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Motivation

While traditional Answer Set Programming (ASP) methods aim at
singular problem solving,

“stream reasoning, instead, restricts processing to a certain
window of concern, focusing on a subset of recent statements
in the stream, while ignoring previous statements” [BBC+10].

Data stream management systems (for high-throughput stream
processing) [GÖ10] lack complex reasoning capacities [DCvF09],
as required in application areas like

ambient assisted living,

dynamic scheduling,

robotics,

etc.

Goal: Close gap by enriching ASP with means for stream reasoning!
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Running example

Consider the task of continuously matching stream prefixes against
regular expression (a∣b)∗aa.

Example Stream

aabaaab . . . 8

Observation: Only the two last readings are significant.

å Restrict attention to sliding window of width 2!
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Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 0

accept(0) :- read(a,0), read(a,-1),

not read(a,1), not read(b,1).
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read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0),

not read(a,2), not read(b,2).

read(a,1).
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Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 2

accept(2) :- read(a,2), read(a,1),

not read(a,3), not read(b,3).

read(a,1). read(a,2).
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Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = 3

accept(3) :- read(a,3), read(a,2),

not read(a,4), not read(b,4).

read(a,1). read(a,2). read(b,3).
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Limitations of (foregoing) reactive ASP I

Stream Data

#step 1. #step 2. #step 3.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

Incremental Instantiation: t = . . .

...

read(a,1). read(a,2). read(b,3). ...

8 Obsolete data is not erased!
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Limitations of (foregoing) reactive ASP II

Stream Data

#step 1. #step 2. #step 3.
#volatile. #volatile. #volatile.

read(a,1). read(a,2).
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#iinit 0.

#cumulative t. #external read(a;b,t+1).
accept(t) :- read(a,t;t-1), not read(a;b,t+1).

8 Data must be replayed!
Redefinitions (of head atoms) violate modularity assumption.
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Closing the gap

Review

Neither permanent (“#cumulative.”) nor singular (“#volatile.”)
consideration of online data is suitable for stream reasoning.

Preview

Extend oclingo language by “#volatile : l.” directive for built-in
support of expiration in l steps.
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Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 1

accept(1) :- read(a,1), read(a,0).

read(a,1).

4 Obsolete data is erased without necessitating replays!
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Incremental Instantiation: t = 2
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read(a,2). read(a,1).

4 Obsolete data is erased without necessitating replays!
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Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = 3

accept(3) :- read(a,3), read(a,2).

read(b,3). read(a,2).

4 Obsolete data is erased without necessitating replays!
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Closing the gap

Stream Data

#step 1. #step 2. #step 3.
#volatile : 2. #volatile : 2. #volatile : 2.
read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

Reactive ASP Encoding

#cumulative t. #external read(a;b,t).
accept(t) :- read(a,t;t-1).

Incremental Instantiation: t = . . .

accept(t) :- read(a,t), read(a,t-1).

read(_,t). read(_,t-1).

4 Obsolete data is erased without necessitating replays!
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Outline

1 Introduction

2 Sliding Windows

3 Advanced Modeling

4 Conclusion
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Recapitulation

We have seen how an reactive ASP encoding can be expanded
relative to sliding window data by successively

1 generating new (ground) rules

2 defining new (ground) atoms.

8 New propositions handicap the re-use of conflict constraints.

In what follows, we develop modeling approaches to combine
online data with a static problem representation.

Idea: Encode problem wrt. any window contents and dynamically
map stream data (in window) to internal representation!
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Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234567 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.
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Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example

Consider the task of checking whether the last five readings (over
alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
↧↧↧↧↧↧↧ ↧

1234012 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.

13/23 Answer Set Programming for Stream Reasoning



Modified running example
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alphabet {a,b}) from a stream include aaa as a subsequence.

Example Stream

aabaaab . . . 8
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1234501 . . .

Observation: Readings remain in window for five steps.

å Map stream positions to slots represented by remainders of 5?

8 Circular subsequences may lead to false positives.

Idea: Introduce a free slot to disconnect present from past data!

4 Static problem representation captures windows of width 5.
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Static “free slot” approach

Reactive ASP Encoding

#base.

next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Static program part is instantiated once (initially).

Successive slots are determined via modulo-6 arithmetic.

Internal representation of readings is generated by choice rules.

Subsequences aaa are traced wrt. internal representation.

å Dynamic parts must map readings to internal representation!
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next(T,(T+1) #mod 6) :- T := 0..5.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

Ground Instantiation

next(0,1). next(3,4).

next(1,2). next(4,5).

next(2,3). next(5,0).
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Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6.

:- b_read(a,t #mod 6), not read(a,t).

å Constraints expire when window progresses (by six steps).
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Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6. #iinit -4.

:- b_read(a,(t+6) #mod 6), not read(a,t).

å Window is filled at step 1 to avoid guesses (over b_read).
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Online data vs. internal representation

Stream Data

#step 1. #step 2. #step 3.

#volatile : 5. #volatile : 5. #volatile : 5.

read(a,1). read(a,2). read(b,3). ...

#endstep. #endstep. #endstep.

read ⇒ b_read

#cumulative t. #external read(a;b,t).
:- read(a,t), not b_read(a,t #mod 6).

b_read ⇒ read

#volatile t : 6. #iinit -4.

:- b_read(a,(t+6) #mod 6), not read(a,t).

Observation: Dynamic parts confined to data and its mapping.
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Remodified running example

Consider the task of checking whether the last five readings (over
an arbitrary alphabet) include at least three occurrences of letter a.

å We may use frame axioms [Lif02] in the static program part.

Reactive ASP Encoding with Frame Axioms

#base.
next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).
single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

Observation: Frame axioms propagate into the past (via next).
Idea: Introduce a predicate to disconnect present from the past!
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Static “last slot” approach

Reactive ASP Encoding with Frame Axioms

#base. slot(0..4).

next(T,(T+1) #mod 5) :- T := 0..4.

{ b_read(a,T) } :- next(T,_).

single(T) :- b_read(a,T).

double(T) :- b_read(a,T), single(S), next(S,T).

accept :- b_read(a,T), double(S), next(S,T).

single(T) :- single(S), next(S,T).

double(T) :- double(S), next(S,T).

{ now(T) : slot(T) } 1.

#volatile t.

:- not now(t #mod 5).

å Propagation beyond the current slot is suppressed (via now).
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Summary

We have

1 extended oclingo by built-in support of sliding windows and

2 developed modeling approaches to reason over transient data.

To promote the re-use of conflict constraints, we proposed to

1 statically encode a task wrt. any window contents and

2 dynamically map stream data to its designated representation.

We demonstrated how to preserve the chronology of data via

1 a free slot in the static program part or

2 a predicate qualifying the current slot.

å Beyond simple illustration domains [GGK+12a, GGK+12b],
the presented modeling approaches are of general applicability,
especially to solve combinatorial problems wrt. stream data.
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Outlook

While ASP offers interesting prospects for knowledge-intense
stream reasoning, continuous settings impose particular challenges.

Improved low-level support of data expiration is needed to
avoid memory pollution.

Yet missing sequential functionalities, such as optimization,
must be supplied to incremental and reactive operation modes.

Provision of handy high-level language constructs is desirable
to facilitate the modeling of sliding window scenarios by users.

Additional control directives, such as #assert and #retract,
may be useful to flexibly (de)activate logic program parts.

This work is only a first step towards ASP-based stream reasoning.

å Realistic applications must be pioneered to furnish a deeper
understanding and advanced system support of use cases.
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