
Answer Set Programming for Stream Reasoning

Martin Gebser Torsten Grote Roland Kaminski
Philipp Obermeier Orkunt Sabuncu Torsten Schaub

University of Potsdam

1/23 Answer Set Programming for Stream Reasoning



Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion

2/23 Answer Set Programming for Stream Reasoning



Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion

3/23 Answer Set Programming for Stream Reasoning



Motivation

While traditional Answer Set Programming (ASP) methods aim at
singular problem solving,

“stream reasoning, instead, restricts processing to a certain
window of concern, focusing on a subset of recent statements
in the stream, while ignoring previous statements” [BBC+10].

Data stream management systems (for high-throughput stream
processing) [GÖ10] lack complex reasoning capacities [DCvF09],
as required in application areas like

ambient assisted living,

dynamic scheduling,

robotics,

etc.

Goal: Close gap by enriching ASP with means for stream reasoning!

4/23 Answer Set Programming for Stream Reasoning



Motivation

While traditional Answer Set Programming (ASP) methods aim at
singular problem solving,

“stream reasoning, instead, restricts processing to a certain
window of concern, focusing on a subset of recent statements
in the stream, while ignoring previous statements” [BBC+10].

Data stream management systems (for high-throughput stream
processing) [GÖ10] lack complex reasoning capacities [DCvF09],
as required in application areas like

ambient assisted living,

dynamic scheduling,

robotics,

etc.

Goal: Close gap by enriching ASP with means for stream reasoning!

4/23 Answer Set Programming for Stream Reasoning



Motivation

While traditional Answer Set Programming (ASP) methods aim at
singular problem solving,

“stream reasoning, instead, restricts processing to a certain
window of concern, focusing on a subset of recent statements
in the stream, while ignoring previous statements” [BBC+10].

Data stream management systems (for high-throughput stream
processing) [GÖ10] lack complex reasoning capacities [DCvF09],
as required in application areas like

ambient assisted living,

dynamic scheduling,

robotics,

etc.

Goal: Close gap by enriching ASP with means for stream reasoning!

4/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder Solver

Answer
Sets

- - -

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder Solver

Answer
Sets

- - -

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program

Grounder Solver
Answer

Sets
- - -

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program

Grounder Solver
Answer

Sets
- - -

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B

P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Setting the stage

Reactive ASP by oclingo

Logic
Program Grounder

Solver
Answer

Sets

- -

-

?

�
�

�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

⋮

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42

⋮

F42

Pn42

Qn42

4

Ex
ist
in
g
Te
ch
no
lo
gy

5/23 Answer Set Programming for Stream Reasoning



Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion

6/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 4

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!

7/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 0

accept(0) :- read(a,0), read(a,-1),

not read(a,1), not read(b,1).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 0

accept(0) :- read(a,0), read(a,-1),

not read(a,1), not read(b,1).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 0

accept(0) :- read(a,0), read(a,-1),

not read(a,1), not read(b,1).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0),

not read(a,2), not read(b,2).

read(a,1).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 2

accept(2) :- read(a,2), read(a,1),

not read(a,3), not read(b,3).

read(a,1). read(a,2).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 3

accept(3) :- read(a,3), read(a,2),

not read(a,4), not read(b,4).

read(a,1). read(a,2). read(b,3).

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = . . .

...

read(a,1). read(a,2). read(b,3). ...

8 Obsolete data is not erased!

8/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1). read(a,2).
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1). read(a,2).
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1). read(a,2).
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1). read(a,2).
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1,2). read(a,2,3).
read(a,1,1). read(a,2,2). read(b,3,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t;t-1,t).
accept(t) :- read(a,t;t-1,t).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1,2). read(a,2,3).
read(a,1,1). read(a,2,2). read(b,3,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t;t-1,t).
accept(t) :- read(a,t;t-1,t).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.

9/23 Answer Set Programming for Stream Reasoning



Closing the gap

Review

Neither permanent (“#cumulative.”) nor singular (“#volatile.”)
consideration of online data is suitable for stream reasoning.

Preview

Extend oclingo language by “#volatile : l.” directive for built-in
support of expiration in l steps.

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Review

Neither permanent (“#cumulative.”) nor singular (“#volatile.”)
consideration of online data is suitable for stream reasoning.

Preview

Extend oclingo language by “#volatile : l.” directive for built-in
support of expiration in l steps.

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 2

accept(2) :- read(a,2), read(a,1).

read(a,2). read(a,1).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 3

accept(3) :- read(a,3), read(a,2).

read(b,3). read(a,2).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = . . .

accept(t) :- read(a,t), read(a,t-1).

read(_,t). read(_,t-1).

4 Obsolete data is erased without necessitating replays!

10/23 Answer Set Programming for Stream Reasoning



Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion

11/23 Answer Set Programming for Stream Reasoning



Recapitulation

We have seen how an reactive ASP encoding can be expanded
relative to sliding window data by successively

1 generating new (ground) rules

2 defining new (ground) atoms.

8 New propositions handicap the re-use of conflict constraints.

In what follows, we develop modeling approaches to combine
online data with a static problem representation.

Idea: Encode problem wrt. any window contents and dynamically
map stream data (in window) to internal representation!

12/23 Answer Set Programming for Stream Reasoning



Recapitulation

We have seen how an reactive ASP encoding can be expanded
relative to sliding window data by successively

1 generating new (ground) rules

2 defining new (ground) atoms.

8 New propositions handicap the re-use of conflict constraints.

In what follows, we develop modeling approaches to combine
online data with a static problem representation.

Idea: Encode problem wrt. any window contents and dynamically
map stream data (in window) to internal representation!

12/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 4
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 4
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234012 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234012 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234501 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234501 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

14/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

14/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Ground Instantiation

next(0,1). next(3,4).

next(1,2). next(4,5).

next(2,3). next(5,0).

14/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

14/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

14/23 Answer Set Programming for Stream Reasoning



Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!

14/23 Answer Set Programming for Stream Reasoning



Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6.

:- b_read(a,t #mod 6), not read(a,t).

å Constraints expire when window progresses (by six steps).

15/23 Answer Set Programming for Stream Reasoning



Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6.

:- b_read(a,t #mod 6), not read(a,t).

å Constraints expire when window progresses (by six steps).

15/23 Answer Set Programming for Stream Reasoning



Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6.

:- b_read(a,t #mod 6), not read(a,t).

å Constraints expire when window progresses (by six steps).

15/23 Answer Set Programming for Stream Reasoning



Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6. #iinit -4.

:- b_read(a,(t+6) #mod 6), not read(a,t).

å Window is filled at step 1 to avoid guesses (over b_read).

15/23 Answer Set Programming for Stream Reasoning



Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6. #iinit -4.

:- b_read(a,(t+6) #mod 6), not read(a,t).

Observation: Dynamic parts confined to data and its mapping.

15/23 Answer Set Programming for Stream Reasoning



Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!

16/23 Answer Set Programming for Stream Reasoning



Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!

16/23 Answer Set Programming for Stream Reasoning



Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!

16/23 Answer Set Programming for Stream Reasoning



Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!

16/23 Answer Set Programming for Stream Reasoning



Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!

16/23 Answer Set Programming for Stream Reasoning



Static “last slot” approach

Reactive ASP Encoding with Frame Axioms

#base. slot(0..4).

next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

{ now(T) : slot(T) } 1.

#volatile t.

:- not now(t #mod 5).

å Propagation beyond the current slot is suppressed (via now).

17/23 Answer Set Programming for Stream Reasoning



Static “last slot” approach

Reactive ASP Encoding with Frame Axioms

#base. slot(0..4).

next(T,(T+1) #mod 5) :- slot(T), not now(T).

{ b_read(a,T) } :- slot(T).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

{ now(T) : slot(T) } 1.

#volatile t.

:- not now(t #mod 5).

å Propagation beyond the current slot is suppressed (via now).

17/23 Answer Set Programming for Stream Reasoning



Static “last slot” approach

Reactive ASP Encoding with Frame Axioms

#base. slot(0..4).

next(T,(T+1) #mod 5) :- slot(T), not now(T).

{ b_read(a,T) } :- slot(T).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

{ now(T) : slot(T) } 1.

#volatile t.

:- not now(t #mod 5).

å Propagation beyond the current slot is suppressed (via now).

17/23 Answer Set Programming for Stream Reasoning



Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion

18/23 Answer Set Programming for Stream Reasoning



Summary

We have

1 extended oclingo by built-in support of sliding windows and

2 developed modeling approaches to reason over transient data.

To promote the re-use of conflict constraints, we proposed to

1 statically encode a task wrt. any window contents and

2 dynamically map stream data to its designated representation.

We demonstrated how to preserve the chronology of data via

1 a free slot in the static program part or

2 a predicate qualifying the current slot.

å Beyond simple illustration domains [GGK+12a, GGK+12b],
the presented modeling approaches are of general applicability,
especially to solve combinatorial problems wrt. stream data.

19/23 Answer Set Programming for Stream Reasoning



Summary

We have

1 extended oclingo by built-in support of sliding windows and

2 developed modeling approaches to reason over transient data.

To promote the re-use of conflict constraints, we proposed to

1 statically encode a task wrt. any window contents and

2 dynamically map stream data to its designated representation.

We demonstrated how to preserve the chronology of data via

1 a free slot in the static program part or

2 a predicate qualifying the current slot.

å Beyond simple illustration domains [GGK+12a, GGK+12b],
the presented modeling approaches are of general applicability,
especially to solve combinatorial problems wrt. stream data.

19/23 Answer Set Programming for Stream Reasoning



Outlook

While ASP offers interesting prospects for knowledge-intense
stream reasoning, continuous settings impose particular challenges.

Improved low-level support of data expiration is needed to
avoid memory pollution.

Yet missing sequential functionalities, such as optimization,
must be supplied to incremental and reactive operation modes.

Provision of handy high-level language constructs is desirable
to facilitate the modeling of sliding window scenarios by users.

Additional control directives, such as #assert and #retract,
may be useful to flexibly (de)activate logic program parts.

This work is only a first step towards ASP-based stream reasoning.

å Realistic applications must be pioneered to furnish a deeper
understanding and advanced system support of use cases.

20/23 Answer Set Programming for Stream Reasoning



Outlook

While ASP offers interesting prospects for knowledge-intense
stream reasoning, continuous settings impose particular challenges.

Improved low-level support of data expiration is needed to
avoid memory pollution.

Yet missing sequential functionalities, such as optimization,
must be supplied to incremental and reactive operation modes.

Provision of handy high-level language constructs is desirable
to facilitate the modeling of sliding window scenarios by users.

Additional control directives, such as #assert and #retract,
may be useful to flexibly (de)activate logic program parts.

This work is only a first step towards ASP-based stream reasoning.

å Realistic applications must be pioneered to furnish a deeper
understanding and advanced system support of use cases.

20/23 Answer Set Programming for Stream Reasoning



Outlook

While ASP offers interesting prospects for knowledge-intense
stream reasoning, continuous settings impose particular challenges.

Improved low-level support of data expiration is needed to
avoid memory pollution.

Yet missing sequential functionalities, such as optimization,
must be supplied to incremental and reactive operation modes.

Provision of handy high-level language constructs is desirable
to facilitate the modeling of sliding window scenarios by users.

Additional control directives, such as #assert and #retract,
may be useful to flexibly (de)activate logic program parts.

This work is only a first step towards ASP-based stream reasoning.

å Realistic applications must be pioneered to furnish a deeper
understanding and advanced system support of use cases.

20/23 Answer Set Programming for Stream Reasoning



References I

D. Barbieri, D. Braga, S. Ceri, E. Della Valle, Y. Huang, V. Tresp, A. Rettinger,
and H. Wermser.
Deductive and inductive stream reasoning for semantic social media analytics.
IEEE Intelligent Systems, 25(6):32–41, 2010.

E. Della Valle, S. Ceri, F. van Harmelen, and D. Fensel.
It’s a streaming world! reasoning upon rapidly changing information.
IEEE Intelligent Systems, 24(6):83–89, 2009.

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub.
Answer set programming for stream reasoning.
In M. Fink and Y. Lierler, editors, Proceedings of the Fifth Workshop on Answer
Set Programming and Other Computing Paradigms (ASPOCP’12), 2012.

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub.
Stream reasoning with answer set programming: Extended version.
Unpublished draft, 2012.
Available at http://www.cs.uni-potsdam.de/oclingo.

21/23 Answer Set Programming for Stream Reasoning

http://www.cs.uni-potsdam.de/oclingo


References II

M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu, and T. Schaub.
Stream reasoning with answer set programming: Preliminary report.
In T. Eiter and S. McIlraith, editors, Proceedings of the Thirteenth International
Conference on Principles of Knowledge Representation and Reasoning (KR’12),
pages 613–617. AAAI Press, 2012.

M. Gebser, T. Grote, R. Kaminski, and T. Schaub.
Reactive answer set programming.
In J. Delgrande and W. Faber, editors, Proceedings of the Eleventh International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
volume 6645 of Lecture Notes in Artificial Intelligence, pages 54–66.
Springer-Verlag, 2011.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming (ICLP’08),
volume 5366 of Lecture Notes in Computer Science, pages 190–205.
Springer-Verlag, 2008.

22/23 Answer Set Programming for Stream Reasoning



References III

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
M. Schneider.
Potassco: The Potsdam answer set solving collection.
AI Communications, 24(2):105–124, 2011.

L. Golab and M. Özsu.
Data Stream Management.
Synthesis Lectures on Data Management. Morgan and Claypool Publishers, 2010.

V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

23/23 Answer Set Programming for Stream Reasoning


	Introduction
	Sliding Windows
	Advanced Modeling
	Conclusion

