Answer Set Programming in a Nutshell

Torsten Schaub

University of Potsdam

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

- Systems Biology
- Product Configuration
- Linux Package Configuration
- Robotics
- Music Composition
-

All search-problems in NP (and NP^{NP}) are expressible

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

- Systems Biology
- Product Configuration
- Linux Package Configuration
- Robotics
- Music Composition
- • •

All search-problems in NP (and NP^{NP}) are expressible

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

- Systems Biology
- Product Configuration
- Linux Package Configuration
- Robotics
- Music Composition
- • •

■ All search-problems in NP (and NP^{NP}) are expressible

Expressive modeling language Powerful grounding and solving tools

Expressive modeling language Powerful grounding and solving tools

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Expressive modeling language Powerful grounding and solving tools

Expressive modeling languagePowerful grounding and solving tools

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

Propositional Normal Logic Programs

 \blacksquare A logic program Π is a set of rules of the form

$$\underbrace{a}_{\text{head}} \leftarrow \underbrace{b_1, \ldots, b_m, \sim c_1, \ldots, \sim c_n}_{\text{body}}$$

■ a and all b_i , c_j are atoms (propositional variables) ■ \leftarrow , ,, \sim denote if, and, and default negation

- Semantics given by stable models, informally, sets X of atoms such that
 X is a (classical) model of Π and
 each atom in X is justified by some rule in Π

Logic Programs

• A logic program Π is a set of rules of the form

a and all b_i, c_j are atoms (propositional variables)
 ←, ,, ~ denote if, and, and default negation
 intuitive reading: head must be true if body holds

Semantics given by stable models, informally, sets X of atoms such that X is a (classical) model of Π and each atom in X is justified by some rule in Π

Logic Programs

• A logic program Π is a set of rules of the form

$$\underbrace{a}_{\text{head}} \leftarrow \underbrace{b_1, \ldots, b_m, \sim c_1, \ldots, \sim c_n}_{\text{body}}$$

a and all b_i, c_j are atoms (propositional variables)
 ←, ,, ~ denote if, and, and default negation
 intuitive reading: head must be true if body holds

Semantics given by stable models, informally, sets X of atoms such that X is a (classical) model of Π and each atom in X is justified by some rule in Π

Logic Programs as Propositional Formulas $\Pi = \{ a \leftarrow \sim b \quad b \leftarrow \sim a \quad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \}$ $CF(\Pi) = \{ a \leftarrow \neg b \quad b \leftarrow \neg a \quad x \leftarrow (a \land \neg c) \lor y \quad y \leftarrow x \land b \}$ $\cup \{ c \leftrightarrow \bot \}$ $LF(\Pi) = \{ (x \lor y) \rightarrow a \land \neg c \}$

Classical models of $CF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,x,y}, {a,b,c,x,y}

Unsupported atoms Unfounded atoms

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \quad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $RF(\Pi) = \left\{ a \leftarrow \neg b \quad b \leftarrow \neg a \quad x \leftarrow (a \land \neg c) \lor y \quad y \leftarrow x \land b \right\}$ $\cup \left\{ c \leftrightarrow \bot \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow a \land \neg c \right\}$

Classical models of $RF(\Pi)$: (only true atoms shown) {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,c,x,y}

Unsupported atoms

Logic Programs as Propositional Formulas $\Pi = \{a \leftarrow \sim b \quad b \leftarrow \sim a \quad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b\}$ $RF(\Pi) = \{a \leftarrow \neg b \quad b \leftarrow \neg a \quad x \leftarrow (a \land \neg c) \lor y \quad y \leftarrow x \land b\}$ $\cup \{c \leftrightarrow \bot\}$ $LF(\Pi) = \{(x \lor y) \rightarrow a \land \neg c\}$

Classical models of $RF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,c,x,y}

Unsupported atoms

 $\Pi = \left\{ a \leftarrow b \quad b \leftarrow a \quad x \leftarrow a, c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow \neg b \quad b \leftrightarrow \neg a \quad x \leftrightarrow (a \land \neg c) \lor y \quad y \leftrightarrow x \land b \right\}$ $\cup \left\{ c \leftrightarrow \bot \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow a \land \neg c \right\}$

Classical models of $RF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,x,y}, {a,b,c,x,y}

Unsupported atoms

Logic Programs as Propositional Formulas $\Pi = \{ a \leftarrow \sim b \quad b \leftarrow \sim a \quad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \}$ $CF(\Pi) = \{ a \leftrightarrow \neg b \quad b \leftrightarrow \neg a \quad x \leftrightarrow (a \land \neg c) \lor y \quad y \leftrightarrow x \land b \}$ $\cup \{ c \leftrightarrow \bot \}$ $LF(\Pi) = \{ (x \lor y) \rightarrow a \land \neg c \}$

Classical models of $CF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,x,y}, {a,b,c,x,y}

Unsupported atoms

 $\Pi = \left\{ a \leftarrow b \quad b \leftarrow a \quad x \leftarrow a, c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow \neg b \quad b \leftrightarrow \neg a \quad x \leftrightarrow (a \land \neg c) \lor y \quad y \leftrightarrow x \land b \right\}$ $\cup \left\{ c \leftrightarrow \bot \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow a \land \neg c \right\}$

Classical models of $CF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,x,y}, {a,b,c,x,y}

Unsupported atoms

 $\Pi = \left\{ a \leftarrow b \quad b \leftarrow a \quad x \leftarrow a, c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow \neg b \quad b \leftrightarrow \neg a \quad x \leftrightarrow (a \land \neg c) \lor y \quad y \leftrightarrow x \land b \right\}$ $\cup \left\{ c \leftrightarrow \bot \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow a \land \neg c \right\}$

Classical models of $CF(\Pi) \cup LF(\Pi)$: {b}, {b,c}, {b,x,y}, {b,c,x,y}, {a,c}, {a,b,c}, {a,x}, {a,c,x}, {a,x,y}, {a,c,x,y}, {a,b,x,y}, {a,b,c,x,y}

- Unsupported atoms
- Unfounded atoms

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \quad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$

 $CF(\Pi) = \left\{ a \leftrightarrow \left(\bigvee_{(a \leftarrow B) \in \Pi} BF(B) \right) \mid a \in atom(\Pi) \right\}$ $BF(B) = \bigwedge_{b \in B \cap atom(\Pi)} b \land \bigwedge_{\sim c \in B} \neg c$ $LF(\Pi) = \left\{ \left(\bigvee_{a \in L} a \right) \rightarrow \left(\bigvee_{a \in L, (a \leftarrow B) \in \Pi, B \cap L = \emptyset} BF(B) \right) \mid L \in loop(\Pi) \right\}$ Classical models of $CF(\Pi) \cup LF(\Pi)$:

Theorem (Lin and Zhao)

Let Π be a normal logic program and $X \subseteq atom(\Pi)$. Then, X is a stable model of Π iff $X \models CF(\Pi) \cup LF(\Pi)$.

Size of CF(Π) is linear in the size of Π
 Size of LF(Π) may be exponential in the size of Π

\$ cat prg.lp

```
a:-notb. b:-nota. x:-a,notc. x:-y. y:-x,b.
```

```
$ clingo 0 prg.lp
```

Torsten Schaub (KRR@UP)

```
(Potassco
```

Answer Set Programming in a Nutshell

\$ cat prg.lp

```
(Potassco
Torsten Schaub (KRR@UP)
                               Answer Set Programming in a Nutshell
```

\$ cat prg.lp

a :- not b.	b :- no	ota. x	:- a, 1	not c.	х :- у	• У	:- x, b.
\$ clingo O pr	rg.lp						
clingo versio Reading from Solving Answer: 1 a x Answer: 2 b SATISFIABLE	on 4.5.0 prg.lp						
Models Calls Time CPU Time	: 2 : 1 : 0.000s : 0.000s	(Solving:	0.00s	1st Mode	l: 0.00s	Unsat:	0 00s) (111 Potas

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

- \$ cat prg.lp
- a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.
- \$ clingo 0 prg.lp

```
( Potassco
Torsten Schaub (KRR@UP)
                               Answer Set Programming in a Nutshell
                                                                                               9 / 31
```

```
$ cat prg.lp
```

```
<u>a :- not b.</u> <u>b</u> :- not a. <u>x</u> :- a, not c. <u>x</u> :- y. <u>y</u> :- x, b.
$ clingo 0 prg.lp
clingo version 4.5.0
Reading from prg.lp
Solving...
Answer: 1
a x
Answer: 2
b
SATISFIABLE
        : 2
Models
Calls
Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
                                                                     (Potassco
              : 0.000s
CPU Time
  Torsten Schaub (KRR@UP)
                           Answer Set Programming in a Nutshell
```

```
9 / 31
```

The reduct \(\phi^X\) of a formula \(\phi\) relative to a set \(X\) of atoms is defined as follows

$$\begin{array}{ll} \phi^{X} = \bot & \text{if } X \not\models \phi \\ \phi^{X} = \phi & \text{if } \phi \in X \\ \phi^{X} = (\psi^{X} \circ \mu^{X}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \mu) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \\ \phi^{X} = \top & \text{if } X \not\models \psi \text{ and } \phi = \sim \psi \end{array}$$

Let Φ be a formula and $X \subseteq atom(\Phi)$. Then, X is a stable model of Φ if X is a \subseteq -minimal model of Φ^X

```
a and \sim \, \sim \, a are not the same
```

Potassco

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

10 / 31

The reduct φ^X of a formula φ relative to a set X of atoms is defined as follows

$$\begin{array}{ll} \phi^{X} = \bot & \text{if } X \not\models \phi \\ \phi^{X} = \phi & \text{if } \phi \in X \\ \phi^{X} = (\psi^{X} \circ \mu^{X}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \mu) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \\ \phi^{X} = \top & \text{if } X \not\models \psi \text{ and } \phi = \sim \psi \end{array}$$

Let Φ be a formula and $X \subseteq atom(\Phi)$. Then, X is a stable model of Φ if X is a \subseteq -minimal model of Φ^X

```
a and \sim \, \sim \, a are not the same
```

Potassco

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

10 / 31

■ The reduct ϕ^X of a formula ϕ relative to a set X of atoms is defined as follows

$$\begin{array}{ll} \phi^{X} = \bot & \text{if } X \not\models \phi \\ \phi^{X} = \phi & \text{if } \phi \in X \\ \phi^{X} = (\psi^{X} \circ \mu^{X}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \mu) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \\ \phi^{X} = \top & \text{if } X \not\models \psi \text{ and } \phi = \sim \psi \end{array}$$

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and $X \subseteq atom(\Phi)$. Then, X is a stable model of Φ if X is a \subseteq -minimal model of Φ^X

```
Note a and \sim \sim a are not the same
```

Potassco

Torsten Schaub (KRR@UP)

10 / 31

■ The reduct ϕ^X of a formula ϕ relative to a set X of atoms is defined as follows

$$\begin{array}{ll} \phi^{X} = \bot & \text{if } X \not\models \phi \\ \phi^{X} = \phi & \text{if } \phi \in X \\ \phi^{X} = (\psi^{X} \circ \mu^{X}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \mu) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \\ \phi^{X} = \top & \text{if } X \not\models \psi \text{ and } \phi = \sim \psi \end{array}$$

Definition (Gelfond and Lifschitz et al.) Let Φ be a formula and $X \subseteq atom(\Phi)$. Then, X is a stable model of Φ if X is a \subseteq -minimal model of Φ^X

Note *a* and $\sim \sim a$ are not the same

Potassco

■ The reduct ϕ^X of a formula ϕ relative to a set X of atoms is defined as follows

$$\begin{array}{ll} \phi^{X} = \bot & \text{if } X \not\models \phi \\ \phi^{X} = \phi & \text{if } \phi \in X \\ \phi^{X} = (\psi^{X} \circ \mu^{X}) & \text{if } X \models \phi \text{ and } \phi = (\psi \circ \mu) \text{ for } \circ \in \{\land, \lor, \rightarrow\} \\ \phi^{X} = \top & \text{if } X \not\models \psi \text{ and } \phi = \sim \psi \end{array}$$

Definition (Gelfond and Lifschitz et al.) Let Φ be a formula and $X \subseteq atom(\Phi)$. Then, X is a stable model of Φ if X is a \subseteq -minimal model of Φ^X

• Note *a* and $\sim \sim a$ are not the same

Potassco

Outline

1 Introduction

3 Modeling

- 4 Algorithms and Systems
- 5 Potassco

Some language constructs

Variables **p**(X) :- q(X) over constants {a, b, c} stands for p(a) := q(a), p(b) := q(b), p(c) := q(c)Conditional Literals \blacksquare p :- q(X) : r(X) given r(a), r(b), r(c) stands for p := q(a), q(b), q(c)Disjunction \square p(X) ; q(X) :- r(X) Integrity Constraints \blacksquare :- q(X), p(X) Choice **2** { p(X,Y) : q(X) } 7 :- r(Y) Aggregates ■ s(Y) := r(Y), 2 #sum { X : p(X,Y), q(Y) } 7

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates (typically through non-deterministic constructs) Tester Eliminate invalid candidates (typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Potassco

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates (typically through non-deterministic constructs) Tester Eliminate invalid candidates (typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Potassco

Satisfiability testing $(a \leftrightarrow b) \land c$

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Satisfiability testing $(a \leftrightarrow b) \land c$

{ a ; b ; c }.

- :- not a, b.
- :- a, not b.
- :- not c.

Maximum satisfiability testing " $(a \leftrightarrow b) \land c$ "

{ a ; b ; c }. :- not a, b. :~ a, not b. [10@2] :~ not c. [100@1]

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

n-queens Basic encoding

{ queen(1..n,1..n) }.

```
:- { queen(I,J) } != n.
:- queen(I,J), queen(I,JJ), J != JJ.
:- queen(I,J), queen(II,J), I != II.
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I-J = II-JJ.
:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ), I+J = II+JJ.
```


n-queens Advanced encoding

{ queen(I,1..n) } = 1 :- I = 1..n. { queen(1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } >= 2, D = 2..2*n. :- { queen(D+J,J) } >= 2, D = 1-n..n-1.

n-queens (Experimental) constraint encoding

```
1 $<= $queen(1..n) $<= n.
#disjoint { X : $queen(X) $+ 0 : X=1..n }.
#disjoint { X : $queen(X) $+ X : X=1..n }.
#disjoint { X : $queen(X) $- X : X=1..n }.</pre>
```


Traveling salesperson Basic encoding (no instance)

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X). 1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.
reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Company Controls

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

6 Summary

- Goal Conflict-driven approach to ASP solving
- Idea View inferences as unit propagation on nogoods

Background A nogood expresses an inadmissible assignment For example, given a rule $a \leftarrow b$ $\{Fa, Tb\}$ is a nogood (stands for $\{a \mapsto F, b \mapsto T$ Unit propagation on $\{Fa, Tb\}$ infers Ta wrt assignment containing TbFb wrt assignment containing Fa

- Goal Conflict-driven approach to ASP solving
- Idea View inferences as unit propagation on nogoods
- Background
 - A nogood expresses an inadmissible assignment

For example, given a rule a ← b
 {Fa, Tb} is a nogood (stands for {a ↦ F, b ↦ T})
 Unit propagation on {Fa, Tb} infers
 Ta wrt assignment containing Tb
 Fb wrt assignment containing Fa

- Goal Conflict-driven approach to ASP solving
- Idea View inferences as unit propagation on nogoods
- Background
 - A nogood expresses an inadmissible assignment
 - For example, given a rule $a \leftarrow b$
 - $\{Fa, Tb\}$ is a nogood (stands for $\{a \mapsto F, b \mapsto T\}$)
 - Unit propagation on $\{Fa, Tb\}$ infers
 - Ta wrt assignment containing Tb
 - Fb wrt assignment containing Fa

- Goal Conflict-driven approach to ASP solving
- Idea View inferences as unit propagation on nogoods
- Background
 - A nogood expresses an inadmissible assignment
 - For example, given a rule $a \leftarrow b$
 - {**F**a, **T**b} is a nogood (stands for { $a \mapsto F, b \mapsto T$ })
 - Unit propagation on {Fa, Tb} infers
 - **T***a* wrt assignment containing **T***b*
 - Fb wrt assignment containing Fa

- Goal Conflict-driven approach to ASP solving
- Idea View inferences as unit propagation on nogoods
- Background
 - A nogood expresses an inadmissible assignment
 - For example, given a rule $a \leftarrow b$
 - {Fa, Tb} is a nogood (stands for $\{a \mapsto F, b \mapsto T\}$)
 - Unit propagation on {Fa, Tb} infers
 - **T***a* wrt assignment containing **T***b*
 - Fb wrt assignment containing Fa

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow \neg b \quad b \leftrightarrow \neg a \quad c \leftrightarrow \bot \qquad x \leftrightarrow (a \land \neg c) \lor y \quad y \leftrightarrow x \land b \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow a \land \neg c \right\}$

Nogoods for $CF(\Pi)$ and $LF(\Pi)$

$$\begin{split} \Delta_{\Pi} &= \{\dots, \{\mathsf{F}x, \mathsf{T}B_3\}, \{\mathsf{F}x, \mathsf{T}B_4\} \dots\} \\ &\cup \{\dots, \{\mathsf{T}x, \mathsf{F}B_3, \mathsf{F}B_4\}, \dots\} \\ &\cup \{\dots, \{\mathsf{F}B_3, \mathsf{T}a, \mathsf{F}c\}, \dots\} \\ &\cup \{\dots, \{\mathsf{T}B_3, \mathsf{F}a\}, \{\mathsf{T}B_3, \mathsf{T}c\}, \dots\} \\ \Lambda_{\Pi} &= \{\{\mathsf{T}x, \mathsf{F}B_3\}, \{\mathsf{T}y, \mathsf{F}B_3\}\} \\ \text{Size of } \Delta_{\Pi} \text{ is linear in the size of } \Pi \\ \text{Size of } \Lambda_{\Pi} \text{ is (in general) exponential in the size of } \\ \text{Satisfaction of } \Lambda_{\Pi} \text{ can be tested in linear time} \end{split}$$

Torsten Schaub (KRR@UP)

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$

 $\cup \{B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b\}$ $LF(\Pi) = \{(x \lor y) \to B_3\}$

Nogoods for $CF(\Pi)$ and $LF(\Pi)$

$$\begin{split} \Delta_{\Pi} &= \{\dots, \{\mathsf{F}x, \mathsf{T}B_3\}, \{\mathsf{F}x, \mathsf{T}B_4\} \dots \} \\ &\cup \{\dots, \{\mathsf{T}x, \mathsf{F}B_3, \mathsf{F}B_4\}, \dots \} \\ &\cup \{\dots, \{\mathsf{F}B_3, \mathsf{T}a, \mathsf{F}c\}, \dots \} \\ &\cup \{\dots, \{\mathsf{T}B_3, \mathsf{F}a\}, \{\mathsf{T}B_3, \mathsf{T}c\}, \dots \} \\ \Lambda_{\Pi} &= \{\{\mathsf{T}x, \mathsf{F}B_3\}, \{\mathsf{T}y, \mathsf{F}B_3\}\} \\ \text{Size of } \Delta_{\Pi} \text{ is linear in the size of } \Pi \\ \text{Size of } \Lambda_{\Pi} \text{ is (in general) exponential in the size of } \\ \text{Satisfaction of } \Lambda_{\Pi} \text{ can be tested in linear time} \end{split}$$

Torsten Schaub (KRR@UP)

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow B_3 \right\}$

Nogoods for $CF(\Pi)$ and $LF(\Pi)$

$$\Delta_{\Pi} = \{\dots, \{Fx, TB_3\}, \{Fx, TB_4\} \dots\}$$
$$\cup \{\dots, \{Tx, FB_3, FB_4\}, \dots\}$$
$$\cup \{\dots, \{FB_3, Ta, Fc\}, \dots\}$$
$$\cup \{\dots, \{TB_3, Fa\}, \{TB_3, Tc\}, \dots\}$$
$$\Lambda_{\Pi} = \{\{Tx, FB_3\}, \{Ty, FB_3\}\}$$
Size of Δ_{Π} is linear in the size of Π

Size of Λ_{Π} is (in general) exponential in the size of I

Satisfaction of Λ_{Π} can be tested in linear time

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow B_3 \right\}$

```
Nogoods for CF(\Pi) and LF(\Pi)
```

$$\Delta_{\Pi} = \{ \dots, \{Fx, TB_3\}, \{Fx, TB_4\} \dots \}$$

$$\cup \{ \dots, \{Tx, FB_3, FB_4\}, \dots \}$$

$$\cup \{ \dots, \{FB_3, Ta, Fc\}, \dots \}$$

$$\cup \{ \dots, \{TB_3, Fa\}, \{TB_3, Tc\}, \dots \}$$

$$\Lambda_{\Pi} = \{ \{Tx, FB_3\}, \{Ty, FB_3\} \}$$

Size of Δ_{Π} is linear in the size of Π

Size of Λ_{Π} is (in general) exponential in the size of Π

Satisfaction of Λ_{Π} can be tested in linear time

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow B_3 \right\}$

Nogoods for $CF(\Pi)$ and $LF(\Pi)$

$$\Delta_{\Pi} = \{ \dots, \{ Fx, TB_3 \}, \{ Fx, TB_4 \} \dots \} \\ \cup \{ \dots, \{ Tx, FB_3, FB_4 \}, \dots \} \\ \cup \{ \dots, \{ FB_3, Ta, Fc \}, \dots \} \\ \cup \{ \dots, \{ TB_3, Fa \}, \{ TB_3, Tc \}, \dots \} \\ \Lambda_{\Pi} = \{ \{ Tx, FB_3 \}, \{ Ty, FB_3 \} \}$$

Size of Δ_{Π} is linear in the size of Π

Size of Λ_{Π} is (in general) exponential in the size of Π

Satisfaction of Λ_{Π} can be tested in linear time

Torsten Schaub (KRR@UP)

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow B_3 \right\}$

```
Nogoods for CF(\Pi) and LF(\Pi)
```

$$\begin{split} \Delta_{\Pi} &= \{ \dots, \{ \mathsf{F}x, \mathsf{T}B_3 \}, \{ \mathsf{F}x, \mathsf{T}B_4 \} \dots \} \\ &\cup \{ \dots, \{ \mathsf{T}x, \mathsf{F}B_3, \mathsf{F}B_4 \}, \dots \} \\ &\cup \{ \dots, \{ \mathsf{F}B_3, \mathsf{T}a, \mathsf{F}c \}, \dots \} \\ &\cup \{ \dots, \{ \mathsf{T}B_3, \mathsf{F}a \}, \{ \mathsf{T}B_3, \mathsf{T}c \}, \dots \} \\ &\cup \{ \{ \mathsf{T}x, \mathsf{F}B_3 \}, \{ \mathsf{T}y, \mathsf{F}B_3 \} \} \end{split}$$

Size of Δ_{Π} is linear in the size of Π

Size of Λ_{Π} is (in general) exponential in the size of Π

Satisfaction of Λ_{Π} can be tested in linear time

ize of П

 $\Pi = \left\{ a \leftarrow \sim b \quad b \leftarrow \sim a \qquad x \leftarrow a, \sim c \quad x \leftarrow y \quad y \leftarrow x, b \right\}$ $CF(\Pi) = \left\{ a \leftrightarrow B_1 \quad b \leftrightarrow B_2 \quad c \leftrightarrow \bot \quad x \leftrightarrow B_3 \lor B_4 \qquad y \leftrightarrow B_5 \right\}$ $\cup \left\{ B_1 \leftrightarrow \neg b \quad B_2 \leftrightarrow \neg a \quad B_3 \leftrightarrow a \land \neg c \quad B_4 \leftrightarrow y \quad B_5 \leftrightarrow x \land b \right\}$ $LF(\Pi) = \left\{ (x \lor y) \rightarrow B_3 \right\}$

Nogoods for $CF(\Pi)$ and $LF(\Pi)$

$$\begin{split} \Delta_{\Pi} &= \{\dots, \{\mathsf{F}x, \mathsf{T}B_3\}, \{\mathsf{F}x, \mathsf{T}B_4\} \dots\} \\ &\cup \{\dots, \{\mathsf{T}x, \mathsf{F}B_3, \mathsf{F}B_4\}, \dots\} \\ &\cup \{\dots, \{\mathsf{F}B_3, \mathsf{T}a, \mathsf{F}c\}, \dots\} \\ &\cup \{\dots, \{\mathsf{T}B_3, \mathsf{F}a\}, \{\mathsf{T}B_3, \mathsf{T}c\}, \dots\} \\ \Lambda_{\Pi} &= \{\{\mathsf{T}x, \mathsf{F}B_3\}, \{\mathsf{T}y, \mathsf{F}B_3\}\} \\ &\blacksquare \text{ Size of } \Delta_{\Pi} \text{ is linear in the size of } \Pi \\ &\blacksquare \text{ Size of } \Lambda_{\Pi} \text{ is (in general) exponential in the s} \\ &\blacksquare \text{ Satisfaction of } \Lambda_{\Pi} \text{ can be tested in linear tim} \end{split}$$

Torsten Schaub (KRR@UP)

Stable Models as Solutions

Theorem

Let Π be a normal logic program and $X \subseteq atom(\Pi)$. Then, X is a stable model of Π iff $X = \mathbf{A}^T \cap atom(\Pi)$ for a (unique) solution \mathbf{A} for $\Delta_{\Pi} \cup \Lambda_{\Pi}$.¹

Advantages

- Stable model computation as Boolean constraint solving
- All inferences can be seen as unit propagation on nogoods
- Nogoods readily available as conflict reasons

¹A total assignment **A** is a solution for $\Delta_{\Pi} \cup \Lambda_{\Pi}$ if $\delta \not\subseteq \mathbf{A}$ for all $\delta \in \Delta_{\Pi} \cup \Lambda_{\Pi}$. Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 23 / 31

Stable Models as Solutions

Theorem

Let Π be a normal logic program and $X \subseteq atom(\Pi)$. Then, X is a stable model of Π iff $X = \mathbf{A}^T \cap atom(\Pi)$ for a (unique) solution **A** for $\Delta_{\Pi} \cup \Lambda_{\Pi}$.¹

Advantages

- Stable model computation as Boolean constraint solving
- All inferences can be seen as unit propagation on nogoods
- Nogoods readily available as conflict reasons

¹A total assignment **A** is a solution for $\Delta_{\Pi} \cup \Lambda_{\Pi}$ if $\delta \not\subseteq \mathbf{A}$ for all $\delta \in \Delta_{\Pi} \cup \Lambda_{\Pi}$. (Potassectors Schaub (KRR@UP) Answer Set Programming in a Nutshell 23 / 31

Conflict-Driven Constraint Learning (CDCL)

loop

propagate

// assign deterministic consequences

if no conflict then

if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else

if top-level conflict then return unsatisfiable

else

analyze // analyze conflict and add conflict constraint backjump // undo assignments violating conflict constraint

Conflict-Driven Constraint Learning (CDCL)

loop

propagate

// assign deterministic consequences

if no conflict then

if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else

if top-level conflict then return unsatisfiable

else

analyze // analyze conflict and add conflict constraint backjump // undo assignments violating conflict constraint

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

- Enumeration
- Projective enumeration
- Intersection and Union
- Multi-objective Optimization
- and combinations thereof

clasp allows for

- ASP solving (*smodels* format)
- MaxSAT and SAT solving (extended *dimacs* format)
- PB solving (opb and wbo format)
- clasp pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading

Potassco

(without solution recording) (without solution recording) (linear solving process)

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

- Enumeration
- Projective enumeration
- Intersection and Union
- Multi-objective Optimization
- and combinations thereof

clasp allows for

- ASP solving (*smodels* format)
- MaxSAT and SAT solving (extended *dimacs* format)
- PB solving (opb and wbo format)

 clasp pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading

lasp allows for (without solution recording) (without solution recording) (linear solving process)

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

- Enumeration
- Projective enumeration
- Intersection and Union
- Multi-objective Optimization
- and combinations thereof

clasp allows for

- ASP solving (*smodels* format)
- MaxSAT and SAT solving (extended *dimacs* format)
- PB solving (opb and wbo format)

 clasp pursues a coarse-grained, task-parallel approach to parallel search via shared memory multi-threading

(without solution recording) (without solution recording) (linear solving process)

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell
Multi-threaded architecture of clasp

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

NP-Track Second ASP Competition

Run on: Dual-Processor Intel Xeon Quad-Core E5520

Solved instances

NP-Track Second ASP Competition

NP-Track Second ASP Competition

Solved instances

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam:

- Grounder gringo, lingo
- Solver clasp, claspfolio, claspar, aspeed
- Grounder+Solver Clingo, Clingcon, ROSoClingo
- Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc

asparagus.cs.uni-potsdam.de

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

- Solver clasp, claspfolio, claspar, aspeed
- Grounder+Solver Clingo, Clingcon, ROSoClingo
- Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam:

- Grounder gringo, lingo
- Solver clasp, claspfolio, claspar, aspeed
- Grounder+Solver Clingo, Clingcon, ROSoClingo
- Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala, fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Potassco, the Potsdam Answer Set Solving Collection, bundles tools for ASP developed at the University of Potsdam:

Torsten Schaub (KRR@UP)

Answer Set Programming in a Nutshell

Outline

1 Introduction

- 2 Foundations
- 3 Modeling
- 4 Algorithms and Systems
- 5 Potassco

Torsten Schaub (KRR@UP)

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
 - rapid application development tool
- ASP has a growing range of applications

ASP is a viable tool for Knowledge Representation and Reasoning

- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
 - rapid application development tool
- ASP has a growing range of applications

ASP = DB + LP + KR + SAT

ASP is a viable tool for Knowledge Representation and Reasoning

- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
 - rapid application development tool
- ASP has a growing range of applications

$ASP = DB + LP + KR + SMT^n$

- ASP is a viable tool for Knowledge Representation and Reasoning
- ASP offers efficient and versatile off-the-shelf solving technology
- ASP offers an expanding functionality and ease of use
 - rapid application development tool
- ASP has a growing range of applications

http://potassco.sourceforge.net

