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Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Nutshell

Answer Set Programming (ASP)
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with effective solving capacities

tailored to knowledge representation and reasoning

ASP has its roots in
databases
logic programming
knowledge representation and (non-monotonic) reasoning
constraint solving (in particular, SAT)

ASP allows for solving all search problems in NP (and NPNP)

The versatility of ASP is reflected by the solver clasp,
winning first places at ASP, CASC, MISC, PB, and SAT

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 4 / 56



Moments

Outline

1 Nutshell

2 Moments

3 Foundations

4 Workflow

5 Integration

6 Résumé
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Foundations

Propositional Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π
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a︸︷︷︸
head

← b1, . . . , bm,¬c1, . . . ,¬cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ¬ denote if, and, and (default) negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
models of Π justifying each true atom by some rule in Π

Disclaimer The following formalities apply to normal logic programs
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We get four models: {b, c}, {a}, {a, c}, and {a, b, c}
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Foundations From SAT to ASP

From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}
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Π =
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a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π) ∪ LF (Π)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c , x , y}

Unsupported atoms eliminated by completion formulas CF (Π)

Unfounded atoms eliminated by loop formulas LF (Π)
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From SAT to ASP

Π =
{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Theorem (Lin and Zhao)

X is a stable model of Π iff X |= CF (Π) ∪ LF (Π)
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{
a← ¬b b ← ¬a x ← a,¬c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Theorem (Lin and Zhao)

X is a stable model of Π iff X |= CF (Π) ∪ LF (Π)

Size of CF (Π) is linear in the size of Π

Size of LF (Π) may be exponential in the size of Π
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Foundations From SAT to ASP

ASP and SAT

SAT = ASP + Tertium non datur

ASP = SAT + Completion and Loop formulas
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Workflow Modeling

Guiding principle

Elaboration Tolerance (McCarthy, 1998)

“A formalism is elaboration tolerant [if] it is convenient
to modify a set of facts expressed in the formalism
to take into account new phenomena or changed circumstances.”

Uniform problem representation

For solving a problem instance I of a problem class C,

I is represented as a set of facts ΠI,
C is represented as a set of rules ΠC, and

ΠC can be used to solve all problem instances in C
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Workflow Modeling

Language constructs

Variables p(X) :- q(X)

Conditional literals p :- q(X) : r(X)

Disjunction p(X) ; q(X) :- r(X)

Integrity constraints :- q(X), p(X)

Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Optimization

Weak constraints :∼ q(X), p(X,C) [C]

Statements #minimize { C : q(X), p(X,C) }
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Choice 2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates s(Y) :- r(Y), 2 #sum{ X : p(X,Y), q(X) } 7

Multi-objective optimization

Weak constraints :∼ q(X), p(X,C) [C@42]

Statements #minimize { C@42 : q(X), p(X,C) }
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Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56



Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56



Workflow Modeling

Satisfiability testing
(a↔ b) ∧ c

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Note {A} is an abbreviation for A ∨ ¬A

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 21 / 56



Workflow Modeling

(Lexico) Maximum satisfiability testing
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Workflow Modeling

Traveling salesperson
Basic encoding

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(X).

{ cycle(X,Y) : edge(X,Y) } = 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

node(X) :- edge(X,_). node(X) :- edge(_,X).

edge(X,Y) :- cost(X,Y,_).

cost (1,2,6). cost (1,3,2). cost (1,4,9).

cost (2,4,4). cost (2,5,5). cost (2,6,6). [...]
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Workflow Grounding

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
Modeling
Grounding
Solving

5 Integration
Heuristic programming
Multi-shot solving
Preference handling
Theory solving

6 Résumé
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Workflow Grounding

Grounding Logic Programs

Analyze

Grounder

Prepare GroundRule

*

Grounding algorithm uses three functions

Analyze groups rules into components and
determines recursive predicates

Prepare rewrites rules based on recursive predicates
GroundRule instantiates rules iteratively

following semi-naive database evaluation
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Workflow Grounding

Reachability Problem

v1

v2 v3

v4

vertex(v1). edge(v1, v2).

vertex(v2). edge(v1, v3).

vertex(v3). edge(v2, v3).

vertex(v4). edge(v3, v4).

reach(X, Y) : - edge(X, Y). (1)

reach(X, Y) : - reach(X, Z), edge(Z, Y). (2)
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Workflow Grounding

Reachability Problem

v1

v2 v3

v4

vertex(v1). edge(v1, v2).

vertex(v2). edge(v1, v3).

vertex(v3). edge(v2, v3).

vertex(v4). edge(v3, v4).

reach(X, Y) : - edge(X, Y).  16 rules (1)

reach(X, Y) : - reach(X, Z), edge(Z, Y).  64 rules (2)
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Workflow Grounding

Grounding

0 edge(v1, v2), edge(v1, v3), edge(v2, v3), edge(v3, v4), . . .

1

2

3

Similar simplifications are done with negative information

Grounding is sufficient for solving this reachability problem
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Workflow Grounding

Simplifying while Grounding
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Workflow Grounding

Company Controls Problem

c1

c2 c3

c4

60 35

20
51 company(c1). owns(c1, c2, 60).

company(c2). owns(c2, c3, 20).

company(c3). owns(c1, c3, 35).

company(c4). owns(c3, c4, 51).

controls(X, Y) : -

#sum {S : owns(X, Y, S) ;

S, Z : controls(X, Z), owns(Z, Y, S)} > 50,

company(X), company(Y), X 6= Y.
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Workflow Grounding

ASP Grounding

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd
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Workflow Grounding

ASP Grounding for SAT

Problem

Clause
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Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -

��	

black(X) ; grey(X) ; white(X) :- node(X)

-

?

6

Modeling Interpreting

Solving

satgrnd is available at
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Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -?

black(v3) ; grey(v3) ; white(v3)

-

?
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Modeling Interpreting

Solving

satgrnd is available at
http://research.ics.aalto.fi/software/sat/satgrnd

Torsten Schaub (KRR@UP) From SAT to ASP and back!? 28 / 56

http://research.ics.aalto.fi/software/sat/satgrnd


Workflow Grounding

ASP Grounding for SAT

Problem

Clause
Program

gringo Solver Models

Solution

- - satgrnd -?

8 4 7 0 (dimacs)
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Solving
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Workflow Grounding

ASP Grounding for SAT
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Workflow Solving

Outline
1 Nutshell

2 Moments

3 Foundations
From ASP to SAT
From SAT to ASP

4 Workflow
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Workflow Solving

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (aspif and smodels format)
SAT and MaxSAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading
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Workflow Solving

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation
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Integration Heuristic programming

Heuristic programming

Heuristic directives

#heuristic a : l1, . . . , ln. [k@p,m]

where
a is an atom, and l1, . . . , ln are literals
k and p are integers
m is a heuristic modifier among
init, factor, level, sign, true, or false

Implementation bias on the vsids heuristic in clasp

Examples
Boosting convergence when optimizing

#heuristic cycle(X, Y) : edge(X, Y). [1, false]

Backward search when planning

#heuristic occurs(A, T) : action(A), time(T). [T, factor]
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Integration Multi-shot solving

Motivation

Multi-shot solving
is about solving continuously changing logic programs
in an operative way

Application areas
Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 4 (NB clingo = gringo + clasp)
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Integration Multi-shot solving

Clingo = ASP + Control

ASP
#program <name> [ (<parameters>) ]

Example #program play(t).

#external <atom> [ : <body> ]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

C and Prolog embeddings are available soon

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)
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Integration Multi-shot solving

Vanilla Clingo

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.
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Integration Multi-shot solving

Incremental solving

#program base.

p(0).

#program step (t).

p(t) :- p(t-1).

#program check (t).

#external plug(t).

:- not p(42), plug(t).
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Integration Multi-shot solving

Controlling incremental solving

from sys import stdout

from gringo import SolveResult , Fun , Control

prg = Control ()

prg.load("inc.lp")

ret , parts , i = SolveResult.UNSAT , [], 1

parts.append ((" base", []))

while ret == SolveResult.UNSAT:

parts.append ((" step", [i]))

parts.append ((" check", [i]))

prg.ground(parts)

prg.release_external(Fun("plug", [i -1]))

prg.assign_external(Fun("plug", [i]), True)

f = lambda m: stdout.write(str(m))

ret , parts , i = prg.solve(on_model=f), [], i+1
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Torsten Schaub (KRR@UP) From SAT to ASP and back!? 41 / 56



Integration Preference handling

Motivation

Preference handling
involves the combination of qualitative and quantitative preferences

ASP systems provide optimization statements representing
(lexicographically ordered) objective functions using summation

Goal a framework for handling preferences among the (stable)
models of logic programs

capturing existing approaches and
allowing for an easy implementation of new ones

Implementation asprin
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Integration Preference handling

Example

Your vacation (logic) program . . .

. . . talking about sauna, dive, hike, bungee, hot, etc

#preference(bucks, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,¬bungee}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(bucks), name(fun), name(temps)}

#optimize(all)
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Integration Theory solving

Motivation

Confession ASP is not a silver bullet

ASP modulo theories
is about integrating dedicated reasoning procedure

Application areas
Agents, Assisted Living, Robotics, Planning, Scheduling,
Bio- and Cheminformatics

Caveats

ASP is non-monotonic
ASP involves both grounding and solving

Implementation clingo 5 (and clingcon for CSP)
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Integration Theory solving

Linear constraints

#theory csp {

linear_term { show_term {

+ : 5, unary; / : 1, binary , left

- : 5, unary; };

* : 4, binary , left;

+ : 3, binary , left;

- : 3, binary , left minimize_term {

}; + : 5, unary;

- : 5, unary;

dom_term { * : 4, binary , left;

+ : 5, unary; + : 3, binary , left;

- : 5, unary; - : 3, binary , left;

.. : 1, binary , left @ : 0, binary , left

}; };

&dom/0 : dom_term , {=}, linear_term , any;

&sum/0 : linear_term , {<=,=,>=,<,>,!=}, linear_term , any;

&show/0 : show_term , directive;

&distinct /0 : linear_term , any;

&minimize /0 : minimize_term , directive

}.
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Integration Theory solving

send+more=money

#include "csp.lp".

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp(E) :- digit(_,E,_).

power (1,0).

power(B*P,E) :- base(B), power(P,E-1), exp(E), E>0.

summand(N) :- digit(N,_,_), N!= sum.

high(D) :- digit(N,E,D), not digit(N,E+1,_).

&dom {0..9} = X :- digit(_,_,X).

&sum { M*D : digit(N,E,D), power(M,E), summand(N);

-M*D : digit(sum ,E,D), power(M,E) } = 0.

&sum { D } > 0 :- high(D).

&distinct { D : digit(_,_,D) }.

&show { D : digit(_,_,D) }.
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Integration Theory solving

send+more=money

digit(1,3,s). digit(2,3,m). digit(sum ,4,m).

digit(1,2,e). digit(2,2,o). digit(sum ,3,o).

digit(1,1,n). digit(2,1,r). digit(sum ,2,n).

digit(1,0,d). digit(2,0,e). digit(sum ,1,e).

digit(sum ,0,y).

base (10).

exp (0). exp (1). exp (2). exp (3). exp (4).

power (1,0).

power (10 ,1). power (100 ,2). power (1000 ,3). power (10000 ,4).

summand (1). summand (2).

high(s). high(m).

&dom {0..9}=s. &dom {0..9}=m. &dom {0..9}=e. &dom {0..9}=o. &dom {0..9}=n. &dom {0..9}=r. &dom {0..9}=d. &dom {0..9}=y.

&sum{ 1000*s; 100*e; 10*n; 1*d;

1000*m; 100*o; 10*r; 1*e;

-10000*m; -1000*o; -100*n; -10*e; -1*y } = 0.

&sum{s} > 0. &sum{m} > 0.

&distinct{s; m; e; o; n; r; d; y}.

&show{s; m; e; o; n; r; d; y}.
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Integration Theory solving

Propagator interface

clingo

SymbolicAtom

+ symbol
+ literal

TheoryAtom

+ name
+ elements
+ guard
+ literal

PropagateInit

+ num threads
+ symbolic atoms
+ theory atoms

+ add watch(lit)
+ solver literal(lit)

�interface�

Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl

+ thread id
+ assignment

+ add nogood(nogood, tag, lock)
+ propagate()

Assignment

+ decision level
+ has conflict

+ value(lit)
+ level(lit)
+ ...
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Integration Theory solving

The dot propagator
#script (python)

import sys

import time

class Propagator:

def init(self , init):

self.sleep = .1

for atom in init.symbolic_atoms:

init.add_watch(init.solver_literal(atom.literal ))

def propagate(self , ctl , changes ):

for l in changes:

sys.stdout.write (".")

sys.stdout.flush()

time.sleep(self.sleep)

return True

def undo(self , solver_id , assign , undo):

for l in undo:

sys.stdout.write ("\b \b")

sys.stdout.flush()

time.sleep(self.sleep)

def main(prg):

prg.register_propagator(Propagator ())

prg.ground ([(" base", [])])

prg.solve()

sys.stdout.write ("\n")

#end.
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