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 604 / 661

Motivation

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 605 / 661

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 606 / 661

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 606 / 661

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 606 / 661

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 606 / 661

The asprin framework

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 607 / 661

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 608 / 661

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 608 / 661

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 608 / 661

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 608 / 661

The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 609 / 661

Preliminaries

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 610 / 661

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 611 / 661

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 611 / 661

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 611 / 661

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 611 / 661

Language

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 612 / 661

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 613 / 661

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 613 / 661

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 613 / 661

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 661

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 661

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 661

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 661

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 661

Language

More examples

more(weight) is defined as

(X ,Y) ∈ more(weight)(E) if
∑

(w :l)∈E ,X |=l w >
∑

(w :l)∈E ,Y |=l w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y) ∈ subset(E) if {l ∈ E | X |= l} ⊂ {l ∈ E | Y |= l}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y) ∈ pareto(E) if
∧

name(s)∈E (X �s Y) ∧
∨

name(s)∈E (X �s Y)

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y) ∈ lexico(E) if
∨

w :name(s)∈E

(
(X �s Y) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y)

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 615 / 661

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 616 / 661

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 616 / 661

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 616 / 661

Implementation

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 617 / 661

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′
X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′
Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 618 / 661

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′
X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′
Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 618 / 661

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′
X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′
Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 618 / 661

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′
X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′
Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 618 / 661

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b} =

{
holds(a). holds(b).

}
H ′
{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 619 / 661

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b} =

{
holds(a). holds(b).

}
H ′
{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 619 / 661

Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′

X) ∩ A
until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 620 / 661

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 621 / 661

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 621 / 661

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 622 / 661

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 622 / 661

Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 623 / 661

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 624 / 661

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 624 / 661

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 624 / 661

Summary

Outline

1 Motivation

2 The asprin framework

3 Preliminaries

4 Language

5 Implementation

6 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 625 / 661

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 626 / 661

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 626 / 661

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 626 / 661

Summary

[1] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[2] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

[3] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[4] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[5] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[6] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.
In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[7] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

IOS Press, 2009.

[9] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[10] G. Brewka, I. Niemelä, and M. Truszczyński.
Answer set optimization.
In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 867–872. Morgan Kaufmann Publishers, 2003.

[11] K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[12] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[14] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[16] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
Answer sets for propositional theories.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub.
Abstract Gringo.
Theory and Practice of Logic Programming, 15(4-5):449–463, 2015.
Available at http://arxiv.org/abs/1507.06576.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

http://arxiv.org/abs/1507.06576

Summary

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele.
Potassco User Guide.
University of Potsdam, second edition edition, 2015.

[28] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[30] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [49], pages 250–264.

[31] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [3], pages 260–265.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [3], pages 136–148.

[34] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [74], pages 386–392.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

[35] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[36] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[37] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[38] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [49], pages 235–249.

[39] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

[41] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[42] M. Gelfond and Y. Kahl.
Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach.
Cambridge University Press, 2014.

[43] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[44] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[45] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[46] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

[47] K. Gödel.
Zum intuitionistischen Aussagenkalkül.
In Anzeiger der Akademie der Wissenschaften in Wien, page 65–66.
1932.

[48] A. Heyting.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

Die formalen Regeln der intuitionistischen Logik.
In Sitzungsberichte der Preussischen Akademie der Wissenschaften,
page 42–56. 1930.
Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der
Modernen Logik, Akademie-Verlag, 1986.

[49] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[50] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [74], pages 2318–2323.

[51] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[52] J. Lee.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

[53] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[54] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[55] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[56] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[57] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[58] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[59] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[60] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [8], chapter 4, pages 131–153.

[61] J. Marques-Silva and K. Sakallah.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[62] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[63] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[64] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

[65] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[66] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[67] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[68] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[69] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[70] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[71] T. Son and E. Pontelli.
Planning with preferences using logic programming.
Theory and Practice of Logic Programming, 6(5):559–608, 2006.

[72] T. Syrjänen.
Lparse 1.0 user’s manual, 2001.

[73] A. Van Gelder, K. Ross, and J. Schlipf.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

Summary

The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[74] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[75] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 661 / 661

	Preferences and optimization
	Motivation
	The asprin framework
	Preliminaries
	Language
	Implementation
	Summary

