
Towards Embedded Answer Set Solving

Torsten Schaub
University of Potsdam

torsten@cs.uni-potsdam.de

Potassco Slide Packages are licensed under a Creative Commons Attribution 3.0 Unported License.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 1 / 218

Rough Roadmap

1 09:00-10:30 Motivation, Introduction, Basic modeling

2 10:45-11:45 Multi-shot solving and its applications

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 2 / 218

Resources

Course material

http://potassco.sourceforge.net

Systems

clasp http://potassco.sourceforge.net

clingo http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

wasp https://www.mat.unical.it/ricca/wasp

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

asparagus http://asparagus.cs.uni-potsdam.de

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 3 / 218

http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://potassco.sourceforge.net
http://www.dlvsystem.com
 http://www.tcs.hut.fi/Software/smodels
https://www.mat.unical.it/ricca/wasp
http://potassco.sourceforge.net
http://www.tcs.hut.fi/Software/smodels
 http://asparagus.cs.uni-potsdam.de

The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

Resources

http://potassco.sourceforge.net/book.html

http://potassco.sourceforge.net/teaching.html

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 4 / 218

http://potassco.sourceforge.net/book.html
http://potassco.sourceforge.net/teaching.html

Literature

Books [4], [31], [55]

Surveys [52], [2], [41], [23], [11]

Articles [43], [44], [6], [63], [56], [51], [42], etc.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 5 / 218

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 6 / 218

Motivation

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 7 / 218

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218

Nutshell

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 9 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 10 / 218

Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 11 / 218

Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 11 / 218

Shifting paradigms

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 12 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 13 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 13 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 13 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 13 / 218

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 14 / 218

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 14 / 218

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models SAT
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 14 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 15 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 15 / 218

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 16 / 218

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 16 / 218

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 16 / 218

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 16 / 218

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 17 / 218

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 17 / 218

Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 17 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 18 / 218

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 18 / 218

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218

Rooting ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 20 / 218

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 21 / 218

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 21 / 218

Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 22 / 218

Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 22 / 218

Rooting ASP

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 22 / 218

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 22 / 218

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 22 / 218

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 23 / 218

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 23 / 218

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 23 / 218

Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 23 / 218

Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 24 / 218

Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 25 / 218

ASP solving

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 26 / 218

ASP solving

ASP grounding and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 27 / 218

ASP solving

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 28 / 218

ASP solving

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 29 / 218

ASP solving

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

DB+KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 29 / 218

Using ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 30 / 218

Using ASP

Two sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 31 / 218

Using ASP

Two and a half sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 31 / 218

Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated planning
Code optimization
Database integration
Decision support for NASA shuttle controllers
Model checking
Music composition
Product configuration
Robotics
Systems biology
System design
Team building
and many many more

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 32 / 218

Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated planning
Code optimization
Database integration
Decision support for NASA shuttle controllers
Model checking
Music composition
Product configuration
Robotics
Systems biology
System design
Team building
and many many more

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 32 / 218

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 33 / 218

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 33 / 218

Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SMTn

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 33 / 218

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 34 / 218

Syntax

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 35 / 218

Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 36 / 218

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 37 / 218

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 37 / 218

Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 37 / 218

Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 38 / 218

Semantics

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 39 / 218

Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 40 / 218

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 41 / 218

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 41 / 218

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 41 / 218

Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 41 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 42 / 218

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 43 / 218

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 43 / 218

Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX) = X

Note Cn(PX) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 43 / 218

Examples

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 44 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 8

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A first example

P = {p ← p, q ← ¬p}

X PX Cn(PX)

{ } p ← p
q ←

{q} 8

{p } p ← p ∅ 4

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 45 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ∼q, q ← ∼p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A second example

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX)

{ } p ←
q ←

{p, q} 8

{p } p ← {p} 4

{ q}
q ←

{q} 4

{p, q} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 46 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ∼p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 8

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

A third example

P = {p ← ¬p}

X PX Cn(PX)

{ } p ← {p} 8

{p} ∅ 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 47 / 218

Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 48 / 218

Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 48 / 218

Variables

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 49 / 218

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 50 / 218

Variables

Programs with Variables

Let P be a logic program

Let T be a set of

(

variable-free

)

terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 50 / 218

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 50 / 218

Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 50 / 218

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Intelligent Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 51 / 218

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Intelligent Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 51 / 218

Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =

r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)

Intelligent Grounding aims at reducing the ground instantiation

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 51 / 218

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 52 / 218

Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X) = X

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 52 / 218

Language constructs

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 53 / 218

Language constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 54 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 55 / 218

Reasoning modes

Outline

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language constructs

12 Reasoning modes

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 56 / 218

Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 57 / 218

Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 58 / 218

Basic Modeling: Overview

13 ASP solving process

14 Methodology

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 59 / 218

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 60 / 218

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 61 / 218

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 61 / 218

Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 61 / 218

ASP solving process

Outline

13 ASP solving process

14 Methodology

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 62 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 63 / 218

ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 64 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 66 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 68 / 218

ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 69 / 218

ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 69 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 70 / 218

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 71 / 218

ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 71 / 218

ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 72 / 218

ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 73 / 218

ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 73 / 218

Methodology

Outline

13 ASP solving process

14 Methodology

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 74 / 218

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 75 / 218

Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester (+ Optimizer)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 75 / 218

Methodology Satisfiability

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 76 / 218

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 77 / 218

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 77 / 218

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 77 / 218

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 77 / 218

Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 77 / 218

Methodology Queens

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 78 / 218

Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 79 / 218

Methodology Queens

Defining the Field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 80 / 218

Methodology Queens

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 81 / 218

Methodology Queens

Placing some Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

Guess a solution candidate

by placing some queens on the board

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 82 / 218

Methodology Queens

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 83 / 218

Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 84 / 218

Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 85 / 218

Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 86 / 218

Methodology Queens

Placing n Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 87 / 218

Methodology Queens

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 88 / 218

Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 89 / 218

Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 90 / 218

Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 91 / 218

Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 91 / 218

Methodology Queens

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 92 / 218

Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 93 / 218

Methodology Queens

Diagonal Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Forbid diagonal attacks

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 94 / 218

Methodology Queens

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 95 / 218

Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 96 / 218

Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 97 / 218

Methodology Queens

And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 98 / 218

Methodology Traveling Salesperson

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 99 / 218

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 100 / 218

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 100 / 218

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 100 / 218

Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).

edge(X,Y) :- cost(X,Y,_).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 100 / 218

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 101 / 218

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 101 / 218

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 101 / 218

Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 101 / 218

Methodology Reviewer Assignment

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 102 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 103 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 103 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 103 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 103 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 103 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 <= #count { P,R : assigned(P,R) : reviewer(R) } <= 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 104 / 218

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 <= #count { P,R : assigned(P,R) : reviewer(R) } <= 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 104 / 218

Methodology Planning

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 105 / 218

Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 106 / 218

Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 106 / 218

Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 106 / 218

Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 106 / 218

Multi-shot ASP Solving: Overview

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 107 / 218

Motivation

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 108 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground∗ | solve∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: (input | ground∗ | solve∗| theory | . . .)∗

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 109 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Clingo = ASP + Control

ASP
#program <name> [(<parameters>)]

Example #program play(t).

#external <atom> [: <body>]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 110 / 218

Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 111 / 218

Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 111 / 218

Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 111 / 218

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218

Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218

#program and #external declaration

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 113 / 218

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 114 / 218

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 114 / 218

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 114 / 218

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 114 / 218

#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 114 / 218

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 115 / 218

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 115 / 218

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 115 / 218

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 115 / 218

#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 115 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid)[k/42] = {b(k), c(X , k)← a(X)}[k/42]

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid)[k/42] = {b(42), c(X , 42)← a(X)}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk]

obtained by replacing in R(n) each occurrence of pi by ti

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 116 / 218

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ head(groundC (R))

groundC (R) ⊆ {head(r)← body(r)+ ∪ {∼a | a ∈ body(r)− ∩ D}
| r ∈ ground(R), body(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 117 / 218

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ head(groundC (R))

groundC (R) ⊆ {head(r)← body(r)+ ∪ {∼a | a ∈ body(r)− ∩ D}
| r ∈ ground(R), body(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 117 / 218

#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ head(groundC (R))

groundC (R) ⊆ {head(r)← body(r)+ ∪ {∼a | a ∈ body(r)− ∩ D}
| r ∈ ground(R), body(r)+ ⊆ D}

Example Given R = { a(X)← f (X), e(X); b(X)← f (X),∼e(X) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 117 / 218

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 118 / 218

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 118 / 218

#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 118 / 218

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R ′ ∪ Q) | ε /∈ body(r)}
E = {head(r) | r ∈ groundC∪{ε}(R ′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 119 / 218

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R ′ ∪ Q) | ε /∈ body(r)}
E = {head(r) | r ∈ groundC∪{ε}(R ′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 119 / 218

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R ′ ∪ Q) | ε /∈ body(r)}
E = {head(r) | r ∈ groundC∪{ε}(R ′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 119 / 218

#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R ′ ∪ Q) | ε /∈ body(r)}
E = {head(r) | r ∈ groundC∪{ε}(R ′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 119 / 218

#program and #external declaration

Example

Extensible program

#external e(X) : f(X), g(X).

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(X) :- f(X), g(X), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε.
f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- e(1).

b(1) :- not e(1). b(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218

Module composition

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 121 / 218

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 122 / 218

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 122 / 218

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 122 / 218

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 122 / 218

Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 122 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

(P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q))

provided that P and Q are compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 123 / 218

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ head(P), head(P))

via the ground program P with externals E obtained from R and C

Note E \ head(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 124 / 218

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ head(P), head(P))

via the ground program P with externals E obtained from R and C

Note E \ head(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 124 / 218

Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C) = (P, (C ∪ E) \ head(P), head(P))

via the ground program P with externals E obtained from R and C

Note E \ head(P) consists of atoms stemming from non-overwritten
external declarations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 124 / 218

Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C) = (P, (C ∪ E) \ head(P), head(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 125 / 218

Module composition

Example

Atom base C = {g(1)}
Ground program P

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals E = {e(1)}
Module R(C) = (P, (C ∪ E) \ head(P), head(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 125 / 218

Module composition

Example

Atom base C = {g(1)}
Ground program P

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals E = {e(1)}
Module R(C) = (P, (C ∪ E) \ head(P), head(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 125 / 218

Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C) = (P, (C ∪ E) \ head(P), head(P))

=

f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,

f (1), f (2),
a(1),
b(1), b(2)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 125 / 218

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 126 / 218

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 126 / 218

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 126 / 218

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 126 / 218

Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi) ∪ O(Pi))

where Ri+1(I (Pi) ∪ O(Pi)) captures the result of grounding an
extensible program R relative to atom base I (Pi) ∪ O(Pi)

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 126 / 218

Module composition

Capturing program states by modules

Let (Ri)i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi) ∪ O(Pi)

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi) =
⋃

i>0 Ei \
⋃

i>0 head(Pi)

3 O(
⊔

i≥0 Pi) =
⋃

i>0 head(Pi)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 127 / 218

Module composition

Capturing program states by modules

Let (Ri)i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi) ∪ O(Pi)

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi) =
⋃

i>0 Ei \
⋃

i>0 head(Pi)

3 O(
⊔

i≥0 Pi) =
⋃

i>0 head(Pi)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 127 / 218

States and operations

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 128 / 218

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R is a collection of extensible (non-ground) logic programs

P is a module

V is a three-valued assignment over I (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 129 / 218

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V is a three-valued assignment over I (P)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 129 / 218

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 129 / 218

States and operations

Clingo state

A clingo state is a triple

(R,P,V)

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Note Input atoms in I (P) are taken to be false by default

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 129 / 218

States and operations

create

create(R) : 7→ (R,P,V)

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 130 / 218

States and operations

create

create(R) : 7→ (R,P,V)

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 130 / 218

States and operations

add

add(R) : (R1,P,V) 7→ (R2,P,V)

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 131 / 218

States and operations

add

add(R) : (R1,P,V) 7→ (R2,P,V)

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 131 / 218

States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R

V t
2 = {a ∈ I (P2) | V1(a) = t }

V u
2 = {a ∈ I (P2) | V1(a) = u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 132 / 218

States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R

V t
2 = {a ∈ I (P2) | V1(a) = t }

V u
2 = {a ∈ I (P2) | V1(a) = u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 132 / 218

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 133 / 218

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 133 / 218

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 133 / 218

States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 133 / 218

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 134 / 218

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 134 / 218

States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 134 / 218

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 135 / 218

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 135 / 218

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 135 / 218

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 135 / 218

States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 135 / 218

States and operations

solve

solve((At ,Af)) : (R,P,V) 7→ (R,P,V) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 136 / 218

States and operations

solve

solve((At ,Af)) : (R,P,V) 7→ (R,P,V) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 136 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Examples

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 137 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 138 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 138 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 138 / 218

States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 139 / 218

States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 139 / 218

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 139 / 218

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 139 / 218

States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and

R(base) =

#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)

R(succ) =

#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)

Initial atom base I (P0) ∪ O(P0) = ∅
Note create(R) is invoked implicitly to create clingo object ‘prg’

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 139 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 140 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 140 / 218

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 141 / 218

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 141 / 218

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 141 / 218

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 141 / 218

States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 141 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 142 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

>> prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 142 / 218

States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 143 / 218

States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 143 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

>> prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 144 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

>> prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 144 / 218

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 145 / 218

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 145 / 218

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 145 / 218

States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 145 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

>> prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 146 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

>> prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 146 / 218

States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 147 / 218

States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 147 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

>> prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 148 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

>> prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 148 / 218

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 149 / 218

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 149 / 218

States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Print no stable model of P3 wrt V3

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 149 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

>> prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 150 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 150 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 151 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 151 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

prg.ground([("succ",[1]),("succ",[2])])

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)

where

P4 =

({
p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(4),

p(3), p(5)

}
,

{
p(0), p(1),

p(2)

})

P3 =

({
p(0)← p(3);
p(0)← ∼p(0)

}
, {p(1), p(2), p(3)}, {p(0)}

)

R4(I (P3) ∪ O(P3)) =

({
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 152 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 153 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

>> prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 153 / 218

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 154 / 218

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 154 / 218

States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 154 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

>> prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 155 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 155 / 218

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 156 / 218

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 156 / 218

States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 156 / 218

States and operations

prg.ground([("succ", [3])])

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

where

R5 = (R(base),R(succ))

P(P5) =

p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4);

p(3)← p(6); p(3)← ∼p(4),∼p(5)

I (P5) = {p(4), p(5), p(6)}

O(P5) = {p(0), p(1), p(2), p(3)}

V5 = (∅, ∅)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 157 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 158 / 218

States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

>> prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 158 / 218

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 159 / 218

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 159 / 218

States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 159 / 218

States and operations

simple.lp
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 160 / 218

States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 161 / 218

States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 161 / 218

Incremental reasoning

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 162 / 218

Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 163 / 218

Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 163 / 218

Incremental reasoning

Towers of Hanoi Encoding

#program base.

on(D,P,0) :- init_on(D,P).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 164 / 218

Incremental reasoning

Towers of Hanoi Encoding

#program step(t).

1 { move(D,P,t) : disk(D), peg(P) } 1.

moved(D,t) :- move(D,_,t).

blocked(D,P,t) :- on(D+1,P,t-1), disk(D+1).

blocked(D,P,t) :- blocked(D+1,P,t), disk(D+1).

:- move(D,P,t), blocked(D-1,P,t).

:- moved(D,t), on(D,P,t-1), blocked(D,P,t).

on(D,P,t) :- on(D,P,t-1), not moved(D,t).

on(D,P,t) :- move(D,P,t).

:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 165 / 218

Incremental reasoning

Towers of Hanoi Encoding

#program check(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 166 / 218

Incremental reasoning

Incremental Solving (ASP)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 167 / 218

Incremental reasoning

Incremental Solving (tohCtrl.lp)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 167 / 218

Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 168 / 218

Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 168 / 218

Incremental reasoning

Incremental Solving (Python)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218

Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218

Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 170 / 218

Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 170 / 218

Boardgaming

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 171 / 218

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 172 / 218

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 172 / 218

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 172 / 218

Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 172 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

Solving goal(13) from cornered robots (ctd)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 173 / 218

Boardgaming

board.lp

dim(1..16).

barrier(2, 1, 1, 0). barrier(13,11, 1, 0). barrier(9, 7, 0, 1).

barrier(10, 1, 1, 0). barrier(11,12, 1, 0). barrier(11, 7, 0, 1).

barrier(4, 2, 1, 0). barrier(14,13, 1, 0). barrier(14, 7, 0, 1).

barrier(14, 2, 1, 0). barrier(6,14, 1, 0). barrier(16, 9, 0, 1).

barrier(2, 3, 1, 0). barrier(3,15, 1, 0). barrier(2,10, 0, 1).

barrier(11, 3, 1, 0). barrier(10,15, 1, 0). barrier(5,10, 0, 1).

barrier(7, 4, 1, 0). barrier(4,16, 1, 0). barrier(8,10, 0,-1).

barrier(3, 7, 1, 0). barrier(12,16, 1, 0). barrier(9,10, 0,-1).

barrier(14, 7, 1, 0). barrier(5, 1, 0, 1). barrier(9,10, 0, 1).

barrier(7, 8, 1, 0). barrier(15, 1, 0, 1). barrier(14,10, 0, 1).

barrier(10, 8,-1, 0). barrier(2, 2, 0, 1). barrier(1,12, 0, 1).

barrier(11, 8, 1, 0). barrier(12, 3, 0, 1). barrier(11,12, 0, 1).

barrier(7, 9, 1, 0). barrier(7, 4, 0, 1). barrier(7,13, 0, 1).

barrier(10, 9,-1, 0). barrier(16, 4, 0, 1). barrier(15,13, 0, 1).

barrier(4,10, 1, 0). barrier(1, 6, 0, 1). barrier(10,14, 0, 1).

barrier(2,11, 1, 0). barrier(4, 7, 0, 1). barrier(3,15, 0, 1).

barrier(8,11, 1, 0). barrier(8, 7, 0, 1).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 174 / 218

Boardgaming

targets.lp

#external goal(1..16).

target(red, 5, 2) :- goal(1).

target(red, 15, 2) :- goal(2).

target(green, 2, 3) :- goal(3).

target(blue, 12, 3) :- goal(4).

target(yellow, 7, 4) :- goal(5).

target(blue, 4, 7) :- goal(6).

target(green, 14, 7) :- goal(7).

target(yellow,11, 8) :- goal(8).

target(yellow, 5,10) :- goal(9).

target(green, 2,11) :- goal(10).

target(red, 14,11) :- goal(11).

target(green, 11,12) :- goal(12).

target(yellow,15,13) :- goal(13).

target(blue, 7,14) :- goal(14).

target(red, 3,15) :- goal(15).

target(blue, 10,15) :- goal(16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow),1..16,1..16).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 175 / 218

Boardgaming

ricochet.lp

time(1..horizon).

dir(-1,0;1,0;0,-1;0,1).

stop(DX, DY,X, Y) :- barrier(X,Y,DX,DY).

stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move/4.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 176 / 218

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 177 / 218

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 177 / 218

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 177 / 218

Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 177 / 218

Boardgaming

optimization.lp

goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).

:- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 178 / 218

Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 179 / 218

Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 179 / 218

Boardgaming

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 180 / 218

Boardgaming

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 181 / 218

Boardgaming

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 182 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 183 / 218

Boardgaming

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 184 / 218

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 185 / 218

Boardgaming

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

>> positions = [Fun("pos", [Fun("red"), 1, 1]),

>> Fun("pos", [Fun("blue"), 1, 16]),

>> Fun("pos", [Fun("green"), 16, 1]),

>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 185 / 218

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

>> player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 185 / 218

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

>> for goal in sequence:

>> print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 185 / 218

Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 185 / 218

Boardgaming

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 186 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

>> self.last_positions = positions

>> self.last_solution = None

>> self.undo_external = []

>> self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

>> self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

>> for x in files:

>> self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

>> self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 187 / 218

Boardgaming

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 188 / 218

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

solve

def solve(self, goal):

>> for x in self.undo_external:

>> self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

>> self.undo_external = []

>> for x in self.last_positions + [goal]:

>> self.ctl.assign_external(x, True)

>> self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

>> self.last_solution = None

>> self.ctl.solve(on_model=self.on_model)

>> return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 189 / 218

Boardgaming

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 190 / 218

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

on model

def on_model(self, model):

>> self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

>> self.last_positions = []

>> for atom in model.atoms(Model.ATOMS):

>> if (atom.name() == "pos" and

>> len(atom.args()) == 4 and

>> atom.args()[3] == self.horizon):

>> self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 191 / 218

Boardgaming

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 192 / 218

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 193 / 218

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 193 / 218

Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 193 / 218

Preferences and optimization: Overview

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 194 / 218

Motivation

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 195 / 218

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 196 / 218

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 196 / 218

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 196 / 218

Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 196 / 218

The asprin framework

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 197 / 218

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 198 / 218

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 198 / 218

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 198 / 218

The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 198 / 218

The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 199 / 218

Preliminaries

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 200 / 218

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 201 / 218

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 201 / 218

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 201 / 218

Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 201 / 218

Language

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 202 / 218

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 203 / 218

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 203 / 218

Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 203 / 218

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218

Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y) ∈ less(cardinality)(E)
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X) denotes the power set of X)

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218

Language

More examples

more(weight) is defined as

(X ,Y) ∈ more(weight)(E) if
∑

(w :`)∈E ,X |=` w >
∑

(w :`)∈E ,Y |=` w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y) ∈ subset(E) if {` ∈ E | X |= `} ⊂ {` ∈ E | Y |= `}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y) ∈ pareto(E) if
∧

name(s)∈E (X �s Y) ∧
∨

name(s)∈E (X �s Y)

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y) ∈ lexico(E) if
∨

w :name(s)∈E

(
(X �s Y) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y)

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 205 / 218

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t) E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 206 / 218

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t) E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 206 / 218

Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t) E declares preference relation t(E) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

where �1 stands for less(cardinality)({a,¬b, c})

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 206 / 218

Implementation

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 207 / 218

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs

representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 208 / 218

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs

representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 208 / 218

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs

representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 208 / 218

Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs

representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 208 / 218

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 209 / 218

Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.

F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 209 / 218

Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′

X) ∩ A
until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 210 / 218

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 211 / 218

Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 211 / 218

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 212 / 218

Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 212 / 218

Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 213 / 218

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 214 / 218

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 214 / 218

Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 214 / 218

Summary

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation

26 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 215 / 218

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 216 / 218

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 216 / 218

Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 216 / 218

Summary

Outline

27 Summary

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 217 / 218

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SMT

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

http://potassco.sourceforge.net

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

http://potassco.sourceforge.net

[1] C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture
Notes in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

[2] C. Anger, K. Konczak, T. Linke, and T. Schaub.
A glimpse of answer set programming.
Künstliche Intelligenz, 19(1):12–17, 2005.

[3] Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft, 2003.

[4] C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

[5] C. Baral, G. Brewka, and J. Schlipf, editors.
Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

[6] C. Baral and M. Gelfond.
Logic programming and knowledge representation.
Journal of Logic Programming, 12:1–80, 1994.

[7] S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the
Twenty-first International Conference on Logic Programming
(ICLP’05), volume 3668 of Lecture Notes in Computer Science, pages
52–66. Springer-Verlag, 2005.

[8] A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In H. Kleine Büning and X. Zhao, editors, Proceedings of the
Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), volume 4996 of Lecture Notes in
Computer Science, pages 28–33. Springer-Verlag, 2008.

[9] A. Biere.
PicoSAT essentials.
Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

[10] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

[11] G. Brewka, T. Eiter, and M. Truszczyński.
Answer set programming at a glance.
Communications of the ACM, 54(12):92–103, 2011.

[12] G. Brewka, I. Niemelä, and M. Truszczyński.
Answer set optimization.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In G. Gottlob and T. Walsh, editors, Proceedings of the Eighteenth
International Joint Conference on Artificial Intelligence (IJCAI’03),
pages 867–872. Morgan Kaufmann Publishers, 2003.

[13] K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

[14] M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.
Kluwer Academic Publishers, 1999.

[15] E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

[16] M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Communications of the ACM, 5:394–397, 1962.

[17] M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

[18] E. Di Rosa, E. Giunchiglia, and M. Maratea.
Solving satisfiability problems with preferences.
Constraints, 15(4):485–515, 2010.

[19] C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.
In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

[20] C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

[21] N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

[22] T. Eiter and G. Gottlob.
On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

[23] T. Eiter, G. Ianni, and T. Krennwallner.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Answer Set Programming: A Primer.
In S. Tessaris, E. Franconi, T. Eiter, C. Gutierrez, S. Handschuh,
M. Rousset, and R. Schmidt, editors, Fifth International Reasoning
Web Summer School (RW’09), volume 5689 of Lecture Notes in
Computer Science, pages 40–110. Springer-Verlag, 2009.

[24] F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[25] P. Ferraris.
Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors,
Proceedings of the Eighth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’05), volume
3662 of Lecture Notes in Artificial Intelligence, pages 119–131.
Springer-Verlag, 2005.

[26] P. Ferraris and V. Lifschitz.
Mathematical foundations of answer set programming.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In S. Artëmov, H. Barringer, A. d’Avila Garcez, L. Lamb, and
J. Woods, editors, We Will Show Them! Essays in Honour of Dov
Gabbay, volume 1, pages 615–664. College Publications, 2005.

[27] M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

[28] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

[29] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub,
and S. Thiele.
Engineering an incremental ASP solver.
In M. Garcia de la Banda and E. Pontelli, editors, Proceedings of the
Twenty-fourth International Conference on Logic Programming
(ICLP’08), volume 5366 of Lecture Notes in Computer Science, pages
190–205. Springer-Verlag, 2008.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

[30] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren [46], pages 250–264.

[31] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[32] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. [5], pages 260–265.

[33] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. [5], pages 136–148.

[34] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In Veloso [71], pages 386–392.

[35] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

[36] M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the
Tenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’09), volume 5753 of Lecture
Notes in Artificial Intelligence, pages 509–514. Springer-Verlag, 2009.

[37] M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.
In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

[38] M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren [46], pages 235–249.

[39] M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming
(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

[40] M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

[41] M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

[42] M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

[43] M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

[44] M. Gelfond and V. Lifschitz.
Logic programs with classical negation.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In D. Warren and P. Szeredi, editors, Proceedings of the Seventh
International Conference on Logic Programming (ICLP’90), pages
579–597. MIT Press, 1990.

[45] E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

[46] P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

[47] J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso [71], pages 2318–2323.

[48] K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

[49] J. Lee.
A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the
Nineteenth International Joint Conference on Artificial Intelligence
(IJCAI’05), pages 503–508. Professional Book Center, 2005.

[50] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

[51] V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

[52] V. Lifschitz.
Introduction to answer set programming.
Unpublished draft, 2004.

[53] V. Lifschitz and A. Razborov.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

[54] F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

[55] V. Marek and M. Truszczyński.
Nonmonotonic logic: context-dependent reasoning.
Artifical Intelligence. Springer-Verlag, 1993.

[56] V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[57] J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. [10], chapter 4, pages 131–153.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

[58] J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

[59] V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the
Ninth International Symposium on Functional and Logic
Programming (FLOPS’08), volume 4989 of Lecture Notes in
Computer Science, pages 15–31. Springer-Verlag, 2008.

[60] V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

[61] D. Mitchell.
A SAT solver primer.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

[62] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design
Automation (DAC’01), pages 530–535. ACM Press, 2001.

[63] I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

[64] R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

[65] K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

In J. Marques-Silva and K. Sakallah, editors, Proceedings of the
Tenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’07), volume 4501 of Lecture Notes in
Computer Science, pages 294–299. Springer-Verlag, 2007.

[66] L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

[67] P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

[68] T. Son and E. Pontelli.
Planning with preferences using logic programming.
Theory and Practice of Logic Programming, 6(5):559–608, 2006.

[69] T. Syrjänen.
Lparse 1.0 user’s manual, 2001.

[70] A. Van Gelder, K. Ross, and J. Schlipf.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

[71] M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI/MIT Press, 2007.

[72] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285. ACM Press, 2001.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 218 / 218

	Organization
	Motivation
	Motivation
	Nutshell
	Shifting paradigms
	Rooting ASP
	ASP solving
	Using ASP

	Introduction
	Syntax
	Semantics
	Examples
	Variables
	Language constructs
	Reasoning modes

	Basic Modeling
	ASP solving process
	Methodology
	Satisfiability
	Queens
	Traveling Salesperson
	Reviewer Assignment
	Planning

	Multi-shot ASP Solving
	Motivation
	#program and #external declaration
	Module composition
	States and operations
	Incremental reasoning
	Boardgaming

	Preferences and optimization
	Motivation
	The asprin framework
	Preliminaries
	Language
	Implementation
	Summary

	Summary
	Summary

	References

