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Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc
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clingo’s approach

T-ASP
Program

gringo clasp
T T
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-- -
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Theory language

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary, left

- : 5, unary; };

* : 4, binary, left;

+ : 3, binary, left;

- : 3, binary, left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary, left;

+ : 5, unary; + : 3, binary, left;

- : 5, unary; - : 3, binary, left;

.. : 1, binary, left @ : 0, binary, left

}; };

&dom/0 : dom_term, {=}, linear_term, any;

&sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;

&show/0 : show_term, directive;

&distinct/0 : linear_term, any;

&minimize/0 : minimize_term, directive

}.
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Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }
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Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.
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Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(0). exp(1). exp(2). exp(3). exp(4).

power(1,0).

power(10,1). power(100,2). power(1000,3). power(10000,4).

number(1). number(2).

high(s). high(m).

&dom{0..9}=s. &dom{0..9}=m. &dom{0..9}=e. &dom{0..9}=o. &dom{0..9}=n. &dom{0..9}=r. &dom{0..9}=d. &dom{0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.
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Low-level semantics

Outline
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Low-level semantics
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Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ head(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ head(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ head(P)) ∩ S}
∪ {← a | a ∈ (T ∩ head(P)) \ S}
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Intermediate Format

Outline
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Intermediate Format
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Intermediate Format

aspif example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0
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Intermediate Format

aspif overview

Rule statements

Minimize statements

Projection statements

Output statements

External statements

Assumption statements

Heuristic statements

Edge statements

Theory terms and atoms

Comments
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Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0
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Intermediate Format

aspif theory example
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Theory propagation

Outline
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Theory propagation

Architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor
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Theory propagation

Conflict-driven constraint learning
modulo theories

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // theory propagator’s check

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // theory propagators may record theory nogoods
if no nogood recorded then decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit
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Theory propagation

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�

Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...
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Theory propagation

The dot propagator
#script (python)

import sys

import time

class Propagator:

def init(self, init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal))

def propagate(self, ctl, changes):

for l in changes:

sys.stdout.write(".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self, solver_id, assign, undo):

for l in undo:

sys.stdout.write("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator())

prg.ground([("base", [])])

prg.solve()

sys.stdout.write("\n")

#end.
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Experiments

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 474 / 614



Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm
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Acyclicity checking

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments
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Acyclicity checking

Builtin acyclicity checking

Edge statement

#edge (u, v) : l1, . . . , ln. (3)

A set X of atoms is an acyclic stable of a logic program P, if

1 X is a stable model of P and
2 the graph

({u, v | X |= l1, . . . , ln, (3) ∈ P}, {(u, v) | X |= l1, . . . , ln, (3) ∈ P})

is acyclic
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Constraint Answer Set Programming
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Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)
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Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

V = {s, e, n, d ,m, o, r , y}
D = {dom(v) = {0, . . . , 9} | v ∈ V }

C = { ( ~V , allDistinct(V ) ),

( ~V , s × 1000 + e × 100 + n × 10 + d+
m × 1000 + o × 100 + r × 10 + e ==
m × 10000 + o × 1000 + n × 100 + e × 10 + y),

( (m),m == 1) }
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Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }
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Constraint Answer Set Programming

Constraint satisfaction problem

Notation We use S(c) = S and R(c) = R to access the scope and
the relation of a constraint c = (S ,R)

For an assignment A : V →
⋃

v∈V dom(v) and a constraint (S ,R)
with scope S = (v1, . . . , vk), define

satC (A) = {c ∈ C | A(S(c)) ∈ R(c)}

where A(S) = (A(v1), . . . ,A(vk))
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Constraint Answer Set Programming

Constraint Answer Set Programming

A constraint logic program P is a logic program over an extended
alphabet A ∪ C where

A is a set of regular atoms and
C is a set of constraint atoms,

such that head(r) ∈ A for each r ∈ P

Given a set of literals B and some set B of atoms, we define
B|B = (B+ ∩ B) ∪ {∼a | a ∈ B− ∩ B}
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Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y ) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(atom(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration
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Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { head(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X
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Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .
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Constraint Answer Set Programming

aspartame’s eager approach

CSP
Instance

sugar
A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

CASP
Program

∗ based on order-encoding for CSPs
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Constraint Answer Set Programming

aspartame’s eager approach

ASP
Facts

ASP
Encoding∗

gringo clasp CASP
Solution

- - -

CASP
Program

∗ based on order-encoding for CSPs
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Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗
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Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗
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Constraint Answer Set Programming

clingcon’s approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar
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Constraint Answer Set Programming

clingcon instantiates clingo

T-ASP
Program gringo clasp

T T
T-ASP

Solution
-- -

Theory T
Grammar
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Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614



Constraint Answer Set Programming

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[14] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[16] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614



Constraint Answer Set Programming

Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
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In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
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Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[59] V. Marek and M. Truszczyński.
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