
aspic : Interactive Answer Set Programming

Martin Gebser Philipp Obermeier Torsten Schaub

Introduction

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 2 / 22

Introduction

Introduction

Goal Exploration and modification of ASP knowledgebases

aspic user-oriented interactive ASP shell

Dynamically load, define, change logic programs
Operative ASP solving process
Stateful system with state-changing operators and queries
Based on clingo 4 and its Python API

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 3 / 22

Multi-shot ASP Solving

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 4 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground∗ | solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 5 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 6 / 22

Multi-shot ASP Solving

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 7 / 22

Multi-shot ASP Solving

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 7 / 22

Multi-shot ASP Solving

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 7 / 22

Multi-shot ASP Solving

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 8 / 22

Multi-shot ASP Solving

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 8 / 22

Multi-shot ASP Solving

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 8 / 22

Multi-shot ASP Solving

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 8 / 22

Operational Semantics

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 9 / 22

Operational Semantics

Architecture

Class Control object for the
grounding/solving process

Methods init ,
add, load, ground, solve,
assign external,
release external. . .

Clingo
Python
Object

Clingo State

Aspic State

Clingo state (R,P,V)

R is a collection of extensible (non-ground) logic programs
P is a module
V is a three-valued assignment over the input atoms of P

Operations create, add, ground, solve, assignExternal, releaseExternal

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 10 / 22

Operational Semantics

Architecture

Class Control object for the
grounding/solving process

Methods init ,
add, load, ground, solve,
assign external,
release external. . .

Clingo
Python
Object

Clingo State

Aspic State

Clingo state (R,P,V)

R is a collection of extensible (non-ground) logic programs
P is a module
V is a three-valued assignment over the input atoms of P

Operations create, add, ground, solve, assignExternal, releaseExternal

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 10 / 22

Operational Semantics

Architecture

Class Control object for the
grounding/solving process

Methods init ,
add, load, ground, solve,
assign external,
release external. . .

Clingo
Python
Object

Clingo State

Aspic State

Clingo state (R,P,V)

R is a collection of extensible (non-ground) logic programs
P is a module
V is a three-valued assignment over the input atoms of P

Operations create, add, ground, solve, assignExternal, releaseExternal

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 10 / 22

Operational Semantics

Architecture

Class Control object for the
grounding/solving process

Methods init ,
add, load, ground, solve,
assign external,
release external. . .

Clingo
Python
Object

Clingo State

Aspic State

Clingo state (R,P,V)

R is a collection of extensible (non-ground) logic programs
P is a module
V is a three-valued assignment over the input atoms of P

Operations create, add, ground, solve, assignExternal, releaseExternal

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 10 / 22

Operational Semantics

System States

Aspic State (R, I , i , j) with where

R is a ground program over a set of ground atoms A
I ⊆ A \ head(R) is a set of input atoms
i is a three-valued truth assignment over I
j is a three-valued truth assignment over A

State-induced logic program

P(R, I , i , j) = R ∪ {a← | a ∈ i t} ∪ {{a} ← | a ∈ iu}
∪ { ← ∼a | a ∈ j t} ∪ { ← a | a ∈ j f }

Note Intuitively, i changes the stable models of P(R, I , i , j),
whereas j only filters them

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 11 / 22

Operational Semantics

System States

Aspic State (R, I , i , j) with where

R is a ground program over a set of ground atoms A
I ⊆ A \ head(R) is a set of input atoms
i is a three-valued truth assignment over I (i : A → {t, f , u})
j is a three-valued truth assignment over A (j : A → {t, f , u})

State-induced logic program

P(R, I , i , j) = R ∪ {a← | a ∈ i t} ∪ {{a} ← | a ∈ iu}
∪ { ← ∼a | a ∈ j t} ∪ { ← a | a ∈ j f }

Note Intuitively, i changes the stable models of P(R, I , i , j),
whereas j only filters them

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 11 / 22

Operational Semantics

System States

Aspic State (R, I , i , j) with where

R is a ground program over a set of ground atoms A
I ⊆ A \ head(R) is a set of input atoms
i is a three-valued truth assignment over I
j is a three-valued truth assignment over A

State-induced logic program

P(R, I , i , j) = R ∪ {a← | a ∈ i t} ∪ {{a} ← | a ∈ iu}
∪ { ← ∼a | a ∈ j t} ∪ { ← a | a ∈ j f }

Note Intuitively, i changes the stable models of P(R, I , i , j),
whereas j only filters them

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 11 / 22

Operational Semantics

System States

Aspic State (R, I , i , j) with where

R is a ground program over a set of ground atoms A
I ⊆ A \ head(R) is a set of input atoms
i is a three-valued truth assignment over I
j is a three-valued truth assignment over A

State-induced logic program

P(R, I , i , j) = R ∪ {a← | a ∈ i t} ∪ {{a} ← | a ∈ iu}
∪ { ← ∼a | a ∈ j t} ∪ { ← a | a ∈ j f }

Note Intuitively, i changes the stable models of P(R, I , i , j),
whereas j only filters them

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 11 / 22

Operational Semantics

State-changing Operators at a glance

assume and cancel

manipulate j
assume adds and cancel removes literals from j

assert retract, and open

manipulate i
assert sets an input atom to t, open to u and retract to f

external and release

manipulate I (and R)
external adds a new input atom to I and
release removes it permanently

define

manipulates R (and I)
define adds a new rule set to R

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 12 / 22

State-Changing Operators

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 13 / 22

State-Changing Operators

Assume and Cancel

assume : 〈`, (R, I , i , j1)〉 7→ (R, I , i , j2)

Takes ground literal `
j2 maps ` to t, if ` ∈ A, otherwise to f

cancel : 〈`, (R, I , i , j1)〉 7→ (R, I , i , j2)

Takes ground literal `
j2 maps ` to u, if ` ∈ A; otherwise, it maps ` to u

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 14 / 22

State-Changing Operators

Assume and Cancel

assume : 〈`, (R, I , i , j1)〉 7→ (R, I , i , j2)

Takes ground literal `
j2 maps ` to t, if ` ∈ A, otherwise to f

cancel : 〈`, (R, I , i , j1)〉 7→ (R, I , i , j2)

Takes ground literal `
j2 maps ` to u, if ` ∈ A; otherwise, it maps ` to u

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 14 / 22

State-Changing Operators

Assert, Retract and Open

assert : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to t, if a ∈ I

open : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to u, if a ∈ I

retract : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to f , if a ∈ I

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 15 / 22

State-Changing Operators

Assert, Retract and Open

assert : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to t, if a ∈ I

open : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to u, if a ∈ I

retract : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to f , if a ∈ I

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 15 / 22

State-Changing Operators

Assert, Retract and Open

assert : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to t, if a ∈ I

open : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to u, if a ∈ I

retract : 〈a, (R, I , i1, j)〉 7→ (R, I , i2, j)

Takes ground atom a
i2 maps a to f , if a ∈ I

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 15 / 22

State-Changing Operators

Define, External, Release

define : 〈R, (R1, I1, i , j)〉 7→ (R2, I2, i , j)

Takes set of ground rules R
R2 = CI1(R1 ∪ R), if R1 and R are “modularly compositional”

CI1(R1 ∪ R) “confines R1 ∪ R to its atoms”

I2 = I1 \ head(R2)

external : 〈a, (R, I1, i , j)〉 7→ (R, I2, i , j)

Takes ground atom a
I2 = I1 ∪ ({a} \ head(R))

release : 〈a, (R1, I1, i1, j)〉 7→ (R2, I2, i2, j)

Takes ground atom a
I2 = I1 \ {a} and iv2 = iv1 \ {a} for v ∈ {t, f , u}
R2 = R1 ∪ {a← a}, if a ∈ I1, and R2 = R1 otherwise

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 16 / 22

State-Changing Operators

Define, External, Release

define : 〈R, (R1, I1, i , j)〉 7→ (R2, I2, i , j)

Takes set of ground rules R
R2 = CI1(R1 ∪ R), if R1 and R are “modularly compositional”

CI1(R1 ∪ R) “confines R1 ∪ R to its atoms”

I2 = I1 \ head(R2)

external : 〈a, (R, I1, i , j)〉 7→ (R, I2, i , j)

Takes ground atom a
I2 = I1 ∪ ({a} \ head(R))

release : 〈a, (R1, I1, i1, j)〉 7→ (R2, I2, i2, j)

Takes ground atom a
I2 = I1 \ {a} and iv2 = iv1 \ {a} for v ∈ {t, f , u}
R2 = R1 ∪ {a← a}, if a ∈ I1, and R2 = R1 otherwise

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 16 / 22

State-Changing Operators

Define, External, Release

define : 〈R, (R1, I1, i , j)〉 7→ (R2, I2, i , j)

Takes set of ground rules R
R2 = CI1(R1 ∪ R), if R1 and R are “modularly compositional”

CI1(R1 ∪ R) “confines R1 ∪ R to its atoms”

I2 = I1 \ head(R2)

external : 〈a, (R, I1, i , j)〉 7→ (R, I2, i , j)

Takes ground atom a
I2 = I1 ∪ ({a} \ head(R))

release : 〈a, (R1, I1, i1, j)〉 7→ (R2, I2, i2, j)

Takes ground atom a
I2 = I1 \ {a} and iv2 = iv1 \ {a} for v ∈ {t, f , u}
R2 = R1 ∪ {a← a}, if a ∈ I1, and R2 = R1 otherwise

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 16 / 22

Queries

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 17 / 22

Queries

Queries

A filter maps a collection of sets of ground atoms to a subset of the
collection

A entailment mode maps a collection of sets of ground atoms to a
subset of the union of the collection

query maps an atomic query q ∈ A, an entailment mode µ, a filter ν,
and a system state S = (R, I , i , j) to the set {yes, no}:

query(q, (µ, ν), S) =

{
yes if q ∈ µ ◦ν(AS(P(S)))

no otherwise

Boolean queries: Boolean expression in negation normal form

Non-ground conjunctive queries: conjunction of (non-ground) literals

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 18 / 22

Queries

Queries

A filter maps a collection of sets of ground atoms to a subset of the
collection

A entailment mode maps a collection of sets of ground atoms to a
subset of the union of the collection

query maps an atomic query q ∈ A, an entailment mode µ, a filter ν,
and a system state S = (R, I , i , j) to the set {yes, no}:

query(q, (µ, ν), S) =

{
yes if q ∈ µ ◦ν(AS(P(S)))

no otherwise

Boolean queries: Boolean expression in negation normal form

Non-ground conjunctive queries: conjunction of (non-ground) literals

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 18 / 22

Queries

Queries

A filter maps a collection of sets of ground atoms to a subset of the
collection

A entailment mode maps a collection of sets of ground atoms to a
subset of the union of the collection

query maps an atomic query q ∈ A, an entailment mode µ, a filter ν,
and a system state S = (R, I , i , j) to the set {yes, no}:

query(q, (µ, ν), S) =

{
yes if q ∈ µ ◦ν(AS(P(S)))

no otherwise

Boolean queries: Boolean expression in negation normal form

Non-ground conjunctive queries: conjunction of (non-ground) literals

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 18 / 22

aspic

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 19 / 22

aspic

Demo

.

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 20 / 22

Summary

Outline

1 Introduction

2 Multi-shot ASP Solving

3 Operational Semantics

4 State-Changing Operators

5 Queries

6 aspic

7 Summary

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 21 / 22

Summary

Summary

Release forseen for late summer

M. Gebser et al. (KRR@UP) aspic: Interactive Answer Set Programming 22 / 22

	Introduction
	Multi-shot ASP Solving
	Operational Semantics
	State-Changing Operators
	Queries
	aspic
	Summary

