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Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}
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The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings
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The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)
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Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations
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Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S
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Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{l ∈ E | X |= l}| < |{l ∈ E | Y |= l}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )
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Language

More examples

more(weight) is defined as

(X ,Y ) ∈ more(weight)(E) if
∑

(w :l)∈E ,X |=l w >
∑

(w :l)∈E ,Y |=l w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y ) ∈ subset(E) if {l ∈ E | X |= l} ⊂ {l ∈ E | Y |= l}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y ) ∈ pareto(E) if
∧

name(s)∈E (X �s Y ) ∧
∨

name(s)∈E (X �s Y )

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y ) ∈ lexico(E) if
∨

w :name(s)∈E

(
(X �s Y ) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y )

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).
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Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t)E declares preference relation t(E ) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{l ∈ {a,¬b, c} | X |= l}| < |{l ∈ {a,¬b, c} | Y |= l}|

where �1 stands for less(cardinality)({a,¬b, c})
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Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′
X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′
Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs
representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization
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Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.


F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b} =

{
holds(a). holds(b).

}
H ′
{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}
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Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′

X ) ∩ A
until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}
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Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

#end.
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Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive
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Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).
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Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types
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Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations
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Summary
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