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Motivation

m Answer Set Programming (ASP) integrates
Concise high-level (first-order) specification
Powerful low-level (propositional) reasoning

= Two-phase computations
Instantiation
Search

m Stream processing concerned with
High-throughput
Continuous data
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m Answer Set Programming (ASP) integrates

Concise high-level (first-order) specification
Powerful low-level (propositional) reasoning

= Two-phase computations

Instantiation (gringo)
Search (clasp)

m Stream processing concerned with
High-throughput
Continuous data
m How use ASP for knowledge-intense stream reasoning?

Handle emerging/expiring data upon instantiation
Reuse previously learned information upon search

m Knowledge-intense stream reasoning can benefit from
High automation
Computational power

offered by ASP systems
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oclingo

m Reactive grounding and solving

m Online solving in dynamic domains, like Robotics

m Basic architecture of oclingo:

’ gringo H clasp ‘
oclingo
Controller
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Sliding Windows

m Continuous data flow
m Reasoning over recent data

w Focus on time window
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m Continuously recognize strings matching: (a|b)*aa

Position ‘ 3
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m Continuous data flow
m Reasoning over recent data

w Focus on time window
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Traditional ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2 3
Reading‘a a b

Encoding Data Instantiation

accept :- read(a,1). accept :- read(a,2), read(a,1),
read(a,T), read(a,?2). not read(a;b,3).
read(a,T-1), read(b,3). accept :- read(a,3), read(a,2),

not read(a;b,T+1). ... not read(a;b,4).

Data remain !
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read(a,t-1), read(b,3). accept
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:- read(a,3), read(a,?2),

not read(a;b,4).
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Running Example

m Continuously recognize strings matching: (a|b)*aa

Position | 1 2

3

Reading ‘ a a

Encoding]t] E-Data

accept :- read(a,1).
read(a,t), read(a,2).
read(a,t-1), read(b,3).

not read(a;b,t+1).

Data remain !

b

Instantiation

accept :- read(a,2), read(a,1),
not read(a;b,3).

accept :- read(a,3), read(a,2),
not read(a;b,4).
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Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 2 3
Reading ‘ a b
Encoding]t] F:2-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
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NEW (Simplified) Stream ASP

Running Example

m Continuously recognize strings matching: (a|b)*aa

Position ‘ 3
Reading ‘ b
Encoding]t] F:L-Data Instantiation
accept :- accept :- read(a,1), read(a,0).
read(a,t), accept :- read(a,2), read(a,1).
read(a,t-1). read(b,3). accept :- read(a,3), read(a,2).

m Seamless integration of online data with offline encoding !
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Discussion

m We provide
Language
Semantics
Modeling techniques
A (Prototype) implementation
for transparent grounding and solving of (time-decaying)
logic programs w.r.t. emerging/expiring stream data
m Future work addresses
Data cleansing
Query answering
Optimization support
w ASP technology for knowledge-intense stream reasoning
m Application areas include
Ambient Assisted Living
Robotics Planning and Control

Policy Monitoring and Enforcement
A etc.
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