
Answer Set Solving in Practice

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 1 / 614

ASP modulo theories: Overview

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 450 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+S

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = DB+KRR+LP+SMT — NO!

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving ground | solve

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

Motivation

Input ASP = DB+KRR+LP+SAT

Output ASPmT = (DB+KRR+LP+SAT)mT

ASP solving modulo theories ground % theories | solve % theories

å logic programs with elusive theory atoms

Application areas

Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics, etc

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 451 / 614

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 452 / 614

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 452 / 614

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 452 / 614

clingo’s approach

T-ASP
Program

gringo clasp
T T

T-ASP
Solution

-- -

Theory T
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 453 / 614

Theory language

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 454 / 614

Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 455 / 614

Theory language

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 455 / 614

Theory language

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary, left

- : 5, unary; };

* : 4, binary, left;

+ : 3, binary, left;

- : 3, binary, left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary, left;

+ : 5, unary; + : 3, binary, left;

- : 5, unary; - : 3, binary, left;

.. : 1, binary, left @ : 0, binary, left

}; };

&dom/0 : dom_term, {=}, linear_term, any;

&sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;

&show/0 : show_term, directive;

&distinct/0 : linear_term, any;

&minimize/0 : minimize_term, directive

}.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 456 / 614

Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 457 / 614

Theory language

send+more=money

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 457 / 614

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 458 / 614

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 458 / 614

Theory language

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(E) :- digit(_,E,_).

power(1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

number(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), number(N);

-M*D : digit(sum,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 458 / 614

Theory language

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum,4,m).

digit(1,2,e). digit(2,2,o). digit(sum,3,o).

digit(1,1,n). digit(2,1,r). digit(sum,2,n).

digit(1,0,d). digit(2,0,e). digit(sum,1,e).

digit(sum,0,y).

base(10).

exp(0). exp(1). exp(2). exp(3). exp(4).

power(1,0).

power(10,1). power(100,2). power(1000,3). power(10000,4).

number(1). number(2).

high(s). high(m).

&dom{0..9}=s. &dom{0..9}=m. &dom{0..9}=e. &dom{0..9}=o. &dom{0..9}=n. &dom{0..9}=r. &dom{0..9}=d. &dom{0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 459 / 614

Low-level semantics

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 460 / 614

Low-level semantics

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 461 / 614

Low-level semantics

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 461 / 614

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ head(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ head(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ head(P)) ∩ S}
∪ {← a | a ∈ (T ∩ head(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 462 / 614

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ head(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ head(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ head(P)) ∩ S}
∪ {← a | a ∈ (T ∩ head(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 462 / 614

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, or
non-strict only implying the associated constraint.

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ head(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ head(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ head(P)) ∩ S}
∪ {← a | a ∈ (T ∩ head(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 462 / 614

Low-level semantics

ASP modulo theories

We distinguish theory atoms depending upon whether they are

defined via rules in the logic program, or
external otherwise, or

strict being equivalent to the associated constraint, Te , or
non-strict only implying the associated constraint, Ti .

Informally, a set X ⊆ A ∪ T of atoms is a T-stable model of a
program P if there is some T-solution S such that X is a (regular)
stable model of the program

P ∪ {a← | a ∈ (Te \ head(P)) ∩ S}
∪ {← ∼a | a ∈ (Te ∩ head(P)) ∩ S}
∪ {{a} ← | a ∈ (Ti \ head(P)) ∩ S}
∪ {← a | a ∈ (T ∩ head(P)) \ S}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 462 / 614

Intermediate Format

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 463 / 614

Intermediate Format

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 464 / 614

Intermediate Format

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 464 / 614

Intermediate Format

aspif example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 465 / 614

Intermediate Format

aspif example

{a}.

b :- a.

c :- not a.

asp 1 0 0

1 1 1 1 0 0

1 0 1 2 0 1 1

1 0 1 3 0 1 -1

4 1 a 1 1

4 1 b 1 2

4 1 c 1 3

0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 465 / 614

Intermediate Format

aspif overview

Rule statements

Minimize statements

Projection statements

Output statements

External statements

Assumption statements

Heuristic statements

Edge statements

Theory terms and atoms

Comments

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 466 / 614

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 467 / 614

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 467 / 614

Intermediate Format

aspif theory example

task(1).

task(2).

duration(1,200).

duration(2,400).

&dom {1..1000} = beg(1).

&dom {1..1000} = end(1).

&dom {1..1000} = beg(2).

&dom {1..1000} = end(2).

&diff{end(1)-beg(1)}<=200.

&diff{end(2)-beg(2)}<=400.

&show{ beg/1; end/1 }.

Only 6 (theory) atoms!

asp 1 0 0
1 0 1 1 0 0
1 0 1 2 0 0
1 0 1 3 0 0
1 0 1 4 0 0
1 0 1 5 0 0
1 0 1 6 0 0
4 7 task(1) 0
4 7 task(2) 0
4 15 duration(1,200) 0
4 15 duration(2,400) 0
9 0 1 200
9 0 3 400
9 0 6 1
9 0 11 2
9 1 0 4 diff
9 1 2 2 <=
9 1 4 1 -
9 1 5 3 end
9 1 8 3 beg
9 2 7 5 1 6
9 2 9 8 1 6
9 2 10 4 2 7 9
9 2 12 5 1 11
9 2 13 8 1 11
9 2 14 4 2 12 13
9 4 0 1 10 0
9 4 1 1 14 0
9 6 5 0 1 0 2 1
9 6 6 0 1 1 2 3
0

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 467 / 614

Theory propagation

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 468 / 614

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 469 / 614

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 469 / 614

Theory propagation

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 469 / 614

Theory propagation

Architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 470 / 614

Theory propagation

Architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 470 / 614

Theory propagation

Conflict-driven constraint learning
modulo theories

(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated for T ∈ T then record δ // theory propagator’s check

else return variable assignment // T-stable model found
else

(P) propagate theories T ∈ T // theory propagators may record theory nogoods
if no nogood recorded then decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 471 / 614

Theory propagation

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�

Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 472 / 614

Theory propagation

The dot propagator
#script (python)

import sys

import time

class Propagator:

def init(self, init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal))

def propagate(self, ctl, changes):

for l in changes:

sys.stdout.write(".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self, solver_id, assign, undo):

for l in undo:

sys.stdout.write("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator())

prg.ground([("base", [])])

prg.solve()

sys.stdout.write("\n")

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 473 / 614

Experiments

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 474 / 614

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 475 / 614

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 475 / 614

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 475 / 614

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 475 / 614

Experiments

Difference logic propagation

ASP ASP modulo DL (stateless) ASP modulo DL (stateful)
defined external defined external

Problem # T TO T TO T TO T TO T TO
Flow shop 120 569 110 283 40 382 70 177 30 281 50
Job shop 80 600 80 600 80 600 80 37 0 43 0
Open shop 60 405 40 214 20 213 20 2 0 2 0

Total 260 525 230 366 140 398 170 72 30 109 50

only non-strict interpretation of theory atoms
defined versus external amounts to the difference between

&diff { end(T)-beg(T) } <= D :- duration(T,D).

:- duration(T,D), not &diff { end(T)-beg(T) } <= D.

propagation

stateless Bellman-Ford algorithm
stateful Cotton-Maler algorithm

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 475 / 614

Acyclicity checking

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 476 / 614

Acyclicity checking

Builtin acyclicity checking

Edge statement

#edge (u, v) : l1, . . . , ln. (3)

A set X of atoms is an acyclic stable of a logic program P, if

1 X is a stable model of P and
2 the graph

({u, v | X |= l1, . . . , ln, (3) ∈ P}, {(u, v) | X |= l1, . . . , ln, (3) ∈ P})

is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 477 / 614

Acyclicity checking

Builtin acyclicity checking

Edge statement

#edge (u, v) : l1, . . . , ln. (3)

A set X of atoms is an acyclic stable of a logic program P, if

1 X is a stable model of P and
2 the graph

({u, v | X |= l1, . . . , ln, (3) ∈ P}, {(u, v) | X |= l1, . . . , ln, (3) ∈ P})

is acyclic

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 477 / 614

Constraint Answer Set Programming

Outline

1 Theory language

2 Low-level semantics

3 Intermediate Format

4 Theory propagation

5 Experiments

6 Acyclicity checking

7 Constraint Answer Set Programming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 478 / 614

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 479 / 614

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 479 / 614

Constraint Answer Set Programming

Constraint Satisfaction Problem

A constraint satisfaction problem (CSP) consists of

a set V of variables,
a set D of domains, and
a set C of constraints

such that

each variable v ∈ V has an associated domain dom(v) ∈ D;
a constraint c is a pair (S ,R) consisting of a k-ary relation R on a
vector S ⊆ V k of variables, called the scope of R

Note For S = (v1, . . . , vk), we have R ⊆ dom(v1)× · · · × dom(vk)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 479 / 614

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

V = {s, e, n, d ,m, o, r , y}
D = {dom(v) = {0, . . . , 9} | v ∈ V }

C = { (~V , allDistinct(V)),

(~V , s × 1000 + e × 100 + n × 10 + d+
m × 1000 + o × 100 + r × 10 + e ==
m × 10000 + o × 1000 + n × 100 + e × 10 + y),

((m),m == 1) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 480 / 614

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

V = {s, e, n, d ,m, o, r , y}
D = {dom(v) = {0, . . . , 9} | v ∈ V }

C = { (~V , allDistinct(V)),

(~V , s × 1000 + e × 100 + n × 10 + d+
m × 1000 + o × 100 + r × 10 + e ==
m × 10000 + o × 1000 + n × 100 + e × 10 + y),

((m),m == 1) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 480 / 614

Constraint Answer Set Programming

Example

s e n d
+ m o r e

m o n e y

Each letter corresponds
exactly to one digit and
all variables have to be
pairwisely distinct

9 5 6 7
+ 1 0 8 5

1 0 6 5 2

The example has exactly
one solution

{ s 7→ 9, e 7→ 5, n 7→ 6, d 7→ 7,m 7→ 1, o 7→ 0, r 7→ 8, y 7→ 2 }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 480 / 614

Constraint Answer Set Programming

Constraint satisfaction problem

Notation We use S(c) = S and R(c) = R to access the scope and
the relation of a constraint c = (S ,R)

For an assignment A : V →
⋃

v∈V dom(v) and a constraint (S ,R)
with scope S = (v1, . . . , vk), define

satC (A) = {c ∈ C | A(S(c)) ∈ R(c)}

where A(S) = (A(v1), . . . ,A(vk))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 481 / 614

Constraint Answer Set Programming

Constraint satisfaction problem

Notation We use S(c) = S and R(c) = R to access the scope and
the relation of a constraint c = (S ,R)

For an assignment A : V →
⋃

v∈V dom(v) and a constraint (S ,R)
with scope S = (v1, . . . , vk), define

satC (A) = {c ∈ C | A(S(c)) ∈ R(c)}

where A(S) = (A(v1), . . . ,A(vk))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 481 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

A constraint logic program P is a logic program over an extended
alphabet A ∪ C where

A is a set of regular atoms and
C is a set of constraint atoms,

such that head(r) ∈ A for each r ∈ P

Given a set of literals B and some set B of atoms, we define
B|B = (B+ ∩ B) ∪ {∼a | a ∈ B− ∩ B}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 482 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

A constraint logic program P is a logic program over an extended
alphabet A ∪ C where

A is a set of regular atoms and
C is a set of constraint atoms,

such that head(r) ∈ A for each r ∈ P

Given a set of literals B and some set B of atoms, we define
B|B = (B+ ∩ B) ∪ {∼a | a ∈ B− ∩ B}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 482 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(atom(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 483 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(atom(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 483 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

We identify constraint atoms with constraints via a function

γ : C → C

Furthermore, γ(Y) = {γ(c) | c ∈ Y } for any Y ⊆ C

Note Unlike regular atoms A, constraint atoms C are not subject to
the unique names assumption, eg.

γ(x < y) = γ(((−y − 1) ≤ −(x + 1)) ∧ (x 6= y))

A constraint logic program P is associated with a CSP
as follows

C [P] = γ(atom(P) ∩ C),
V [P] is obtained from the constraint scopes in C [P],
D[P] is provided by a declaration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 483 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { head(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 484 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { head(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 484 / 614

Constraint Answer Set Programming

Constraint Answer Set Programming

Let P be a constraint logic program over A ∪ C and
let A : V [P]→ D[P] be an assignment,

define the constraint reduct of as P wrt A as follows

PA = { head(r)← body(r)|A | r ∈ P,

γ(body(r)|C+) ⊆ satC [P](A),

γ(body(r)|C−) ∩ satC [P](A) = ∅ }

A set X ⊆ A of (regular) atoms is a constraint answer set of P wrt A,
if X is an stable model of PA.

Note That is, if X is the ⊆-smallest model of (PA)X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 484 / 614

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 485 / 614

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 485 / 614

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 485 / 614

Constraint Answer Set Programming

Some Constraint Answer Set
Programming (CASP) systems

adsolver

extension of ASP solver smodels

clingcon

extension of ASP system clingo (viz. gringo and clasp)
lazy approach

aspartame

translational approach (independent of ASP system)
eager approach

aspmt, dlvhex , ezcsp, gasp, inca, . . .

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 485 / 614

Constraint Answer Set Programming

aspartame’s eager approach

CSP
Instance

sugar
A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 486 / 614

Constraint Answer Set Programming

aspartame’s eager approach

ASP
Facts

ASP
Encoding

gringo clasp CASP
Solution

- - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 486 / 614

Constraint Answer Set Programming

aspartame’s eager approach

ASP
Facts

ASP
Encoding∗

gringo clasp CASP
Solution

- - -

CASP
Program

∗ based on order-encoding for CSPs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 486 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s lazy approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

clingcon 1+2

language extension
propagation via gecode
conflict minimization

clingcon 3

language specification
lazy propagation∗

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 487 / 614

Constraint Answer Set Programming

clingcon’s approach

CASP
Program gringo clasp

CSP CSP
CASP

Solution
-- -

CSP
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 488 / 614

Constraint Answer Set Programming

clingcon instantiates clingo

T-ASP
Program gringo clasp

T T
T-ASP

Solution
-- -

Theory T
Grammar

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 488 / 614

Constraint Answer Set Programming

[1] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[2] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

[3] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[4] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[5] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[6] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.
In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[7] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[8] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

IOS Press, 2009.

[9] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[10] G. Brewka, I. Niemelä, and M. Truszczyński.
Answer set optimization.
In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 867–872. Morgan Kaufmann Publishers, 2003.

[11] K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[12] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

[13] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[14] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

[15] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[16] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[17] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[18] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[19] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

[20] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[21] T. Eiter, G. Ianni, and T. Krennwallner.
Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[22] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[23] P. Ferraris.
Answer sets for propositional theories.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[24] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.
In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[25] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[26] M. Gebser, A. Harrison, R. Kaminski, V. Lifschitz, and T. Schaub.
Abstract Gringo.
Theory and Practice of Logic Programming, 15(4-5):449–463, 2015.
Available at http://arxiv.org/abs/1507.06576.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

http://arxiv.org/abs/1507.06576

Constraint Answer Set Programming

[27] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski,
J. Romero, T. Schaub, and S. Thiele.
Potassco User Guide.
University of Potsdam, second edition edition, 2015.

[28] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

[30] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [49], pages 250–264.

[31] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [3], pages 260–265.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [3], pages 136–148.

[34] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso [74], pages 386–392.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

[35] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[36] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[37] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[38] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [49], pages 235–249.

[39] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

[41] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[42] M. Gelfond and Y. Kahl.
Knowledge Representation, Reasoning, and the Design of Intelligent
Agents: The Answer-Set Programming Approach.
Cambridge University Press, 2014.

[43] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[44] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[45] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[46] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

[47] K. Gödel.
Zum intuitionistischen Aussagenkalkül.
In Anzeiger der Akademie der Wissenschaften in Wien, page 65–66.
1932.

[48] A. Heyting.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

Die formalen Regeln der intuitionistischen Logik.
In Sitzungsberichte der Preussischen Akademie der Wissenschaften,
page 42–56. 1930.
Reprint in Logik-Texte: Kommentierte Auswahl zur Geschichte der
Modernen Logik, Akademie-Verlag, 1986.

[49] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[50] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [74], pages 2318–2323.

[51] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

[52] J. Lee.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

[53] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[54] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[55] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[56] V. Lifschitz and A. Razborov.
Why are there so many loop formulas?

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[57] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[58] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[59] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[60] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [8], chapter 4, pages 131–153.

[61] J. Marques-Silva and K. Sakallah.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[62] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[63] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[64] D. Mitchell.
A SAT solver primer.
Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

[65] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[66] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[67] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[68] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[69] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[70] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[71] T. Son and E. Pontelli.
Planning with preferences using logic programming.
Theory and Practice of Logic Programming, 6(5):559–608, 2006.

[72] T. Syrjänen.
Lparse 1.0 user’s manual, 2001.

[73] A. Van Gelder, K. Ross, and J. Schlipf.
Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

Constraint Answer Set Programming

The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[74] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[75] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice October 13, 2016 614 / 614

	ASP modulo theories
	Theory language
	Low-level semantics
	Intermediate Format
	Theory propagation
	Experiments
	Acyclicity checking
	Constraint Answer Set Programming

