
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 1 / 458



Conflict-driven ASP Solving: Overview

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 337 / 458



Motivation

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 338 / 458



Motivation

Motivation

Goal Approach to computing stable models of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Testing (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation
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Boolean constraints

Assignments

An assignment A over dom(A) = atom(P) ∪ body(P) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tv or Fv for v ∈ dom(A) and 1 ≤ i ≤ n

Tv expresses that v is true and Fv that it is false

The complement, σ, of a literal σ is defined as Tv = Fv and
Fv = Tv

A ◦ σ stands for the result of appending σ to A

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk ] = (σ1, . . . , σk−1)

We sometimes identify an assignment with the set of its literals

Given this, we access true and false propositions in A via

AT = {v ∈ dom(A) | Tv ∈ A} and AF = {v ∈ dom(A) | Fv ∈ A}
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Boolean constraints

Nogoods, solutions, and unit propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program P can be defined as follows:

{vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an |
B ∈ body(P) and B = {a1, . . . , am,∼am+1, . . . ,∼an}}

∪ {a↔ vB1 ∨ · · · ∨ vBk
|

a ∈ atom(P) and bodyP(a) = {B1, . . . ,Bk}} ,

where bodyP(a) = {body(r) | r ∈ P and head(r) = a}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:
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The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

1 vB → a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an
is equivalent to the conjunction of

¬vB ∨ a1, . . . , ¬vB ∨ am, ¬vB ∨ ¬am+1, . . . , ¬vB ∨ ¬an

and induces the set of nogoods

∆(B) = { {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }
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Nogoods from logic programs
via program completion

The (body-oriented) equivalence

vB ↔ a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an

can be decomposed into two implications:

2 a1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an → vB

gives rise to the nogood

δ(B) = {FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
via program completion

Analogously, the (atom-oriented) equivalence

a↔ vB1 ∨ · · · ∨ vBk

yields the nogoods

1 ∆(a) = { {Fa,TB1}, . . . , {Fa,TBk} } and

2 δ(a) = {Ta,FB1, . . . ,FBk}
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Nogoods from logic programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom a where bodyP(a) = {B1, . . . ,Bk}, we get

{Ta,FB1, . . . ,FBk} and { {Fa,TB1}, . . . , {Fa,TBk} }

Example Given Atom x with body(x) = {{y}, {∼z}}, we obtain

x ← y
x ← ∼z

{Tx ,F{y},F{∼z}}
{ {Fx ,T{y}}, {Fx ,T{∼z}} }

For nogood {Tx ,F{y},F{∼z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{∼z}) and
T{∼z} is unit-resulting wrt assignment (Tx ,F{y})
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Nogoods from logic programs
body-oriented nogoods

For a body B = {a1, . . . , am,∼am+1, . . . ,∼an}, we get

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan}
{ {TB,Fa1}, . . . , {TB,Fam}, {TB,Tam+1}, . . . , {TB,Tan} }

Example Given Body {x ,∼y}, we obtain

. . .← x ,∼y...

. . .← x ,∼y

{F{x ,∼y},Tx ,Fy}
{ {T{x ,∼y},Fx}, {T{x ,∼y},Ty} }

For nogood δ({x ,∼y}) = {F{x ,∼y},Tx ,Fy}, the signed literal

T{x ,∼y} is unit-resulting wrt assignment (Tx ,Fy) and
Ty is unit-resulting wrt assignment (F{x ,∼y},Tx)
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs

Let P be a logic program and

∆P = {δ(a) | a ∈ atom(P)} ∪ {δ ∈ ∆(a) | a ∈ atom(P)}
∪ {δ(B) | B ∈ body(P)} ∪ {δ ∈ ∆(B) | B ∈ body(P)}

Theorem

Let P be a tight logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P
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Nogoods from logic programs Nogoods from program completion

Characterization of stable models
for tight logic programs, ie. free of positive recursion

Let P be a logic program and
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Nogoods from logic programs Nogoods from loop formulas

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs
Nogoods from program completion
Nogoods from loop formulas

4 Conflict-driven nogood learning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 351 / 458



Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let P be a normal logic program and recall that:

For L ⊆ atom(P), the external supports of L for P are

ESP(L) = {r ∈ P | head(r) ∈ L and body(r)+ ∩ L = ∅}
The (disjunctive) loop formula of L for P is

LFP(L) =
(∨

A∈LA
)
→
(∨

r∈ESP(L)body(r)
)

↔
(∧

r∈ESP(L)¬body(r)
)
→
(∧

A∈L¬A
)

Note The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported

The external bodies of L for P are

EBP(L) = {body(r) | r ∈ ESP(L)}
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Nogoods from logic programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program P and some ∅ ⊂ U ⊆ atom(P),
define the loop nogood of an atom a ∈ U as

λ(a,U) = {Ta,FB1, . . . ,FBk}
where EBP(U) = {B1, . . . ,Bk}

We get the following set of loop nogoods for P:

ΛP =
⋃
∅⊂U⊆atom(P){λ(a,U) | a ∈ U}

The set ΛP of loop nogoods denies cyclic support among true atoms
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Nogoods from logic programs Nogoods from loop formulas

Example

Consider the program x ← ∼y
y ← ∼x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}
Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}
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Nogoods from logic programs Nogoods from loop formulas

Characterization of stable models

Theorem

Let P be a logic program. Then,
X ⊆ atom(P) is a stable model of P iff
X = AT ∩ atom(P) for a (unique) solution A for ∆P ∪ ΛP

Some remarks

Nogoods in ΛP augment ∆P with conditions checking
for unfounded sets, in particular, those being loops
While |∆P | is linear in the size of P, ΛP may contain
exponentially many (non-redundant) loop nogoods
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Conflict-driven nogood learning

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning
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Conflict-driven nogood learning

Towards conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach
(DPLL stands for ‘Davis-Putnam-Logemann-Loveland’)

(Unit) propagation
(Chronological) backtracking

in ASP, eg smodels

Modern CDCL-style approach
(CDCL stands for ‘Conflict-Driven Constraint Learning’)

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

in ASP, eg clasp
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Conflict-driven nogood learning

DPLL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // unassign literals propagated after last decision
flip // assign complement of last decision literal
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Conflict-driven nogood learning

CDCL-style solving

loop

propagate // deterministically assign literals

if no conflict then
if all variables assigned then return solution
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit
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Conflict-driven nogood learning CDNL-ASP Algorithm

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 360 / 458



Conflict-driven nogood learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆P ]
Loop nogoods, determined and recorded on demand [ΛP ]
Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆P ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding a stable model (a solution for ∆P ∪ ΛP)
Deriving a conflict independently of (heuristic) choices
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Conflict-driven nogood learning CDNL-ASP Algorithm

Algorithm 2: CDNL-ASP

Input : A normal program P
Output : A stable model of P or “no stable model”

A := ∅ // assignment over atom(P) ∪ body(P)
∇ := ∅ // set of recorded nogoods
dl := 0 // decision level

loop
(A,∇) := NogoodPropagation(P,∇,A)
if ε ⊆ A for some ε ∈ ∆P ∪∇ then // conflict

if max({dlevel(σ) | σ ∈ ε} ∪ {0}) = 0 then return no stable model
(δ, dl) := ConflictAnalysis(ε,P,∇,A)
∇ := ∇∪ {δ} // (temporarily) record conflict nogood
A := A \ {σ ∈ A | dl < dlevel(σ)} // backjumping

else if AT ∪ AF = atom(P) ∪ body(P) then // stable model
return AT ∩ atom(P)

else
σd := Select(P,∇,A) // decision
dl := dl + 1
dlevel(σd ) := dl
A := A ◦ σd

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 362 / 458



Conflict-driven nogood learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A

For a heuristically chosen literal σd = Ta or σd = Fa, respectively, we
require a ∈ (atom(P) ∪ body(P)) \ (AT ∪ AF )

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned

A conflict is detected from violation of a nogood ε ⊆ ∆P ∪∇
A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of stable models

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation
No explicit flipping of heuristically chosen literals !
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Conflict-driven nogood learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Nogood Propagation

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Conflict-driven nogood learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:
Unit propagation on ∆P and ∇;
Unfounded sets U ⊆ atom(P)

Note that U is unfounded if EBP(U) ⊆ AF

Note For any a ∈ U, we have (λ(a,U) \ {Ta}) ⊆ A

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(P) \ AF )

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of P

Note Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some a ∈ U, adding λ(a,U) to ∇
triggers a conflict or further derivations by unit propagation

Note Add loop nogoods atom by atom to eventually falsify all a ∈ U
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Conflict-driven nogood learning Nogood Propagation

Algorithm 3: NogoodPropagation

Input : A normal program P, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U := ∅ // unfounded set

loop
repeat

if δ ⊆ A for some δ ∈ ∆P ∪∇ then return (A,∇) // conflict
Σ := {δ ∈ ∆P ∪∇ | δ \ A = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then let σ ∈ δ \ A for some δ ∈ Σ in

dlevel(σ) := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
A := A ◦ σ

until Σ = ∅
if loop(P) = ∅ then return (A,∇)

U := U \ AF

if U = ∅ then U := UnfoundedSet(P,A)

if U = ∅ then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ atom(P) \ AF

let a ∈ U in
∇ := ∇∪ {{Ta} ∪ {FB | B ∈ EBP(U)}} // record loop nogood
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Conflict-driven nogood learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following
for a result U

1 U ⊆ (atom(P) \ AF )
2 EBP(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(P) \ AF )

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of P

Usually, the latter option is implemented in ASP solvers
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Conflict-driven nogood learning Nogood Propagation

Example: NogoodPropagation

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ

1 Tu

2 F{∼x ,∼y}
Fw {Tw ,F{∼x ,∼y}} = δ(w)

3 F{∼y}
Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Outline

1 Motivation

2 Boolean constraints

3 Nogoods from logic programs

4 Conflict-driven nogood learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis
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Conflict-driven nogood learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆P ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆P ∪∇
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ})

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}

Iterated resolution progresses in inverse order of assignment

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl

This literal σ is called First Unique Implication Point (First-UIP)
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl
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Conflict-driven nogood learning Conflict Analysis

Algorithm 4: ConflictAnalysis

Input : A non-empty violated nogood δ, a normal program P, a set ∇ of
nogoods, and an assignment A.

Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that δ \ A[σ] = {σ} in

k := max({dlevel(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dlevel(σ) then

let ε ∈ ∆P ∪∇ such that ε \ A[σ] = {σ} in
δ := (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)
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Conflict-driven nogood learning Conflict Analysis

Example: ConflictAnalysis

Consider

P =

{
x ← ∼y
y ← ∼x

u ← x , y
u ← v

v ← x
v ← u, y

w ← ∼x ,∼y
}

dl σd σ δ
1 Tu
2 F{∼x ,∼y}

Fw {Tw ,F{∼x ,∼y}} = δ(w)
3 F{∼y}

Fx {Tx ,F{∼y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{∼x} {F{∼x},Fx} = δ({∼x})
Ty {F{∼y},Fy} = δ({∼y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8
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Conflict-driven nogood learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !
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of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 375 / 458



Conflict-driven nogood learning Conflict Analysis

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458



Conflict-driven nogood learning Conflict Analysis

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458



Conflict-driven nogood learning Conflict Analysis
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In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[55] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

[56] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[57] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458



Conflict-driven nogood learning Conflict Analysis

In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[58] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[59] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[60] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458



Conflict-driven nogood learning Conflict Analysis

[61] I. Niemelä.
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Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[66] T. Syrjänen.
Lparse 1.0 user’s manual.

[67] A. Van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[68] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[69] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458



Conflict-driven nogood learning Conflict Analysis

In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice December 9, 2014 458 / 458


	Conflict-driven ASP Solving
	Motivation
	Boolean constraints
	Nogoods from logic programs
	Nogoods from program completion
	Nogoods from loop formulas

	Conflict-driven nogood learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis



