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Rough Roadmap

1 09:00-10:30 Motivation, Introduction, Basic modeling

2 10:45-11:45 Multi-shot solving and its applications
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Resources

Course material

http://potassco.sourceforge.net

Systems

clasp http://potassco.sourceforge.net

clingo http://potassco.sourceforge.net

dlv http://www.dlvsystem.com

smodels http://www.tcs.hut.fi/Software/smodels

wasp https://www.mat.unical.it/ricca/wasp

gringo http://potassco.sourceforge.net

lparse http://www.tcs.hut.fi/Software/smodels

asparagus http://asparagus.cs.uni-potsdam.de
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The Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions
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Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Motivation
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Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”
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Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing
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Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 8 / 218



Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”
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Nutshell

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving
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Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in

(deductive) databases
logic programming (with negation)
(logic-based) knowledge representation and (nonmonotonic) reasoning
constraint solving (in particular, SATisfiability testing)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP, CASC, MISC, PB, and SAT competitions

ASP embraces many emerging application areas
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning
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Nutshell

Answer Set Programming
in a Hazelnutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = DB+LP+KR+SAT
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Shifting paradigms

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions
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Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries (testing entailment)

?- above(a,c).

true.

?- above(c,a).

no.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.
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Shifting paradigms

LP-style playing with blocks

Shuffled Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries (answered via fixed execution)
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Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218



Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218



Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218



Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model{
on(a, b), on(b, c), on(a, c), on(b, b),

above(a, b), above(b, c), above(a, c), above(b, b), above(c , b)

}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 19 / 218



Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y )→ above(X ,Y ))
∧ (on(X ,Z ) ∧ above(Z ,Y )→ above(X ,Y ))

Herbrand model (among 426!){
on(a, b), on(b, c), on(a, c), on(b, b),
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Rooting ASP

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation
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Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem
2 A solution is given by a derivation of a query

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem
2 A solution is given by a model of the representation

å Answer Set Programming (ASP)
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Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...
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Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
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auto-epistemic theories expansions
default theories extensions
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Rooting ASP

Answer Set Programming in practice
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Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }
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Rooting ASP

ASP-style playing with blocks

Logic program

on(a,b).

on(b,c).

above(X,Y) :- above(Z,Y), on(X,Z).

above(X,Y) :- on(X,Y).

Stable Herbrand model (and no others)
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Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing
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Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Intersection/Union —
Optimization —

(Turing +) NP(NP) NP
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ASP solving

Outline

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 ASP solving

6 Using ASP
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ASP solving

ASP grounding and solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6
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Using ASP

Two sides of a coin

ASP as High-level Language

Express problem instance(s) as sets of facts
Encode problem (class) as a set of rules
Read off solutions from stable models of facts and rules

ASP as Low-level Language

Compile a problem into a logic program
Solve the original problem by solving its compilation

ASP and Imperative language

Control continuously changing logic programs
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Using ASP

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated planning
Code optimization
Database integration
Decision support for NASA shuttle controllers
Model checking
Music composition
Product configuration
Robotics
Systems biology
System design
Team building
and many many more
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Using ASP

What does ASP offer?

Integration of DB, KR, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc

ASP = DB+LP+KR+SAT
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Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Syntax

Normal logic programs

A logic program, P, over a set A of atoms is a finite set of rules

A (normal) rule, r , is of the form

a0 ← a1, . . . , am,∼am+1, . . . ,∼an

where 0 ≤ m ≤ n and each ai ∈ A is an atom for 0 ≤ i ≤ n

Notation

head(r) = a0

body(r) = {a1, . . . , am,∼am+1, . . . ,∼an}
body(r)+ = {a1, . . . , am}
body(r)− = {am+1, . . . , an}
atom(P) =

⋃
r∈P

(
{head(r)} ∪ body(r)+ ∪ body(r)−

)
body(P) = {body(r) | r ∈ P}

A program P is positive if body(r)− = ∅ for all r ∈ P
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Syntax

Rough notational convention

We sometimes use the following notation interchangeably
in order to stress the respective view:

default classical
true, false if and or iff negation negation

source code :- , ; not -

logic program ← , ; ∼ ¬
formula ⊥,> → ∧ ∨ ↔ ∼ ¬
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Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-
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Solving
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Semantics

Formal Definition
Stable models of positive programs

A set of atoms X is closed under a positive program P iff
for any r ∈ P, head(r) ∈ X whenever body(r)+ ⊆ X

X corresponds to a model of P (seen as a formula)

The smallest set of atoms which is closed under a positive program P
is denoted by Cn(P)

Cn(P) corresponds to the ⊆-smallest model of P (ditto)

The set Cn(P) of atoms is the stable model of a positive program P
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Semantics

Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHH
HHj

p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

PΦ q ←
p ← q, ∼r

Informally, a set X of atoms is a stable model of a logic program P

if X is a (classical) model of P and

if all atoms in X are justified by some rule in P

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))
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Semantics

Formal Definition
Stable model of normal programs

The reduct, PX , of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body(r)+ | r ∈ P and body(r)− ∩ X = ∅}

A set X of atoms is a stable model of a program P, if Cn(PX ) = X

Note Cn(PX ) is the ⊆–smallest (classical) model of PX

Note Every atom in X is justified by an “applying rule from P”
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Examples

A first example

P = {p ← p, q ← ∼p}

X PX Cn(PX )

{ } p ← p
q ←

{q} 8

{p } p ← p ∅

{ q} p ← p
q ←

{q} 4

{p, q} p ← p ∅
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Examples

A second example
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Examples

A second example

P = {p ← ¬q, q ← ¬p}

X PX Cn(PX )
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A third example
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Examples

Some properties

A logic program may have zero, one, or multiple stable models!

If X is a stable model of a logic program P,
then X is a model of P (seen as a formula)

If X and Y are stable models of a normal program P,
then X 6⊂ Y
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Variables

Programs with Variables

Let P be a logic program

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ P: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T and var(rθ) = ∅}

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution

Ground Instantiation of P: ground(P) =
⋃

r∈P ground(r)
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Variables

An example

P = { r(a, b)←, r(b, c)←, t(X ,Y )← r(X ,Y ) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(P) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation
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Variables

Stable models of programs with Variables

Let P be a normal logic program with variables

A set X of (ground) atoms is a stable model of P,

if Cn(ground(P)X ) = X
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Language constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Language constructs

Language constructs

Variables (over the Herbrand universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) ; q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #sum { X : p(X,Y), q(X) } 7
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Reasoning modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Reasoning modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration
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Basic Modeling: Overview

13 ASP solving process

14 Methodology
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Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving
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Modeling

For solving a problem class C for a problem instance I,
encode

1 the problem instance I as a set PI of facts and
2 the problem class C as a set PC of rules

such that the solutions to C for I can be (polynomially) extracted
from the stable models of PI ∪ PC

PI is (still) called problem instance

PC is often called the problem encoding

An encoding PC is uniform, if it can be used to solve all its
problem instances
That is, PC encodes the solutions to C for any set PI of facts
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ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution
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Modeling Interpreting
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ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving6

Elaborating
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ASP solving process

A case-study: Graph coloring

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color
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ASP solving process

Graph coloring

Problem instance A graph consisting of nodes and edges

facts formed by predicates node/1 and edge/2

facts formed by predicate col/1

Problem class Assign each node one color such that no two nodes
connected by an edge have the same color

In other words,

1 Each node has one color
2 Two connected nodes must not have the same color

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 65 / 218



ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution
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ASP solving process

Graph coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding
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:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 67 / 218



ASP solving process

color.lp

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).



Problem
instance

1 { color(X,C) : col(C) } 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

 Problem
encoding
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ASP solving process

ASP solving process

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving
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ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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ASP solving process

Graph coloring: Grounding

$ gringo --text color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
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ASP solving process

Graph coloring: Solving

$ gringo color.lp | clasp 0

clasp version 2.1.0

Reading from stdin

Solving...

Answer: 1

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,g) color(4,b) color(3,r) color(2,r) color(1,g)

Answer: 2

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,g) color(4,r) color(3,b) color(2,b) color(1,g)

Answer: 3

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,b) color(4,g) color(3,r) color(2,r) color(1,b)

Answer: 4

edge(1,2) ... col(r) ... node(1) ... color(6,r) color(5,b) color(4,r) color(3,g) color(2,g) color(1,b)

Answer: 5

edge(1,2) ... col(r) ... node(1) ... color(6,g) color(5,r) color(4,g) color(3,b) color(2,b) color(1,r)

Answer: 6

edge(1,2) ... col(r) ... node(1) ... color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

SATISFIABLE

Models : 6

Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6
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ASP solving process

A coloring

Answer: 6

edge(1,2) ... col(r) ... node(1) ... \

color(6,b) color(5,r) color(4,b) color(3,g) color(2,g) color(1,r)

1 2

3

4

5

6
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Methodology

Outline

13 ASP solving process

14 Methodology
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Methodology

Basic methodology

Methodology

Generate and Test (or: Guess and Check)

Generator Generate potential stable model candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester ( + Optimizer)
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Methodology Satisfiability

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning
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Methodology Satisfiability

Satisfiability testing

Problem Instance: A propositional formula φ in CNF

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true

Example: Consider formula

(a ∨ ¬b) ∧ (¬a ∨ b)

Logic Program:

Generator Tester Stable models
{ a } ←
{ b } ←

← ∼a, b
← a,∼b

X1 = {a, b}
X2 = {}
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Satisfiability testing

Problem Instance: A propositional formula φ in CNF
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Methodology Queens

Outline
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Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q
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Methodology Queens

Defining the Field

queens.lp

row(1..n).

col(1..n).

Create file queens.lp

Define the field

n rows
n columns
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Methodology Queens

Defining the Field

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Placing some Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

Guess a solution candidate

by placing some queens on the board
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Methodology Queens

Placing some Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...
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Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board
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Methodology Queens

Placing n Queens

Running . . .

$ gringo queens.lp --const n=5 | clasp 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...
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Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5
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Methodology Queens

Horizontal and Vertical Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

Forbid horizontal attacks

Forbid vertical attacks
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Methodology Queens
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Methodology Queens

Horizontal and Vertical Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...
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Methodology Queens

Horizontal and Vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5
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Methodology Queens

Diagonal Attack

queens.lp

row(1..n).

col(1..n).

{ queen(I,J) : row(I), col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,J’), J != J’.

:- queen(I,J), queen(I’,J), I != I’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I-J == I’-J’.

:- queen(I,J), queen(I’,J’), (I,J) != (I’,J’), I+J == I’+J’.

Forbid diagonal attacks
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Methodology Queens

Diagonal Attack

Running . . .

$ gringo queens.lp --const n=5 | clasp

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000
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Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5
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Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen(1..n,J) } 1 :- J = 1..n.

:- 2 { queen(D-J,J) }, D = 2..2*n.

:- 2 { queen(D+J,J) }, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve
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Methodology Queens

And sometimes it rocks

$ clingo -c n=5000 queens-opt-diag.lp --config=jumpy -q --stats=2
clingo version 4.1.0
Solving...
SATISFIABLE

Models : 1+
Time : 3758.143s (Solving: 1905.22s 1st Model: 1896.20s Unsat: 0.00s)
CPU Time : 3758.320s

Choices : 288594554
Conflicts : 3442 (Analyzed: 3442)
Restarts : 17 (Average: 202.47 Last: 3442)
Model-Level : 7594728.0
Problems : 1 (Average Length: 0.00 Splits: 0)
Lemmas : 3442 (Deleted: 0)

Binary : 0 (Ratio: 0.00%)
Ternary : 0 (Ratio: 0.00%)
Conflict : 3442 (Average Length: 229056.5 Ratio: 100.00%)
Loop : 0 (Average Length: 0.0 Ratio: 0.00%)
Other : 0 (Average Length: 0.0 Ratio: 0.00%)

Atoms : 75084857 (Original: 75069989 Auxiliary: 14868)
Rules : 100129956 (1: 50059992/100090100 2: 39990/29856 3: 10000/10000)
Bodies : 25090103
Equivalences : 125029999 (Atom=Atom: 50009999 Body=Body: 0 Other: 75020000)
Tight : Yes
Variables : 25024868 (Eliminated: 11781 Frozen: 25000000)
Constraints : 66664 (Binary: 35.6% Ternary: 0.0% Other: 64.4%)

Backjumps : 3442 (Average: 681.19 Max: 169512 Sum: 2344658)
Executed : 3442 (Average: 681.19 Max: 169512 Sum: 2344658 Ratio: 100.00%)
Bounded : 0 (Average: 0.00 Max: 0 Sum: 0 Ratio: 0.00%)
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Methodology Traveling Salesperson

Traveling Salesperson

node(1..6).

edge(1,(2;3;4)). edge(2,(4;5;6)). edge(3,(1;4;5)).

edge(4,(1;2)). edge(5,(3;4;6)). edge(6,(2;3;5)).

cost(1,2,2). cost(1,3,3). cost(1,4,1).

cost(2,4,2). cost(2,5,2). cost(2,6,4).

cost(3,1,3). cost(3,4,2). cost(3,5,2).

cost(4,1,1). cost(4,2,2).

cost(5,3,2). cost(5,4,2). cost(5,6,1).

cost(6,2,4). cost(6,3,3). cost(6,5,1).
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Methodology Traveling Salesperson

Traveling Salesperson

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 { cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

reached(Y) :- cycle(1,Y).

reached(Y) :- cycle(X,Y), reached(X).

:- node(Y), not reached(Y).

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.
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Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 { assigned(P,R) : paper(P) } 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.
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reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 <= #count { P,R : assigned(P,R) : reviewer(R) } <= 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- not 6 <= #count { P,R : assigned(P,R), paper(P) } <= 9, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 <= #count { P,R : assignedB(P,R), paper(P) }, reviewer(R).

#minimize { 1,P,R : assignedB(P,R), paper(P), reviewer(R) }.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 104 / 218



Methodology Planning

Outline

13 ASP solving process

14 Methodology
Satisfiability
Queens
Traveling Salesperson
Reviewer Assignment
Planning

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 105 / 218



Methodology Planning

Simplistic STRIPS Planning

time(1..k).

fluent(p). action(a). action(b). init(p).

fluent(q). pre(a,p). pre(b,q).

fluent(r). add(a,q). add(b,r). query(r).

del(a,p). del(b,q).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

holds(F,T) :- holds(F,T-1), not nolds(F,T), time(T).

holds(F,T) :- occ(A,T), add(A,F).

nolds(F,T) :- occ(A,T), del(A,F).

:- query(F), not holds(F,k).
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Multi-shot ASP Solving: Overview

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming
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Motivation

Motivation

Claim ASP is an under-the-hood technology

That is, in practice, it mainly serves as a solving engine
within an encompassing software environment

Single-shot solving: ground | solve

Multi-shot solving: ground | solve

å continuously changing logic programs

Application areas

Agents, Assisted Living, Robotics, Planning, Query-answering, etc

Implementation clingo 4
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Motivation

Clingo = ASP + Control

ASP
#program <name> [ (<parameters>) ]

Example #program play(t).

#external <atom> [ : <body> ]

Example #external mark(X,Y,P,t) : field(X,Y), player(P).

Control
Lua (www.lua.org)

Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)
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Example prg:solve(), prg:ground(parts), ...

Python (www.python.org)

Example prg.solve(), prg.ground(parts), ...

Integration

in ASP: embedded scripting language (#script)
in Lua/Python: library import (import gringo)
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Motivation

Vanilla clingo

Emulating clingo in clingo 4

#script (python)

def main(prg):

parts = []

parts.append(("base", []))

prg.ground(parts)

prg.solve()

#end.
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Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218



Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218



Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218



Motivation

Hello world!

#script (python)

def main(prg):

print("Hello world!")

#end.

$ clingo hello.lp

clingo version 4.5.0

Reading from hello.lp

Hello world!

UNKNOWN

Models : 0+

Calls : 1

Time : 0.009s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 112 / 218



#program and #external declaration

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming
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#program and #external declaration

#program declaration

A program declaration is of form

#program n (p1, . . . , pk)

where n, p1, . . . , pk are non-integer constants

We call n the name of the declaration and p1, . . . , pk its parameters

Convention Different occurrences of program declarations with the
same name share the same parameters

Example #program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).
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#program and #external declaration

Scope of #program declarations

The scope of an occurrence of a program declaration in a list of rules
and declarations consists of the set of all rules and non-program
declarations appearing between the occurrence and the next
occurrence of a program declaration or the end of the list

Rules and non-program declarations outside the scope of any program
declaration are implicitly preceded by a base program declaration

Example a(1).

#program acid(k).

b(k).

c(X,k) :- a(X).

#program base.

a(2).
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#program and #external declaration

Scope of #program declarations

Given a list R of (non-ground) rules and declarations and a name n,
we define R(n) as the set of all rules and non-program declarations in
the scope of all occurrences of program declarations with name n

We often refer to R(n) as a subprogram of R

Example

R(base) = {a(1), a(2)}
R(acid) = {b(k), c(X , k)← a(X )}

Given a name n with associated parameters (p1, . . . , pk), the
instantiation of R(n) with a term tuple (t1, . . . , tk) results in the set

R(n)[p1/t1, . . . , pk/tk ]

obtained by replacing in R(n) each occurrence of pi by ti
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#program and #external declaration

Contextual grounding

Rules are grounded relative to a set of atoms, called atom base

Given a set R of (non-ground) rules and two sets C ,D of ground
atoms, we define an instantiation of R relative to C as a ground
program groundC (R) over D subject to the following conditions:

C ⊆ D ⊆ C ∪ head(groundC (R))

groundC (R) ⊆ {head(r)← body(r)+ ∪ {∼a | a ∈ body(r)− ∩ D}
| r ∈ ground(R), body(r)+ ⊆ D}

Example Given R = { a(X )← f (X ), e(X ); b(X )← f (X ),∼e(X ) }
and C = {f (1), f (2), e(1)}, we obtain

groundC (R) =

{
a(1)← f (1), e(1); b(1)← f (1),∼e(1)

b(2)← f (2)

}
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#program and #external declaration

#external declaration

An external declaration is of form

#external a : B

where a is an atom and B a rule body

A logic program with external declarations is said to be extensible

Example #external e(X) : f(X), X < 2.

f(1..2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).
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#program and #external declaration

Grounding extensible logic programs

Given an extensible program R, we define

Q = {a← B, ε | (#external a : B) ∈ R}
R ′ = {a← B ∈ R}

Note An external declaration is treated as a rule a← B, ε
where ε is a ground marking atom

Given an atom base C , the ground instantiation of an extensible logic
program R is defined as a (ground) logic program P with externals E
where

P = {r ∈ groundC∪{ε}(R ′ ∪ Q) | ε /∈ body(r)}
E = {head(r) | r ∈ groundC∪{ε}(R ′ ∪ Q), ε ∈ body(r)}

Note The marking atom ε appears neither in P nor E , respectively,
and P is a logic program over C ∪ E ∪ head(P)
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#program and #external declaration

Example

Extensible program

#external e(X) : f(X), g(X).

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(X) :- f(X), g(X), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 120 / 218



#program and #external declaration

Example

Extensible program

e(1) :- f(1), g(1), ε. e(2) :- f(2), g(2), ε.
f(1). f(2).

a(1) :- f(1), e(1). a(2) :- f(2), e(2).

b(1) :- f(1), not e(1). b(2) :- f(2), not e(2).

Atom base {g(1)} ∪ {ε}

Ground program

f(1). f(2).

a(1) :- f(1), e(1).

b(1) :- f(1), not e(1). b(2) :- f(2).

with externals {e(1)}
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Module composition

Module

The assembly of subprograms can be characterized
by means of modules:

A module P is a triple (P, I ,O) consisting of

a (ground) program P over ground(A) and
sets I ,O ⊆ ground(A) such that

I ∩ O = ∅,
atom(P) ⊆ I ∪ O, and
head(P) ⊆ O

The elements of I and O are called input and output atoms

denoted by I (P) and O(P)

Similarly, we refer to (ground) program P by P(P)
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Module composition

Composing modules

Two modules P and Q are compositional, if

O(P) ∩ O(Q) = ∅ and

O(P) ∩ S = ∅ or O(Q) ∩ S = ∅
for every strongly connected component S of P(P) ∪ P(Q)

Note

Recursion between two modules to be joined is disallowed

Recursion within each module is allowed

The join, P tQ, of two modules P and Q is defined as the module

( P(P) ∪ P(Q) , (I (P) \ O(Q)) ∪ (I (Q) \ O(P)) , O(P) ∪ O(Q) )

provided that P and Q are compositional
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Module composition

Composing logic programs with externals

Idea Each ground instruction induces a module to be joined
with the module representing the current program state

Given an atom base C , a (non-ground) extensible program R
induces the module

R(C ) = (P, (C ∪ E ) \ head(P), head(P))

via the ground program P with externals E obtained from R and C

Note E \ head(P) consists of atoms stemming from non-overwritten
external declarations
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Module composition

Example

Atom base C = {g(1)}
Extensible program R

#external e(X) : f(X), g(X)

f(1). f(2).

a(X) :- f(X), e(X).

b(X) :- f(X), not e(X).

Module R(C ) = (P, (C ∪ E ) \ head(P), head(P))

=




f (1), f (2),
a(1)← f (1), e(1),
b(1)← f (1),∼e(1),
b(2)← f (2)

 ,

{
g(1),
e(1)

}
,


f (1), f (2),
a(1),
b(1), b(2)
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Module composition

Capturing program states by modules

Each program state is captured by a module

The input and output atoms of each module provide the atom base

The initial program state is given by the empty module

P0 = (∅, ∅, ∅)

The program state succeeding Pi is captured by the module

Pi+1 = Pi t Ri+1(I (Pi ) ∪ O(Pi ))

where Ri+1(I (Pi ) ∪ O(Pi )) captures the result of grounding an
extensible program R relative to atom base I (Pi ) ∪ O(Pi )

Note The join leading to Pi+1 can be undefined in case the
constituent modules are non-compositional
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Module composition

Capturing program states by modules

Let (Ri )i>0 be a sequence of (non-ground) extensible programs, and
let Pi+1 be the ground program with externals Ei+1 obtained from
Ri+1 and I (Pi ) ∪ O(Pi )

If
⊔

i≥0 Pi is compositional, then

1 P(
⊔

i≥0 Pi ) =
⋃

i>0 Pi

2 I (
⊔

i≥0 Pi ) =
⋃

i>0 Ei \
⋃

i>0 head(Pi )

3 O(
⊔

i≥0 Pi ) =
⋃

i>0 head(Pi )
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States and operations

Clingo state

A clingo state is a triple

(R,P,V )

where

R is a collection of extensible (non-ground) logic programs

P is a module

V is a three-valued assignment over I (P)
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where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)
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States and operations

Clingo state

A clingo state is a triple

(R,P,V )

where

R = (Rc)c∈C is a collection of extensible (non-ground) logic
programs where C is the set of all non-integer constants

P is a module

V = (V t ,V u) is a three-valued assignment over I (P)
where V f = I (P) \ (V t ∪ V u)

Note Input atoms in I (P) are taken to be false by default
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States and operations

create

create(R) : 7→ (R,P,V )

for a list R of (non-ground) rules and declarations where

R = (R(c))c∈C
P = (∅, ∅, ∅)
V = (∅, ∅)
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States and operations

add

add(R) : (R1,P,V ) 7→ (R2,P,V )

for a list R of (non-ground) rules and declarations where

R1 = (Rc)c∈C and R2 = (Rc ∪ R(c))c∈C
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States and operations

ground

ground((n,pn)n∈N) : (R,P1,V1) 7→ (R,P2,V2)

for a collection (n,pn)n∈N such that N ⊆ C and pn ∈ T k for some k
where

P2 = P1 t R(I (P1) ∪ O(P1))

and R(I (P1) ∪ O(P1)) is the module obtained from

extensible program
⋃

n∈N Rn[p/pn] and
atom base I (P1) ∪ O(P1)

for (Rc)c∈C = R

V t
2 = {a ∈ I (P2) | V1(a) = t }

V u
2 = {a ∈ I (P2) | V1(a) = u}
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States and operations

ground

Notes

The external status of an atom is eliminated once it becomes
defined by a rule in some added program
This is accomplished by module composition, namely, the
elimination of output atoms from input atoms

Jointly grounded subprograms are treated as a single subprogram

ground((n,p), (n,p))(s) = ground((n,p))(s) while
ground((n,p))(ground((n,p))(s)) leads to two
non-compositional modules whenever head(Rn) 6= ∅
Inputs stemming from added external declarations are set to false
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States and operations

assignExternal

assignExternal(a, v) : (R,P,V1) 7→ (R,P,V2)

for a ground atom a and v ∈ {t, u, f } where

if v = t

V t
2 = V t

1 ∪ {a} if a ∈ I (P), and V t
2 = V t

1 otherwise
V u

2 = V u
1 \ {a}

if v = u

V t
2 = V t

1 \ {a}
V u

2 = V u
1 ∪ {a} if a ∈ I (P), and V u

2 = V u
1 otherwise

if v = f

V t
2 = V t

1 \ {a}
V u

2 = V u
1 \ {a}

Note Only input atoms, that is, non-overwritten externals are affected
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States and operations

releaseExternal

releaseExternal(a) : (R,P1,V1) 7→ (R,P2,V2)

for a ground atom a where

P2 = (P(P1), I (P1) \ {a},O(P1) ∪ {a}) if a ∈ I (P1), and
P2 = P1 otherwise
V t

2 = V t
1 \ {a}

V u
2 = V u

1 \ {a}
Notes

releaseExternal only affects input atoms; defined atoms remain
unaffected
A released atom can never be re-defined, neither by a rule nor an
external declaration
A released (input) atom is made permanently false, since it is neither
defined by any rule nor part of the input atoms
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States and operations

solve

solve((At ,Af )) : (R,P,V ) 7→ (R,P,V ) prints the set

{X | X is a stable model of P wrt V st At ⊆ X and Af ∩X = ∅}

where the stable models of a module P wrt an assignment V
are given by the stable models of the program

P(P) ∪ {a← | a ∈ V t} ∪ {{a} ← | a ∈ V u}
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States and operations

#script declaration

A script declaration is of form

#script(python) P #end

where P is a Python program

Analogously for Lua

main routine exercises control (from within clingo, not from Python)

Example

#script(python)

def main(prg):

prg.ground([("base",[])])

prg.solve()

#end.

#script(python)

def main(prg):

prg.ground([("acid",[42])])

prg.solve()

#end.
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

Extensible programs

Initial clingo state

(R0,P0,V0) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where

R(base) =


#external p(1) p(0)← p(3)
#external p(2) p(0)← ∼p(0)
#external p(3)


R(succ) =


#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)


Initial atom base I (P0) ∪ O(P0) = ∅
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States and operations

Extensible programs

Initial clingo state, or more precisely, state of clingo object ‘prg’

create(R) = ((R(base),R(succ)), (∅, ∅, ∅), (∅, ∅))

where R is the list of rules and declarations in Line 1-8 and

R(base) =
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R(succ) =


#external p(n + 3)
p(n)← p(n + 3)
p(n)← ∼p(n + 1),∼p(n + 2)


Initial atom base I (P0) ∪ O(P0) = ∅
Note create(R) is invoked implicitly to create clingo object ‘prg’
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.ground([("base", [])])

Global clingo state (R0,P0,V0), including atom base ∅
Input Extensible program R(base)

Output Module

R1(∅) = (P1,E1, {p(0)}) where

P1 = {p(0)← p(3); p(0)← ∼p(0)}
E1 = {p(1), p(2), p(3)}

Result clingo state

(R1,P1,V1) = (R0,P0 t R1(∅),V0)

where

P1 = P0 t R1(∅) = (∅, ∅, ∅) t (P1,E1, {p(0)})
= ({p(0)← p(3); p(0)← ∼p(0)}, {p(1), p(2), p(3)}, {p(0)})
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

>> prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.assign external(Fun("p",[3]),True)

Global clingo state (R1,P1,V1)

Input assignment p(3) 7→ t

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))
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States and operations

prg.solve()

Global clingo state (R2,P2,V2)

Input empty assignment

Result clingo state

(R2,P2,V2) = (R0,P1, ({p(3)}, ∅))

Print stable model {p(0), p(3)} of P2 wrt V2
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States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 147 / 218



States and operations

prg.assign external(Fun("p",[3]),False)

Global clingo state (R2,P2,V2)

Input assignment p(3) 7→ f

Result clingo state

(R3,P3,V3) = (R0,P1, (∅, ∅))

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 147 / 218



States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

>> prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 148 / 218



States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

>> prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 148 / 218



States and operations

prg.solve()

Global clingo state (R3,P3,V3)

Input empty assignment

Result clingo state
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Print no stable model of P3 wrt V3
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States and operations

prg.ground([("succ",[1]),("succ",[2])])

Global clingo state (R3,P3,V3), including atom base
I (P3) ∪ O(P3) = {p(0), p(1), p(2), p(3)}

Input Extensible program R(succ)[n/1] ∪ R(succ)[n/2]

Output Module

R4(I (P3) ∪ O(P3)) =

(
P4,

{
p(0), p(4),
p(3), p(5)

}
,

{
p(1),
p(2)

})
where

P4 =

{
p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(2)← p(5); p(2)← ∼p(3),∼p(4)

}
E4 = {p(4), p(5)}

Result clingo state

(R4,P4,V4) = (R0,P3 t R4(I (P3) ∪ O(P3)),V3)
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

>> prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.solve()

Global clingo state (R4,P4,V4)

Input empty assignment

Result clingo state

(R4,P4,V4) = (R0,P4,V3)

Print no stable model of P4 wrt V4
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

>> prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.ground([("succ", [3])])

Global clingo state (R4,P4,V4), including atom base
I (P4) ∪ O(P4) = {p(0), p(1), p(2), p(3), p(4), p(5)}

Input Extensible program R(succ)[n/3]

Output Module

R5(I (P4) ∪ O(P4)) =

(
P5,

{
p(0), p(1), p(2),
p(4), p(5), p(6)

}
, {p(3)}

)
where P5 = {p(3)← p(6); p(3)← ∼p(4),∼p(5)}

E5 = {p(6)}

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)
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States and operations

prg.ground([("succ", [3])])

Result clingo state

(R5,P5,V5) = (R0,P4 t R5(I (P4) ∪ O(P4)),V3)

where

R5 = (R(base),R(succ))

P(P5) =


p(0)← p(3); p(1)← p(4); p(1)← ∼p(2),∼p(3);
p(0)← ∼p(0); p(2)← p(5); p(2)← ∼p(3),∼p(4);

p(3)← p(6); p(3)← ∼p(4),∼p(5)


I (P5) = {p(4), p(5), p(6)}

O(P5) = {p(0), p(1), p(2), p(3)}

V5 = (∅, ∅)
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States and operations

Example
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

>> prg.ground([("succ", [3])])

prg.solve()

#end.
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States and operations

prg.solve()

Global clingo state (R5,P5,V5)

Input empty assignment

Result clingo state

(R5,P5,V5) = (R0,P5,V3)

Print stable model {p(0), p(3)} of P5 wrt V5
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States and operations

simple.lp
#external p(1;2;3).

p(0) :- p(3).

p(0) :- not p(0).

#program succ(n).

#external p(n+3).

p(n) :- p(n+3).

p(n) :- not p(n+1), not p(n+2).

#script(python)

from gringo import Fun

def main(prg):

prg.ground([("base", [])])

prg.assign_external(Fun("p", [3]), True)

prg.solve()

prg.assign_external(Fun("p", [3]), False)

prg.solve()

prg.ground([("succ", [1]),("succ", [2])])

prg.solve()

prg.ground([("succ", [3])])

prg.solve()

#end.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 160 / 218



States and operations

Clingo on the run

$ clingo simple.lp

clingo version 4.5.0

Reading from simple.lp

Solving...

Answer: 1

p(3) p(0)

Solving...

Solving...

Solving...

Answer: 1

p(3) p(0)

SATISFIABLE

Models : 2+

Calls : 4

Time : 0.019s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s
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Incremental reasoning

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming
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Incremental reasoning

Towers of Hanoi Instance

1

a

2

7

b

3

4

5

6

c

peg(a;b;c). disk(1..7).

init_on(1,a). init_on((2;7),b). init_on((3;4;5;6),c).

goal_on((3;4),a). goal_on((1;2;5;6;7),c).
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Incremental reasoning

Towers of Hanoi Encoding

#program base.

on(D,P,0) :- init_on(D,P).
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Incremental reasoning

Towers of Hanoi Encoding

#program step(t).

1 { move(D,P,t) : disk(D), peg(P) } 1.

moved(D,t) :- move(D,_,t).

blocked(D,P,t) :- on(D+1,P,t-1), disk(D+1).

blocked(D,P,t) :- blocked(D+1,P,t), disk(D+1).

:- move(D,P,t), blocked(D-1,P,t).

:- moved(D,t), on(D,P,t-1), blocked(D,P,t).

on(D,P,t) :- on(D,P,t-1), not moved(D,t).

on(D,P,t) :- move(D,P,t).

:- not 1 { on(D,P,t) : peg(P) } 1, disk(D).

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 165 / 218



Incremental reasoning

Towers of Hanoi Encoding

#program check(t).

#external query(t).

:- goal_on(D,P), not on(D,P,t), query(t).
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Incremental reasoning

Incremental Solving (ASP)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
ret, parts, step = prg.solve(), [], step+1

#end.
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Incremental reasoning

Incremental Solving (tohCtrl.lp)

#script (python)

from gringo import SolveResult, Fun

def main(prg):

ret, parts, step = SolveResult.UNSAT, [], 1
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prg.release_external(Fun("query", [step-1]))
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#end.
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Incremental reasoning

Incremental Solving

$ clingo toh.lp tohCtrl.lp

clingo version 4.5.0

Reading from toh.lp ...

Solving...

Solving...

[...]

Solving...

Answer: 1

move(7,a,1) move(6,b,2) move(7,b,3) move(5,a,4) move(7,c,5) move(6,a,6) \

move(7,a,7) move(4,b,8) move(7,b,9) move(6,c,10) move(7,c,11) move(5,b,12) \

move(1,c,13) move(7,a,14) move(6,b,15) move(7,b,16) move(3,a,17) move(7,c,18) \

move(6,a,19) move(7,a,20) move(5,c,21) move(7,b,22) move(6,c,23) move(7,c,24) \

move(4,a,25) move(7,a,26) move(6,b,27) move(7,b,28) move(5,a,29) move(7,c,30) \

move(6,a,31) move(7,a,32) move(2,c,33) move(7,c,34) move(6,b,35) move(7,b,36) \

move(5,c,37) move(7,a,38) move(6,c,39) move(7,c,40)

SATISFIABLE

Models : 1+

Calls : 40

Time : 0.312s (Solving: 0.22s 1st Model: 0.01s Unsat: 0.21s)

CPU Time : 0.300s
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Incremental reasoning

Incremental Solving (Python)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218



Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218



Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218



Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218



Incremental reasoning

Incremental Solving (tohCtrl.py)

from sys import stdout

from gringo import SolveResult, Fun, Control

prg = Control()

prg.load("toh.lp")

ret, parts, step = SolveResult.UNSAT, [], 1

parts.append(("base", []))

while ret == SolveResult.UNSAT:

parts.append(("step", [step]))

parts.append(("check", [step]))

prg.ground(parts)

prg.release_external(Fun("query", [step-1]))

prg.assign_external(Fun("query", [step]), True)
f = lambda m: stdout.write(str(m))

ret, parts, step = prg.solve(on_model=f), [], step+1

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 169 / 218



Incremental reasoning

Incremental Solving (Python)

$ python tohCtrl.py

move(7,c,40) move(7,a,20) move(7,c,18) move(6,a,31) move(6,b,15) move(7,b,36) \

move(7,c,24) move(7,c,11) move(3,a,17) move(6,a,19) move(7,b,3) move(7,c,5) \

move(7,a,1) move(6,b,35) move(6,c,10) move(6,a,6) move(6,b,2) move(7,b,9) \

move(7,a,7) move(4,b,8) move(7,a,38) move(7,b,16) move(5,a,29) move(7,b,22) \

move(6,c,39) move(6,c,23) move(5,b,12) move(4,a,25) move(1,c,13) move(5,a,4) \

move(7,a,14) move(7,a,26) move(6,b,27) move(7,a,32) move(7,b,28) move(7,c,30) \

move(2,c,33) move(5,c,21) move(7,c,34) move(5,c,37)
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Boardgaming

Outline

15 Motivation

16 #program and #external declaration

17 Module composition

18 States and operations

19 Incremental reasoning

20 Boardgaming
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Boardgaming

Alex Rudolph’s Ricochet Robots
Solving goal(13) from cornered robots

Four robots

roaming

horizontally
vertically

up to blocking objects,

ricocheting (optionally)

Goal Robot on target
(sharing same color)
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Boardgaming

Solving goal(13) from cornered robots (ctd)
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Boardgaming

board.lp

dim(1..16).

barrier( 2, 1, 1, 0). barrier(13,11, 1, 0). barrier( 9, 7, 0, 1).

barrier(10, 1, 1, 0). barrier(11,12, 1, 0). barrier(11, 7, 0, 1).

barrier( 4, 2, 1, 0). barrier(14,13, 1, 0). barrier(14, 7, 0, 1).

barrier(14, 2, 1, 0). barrier( 6,14, 1, 0). barrier(16, 9, 0, 1).

barrier( 2, 3, 1, 0). barrier( 3,15, 1, 0). barrier( 2,10, 0, 1).

barrier(11, 3, 1, 0). barrier(10,15, 1, 0). barrier( 5,10, 0, 1).

barrier( 7, 4, 1, 0). barrier( 4,16, 1, 0). barrier( 8,10, 0,-1).

barrier( 3, 7, 1, 0). barrier(12,16, 1, 0). barrier( 9,10, 0,-1).

barrier(14, 7, 1, 0). barrier( 5, 1, 0, 1). barrier( 9,10, 0, 1).

barrier( 7, 8, 1, 0). barrier(15, 1, 0, 1). barrier(14,10, 0, 1).

barrier(10, 8,-1, 0). barrier( 2, 2, 0, 1). barrier( 1,12, 0, 1).

barrier(11, 8, 1, 0). barrier(12, 3, 0, 1). barrier(11,12, 0, 1).

barrier( 7, 9, 1, 0). barrier( 7, 4, 0, 1). barrier( 7,13, 0, 1).

barrier(10, 9,-1, 0). barrier(16, 4, 0, 1). barrier(15,13, 0, 1).

barrier( 4,10, 1, 0). barrier( 1, 6, 0, 1). barrier(10,14, 0, 1).

barrier( 2,11, 1, 0). barrier( 4, 7, 0, 1). barrier( 3,15, 0, 1).

barrier( 8,11, 1, 0). barrier( 8, 7, 0, 1).
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Boardgaming

targets.lp

#external goal(1..16).

target(red, 5, 2) :- goal(1).

target(red, 15, 2) :- goal(2).

target(green, 2, 3) :- goal(3).

target(blue, 12, 3) :- goal(4).

target(yellow, 7, 4) :- goal(5).

target(blue, 4, 7) :- goal(6).

target(green, 14, 7) :- goal(7).

target(yellow,11, 8) :- goal(8).

target(yellow, 5,10) :- goal(9).

target(green, 2,11) :- goal(10).

target(red, 14,11) :- goal(11).

target(green, 11,12) :- goal(12).

target(yellow,15,13) :- goal(13).

target(blue, 7,14) :- goal(14).

target(red, 3,15) :- goal(15).

target(blue, 10,15) :- goal(16).

robot(red;green;blue;yellow).

#external pos((red;green;blue;yellow),1..16,1..16).
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Boardgaming

ricochet.lp

time(1..horizon).

dir(-1,0;1,0;0,-1;0,1).

stop( DX, DY,X, Y ) :- barrier(X,Y,DX,DY).

stop(-DX,-DY,X+DX,Y+DY) :- stop(DX,DY,X,Y).

pos(R,X,Y,0) :- pos(R,X,Y).

1 { move(R,DX,DY,T) : robot(R), dir(DX,DY) } 1 :- time(T).

move(R,T) :- move(R,_,_,T).

halt(DX,DY,X-DX,Y-DY,T) :- pos(_,X,Y,T), dir(DX,DY), dim(X-DX), dim(Y-DY),

not stop(-DX,-DY,X,Y), T < horizon.

goto(R,DX,DY,X,Y,T) :- pos(R,X,Y,T), dir(DX,DY), T < horizon.

goto(R,DX,DY,X+DX,Y+DY,T) :- goto(R,DX,DY,X,Y,T), dim(X+DX), dim(Y+DY),

not stop(DX,DY,X,Y), not halt(DX,DY,X,Y,T).

pos(R,X,Y,T) :- move(R,DX,DY,T), goto(R,DX,DY,X,Y,T-1),

not goto(R,DX,DY,X+DX,Y+DY,T-1).

pos(R,X,Y,T) :- pos(R,X,Y,T-1), time(T), not move(R,T).

:- target(R,X,Y), not pos(R,X,Y,horizon).

#show move/4.

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 176 / 218



Boardgaming

Solving goal(13) from cornered robots

$ clingo board.lp targets.lp ricochet.lp -c horizon=9 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Answer: 1

move(red,0,1,1) move(red,1,0,2) move(red,0,1,3) move(red,-1,0,4) move(red,0,1,5) \

move(yellow,0,-1,6) move(red,1,0,7) move(yellow,0,1,8) move(yellow,-1,0,9)

SATISFIABLE

Models : 1+

Calls : 1

Time : 1.895s (Solving: 1.45s 1st Model: 1.45s Unsat: 0.00s)

CPU Time : 1.880s

$ clingo board.lp targets.lp ricochet.lp -c horizon=8 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

UNSATISFIABLE

Models : 0

Calls : 1

Time : 2.817s (Solving: 2.41s 1st Model: 0.00s Unsat: 2.41s)

CPU Time : 2.800s
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Boardgaming

optimization.lp

goon(T) :- target(R,X,Y), T = 0..horizon, not pos(R,X,Y,T).

:- move(R,DX,DY,T-1), time(T), not goon(T-1), not move(R,DX,DY,T).

#minimize{ 1,T : goon(T) }.
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Boardgaming

Solving goal(13) from cornered robots
$ clingo board.lp targets.lp ricochet.lp optimization.lp -c horizon=20 --quiet=1,0 \

<(echo "pos(red,1,1). pos(green,16,1). pos(blue,1,16). pos(yellow,16,16). goal(13).")

clingo version 4.5.0

Reading from board.lp ...

Solving...

Optimization: 20

Optimization: 19

Optimization: 18

Optimization: 17

Optimization: 16

Optimization: 15

Optimization: 14

Optimization: 13

Optimization: 12

Optimization: 11

Optimization: 10

Optimization: 9

Answer: 12

move(blue,0,-1,1) move(blue,1,0,2) move(yellow,0,-1,3) move(blue,0,1,4) move(yellow,-1,0,5) \

move(blue,1,0,6) move(blue,0,-1,7) move(yellow,1,0,8) move(yellow,0,1,9) move(yellow,0,1,10) \

move(yellow,0,1,11) move(yellow,0,1,12) move(yellow,0,1,13) move(yellow,0,1,14) move(yellow,0,1,15) \

move(yellow,0,1,16) move(yellow,0,1,17) move(yellow,0,1,18) move(yellow,0,1,19) move(yellow,0,1,20)

OPTIMUM FOUND

Models : 12

Optimum : yes

Optimization : 9

Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s
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Calls : 1

Time : 16.145s (Solving: 15.01s 1st Model: 3.35s Unsat: 2.02s)

CPU Time : 16.080s
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Boardgaming

Playing in rounds

Round 1: goal(13)

Round 2: goal(4)
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Boardgaming

Control loop

1 Create an operational clingo object

2 Load and ground the logic programs encoding Ricochet Robot
(relative to some fixed horizon) within the control object

3 While there is a goal, do the following

1 Enforce the initial robot positions
2 Enforce the current goal
3 Solve the logic program contained in the control object
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Boardgaming

Ricochet Robot Player
ricochet.py

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Variables of interest

last positions holds the starting positions of the robots for each turn

last solution holds the last solution of a search call

(Note that callbacks cannot return values directly)

undo external holds a list containing the current goal and starting
positions to be cleared upon the next step

horizon holds the maximum number of moves to find a solution

ctl holds the actual object providing an interface to the grounder and
solver; it holds all state information necessary for multi-shot solving
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Boardgaming

Ricochet Robot Player
Setup and control loop

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Setup and control loop

horizon = 15

encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

positions = [Fun("pos", [Fun("red"), 1, 1]),

Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]),

Fun("pos", [Fun("yellow"), 16, 16])]

sequence = [Fun("goal", [13]),

Fun("goal", [4]),

Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds
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Boardgaming

Setup and control loop

>> horizon = 15

>> encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]

>> positions = [Fun("pos", [Fun("red"), 1, 1]),

>> Fun("pos", [Fun("blue"), 1, 16]),

>> Fun("pos", [Fun("green"), 16, 1]),

>> Fun("pos", [Fun("yellow"), 16, 16])]

>> sequence = [Fun("goal", [13]),

>> Fun("goal", [4]),

>> Fun("goal", [7])]

player = Player(horizon, positions, encodings)

for goal in sequence:

print player.solve(goal)

1 Initializing variables

2 Creating a player object (wrapping a clingo object)

3 Playing in rounds
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Boardgaming

Setup and control loop
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Boardgaming

Ricochet Robot Player
init

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

init

def __init__(self, horizon, positions, files):

self.last_positions = positions

self.last_solution = None

self.undo_external = []

self.horizon = horizon

self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])

for x in files:

self.ctl.load(x)

self.ctl.ground([("base", [])])

1 Initializing variables

2 Creating clingo object

3 Loading encoding and instance

4 Grounding encoding and instance
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Boardgaming

Ricochet Robot Player
solve

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

solve

def solve(self, goal):

for x in self.undo_external:

self.ctl.assign_external(x, False)

self.undo_external = []

for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)

self.undo_external.append(x)

self.last_solution = None

self.ctl.solve(on_model=self.on_model)

return self.last_solution

1 Unsetting previous external atoms (viz. previous goal and positions)

2 Setting next external atoms (viz. next goal and positions)

3 Computing next stable model
by passing user-defined on model method
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Boardgaming

Ricochet Robot Player
on model

from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

on model

def on_model(self, model):

self.last_solution = model.atoms()

self.last_positions = []

for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and

len(atom.args()) == 4 and

atom.args()[3] == self.horizon):

self.last_positions.append(Fun("pos", atom.args()[:-1]))

1 Storing stable model

2 Extracting atoms (viz. last robot positions)
by adding pos(R,X,Y) for each pos(R,X,Y,horizon)
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Boardgaming

ricochet.py
from gringo import Control, Model, Fun

class Player:
def __init__(self, horizon, positions, files):

self.last_positions = positions
self.last_solution = None
self.undo_external = []
self.horizon = horizon
self.ctl = Control([’-c’, ’horizon={0}’.format(self.horizon)])
for x in files:

self.ctl.load(x)
self.ctl.ground([("base", [])])

def solve(self, goal):
for x in self.undo_external:

self.ctl.assign_external(x, False)
self.undo_external = []
for x in self.last_positions + [goal]:

self.ctl.assign_external(x, True)
self.undo_external.append(x)

self.last_solution = None
self.ctl.solve(on_model=self.on_model)
return self.last_solution

def on_model(self, model):
self.last_solution = model.atoms()
self.last_positions = []
for atom in model.atoms(Model.ATOMS):

if (atom.name() == "pos" and len(atom.args()) == 4 and atom.args()[3] == self.horizon):
self.last_positions.append(Fun("pos", atom.args()[:-1]))

horizon = 15
encodings = ["board.lp", "targets.lp", "ricochet.lp", "optimization.lp"]
positions = [Fun("pos", [Fun("red"), 1, 1]), Fun("pos", [Fun("blue"), 1, 16]),

Fun("pos", [Fun("green"), 16, 1]), Fun("pos", [Fun("yellow"), 16, 16])]
sequence = [Fun("goal", [13]), Fun("goal", [4]), Fun("goal", [7])]

player = Player(horizon, positions, encodings)
for goal in sequence:

print player.solve(goal)
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Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz
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Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),
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move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 193 / 218



Boardgaming

Let’s play!

$ python ricochet.py

[move(red,0,1,1), move(yellow,-1,0,14), move(yellow,-1,0,12), move(yellow,-1,0,11),

move(yellow,-1,0,9), move(red,1,0,7), move(red,1,0,2), move(yellow,-1,0,10),

move(yellow,-1,0,13), move(yellow,-1,0,15), move(red,-1,0,4), move(yellow,0,-1,6),

move(red,0,1,3), move(red,0,1,5), move(yellow,0,1,8)]

[move(blue,0,1,15), move(blue,0,1,11), move(blue,0,1,8), move(blue,0,1,3),

move(blue,1,0,2), move(blue,0,1,9), move(blue,-1,0,7), move(blue,0,1,10),

move(blue,0,1,13), move(blue,-1,0,4), move(blue,0,-1,1), move(blue,0,-1,6),

move(green,-1,0,5), move(blue,0,1,12), move(blue,0,1,14)]

[move(green,1,0,15), move(green,1,0,8), move(green,1,0,5), move(green,1,0,4),

move(green,1,0,3), move(green,1,0,10), move(green,1,0,7), move(green,1,0,12),

move(green,1,0,9), move(green,1,0,2), move(green,1,0,11), move(green,1,0,13),

move(green,1,0,6), move(green,1,0,14), move(green,0,1,1)]

$ python robotviz
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Motivation

Motivation

Preferences are pervasive

The identification of preferred, or optimal, solutions is often
indispensable in real-world applications

In many cases, this also involves the combination of various
qualitative and quantitative preferences

Only optimization statements representing objective functions using
sum or count aggregates are established components of ASP systems

Example #minimize{40 : sauna, 70 : dive}
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The asprin framework

Outline

21 Motivation

22 The asprin framework

23 Preliminaries

24 Language

25 Implementation
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The asprin framework

Approach

asprin is a framework for handling preferences among the stable
models of logic programs

general because it captures numerous existing approaches to preference
from the literature
flexible because it allows for an easy implementation of new or
extended existing approaches

asprin builds upon advanced control capacities for incremental and
meta solving, allowing for

search for specific preferred solutions without any modifications to the
ASP solver
continuous integrated solving process significantly reducing
redundancies
high customizability via an implementation through ordinary ASP
encodings
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redundancies
high customizability via an implementation through ordinary ASP
encodings
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The asprin framework

Example

#preference(costs, less(weight)){40 : sauna, 70 : dive}
#preference(fun, superset){sauna, dive, hike,∼bunji}
#preference(temps, aso){dive > sauna ‖ hot, sauna > dive ‖¬hot}
#preference(all , pareto){name(costs), name(fun), name(temps)}

#optimize(all)
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Preliminaries

Preference

A strict partial order � on the stable models of a logic program

That is, X � Y means that X is preferred to Y

A stable model X is �-preferred, if there is no other stable model Y
such that Y � X

A preference type is a (parametric) class of preference relations
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Language

Language

weighted formula w1, . . . ,wl : φ
where each wi is a term and φ is a Boolean formula

naming atom name(s)
where s is the name of a preference

preference element Φ1 > · · · > Φm ‖ Φ
where each Φr is a set of weighted formulas and Φ is a non-weighted formula

preference statement #preference(s, t){e1, . . . , en}
where s and t represent the preference statement and its type

and each ej is a preference element

optimization directive #optimize(s)
where s is the name of a preference

preference specification is a set S of preference statements and a directive

#optimize(s) such that S is an acyclic, closed, and s ∈ S
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Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218



Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218



Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218



Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218



Language

Preference type

A preference type t is a function mapping a set of preference
elements, E , to a (strict) preference relation, t(E ), on sets of atoms

The domain of t, dom(t), fixes its admissible preference elements

Example less(cardinality)

(X ,Y ) ∈ less(cardinality)(E )
if |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}|

dom(less(cardinality)) = P({a,¬a | a ∈ A})
(where P(X ) denotes the power set of X )

Torsten Schaub (KRR@UP) Answer Set Solving in Practice August 3, 2015 204 / 218



Language

More examples

more(weight) is defined as

(X ,Y ) ∈ more(weight)(E) if
∑

(w :`)∈E ,X |=` w >
∑

(w :`)∈E ,Y |=` w

dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and

subset is defined as

(X ,Y ) ∈ subset(E) if {` ∈ E | X |= `} ⊂ {` ∈ E | Y |= `}
dom(less(cardinality)) = P({a,¬a | a ∈ A}).

pareto is defined as

(X ,Y ) ∈ pareto(E) if
∧

name(s)∈E (X �s Y ) ∧
∨

name(s)∈E (X �s Y )

dom(pareto) = P({n | n ∈ N});

lexico is defined as

(X ,Y ) ∈ lexico(E) if
∨

w :name(s)∈E

(
(X �s Y ) ∧

∧
v :name(s′)∈E ,v<w (X =s′ Y )

)
dom(lexico) = P({w : n | w ∈ Z, n ∈ N}).
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Language

Preference relation

A preference relation is obtained by applying a preference type to an
admissible set of preference elements

#preference(s, t) E declares preference relation t(E ) denoted by �s

Example #preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

where �1 stands for less(cardinality)({a,¬b, c})
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Implementation

Preference program

Reification HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}

Preference program Let s be a preference statement declaring �s

and let Ps be a logic program

We define Ps as a preference program for s, if for all sets X ,Y ⊆ A,
we have

X �s Y iff Ps ∪ HX ∪ H ′Y is satisfiable

Note Ps usually consists of an encoding Ets of ts , facts Fs

representing the preference statement, and auxiliary rules A

Note Dynamic versions of HX and HY must be used for optimization
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Implementation

#preference(3, subset){a,¬b, c}

Esubset=

 better(P) :- preference(P,subset),

holds’(X) : preference(P,_,_,for(X),_), holds(X);

1 #sum { 1,X : not holds(X), holds’(X),

preference(P,_,_,for(X),_) }.


F3 =

{
preference(3,subset). preference(3,1,1,for(a),()).

preference(3,2,1,for(neg(b)),()).

preference(3,3,1,for(c),()).

}
A =

{
holds(neg(A)) :- not holds(A), preference(_,_,_,for(neg(A)),_).

holds’(neg(A)) :- not holds’(A),preference(_,_,_,for(neg(A)),_).

}
H{a,b}=

{
holds(a). holds(b).

}
H ′{a} =

{
holds’(a).

}
We get a stable model containing better(3) indicating that
{a, b} �3 {a}, or {a} ⊂ {a,¬b}
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Implementation

Basic algorithm solveOpt(P , s)

Input : A program P over A and preference statement s
Output : A �s -preferred stable model of P, if P is satisfiable, and ⊥

otherwise

Y ← solve(P)
if Y = ⊥ then return ⊥

repeat
X ← Y
Y ← solve(P ∪ Ets ∪ Fs ∪ RA ∪ H ′

X ) ∩ A
until Y = ⊥
return X

where RX = {holds(a)← a | a ∈ X}
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Implementation

Sketched Python Implementation

#script (python)

from gringo import *

holds = []

def getHolds():

global holds

return holds

def onModel(model):

global holds

holds = []

for a in model.atoms():

if (a.name() == "_holds"): holds.append(a.args()[0])

def main(prg):

step = 1

prg.ground([("base", [])])

while True:

if step > 1: prg.ground([("doholds",[step-1]),("preference",[0,step-1])]

ret = prg.solve(on_model=onModel)

if ret == SolveResult.UNSAT: break

step = step+1

#end.

#program base. #program doholds(m).

#show _holds(X,0) : _holds(X,0). _holds(X,m) :- X = @getHolds().
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Implementation

Vanilla minimize statements

Emulating the minimize statement

#minimize { C,X,Y : cycle(X,Y), cost(X,Y,C) }.

in asprin amounts to

#preference(myminimize,less(weight))

{ C,(X,Y) :: cycle(X,Y) : cost(X,Y,C) }.

#optimize(myminimize).

Note asprin separates the declaration of preferences from the actual
optimization directive
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Implementation

Example
in asprin’s input language

#preference(costs,less(weight)){

C :: sauna : cost(sauna,C);

C :: dive : cost(dive,C)

}.

#preference(fun,superset){ sauna; dive; hike; not bunji }.

#preference(temps,aso){

dive > sauna || hot;

sauna > dive || not hot

}.

#preference(all,pareto){name(costs); name(fun); name(temps)}.

#optimize(all).
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Implementation

asprin’s library

Basic preference types

subset and superset

less(cardinality) and more(cardinality)

less(weight) and more(weight)

aso (Answer Set Optimization)
poset (Qualitative Preferences)

Composite preference types

neg

and

pareto

lexico

See Potassco Guide on how to define further types
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Summary

Summary

asprin stands for “ASP for Preference handling”

asprin is a general, flexible, and extendable framework for
preference handling in ASP

asprin caters to

off-the-shelf users using the preference relations in asprin’s library
preference engineers customizing their own preference relations
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Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications
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Rapid application development tool

ASP has a growing range of applications

ASP = DB+LP+KR+SAT
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Summary

Summary

ASP is a viable tool for Knowledge Representation and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

http://potassco.sourceforge.net
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