
Answer Set Programming in a Nutshell

Torsten Schaub

University of Potsdam

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 1 / 31

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 2 / 31

Introduction

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 3 / 31

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 4 / 31

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 4 / 31

Introduction

Answer Set Programming (ASP)

ASP is an approach to declarative problem solving

describe the problem, not how to solve it

ASP allows for solving hard search and optimization problems

Systems Biology
Product Configuration
Linux Package Configuration
Robotics
Music Composition
. . .

All search-problems in NP (and NPNP) are expressible

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 4 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Introduction

The ASP Solving Process

First-Order
Logic Program

Grounder
Propositional

Logic Program Solver

Stable
Models

Expressive modeling language

Powerful grounding and solving tools

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 5 / 31

Foundations

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 6 / 31

Foundations

Propositional Normal Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 7 / 31

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 7 / 31

Foundations

Logic Programs

A logic program Π is a set of rules of the form

a︸︷︷︸
head

← b1, . . . , bm,∼c1, . . . ,∼cn︸ ︷︷ ︸
body

a and all bi , cj are atoms (propositional variables)
←, ,, ∼ denote if, and, and default negation
intuitive reading: head must be true if body holds

Semantics given by stable models, informally,
sets X of atoms such that

X is a (classical) model of Π and
each atom in X is justified by some rule in Π

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 7 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
RF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π): (only true atoms shown)

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
RF (Π)=

{
a← ¬b b ← ¬a x ← (a ∧ ¬c) ∨ y y ← x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of RF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔ ¬b b ↔ ¬a x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
c ↔ ⊥

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Classical models of CF (Π) ∪ LF (Π):

{b}, {b, c}, {b, x , y}, {b, c , x , y}, {a, c}, {a, b, c}, {a, x}, {a, c , x},
{a, x , y}, {a, c, x , y}, {a, b, x , y}, {a, b, c, x , y}

Unsupported atoms

Unfounded atoms

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Logic Programs as Propositional Formulas

Π =
{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π)=

{
a↔

(∨
(a←B)∈ΠBF (B)

)
| a ∈ atom(Π)

}
BF (B)=

∧
b∈B∩atom(Π)b ∧

∧
∼c∈B¬c

LF (Π) =
{(∨

a∈La
)
→
(∨

a∈L,(a←B)∈Π,B∩L=∅BF (B)
)
| L ∈ loop(Π)

}
Classical models of CF (Π) ∪ LF (Π):

Theorem (Lin and Zhao)

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X |= CF (Π) ∪ LF (Π).

Size of CF (Π) is linear in the size of Π

Size of LF (Π) may be exponential in the size of Π

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 8 / 31

Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 9 / 31

Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 9 / 31

Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 9 / 31

Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 9 / 31

Foundations

Let’s run it!

$ cat prg.lp

a :- not b. b :- not a. x :- a, not c. x :- y. y :- x, b.

$ clingo 0 prg.lp

clingo version 4.5.0

Reading from prg.lp

Solving...

Answer: 1

a x

Answer: 2

b

SATISFIABLE

Models : 2

Calls : 1

Time : 0.000s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 9 / 31

Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 10 / 31

Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 10 / 31

Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 10 / 31

Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 10 / 31

Foundations

Genuine Stable Models Semantics

The reduct φX of a formula φ relative to a set X of atoms
is defined as follows

φX = ⊥ if X 6|= φ
φX = φ if φ ∈ X
φX = (ψX ◦ µX) if X |= φ and φ = (ψ ◦ µ) for ◦ ∈ {∧,∨,→}
φX = > if X 6|= ψ and φ = ∼ψ

Definition (Gelfond and Lifschitz et al.)

Let Φ be a formula and X ⊆ atom(Φ).
Then, X is a stable model of Φ if X is a ⊆-minimal model of ΦX

Note a and ∼∼a are not the same

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 10 / 31

Modeling

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 11 / 31

Modeling

Some language constructs

Variables

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(Y) } 7

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 12 / 31

Modeling

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 13 / 31

Modeling

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Peanutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 13 / 31

Modeling

Satisfiability testing

“

(a↔ b) ∧ c

”

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 14 / 31

Modeling

Satisfiability testing

“

(a↔ b) ∧ c

”

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 14 / 31

Modeling

Maximum satisfiability testing
“(a↔ b) ∧ c”

{ a ; b ; c }.

:- not a, b.

:- a, not b.

:- not c.

{ a ; b ; c }.

:- not a, b.

:~ a, not b. [10@2]

:~ not c. [100@1]

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 14 / 31

Modeling

n-queens
Basic encoding

{ queen (1..n,1..n) }.

:- { queen(I,J) } != n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II ,J), I != II.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I-J = II -JJ.

:- queen(I,J), queen(II ,JJ), (I,J) != (II ,JJ), I+J = II+JJ.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 15 / 31

Modeling

n-queens
Advanced encoding

{ queen(I,1..n) } = 1 :- I = 1..n.

{ queen (1..n,J) } = 1 :- J = 1..n.

:- { queen(D-J,J) } >= 2, D = 2..2*n.

:- { queen(D+J,J) } >= 2, D = 1-n..n-1.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 16 / 31

Modeling

n-queens
(Experimental) constraint encoding

1 $<= $queen (1..n) $<= n.

#disjoint { X : $queen(X) $+ 0 : X=1..n }.

#disjoint { X : $queen(X) $+ X : X=1..n }.

#disjoint { X : $queen(X) $- X : X=1..n }.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 17 / 31

Modeling

Traveling salesperson
Basic encoding (no instance)

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(X) :- X = #min { Y : node(Y) }.

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 18 / 31

Modeling

Company Controls

controls(X,Y) :-

#sum+ { S: owns(X,Y,S);

S,Z: controls(X,Z), owns(Z,Y,S) } > 50,

company(X), company(Y), X != Y.

company(c_1). owns(c_1 ,c_2 ,60).

owns(c_1 ,c_3 ,20).

company(c_2). owns(c_2 ,c_3 ,35).

company(c_3). owns(c_3 ,c_4 ,51).

company(c_4).

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 19 / 31

Algorithms and Systems

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 20 / 31

Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 21 / 31

Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 21 / 31

Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 21 / 31

Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 21 / 31

Algorithms and Systems

Towards Conflict-Driven ASP

Goal Conflict-driven approach to ASP solving

Idea View inferences as unit propagation on nogoods

Background

A nogood expresses an inadmissible assignment

For example, given a rule a← b

{Fa,Tb} is a nogood (stands for {a 7→ F, b 7→ T})
Unit propagation on {Fa,Tb} infers

Ta wrt assignment containing Tb
Fb wrt assignment containing Fa

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 21 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ ¬b b ↔ ¬a c ↔ ⊥ x ↔ (a ∧ ¬c) ∨ y y ↔ x ∧ b

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ a ∧ ¬c

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Nogoods from logic programs
Π =

{
a← ∼b b ← ∼a x ← a,∼c x ← y y ← x , b

}
CF (Π) =

{
a↔ B1 b ↔ B2 c ↔ ⊥ x ↔ B3 ∨ B4 y ↔ B5

}
∪
{
B1 ↔ ¬b B2 ↔ ¬a B3 ↔ a ∧ ¬c B4 ↔ y B5 ↔ x ∧ b

}
LF (Π) =

{
(x ∨ y)→ B3

}
Nogoods for CF (Π) and LF (Π)

∆Π = {. . . , {Fx ,TB3}, {Fx ,TB4} . . .}
∪ {. . . , {Tx ,FB3,FB4}, . . .}
∪ {. . . , {FB3,Ta,Fc}, . . .}
∪ {. . . , {TB3,Fa}, {TB3,Tc}, . . .}

ΛΠ = {{Tx ,FB3}, {Ty ,FB3}}
Size of ∆Π is linear in the size of Π

Size of ΛΠ is (in general) exponential in the size of Π

Satisfaction of ΛΠ can be tested in linear time

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 22 / 31

Algorithms and Systems

Stable Models as Solutions

Theorem

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X = AT ∩ atom(Π)
for a (unique) solution A for ∆Π ∪ ΛΠ.1

Advantages

Stable model computation as Boolean constraint solving

All inferences can be seen as unit propagation on nogoods

Nogoods readily available as conflict reasons

1A total assignment A is a solution for ∆Π ∪ ΛΠ if δ 6⊆ A for all δ ∈ ∆Π ∪ ΛΠ.
Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 23 / 31

Algorithms and Systems

Stable Models as Solutions

Theorem

Let Π be a normal logic program and X ⊆ atom(Π).
Then, X is a stable model of Π iff X = AT ∩ atom(Π)
for a (unique) solution A for ∆Π ∪ ΛΠ.1

Advantages

Stable model computation as Boolean constraint solving

All inferences can be seen as unit propagation on nogoods

Nogoods readily available as conflict reasons

1A total assignment A is a solution for ∆Π ∪ ΛΠ if δ 6⊆ A for all δ ∈ ∆Π ∪ ΛΠ.
Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 23 / 31

Algorithms and Systems

Conflict-Driven Constraint Learning
(CDCL)

loop
propagate // assign deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // undo assignments violating conflict constraint

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 24 / 31

Algorithms and Systems

Conflict-Driven Constraint Learning
(CDCL)

loop
propagate // assign deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some variable

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add conflict constraint
backjump // undo assignments violating conflict constraint

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 24 / 31

Algorithms and Systems

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 25 / 31

Algorithms and Systems

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 25 / 31

Algorithms and Systems

The solver clasp

Beyond deciding (stable) model existence, clasp allows for

Enumeration (without solution recording)
Projective enumeration (without solution recording)
Intersection and Union (linear solving process)
Multi-objective Optimization
and combinations thereof

clasp allows for

ASP solving (smodels format)
MaxSAT and SAT solving (extended dimacs format)
PB solving (opb and wbo format)

clasp pursues a coarse-grained, task-parallel approach to parallel
search via shared memory multi-threading

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 25 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Short Nogoods

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 26 / 31

Algorithms and Systems

Some Results

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 1 5 30 120 300 600

S
ol

ve
d

in
st

an
ce

s

Time in seconds

NP-Track Second ASP Competition
Run on: Dual-Processor Intel Xeon Quad-Core E5520

cmodels-3.79

lp2sat-1.13

smodels-2.34

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 27 / 31

Algorithms and Systems

Some Results

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 1 5 30 120 300 600

S
ol

ve
d

in
st

an
ce

s

Time in seconds

NP-Track Second ASP Competition
Run on: Dual-Processor Intel Xeon Quad-Core E5520

clasp-1.3.1

cmodels-3.79

lp2sat-1.13

smodels-2.34

470
449

410

331

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 27 / 31

Algorithms and Systems

Some Results

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1 1 5 30 120 300 600

S
ol

ve
d

in
st

an
ce

s

Time in seconds

NP-Track Second ASP Competition
Run on: Dual-Processor Intel Xeon Quad-Core E5520

clasp-3.1-t4

clasp-1.3.1

cmodels-3.79

lp2sat-1.13

smodels-2.34

470
491

449

410

331

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 27 / 31

Potassco

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 28 / 31

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 29 / 31

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 29 / 31

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 29 / 31

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Potassco

potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam:

Grounder gringo, lingo

Solver clasp, claspfolio, claspar, aspeed

Grounder+Solver Clingo, Clingcon, ROSoClingo

Further Tools aspartame, aspcud, asprin, chasp, claspre, clavis, coala,
fimo, insight, metasp, plasp, piclasp, etc

Benchmark repository asparagus.cs.uni-potsdam.de

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Martin Gebser
Roland Kaminski
Benjamin Kaufmann
Marius Lindauer
Max Ostrowski
Javier Romero
Torsten Schaub
Sven Thiele

University of Potsdam

ar
X

iv
:1

50
7.

06
57

6v
1

 [c
s.

P
L]

 2
3

Ju
l 2

01
5

Under consideration for publication in Theory and Practiceof Logic Programming 1

Abstract Gringo

MARTIN GEBSER∗
Aalto University, HIIT, Finland

University of Potsdam, Germany
gebser@cs.uni-potsdam.de

AMELIA HARRISON†
Univeristy of Texas at Austin, USA

ameliaj@cs.utexas.edu

ROLAND KAMINSKI ∗
University of Potsdam, Germany

kaminski@cs.uni-potsdam.de

VLADIMIR LIFSCHITZ †
Univeristy of Texas at Austin, USA

vl@cs.utexas.edu

TORSTEN SCHAUB∗‡
University of Potsdam, Germany

INRIA Rennes, France
torsten@cs.uni-potsdam.de

submitted 1 January 2003; revised 1 January 2003; accepted 1January 2003

Abstract

This paper defines the syntax and semantics of the input language of the ASP grounderGRINGO.
The definition covers several constructs that were not discussed in earlier work on the semantics of
that language, including intervals, pools, division of integers, aggregates with non-numeric values,
and lparse-style aggregate expressions. The definition is abstract in the sense that it disregards some
details related to representing programs by strings of ASCII characters. It serves as a specification
for GRINGO from Version 4.5 on.

To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015.

∗ Supported by AoF (grant 251170) and DFG (grants SCHA 550/8 and 550/9).
† Partially supported by the National Science Foundation under Grant IIS-1422455.
‡ Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 29 / 31

potassco.sourceforge.net
asparagus.cs.uni-potsdam.de

Summary

Outline

1 Introduction

2 Foundations

3 Modeling

4 Algorithms and Systems

5 Potassco

6 Summary

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 30 / 31

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 31 / 31

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 31 / 31

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 31 / 31

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

rapid application development tool

ASP has a growing range of applications

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) Answer Set Programming in a Nutshell 31 / 31

http://potassco.sourceforge.net

	Introduction
	Foundations
	Modeling
	Algorithms and Systems
	Potassco
	Summary

