Stream Reasoning with
Answer Set Programming

— Preliminary Report —

M. Gebser T. Grote R. Kaminski P. Obermeier*
O. Sabuncu T. Schaub

University of Potsdam, Germany

*DERI Galway, Ireland

Outline

Introduction

Reactive ASP

Stream Reasoning

Outlook

Outline

Introduction

Motivation

m Answer Set Programming (ASP) integrates
Concise high-level (first-order) specification
Powerful low-level (propositional) reasoning

= Two-phase computations
Instantiation
Search

m Stream processing concerned with
High-throughput
Continuous data

(gringo)
(clasp)

Motivation

m Answer Set Programming (ASP) integrates

Concise high-level (first-order) specification
Powerful low-level (propositional) reasoning

= Two-phase computations

Instantiation (gringo)
Search (clasp)

m Stream processing concerned with
High-throughput
Continuous data
m How use ASP for knowledge-intense stream reasoning?

Handle emerging/expiring data upon instantiation
Reuse previously learned information upon search

m Knowledge-intense stream reasoning can benefit from
High automation
Computational power

offered by ASP systems

Outline

Reactive ASP

oclingo

m Reactive grounding and solving

m Online solving in dynamic domains, like Robotics

m Basic architecture of oclingo:

’ gringo H clasp ‘
oclingo
Controller

Reactive ASP Solving Process

Logic

Program

Grounder

Solver

Answer
Sets

Modeling

Reactive ASP Solving Process

Logic

Program

Grounder

Solver

Answer
Sets

Modeling

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Modeling

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Reactive ASP Solving Process

Grounder — Pi |— Solver

Reactive ASP Solving Process

Answer
Grounder — Pi |— Solver Sets

Reactive ASP Solving Process

| &]
L B |
Grounder Solver Answer

Sets

Reactive ASP Solving Process

| &]
L B |
Grounder Solver

Reactive ASP Solving Process

Grounder

Solver

Answer
Sets

Reactive ASP Solving Process

Answer
Grounder : Solver Sets
,,,,,,, Pry
,,,,,,, Wny
Es E, E;

Reactive ASP Solving Process

Grounder
,,,,,,, Pny
,,,,,,, Wny
E3 E> E
F3 F F

Solver

ts

Reactive ASP Solving Process

Grounder

Answer
Sets

C B |
Solver

Reactive ASP Solving Process

Grounder

Answer
Sets

C B |
Solver

Fa

Reactive ASP Solving Process

| B | A
Grounder Solver gzx:;er
,,,,,,,,,, ngy
Eq Eqy E4 E3g Ess E37 Ezg
Fa Fa1 Fao F39 F3g F37 F36

Reactive ASP Solving Process

Answer
Sets

Grounder Solver

Fao & Fa1 i Fao i Fzg & F3g i F37 i Fse

Reactive ASP Solving Process

Answer
Sets

Grounder Solver

Reactive ASP Solving Process

Answer
Sets

Grounder Solver

Reactive ASP Solving Process

S
Grounder Solver & '

Outline

Stream Reasoning

Sliding Windows

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Sliding Windows
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘
Reading ‘

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Sliding Windows
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1
Reading ‘ E]

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Sliding Windows
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a
%

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Sliding Windows
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position‘ 2 3
Reading‘ a b

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Sliding Windows
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 3
Reading ‘ b

m Continuous data flow
m Reasoning over recent data

w Focus on time window

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘
Reading ‘

Encoding

accept :-
read(a,T),
read(a,T-1).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1
Reading ‘ E]
Encoding Data Instantiation
accept :- read(a,1). accept :- read(a,1),
read(a,T),

read(a,T-1).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a

v
Encoding Data Instantiation
accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,T), read(a,2). accept :- read(a,2), read(a,l).

read(a,T-1).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

v
Encoding Data Instantiation
accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,T), read(a,2). accept :- read(a,2), read(a,l).

read(a,T-1). accept :- read(a,3), read(a,2).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

Encoding Data Instantiation

accept :- read(a,1). accept :- read(a,2), read(a,1).
read(a,T), read(a,2).
read(a,T-1), read(b,3). accept :- read(a,3), read(a,2).

not read(a;b,T+1).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

Encoding Data Instantiation

accept :- read(a,1). accept :- read(a,2), read(a,1),
read(a,T), read(a,2). a;
read(a,T-1), accept :- , read(a,?2),

not read(a;b,T+1). not read(a;b,4).

Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

Encoding Data Instantiation

accept :- read(a,1). accept :- read(a,2), read(a,1),
read(a,T), read(a,?2). not read(a;b,3).
read(a,T-1), read(b,3). accept :- read(a,3), read(a,2),

not read(a;b,T+1). ... not read(a;b,4).

Data remain !

Running Example

(Simplified) Reactive ASP

m Continuously recognize strings matching: (a|b)*aa

:- read(a,2), read(a,1),

not read(a;b,3).

Position | 1 2 3
Reading ‘ a a b
(%4
Encoding]t] E-Data Instantiation
accept :- read(a,1). accept
read(a,t), read(a,2).
read(a,t-1), read(b,3). accept

not read(a;b,t+1).

:- read(a,3), read(a,?2),

not read(a;b,4).

(Simplified) Reactive ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2

3

Reading ‘ a a

Encoding]t] E-Data

accept :- read(a,1).
read(a,t), read(a,2).
read(a,t-1), read(b,3).

not read(a;b,t+1).

Data remain !

b

Instantiation

accept :- read(a,2), read(a,1),
not read(a;b,3).

accept :- read(a,3), read(a,2),
not read(a;b,4).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘
Reading ‘

Encoding]t] F-Data Instantiation

accept :-
read(a,t),
read(a,t-1).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1

Reading ‘ E]
Encoding]t] F-Data Instantiation
accept :- read(a,1). accept :- read(a,1),

read(a,t),
read(a,t-1).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2
Reading ‘ E]
Encoding]t] F-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2),

read(a,t-1).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1

Reading ‘ E]
Encoding]t] F-Data Instantiation
accept :- read(a,1). accept :- read(a,1),

read(a,t),
read(a,t-1).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a

Encoding]t] F-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), accept :- read(a,2), read(a,1).

read(a,t-1).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a

v
Encoding]t] F-Data Instantiation
accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).

read(a,t-1).

(Simplified) Reactive ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2 3
Reading ‘ a b
Encoding]t] F-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), accept :- read(a,2), read(a,1).

read(a,t-1). accept :- read(a,3), read(a,2).

(Simplified) Reactive ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2 3
Reading ‘ a b
Encoding]t] F-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).

read(a,t-1). read(b,3). accept :- , read(a,?2).

(Simplified) Reactive ASP
Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a

Encoding]t] F-Data Instantiation

accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).
read(a,t-1).

Data must be !

(Simplified) Reactive ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2 3
Reading ‘ a b
Encoding]t] F-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).
read(a,t-1). read(b,3). accept :- read(a,3), read(a,2).

Data must be !

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

(4
Encoding]t] F-Data Instantiation
accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).
read(a,t-1). read(b,3). accept :- read(a,3), read(a,2).

Data must be !

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

Encoding]t] F:L-Data Instantiation

accept :-
read(a,t),
read(a,t-1).

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1

Reading ‘ E]
Encoding]t] F:2-Data Instantiation
accept :- read(a,1). accept :- read(a,1),

read(a,t),
read(a,t-1).

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2
Reading ‘ a a

v
Encoding]t] F:2-Data Instantiation
accept :- read(a,1). accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).

read(a,t-1).

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2 3
Reading ‘ a b
Encoding]t] F:2-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), read(a,2). accept :- read(a,2), read(a,l).

read(a,t-1). read(b,3). accept :- , read(a,?2).

NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 3
Reading ‘ b
Encoding]t] F:L-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), accept :- read(a,2), read(a,1).
read(a,t-1). read(b,3). accept :- read(a,3), read(a,2).

m Seamless integration of online data with offline encoding !

Outline

Outlook

Discussion

m We provide
Language
Semantics
Modeling techniques
A (Prototype) implementation
for transparent grounding and solving of (time-decaying)
logic programs w.r.t. emerging/expiring stream data
m Future work addresses
Data cleansing
Query answering
Optimization support
w ASP technology for knowledge-intense stream reasoning
m Application areas include
Ambient Assisted Living
Robotics Planning and Control

Policy Monitoring and Enforcement
A etc.

	Introduction
	Reactive ASP
	Stream Reasoning
	Outlook

