
From SAT to ASP and back!?

Torsten Schaub

University of Potsdam & INRIA Rennes

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 1 / 56

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 2 / 56

Nutshell

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 3 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56

Moments

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 5 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Axiomatic characterization

Logic programming Negation as failure

Herbrand interpretations
Fix-point characterizations

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

Extensions of first-order logic
Modalities, fix-points, second-order logic

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

Stable models semantics derived from non-monotonic logics
Alternating fix-point theory

ASP solving
“Stable models = Well-founded semantics + Branch”

Modeling — Grounding — Solving
Icebreakers: lparse and smodels

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Bio-informatics, Linux Package Configuration, Music composition,
Robotics, System Design, etc

Constructive logics Equilibrium Logic

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

Roots: Logic of Here-and-There (Heyting’30), G3 (Gödel’32)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration — let’s see . . .

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Moments

Some biased moments in time

’70/’80 Capturing incomplete information
Databases Closed world assumption

Logic programming Negation as failure

Non-monotonic reasoning
Auto-epistemic and Default logics, Circumscription

’90 Amalgamation and computation

Logic programming semantics
Well-founded and stable models semantics

ASP solving
“Stable models = Well-founded semantics + Branch”

’00 Applications and semantic rediscoveries
Growing dissemination Decision Support for Space Shuttle

Constructive logics Equilibrium Logic

’10 Integration

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 6 / 56

Foundations

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 7 / 56

Foundations

Propositional Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 8 / 56

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 8 / 56

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 8 / 56

Foundations

Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π

Disclaimer The following formalities apply to normal logic programs

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 8 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (¬F→ F) ∧ (F→ F)
F F T (¬F→ F) ∧ (F→ T)
F T F (¬T→ F) ∧ (T→ F)
F T T (¬T→ F) ∧ (T→ T)
T F F (¬F→ T) ∧ (F→ F)
T F T (¬F→ T) ∧ (F→ T)
T T F (¬T→ T) ∧ (T→ F)
T T T (¬T→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T→ F) ∧ (F→ F)
F F T (T→ F) ∧ (F→ T)
F T F (F→ F) ∧ (T→ F)
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ (T→ F)
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F (T→ F) ∧ (F→ F)
F F T (T→ F) ∧ (F→ T)
F T F (F→ F) ∧ (T→ F)
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ (T→ F)
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F→ F)
F F T F ∧ (F→ T)
F T F (F→ F) ∧ F
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ F
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ (F→ F)
F F T F ∧ (F→ T)
F T F (F→ F) ∧ F
F T T (F→ F) ∧ (T→ T)
T F F (T→ T) ∧ (F→ F)
T F T (T→ T) ∧ (F→ T)
T T F (F→ T) ∧ F
T T T (F→ T) ∧ (T→ T)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F ∧ T
F F T F ∧ T
F T F T ∧ F
F T T T ∧ T
T F F T ∧ T
T F T T ∧ T
T T F T ∧ F
T T T T ∧ T

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, back to SAT

a b c (¬b → a) ∧ (b → c)

F F F F
F F T F
F T F F
F T T T
T F F T
T F T T
T T F F
T T T T

We get four models: {b, c}, {a}, {a, c}, and {a, b, c}

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 9 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (¬F→ a) ∧ (b → c)
F F T (¬F→ a) ∧ (b → c)
F T F (¬T→ a) ∧ (b → c)
F T T (¬T→ a) ∧ (b → c)
T F F (¬F→ a) ∧ (b → c)
T F T (¬F→ a) ∧ (b → c)
T T F (¬T→ a) ∧ (b → c)
T T T (¬T→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F (T→ a) ∧ (b → c)
F F T (T→ a) ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F (T→ a) ∧ (b → c)
T F T (T→ a) ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (F→ a) ∧ (b → c)
F T T (F→ a) ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (F→ a) ∧ (b → c)
T T T (F→ a) ∧ (b → c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F T ∧ (b → c)
F T T T ∧ (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F T ∧ (b → c)
T T T T ∧ (b → c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c)
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c)
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) |= a
F T F (b → c) |=
F T T (b → c) |=
T F F a ∧ (b → c) |= a
T F T a ∧ (b → c) |= a
T T F (b → c) |=
T T T (b → c) |=

Reduct

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations

Some truth tabling, and now ASP

a b c (¬b → a) ∧ (b → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c)
F T F (b → c)
F T T (b → c)
T F F a ∧ (b → c) |= a Stable model
T F T a ∧ (b → c)
T T F (b → c)
T T T (b → c)

Reduct

We get one stable model: {a}
Stable models = Smallest models of (respective) reducts

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 10 / 56

Foundations From ASP to SAT

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 11 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Consider the schema: ¬¬A→ A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F
F F T
F T F
F T T
T F F
T F T
T T F
T T T

Consider the schema: ¬¬A→ A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F (¬F→ a)∧ (b → c) ∧ (¬¬F→ a) ∧ (¬¬F→ b) ∧ (¬¬F→ c)
F F T (¬F→ a)∧ (b → c) ∧ (¬¬F→ a) ∧ (¬¬F→ b) ∧ (¬¬T→ c)
F T F (¬T→ a)∧ (b → c) ∧ (¬¬F→ a) ∧ (¬¬T→ b)∧ (¬¬F→ c)
F T T (¬T→ a)∧ (b → c) ∧ (¬¬F→ a) ∧ (¬¬T→ b)∧ (¬¬T→ c)
T F F (¬F→ a)∧ (b → c) ∧ (¬¬T→ a)∧ (¬¬F→ b) ∧ (¬¬F→ c)
T F T (¬F→ a)∧ (b → c) ∧ (¬¬T→ a)∧ (¬¬F→ b) ∧ (¬¬T→ c)
T T F (¬T→ a)∧ (b → c) ∧ (¬¬T→ a)∧ (¬¬T→ b)∧ (¬¬F→ c)
T T T (¬T→ a)∧ (b → c) ∧ (¬¬T→ a)∧ (¬¬T→ b)∧ (¬¬T→ c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F (T→ a)∧ (b → c) ∧ (F→ a) ∧ (F→ b) ∧ (F→ c)
F F T (T→ a)∧ (b → c) ∧ (F→ a) ∧ (F→ b) ∧ (T→ c)
F T F (F→ a)∧ (b → c) ∧ (F→ a) ∧ (T→ b) ∧ (F→ c)
F T T (F→ a)∧ (b → c) ∧ (F→ a) ∧ (T→ b) ∧ (T→ c)
T F F (T→ a)∧ (b → c) ∧ (T→ a) ∧ (F→ b) ∧ (F→ c)
T F T (T→ a)∧ (b → c) ∧ (T→ a) ∧ (F→ b) ∧ (T→ c)
T T F (F→ a)∧ (b → c) ∧ (T→ a) ∧ (T→ b) ∧ (F→ c)
T T T (F→ a)∧ (b → c) ∧ (T→ a) ∧ (T→ b) ∧ (T→ c)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c) ∧ (F→ a) ∧ (F→ b) ∧ (F→ c)
F F T a ∧ (b → c) ∧ (F→ a) ∧ (F→ b) ∧ c
F T F (F→ a)∧ (b → c) ∧ (F→ a) ∧ b ∧ (F→ c)
F T T (F→ a)∧ (b → c) ∧ (F→ a) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a ∧ (F→ b) ∧ (F→ c)
T F T a ∧ (b → c) ∧ a ∧ (F→ b) ∧ c
T T F (F→ a)∧ (b → c) ∧ a ∧ b ∧ (F→ c)
T T T (F→ a)∧ (b → c) ∧ a ∧ b ∧ c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c) ∧ T ∧ T ∧ T
F F T a ∧ (b → c) ∧ T ∧ T ∧ c
F T F T ∧ (b → c) ∧ T ∧ b ∧ T
F T T T ∧ (b → c) ∧ T ∧ b ∧ c
T F F a ∧ (b → c) ∧ a ∧ T ∧ T
T F T a ∧ (b → c) ∧ a ∧ T ∧ c
T T F T ∧ (b → c) ∧ a ∧ b ∧ T
T T T T ∧ (b → c) ∧ a ∧ b ∧ c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬
¬a
→

a)

∧ (¬
¬b
→

b
)

∧ (¬
¬c
→

c
)

F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬
¬a
→

a)

∧ (¬
¬b
→

b
)

∧ (¬
¬c
→

c
)

F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) ∧ c |= a, c
F T F (b → c) ∧ b |= b, c
F T T (b → c) ∧ b ∧ c |= b, c
T F F a ∧ (b → c) ∧ a |= a
T F T a ∧ (b → c) ∧ a ∧ c |= a, c
T T F (b → c) ∧ a ∧ b |= a, b, c
T T T (b → c) ∧ a ∧ b ∧ c |= a, b, c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬
¬a
→

a)

∧ (¬
¬b
→

b
)

∧ (¬
¬c
→

c
)

F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) ∧ c |= a, c
F T F (b → c) ∧ b |= b, c
F T T (b → c) ∧ b ∧ c |= b, c
T F F a ∧ (b → c) ∧ a |= a
T F T a ∧ (b → c) ∧ a ∧ c |= a, c
T T F (b → c) ∧ a ∧ b |= a, b, c
T T T (b → c) ∧ a ∧ b ∧ c |= a, b, c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬
¬a
→

a)

∧ (¬
¬b
→

b
)

∧ (¬
¬c
→

c
)

F F F a ∧ (b → c) |= a
F F T a ∧ (b → c) ∧ c |= a, c
F T F (b → c) ∧ b |= b, c
F T T (b → c) ∧ b ∧ c |= b, c
T F F a ∧ (b → c) ∧ a |= a
T F T a ∧ (b → c) ∧ a ∧ c |= a, c
T T F (b → c) ∧ a ∧ b |= a, b, c
T T T (b → c) ∧ a ∧ b ∧ c |= a, b, c

We get four stable models: {b, c}, {a}, {a, c}, {a, b, c}

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Note ¬¬A→ A is equivalent to A ∨ ¬A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Note ¬¬A→ A is equivalent to A ∨ ¬A
SAT = ASP + Tertium non datur

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From ASP to SAT

From ASP to SAT

a b c (¬b → a) ∧ (b → c) ∧ (¬¬a→ a) ∧ (¬¬b → b) ∧ (¬¬c → c)
F F F a ∧ (b → c)
F F T a ∧ (b → c) ∧ c
F T F (b → c) ∧ b
F T T (b → c) ∧ b ∧ c
T F F a ∧ (b → c) ∧ a
T F T a ∧ (b → c) ∧ a ∧ c
T T F (b → c) ∧ a ∧ b
T T T (b → c) ∧ a ∧ b ∧ c

Note ¬¬A→ A is equivalent to A ∨ ¬A
SAT = ASP + Tertium non datur (also called choice)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 12 / 56

Foundations From SAT to ASP

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 13 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of Π (only true atoms shown)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of Π

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of Π

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms eliminated by completion formulas CF (Π)

Unfounded atoms

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms eliminated by completion formulas CF (Π)

Unfounded atoms

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π) ∪ LF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms eliminated by completion formulas CF (Π)

Unfounded atoms eliminated by loop formulas LF (Π)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Theorem (Lin and Zhao)

X is a stable model of Π iff X |= CF (Π) ∪ LF (Π)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Theorem (Lin and Zhao)

X is a stable model of Π iff X |= CF (Π) ∪ LF (Π)

Size of CF (Π) is linear in the size of Π

Size of LF (Π) may be exponential in the size of Π

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 14 / 56

Foundations From SAT to ASP

ASP and SAT

SAT = ASP + Tertium non datur

ASP = SAT + Completion and Loop formulas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 15 / 56

Workflow

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 16 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 17 / 56

Workflow Modeling

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 18 / 56

Workflow Modeling

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts ΠI,
C is represented as a set of rules ΠC, and

ΠC can be used to solve all problem instances in C

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 19 / 56

Workflow Modeling

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts ΠI,
C is represented as a set of rules ΠC, and

ΠC can be used to solve all problem instances in C

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 19 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Multi-objective optimization

Weak constraints :∼ q(X), p(X,C) [C@42]

Statements #minimize { C@42 : q(X), p(X,C) }

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 20 / 56

Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56

Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56

Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Note {A} is an abbreviation for A ∨ ¬A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56

Workflow Modeling

(Lexico) Maximum satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Note {A} is an abbreviation for A ∨ ¬A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56

Workflow Modeling

Traveling salesperson
Basic encoding

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

node(X) :- edge(X,_). node(X) :- edge(_,X).

edge(X,Y) :- cost(X,Y,_).

cost (1,2,6). cost (1,3,2). cost (1,4,9).

cost (2,4,4). cost (2,5,5). cost (2,6,6). [...]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 22 / 56

Workflow Modeling

Traveling salesperson
Basic encoding

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

node(X) :- edge(X,_). node(X) :- edge(_,X).

edge(X,Y) :- cost(X,Y,_).

cost (1,2,6). cost (1,3,2). cost (1,4,9).

cost (2,4,4). cost (2,5,5). cost (2,6,6). [...]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 22 / 56

Workflow Modeling

Traveling salesperson
Basic encoding

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

node(X) :- edge(X,_). node(X) :- edge(_,X).

edge(X,Y) :- cost(X,Y,_).

cost (1,2,6). cost (1,3,2). cost (1,4,9).

cost (2,4,4). cost (2,5,5). cost (2,6,6). [...]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 22 / 56

Workflow Grounding

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 23 / 56

Workflow Grounding

Grounding Logic Programs

Analyze

Grounder

Prepare GroundRule

*

Grounding algorithm uses three functions

Analyze groups rules into components and
determines recursive predicates

Prepare rewrites rules based on recursive predicates
GroundRule instantiates rules iteratively

following semi-naive database evaluation

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 24 / 56

Workflow Grounding

Reachability Problem

v1

v2 v3

v4

vertex(v1). edge(v1, v2).

vertex(v2). edge(v1, v3).

vertex(v3). edge(v2, v3).

vertex(v4). edge(v3, v4).

reach(X, Y) : - edge(X, Y). (1)

reach(X, Y) : - reach(X, Z), edge(Z, Y). (2)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 25 / 56

Workflow Grounding

Reachability Problem

v1

v2 v3

v4

vertex(v1). edge(v1, v2).

vertex(v2). edge(v1, v3).

vertex(v3). edge(v2, v3).

vertex(v4). edge(v3, v4).

reach(X, Y) : - edge(X, Y). (1)

reach(X, Y) : - reach(X, Z), edge(Z, Y). (2)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 25 / 56

Workflow Grounding

Reachability Problem

v1

v2 v3

v4

vertex(v1). edge(v1, v2).

vertex(v2). edge(v1, v3).

vertex(v3). edge(v2, v3).

vertex(v4). edge(v3, v4).

reach(X, Y) : - edge(X, Y). 16 rules (1)

reach(X, Y) : - reach(X, Z), edge(Z, Y). 64 rules (2)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 25 / 56

Workflow Grounding

Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1

2

3

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) : - edge(v1, v2) (1)
reach(v1, v3) : - edge(v1, v3) (1)
reach(v2, v3) : - edge(v2, v3) (1)
reach(v3, v4) : - edge(v3, v4) (1)

2 reach(v1, v3) : - edge(v2, v3), reach(v1, v2) (2)
reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)
reach(v2, v4) : - edge(v3, v4), reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) : - edge(v1, v2) (1)
reach(v1, v3) : - edge(v1, v3) (1)
reach(v2, v3) : - edge(v2, v3) (1)
reach(v3, v4) : - edge(v3, v4) (1)

2 reach(v1, v3) : - edge(v2, v3), reach(v1, v2) (2)
reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)
reach(v2, v4) : - edge(v3, v4), reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) : - edge(v1, v2) (1)
reach(v1, v3) : - edge(v1, v3) (1)
reach(v2, v3) : - edge(v2, v3) (1)
reach(v3, v4) : - edge(v3, v4) (1)

2 reach(v1, v3) : - edge(v2, v3), reach(v1, v2) (2)
reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)
reach(v2, v4) : - edge(v3, v4), reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) : - edge(v1, v2) (1)
reach(v1, v3) : - edge(v1, v3) (1)
reach(v2, v3) : - edge(v2, v3) (1)
reach(v3, v4) : - edge(v3, v4) (1)

2 reach(v1, v3) : - edge(v2, v3), reach(v1, v2) (2)
reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)
reach(v2, v4) : - edge(v3, v4), reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) : - edge(v2, v3), reach(v1, v2) (2)
reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)
reach(v2, v4) : - edge(v3, v4), reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) : - reach(v1, v2) (2)
reach(v1, v4) : - reach(v1, v3) (2)
reach(v2, v4) : - reach(v2, v3) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) (2)
reach(v1, v4) (2)
reach(v2, v4) (2)

3 reach(v1, v4) : - edge(v3, v4), reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) (2)
reach(v1, v4) (2)
reach(v2, v4) (2)

3 reach(v1, v4) : - reach(v1, v3) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) (2)
reach(v1, v4) (2)
reach(v2, v4) (2)

3 reach(v1, v4) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) (2)
reach(v1, v4) (2)
reach(v2, v4) (2)

3 reach(v1, v4) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Simplifying while Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1 reach(v1, v2) (1)
reach(v1, v3) (1)
reach(v2, v3) (1)
reach(v3, v4) (1)

2 reach(v1, v3) (2)
reach(v1, v4) (2)
reach(v2, v4) (2)

3 reach(v1, v4) (2)

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 26 / 56

Workflow Grounding

Company Controls Problem

c1

c2 c3

c4

60 35

20
51 company(c1). owns(c1, c2, 60).

company(c2). owns(c2, c3, 20).

company(c3). owns(c1, c3, 35).

company(c4). owns(c3, c4, 51).

controls(X, Y) : -

#sum {S : owns(X, Y, S) ;

S, Z : controls(X, Z), owns(Z, Y, S)} > 50,

company(X), company(Y), X 6= Y.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 27 / 56

Workflow Grounding

Company Controls Problem

c1

c2 c3

c4

60 35

20
51 company(c1). owns(c1, c2, 60).

company(c2). owns(c2, c3, 20).

company(c3). owns(c1, c3, 35).

company(c4). owns(c3, c4, 51).

controls(X, Y) : -

#sum {S : owns(X, Y, S) ;

S, Z : controls(X, Z), owns(Z, Y, S)} > 50,

company(X), company(Y), X 6= Y.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 27 / 56

Workflow Grounding

ASP Grounding

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program Grounder Solver Models

Solution

- - -

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd - -

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -

��	

black(X) ; grey(X) ; white(X) :- node(X)

-

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -?

black(v3) ; grey(v3) ; white(v3)

-

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -?

8 4 7 0 (dimacs)

-

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd - -

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd

Workflow Solving

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 29 / 56

Workflow Solving

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (aspif and smodels format)
SAT and MaxSAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 30 / 56

Workflow Solving

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (aspif and smodels format)
SAT and MaxSAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 30 / 56

Workflow Solving

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (aspif and smodels format)
SAT and MaxSAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 30 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 31 / 56

Integration

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 32 / 56

Integration Heuristic programming

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 33 / 56

Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 34 / 56

Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 34 / 56

Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 34 / 56

Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 34 / 56

Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 34 / 56

Integration Multi-shot solving

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 35 / 56

Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 36 / 56

Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 36 / 56

Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 36 / 56

Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 36 / 56

Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 36 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 37 / 56

Integration Multi-shot solving

Vanilla Clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 38 / 56

Integration Multi-shot solving

Vanilla Clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 38 / 56

Integration Multi-shot solving

Vanilla Clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 38 / 56

Integration Multi-shot solving

Incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 39 / 56

Integration Multi-shot solving

Incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 39 / 56

Integration Multi-shot solving

Incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 39 / 56

Integration Multi-shot solving

Incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 39 / 56

Integration Multi-shot solving

Controlling incremental solving

from sys import stdout

from gringo import SolveResult , Fun , Control

prg = Control ()

prg.load("inc.lp")

ret , parts , i = SolveResult.UNSAT , [], 1

parts.append ((" base", []))

while ret == SolveResult.UNSAT:

parts.append ((" step", [i]))

parts.append ((" check", [i]))

prg.ground(parts)

prg.release_external(Fun("plug", [i -1]))

prg.assign_external(Fun("plug", [i]), True)

f = lambda m: stdout.write(str(m))

ret , parts , i = prg.solve(on_model=f), [], i+1

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 40 / 56

Integration Preference handling

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 41 / 56

Integration Preference handling

Motivation

Preference handling
involves the combination of qualitative and quantitative preferences

ASP systems provide optimization statements representing
(lexicographically ordered) objective functions using summation

Goal a framework for handling preferences among the (stable)
models of logic programs

capturing existing approaches and
allowing for an easy implementation of new ones

Implementation asprin

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 42 / 56

Integration Preference handling

Motivation

Preference handling
involves the combination of qualitative and quantitative preferences

ASP systems provide optimization statements representing
(lexicographically ordered) objective functions using summation

Goal a framework for handling preferences among the (stable)
models of logic programs

capturing existing approaches and
allowing for an easy implementation of new ones

Implementation asprin

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 42 / 56

Integration Preference handling

Motivation

Preference handling
involves the combination of qualitative and quantitative preferences

ASP systems provide optimization statements representing
(lexicographically ordered) objective functions using summation

Goal a framework for handling preferences among the (stable)
models of logic programs

capturing existing approaches and
allowing for an easy implementation of new ones

Implementation asprin

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 42 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 43 / 56

Integration Theory solving

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 44 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 45 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 46 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 46 / 56

Integration Theory solving

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary , left

- : 5, unary; };

* : 4, binary , left;

+ : 3, binary , left;

- : 3, binary , left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary , left;

+ : 5, unary; + : 3, binary , left;

- : 5, unary; - : 3, binary , left;

.. : 1, binary , left @ : 0, binary , left

}; };

&dom/0 : dom_term , {=}, linear_term , any;

&sum/0 : linear_term , {<=,=,>=,<,>,!=}, linear_term , any;

&show/0 : show_term , directive;

&distinct /0 : linear_term , any;

&minimize /0 : minimize_term , directive

}.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 47 / 56

Integration Theory solving

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

summand(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), summand(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 48 / 56

Integration Theory solving

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

summand(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), summand(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 48 / 56

Integration Theory solving

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

summand(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), summand(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 48 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 49 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 49 / 56

Integration Theory solving

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp (0). exp (1). exp (2). exp (3). exp (4).

power (1,0).

power (10 ,1). power (100 ,2). power (1000 ,3). power (10000 ,4).

summand (1). summand (2).

high(s). high(m).

&dom {0..9}=s. &dom {0..9}=m. &dom {0..9}=e. &dom {0..9}=o. &dom {0..9}=n. &dom {0..9}=r. &dom {0..9}=d. &dom {0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 50 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 51 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 51 / 56

Integration Theory solving

ASP solving process modulo theories

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

�

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 51 / 56

Integration Theory solving

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�

Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 52 / 56

Integration Theory solving

The dot propagator
#script (python)

import sys

import time

class Propagator:

def init(self , init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal))

def propagate(self , ctl , changes):

for l in changes:

sys.stdout.write (".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self , solver_id , assign , undo):

for l in undo:

sys.stdout.write ("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator ())

prg.ground ([(" base", [])])

prg.solve()

sys.stdout.write ("\n")

#end.

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 53 / 56

Résumé

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 54 / 56

Résumé

Take home message

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 55 / 56

http://potassco.sourceforge.net

Résumé

Take home message

ASP = DB+LP+KR+SAT

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 55 / 56

http://potassco.sourceforge.net

Résumé

Take home message

ASP = DB+LP+KR+SMTn

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 55 / 56

http://potassco.sourceforge.net

Résumé

Take home message

ASP = DB+LP+KR+SMTn

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 55 / 56

http://potassco.sourceforge.net

Résumé

Epilogue
After all, it’s all about Tweety!

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 56 / 56

Résumé

Epilogue
After all, it’s all about Tweety!

’87

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 56 / 56

Résumé

Epilogue
After all, it’s all about Tweety!

’87 ’16

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 56 / 56

Résumé

Epilogue
After all, it’s all about Tweety!

’87 ’16

?

SAT

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 56 / 56

	Nutshell
	Moments
	Foundations
	From ASP to SAT
	From SAT to ASP

	Workflow
	Modeling
	Grounding
	Solving

	Integration
	Heuristic programming
	Multi-shot solving
	Preference handling
	Theory solving

	Résumé

