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Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible
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Foundations

Propositional Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π
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Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms
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Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔

(∨
(a←B)∈ΠBF (B)

)
| a ∈ atom(Π)

}
BF (B)=

∧
b∈B∩atom(Π)b ∧

∧
∼c∈B¬c

LF (Π) =
{(∨

a∈La
)
→
(∨

a∈L,(a←B)∈Π,B∩L=∅BF (B)
)
| L ∈ loop(Π)

}
Classical models of CF (Π) ∪ LF (Π):

Theorem (Lin and Zhao)

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X |= CF (Π) ∪ LF (Π).

Size of CF (Π) is linear in the size of Π

Size of LF (Π) may be exponential in the size of Π
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Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX ) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same
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Modeling

Some language constructs

Variables

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(Y) } 7
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Modeling

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Modeling

Satisfiability testing

“

(a↔ b) ∧ c

”

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]
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Modeling

Maximum satisfiability testing
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Modeling

n-queens
Basic encoding

{ queen (1..n,1..n) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II ,J), I != II.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I-J = II -JJ.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I+J = II+JJ.
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Modeling

n-queens
Advanced encoding

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen (1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } >= 2, D = 2..2*n.

:- { queen(D+J,J) } >= 2, D = 1-n..n-1.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 16 / 31



Modeling

n-queens
(Experimental) constraint encoding

1 $<= $queen (1..n) $<= n.

#disjoint { X : $queen(X) $+ 0 : X=1..n }.

#disjoint { X : $queen(X) $+ X : X=1..n }.

#disjoint { X : $queen(X) $- X : X=1..n }.
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Modeling

Traveling salesperson
Basic encoding (no instance)

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
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Modeling

Company Controls

controls(X,Y) :-

#sum+ { S: owns(X,Y,S);

S,Z: controls(X,Z), owns(Z,Y,S) } > 50,

company(X), company(Y), X != Y.

company(c_1). owns(c_1 ,c_2 ,60).

owns(c_1 ,c_3 ,20).

company(c_2). owns(c_2 ,c_3 ,35).

company(c_3). owns(c_3 ,c_4 ,51).

company(c_4).
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Algorithms and Systems
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Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa
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Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a c ↔ ⊥ x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time
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Algorithms and Systems

Stable Models as Solutions

Theorem

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X = AT ∩ atom(Π)
for a (unique) solution A for ∆Π ∪ ΛΠ.1

Advantages

Stable model computation as Boolean constraint solving

All inferences can be seen as unit propagation on nogoods

Nogoods readily available as conflict reasons

1A total assignment A is a solution for ∆Π ∪ ΛΠ if δ 6⊆ A for all δ ∈ ∆Π ∪ ΛΠ.
Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 23 / 31
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Algorithms and Systems

Conflict-Driven Constraint Learning
(CDCL)

loop
propagate // assign deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // undo assignments violating conflict constraint
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Algorithms and Systems

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading
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Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic
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Resolution

Conflict
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Atoms/Bodies
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Unit
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Post
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Post
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SharedContext

Propositional
Variables
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ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods
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Algorithms and Systems

Some Results
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Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de
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Abstract

This paper defines the syntax and semantics of the input language of the ASP grounderGRINGO.
The definition covers several constructs that were not discussed in earlier work on the semantics of
that language, including intervals, pools, division of integers, aggregates with non-numeric values,
and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some
details related to representing programs by strings of ASCII characters. It serves as a specification
for GRINGO from Version 4.5 on.

To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015.
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Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications
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