
Modeling and Solving in
Answer Set Programming

Martin Gebser Roland Kaminski Benjamin Kaufmann

Torsten Schaub

University of Potsdam

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 1 / 226

Outline

1 Motivation

2 Introduction

3 Basic modeling

4 (Language extensions)

5 Solving

6 Advanced modeling

7 Systems

8 Summary

Bibliography

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 2 / 226

Bias

Focus

Answer Set Programming as Boolean Constraint Satisfaction Problem

Answer Set Solving as a Boolean Constraint Solving

Answer Set Systems at http://potassco.sourceforge.net

Further resources

http://potassco.sourceforge.net/teaching.html

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 3 / 226

http://potassco.sourceforge.net
http://potassco.sourceforge.net/teaching.html

Bias

Focus

Answer Set Programming as Boolean Constraint Satisfaction Problem

Answer Set Solving as a Boolean Constraint Solving

Answer Set Systems at http://potassco.sourceforge.net

Further resources

http://potassco.sourceforge.net/teaching.html

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 3 / 226

http://potassco.sourceforge.net
http://potassco.sourceforge.net/teaching.html

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 4 / 226

Motivation

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 5 / 226

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Informatics

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Traditional programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Interpreting

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Motivation

Declarative problem solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 6 / 226

Nutshell

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 7 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Nutshell

ASP is an approach to declarative problem solving, combining
a rich yet simple modeling language
with high-performance solving capacities

ASP has its roots in
(logic-based) knowledge representation and (nonmonotonic) reasoning
(deductive) databases
constraint solving (in particular, SATisfiability testing)
logic programming (with negation)

ASP allows for solving all search problems in NP (and NPNP)
in a uniform way

ASP is versatile as reflected by the ASP solver clasp, winning
first places at ASP’07/09/11, CASC’11, MISC’11, PB’09/11,
and SAT’09/11

ASP embraces many emerging application areas

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 8 / 226

Nutshell

Answer Set Programming
in a Peanutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 9 / 226

Nutshell

Answer Set Programming
in a Peanutshell

ASP is an approach to declarative problem solving, combining

a rich yet simple modeling language
with high-performance solving capacities

tailored to Knowledge Representation and Reasoning

ASP = KR+DB+SAT+LP

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 9 / 226

Shifting paradigms

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 10 / 226

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 11 / 226

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 11 / 226

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 11 / 226

Shifting paradigms

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

Automated planning, Kautz and Selman (ECAI’92)

Represent planning problems as propositional theories so that
models not proofs describe solutions

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 11 / 226

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 12 / 226

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models

SAT

propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 12 / 226

Shifting paradigms

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models SAT
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 12 / 226

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 13 / 226

Shifting paradigms

LP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Prolog queries

?- above(a,c).

true.

?- above(c,a).

no.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 13 / 226

Shifting paradigms

LP-style playing with blocks

Another Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 14 / 226

Shifting paradigms

LP-style playing with blocks

Another Prolog program

on(a,b).

on(b,c).

above(X,Y) :- above(X,Z), on(Z,Y).

above(X,Y) :- on(X,Y).

Prolog queries

?- above(a,c).

Fatal Error: local stack overflow.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 14 / 226

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model

{on(b, b), on(a, b), on(b, c), on(a, c),
above(b, b), above(c , b), above(a, b),
above(b, c), above(c , c), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 15 / 226

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model

{on(b, b), on(a, b), on(b, c), on(a, c),
above(b, b), above(c , b), above(a, b),
above(b, c), above(c , c), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 15 / 226

Shifting paradigms

SAT-style playing with blocks

Formula

on(a, b)
∧ on(b, c)
∧ (on(X ,Y)→ above(X ,Y))
∧ (on(X ,Z) ∧ above(Z ,Y)→ above(X ,Y))

Herbrand model (among 426!)

{on(b, b), on(a, b), on(b, c), on(a, c),
above(b, b), above(c , b), above(a, b),
above(b, c), above(c , c), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 15 / 226

Rooting ASP

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 16 / 226

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 17 / 226

Rooting ASP

KR’s shift of paradigm

Theorem Proving based approach (eg. Prolog)

1 Provide a representation of the problem.
2 A solution is given by a derivation of a query.

Model Generation based approach (eg. SATisfiability testing)

1 Provide a representation of the problem.
2 A solution is given by a model of the representation.

å Answer Set Programming (ASP)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 17 / 226

Rooting ASP

Model Generation based Problem Solving

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 18 / 226

Rooting ASP

Answer Set Programming at large

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 18 / 226

Rooting ASP

Answer Set Programming commonly

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 18 / 226

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

...
...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 18 / 226

Rooting ASP

Answer Set Programming in practice

Representation Solution
constraint satisfaction problem assignment

propositional horn theories smallest model

propositional theories models
propositional theories minimal models
propositional theories stable models

propositional programs minimal models
propositional programs supported models
propositional programs stable models

first-order theories models
first-order theories minimal models
first-order theories stable models
first-order theories Herbrand models

auto-epistemic theories expansions
default theories extensions

first-order programs stable Herbrand models

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 18 / 226

Rooting ASP

ASP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 19 / 226

Rooting ASP

ASP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 19 / 226

Rooting ASP

ASP-style playing with blocks

Prolog program

on(a,b).

on(b,c).

above(X,Y) :- on(X,Y).

above(X,Y) :- on(X,Z), above(Z,Y).

Stable Herbrand model (and no others)

{ on(a, b), on(b, c), above(b, c), above(a, b), above(a, c) }

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 19 / 226

Rooting ASP

ASP versus LP

ASP Prolog

Model generation Query orientation

Bottom-up Top-down

Modeling language Programming language

Rule-based format

Instantiation Unification
Flat terms Nested terms

(Turing +) NP(NP) Turing

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 20 / 226

Rooting ASP

ASP versus SAT

ASP SAT

Model generation

Bottom-up

Constructive Logic Classical Logic

Closed (and open) Open world reasoning
world reasoning

Modeling language —

Complex reasoning modes Satisfiability testing

Satisfiability Satisfiability
Enumeration/Projection —
Optimization —
Intersection/Union —

(Turing +) NP(NP) NP

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 21 / 226

Problem solving

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 22 / 226

Problem solving

ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 23 / 226

Problem solving

SAT solving

Problem

Formula
(CNF) Solver Classical

Models

Solution

- -

?

6

Programming Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 24 / 226

Problem solving

Rooting ASP solving

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 25 / 226

Problem solving

Rooting ASP solving

Problem

Logic
Program

LP

Grounder

DB

Solver

SAT

Stable
Models

KR+LP

Solution

- - -

?

6

Modeling KR Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 25 / 226

Use

Motivation: Overview

1 Motivation

2 Nutshell

3 Shifting paradigms

4 Rooting ASP

5 Problem solving

6 Use

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 26 / 226

Use

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning,
Code Optimization,
Composition of Renaissance Music,
Database Integration,
Decision Support for NASA shuttle controllers,
Model Checking,
Product Configuration,
Robotics,
System Biology,
System Synthesis,
(industrial) Team-building,
and many many more.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 27 / 226

Use

What is ASP good for?

Combinatorial search problems in the realm of P, NP, and NPNP

(some with substantial amount of data), like

Automated Planning,
Code Optimization,
Composition of Renaissance Music,
Database Integration,
Decision Support for NASA shuttle controllers,
Model Checking,
Product Configuration,
Robotics,
System Biology,
System Synthesis,
(industrial) Team-building,
and many many more.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 27 / 226

Use

What does ASP offer?

Integration of KR, DB, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc.

ASP = KR+DB+SAT+LP

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 28 / 226

Use

What does ASP offer?

Integration of KR, DB, and SAT techniques

Succinct, elaboration-tolerant problem representations

Rapid application development tool

Easy handling of dynamic, knowledge intensive applications

including: data, frame axioms, exceptions, defaults, closures, etc.

ASP = KR+DB+SAT+LP

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 28 / 226

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 29 / 226

Syntax

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 30 / 226

Syntax

Problem solving in ASP: Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 31 / 226

Syntax

Normal logic programs

A (normal) rule, r , is an ordered pair of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ n) is an atom.

A (normal) logic program is a finite set of rules.

Notation

head(r) = A0

body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}
body(r)+ = {A1, . . . ,Am}
body(r)− = {Am+1, . . . ,An}

A program is called positive if body(r)− = ∅ for all its rules.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 32 / 226

Syntax

Normal logic programs

A (normal) rule, r , is an ordered pair of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ n) is an atom.

A (normal) logic program is a finite set of rules.

Notation

head(r) = A0

body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}
body(r)+ = {A1, . . . ,Am}
body(r)− = {Am+1, . . . ,An}

A program is called positive if body(r)− = ∅ for all its rules.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 32 / 226

Syntax

Normal logic programs

A (normal) rule, r , is an ordered pair of the form

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 0, and each Ai (0 ≤ i ≤ n) is an atom.

A (normal) logic program is a finite set of rules.

Notation

head(r) = A0

body(r) = {A1, . . . ,Am, not Am+1, . . . , not An}
body(r)+ = {A1, . . . ,Am}
body(r)− = {Am+1, . . . ,An}

A program is called positive if body(r)− = ∅ for all its rules.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 32 / 226

Syntax

(Rough) notational convention

We sometimes use the following notation interchangeably in order to stress
the respective view:

negation classical
if and or as failure negation

source code :- , | not -

logic program ← , ; not/∼ ¬
formula → ∧ ∨ ∼/(¬) ¬

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 33 / 226

Semantics

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 34 / 226

Semantics

Problem solving in ASP: Semantics

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 35 / 226

Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program Π iff
for any r ∈ Π, head(r) ∈ X whenever body(r)+ ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The smallest set of atoms which is closed under a positive program Π
is denoted by Cn(Π).

å Cn(Π) corresponds to the ⊆-smallest model of Π (ditto).

The set Cn(Π) of atoms is the answer set of a positive program Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 36 / 226

Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program Π iff
for any r ∈ Π, head(r) ∈ X whenever body(r)+ ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The smallest set of atoms which is closed under a positive program Π
is denoted by Cn(Π).

å Cn(Π) corresponds to the ⊆-smallest model of Π (ditto).

The set Cn(Π) of atoms is the answer set of a positive program Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 36 / 226

Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program Π iff
for any r ∈ Π, head(r) ∈ X whenever body(r)+ ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The smallest set of atoms which is closed under a positive program Π
is denoted by Cn(Π).

å Cn(Π) corresponds to the ⊆-smallest model of Π (ditto).

The set Cn(Π) of atoms is the answer set of a positive program Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 36 / 226

Semantics

Answer set: Formal Definition
Positive programs

A set of atoms X is closed under a positive program Π iff
for any r ∈ Π, head(r) ∈ X whenever body(r)+ ⊆ X .

å X corresponds to a model of Π (seen as a formula).

The smallest set of atoms which is closed under a positive program Π
is denoted by Cn(Π).

å Cn(Π) corresponds to the ⊆-smallest model of Π (ditto).

The set Cn(Π) of atoms is the answer set of a positive program Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 36 / 226

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses.

Definite clauses are disjunctions with exactly one positive atom:

A0 ∨ ¬A1 ∨ · · · ∨ ¬Am

A set of definite clauses has a (unique) smallest model.

Horn clauses are clauses with at most one positive atom.

Every definite clause is a Horn clause but not vice versa.
Non-definite Horn clauses can be regarded as integrity constraints.

A set of Horn clauses has a smallest model or none.

This smallest model is the intended semantics of such set of clauses.

Given a positive program Π, Cn(Π) corresponds to the smallest model
of the set of definite clauses corresponding to Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 37 / 226

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses.

Definite clauses are disjunctions with exactly one positive atom:

A0 ∨ ¬A1 ∨ · · · ∨ ¬Am

A set of definite clauses has a (unique) smallest model.

Horn clauses are clauses with at most one positive atom.

Every definite clause is a Horn clause but not vice versa.
Non-definite Horn clauses can be regarded as integrity constraints.

A set of Horn clauses has a smallest model or none.

This smallest model is the intended semantics of such set of clauses.

Given a positive program Π, Cn(Π) corresponds to the smallest model
of the set of definite clauses corresponding to Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 37 / 226

Semantics

Some “logical” remarks

Positive rules are also referred to as definite clauses.

Definite clauses are disjunctions with exactly one positive atom:

A0 ∨ ¬A1 ∨ · · · ∨ ¬Am

A set of definite clauses has a (unique) smallest model.

Horn clauses are clauses with at most one positive atom.

Every definite clause is a Horn clause but not vice versa.
Non-definite Horn clauses can be regarded as integrity constraints.

A set of Horn clauses has a smallest model or none.

This smallest model is the intended semantics of such set of clauses.

Given a positive program Π, Cn(Π) corresponds to the smallest model
of the set of definite clauses corresponding to Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 37 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Basic idea

Consider the logical formula Φ and its three
(classical) models:

H
HHH

HHHj p 7→ 1
q 7→ 1
r 7→ 0

{p, q}, {q, r}, and {p, q, r}

Φ q ∧ (q ∧ ¬r → p)

Formula Φ has one stable model,
often called answer set:

{p, q}

ΠΦ q ←
p ← q, not r

Informally, a set X of atoms is an answer set of a logic program Π

if X is a (classical) model of Π and

if all atoms in X are justified by some rule in Π

(rooted in intuitionistic logics HT (Heyting, 1930) and G3 (Gödel, 1932))

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 38 / 226

Semantics

Answer set: Formal Definition
Normal programs

The reduct, ΠX , of a program Π relative to a set X of atoms is
defined by

ΠX = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩ X = ∅}.

A set X of atoms is a stable model of a program Π, if Cn(ΠX) = X .

Note: Cn(ΠX) is the ⊆–smallest (classical) model of ΠX .

Note: Every atom in X is justified by an “applying rule from Π”

Sorry, but: We interchangeably use the terms answer set and
stable model.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 39 / 226

Semantics

Answer set: Formal Definition
Normal programs

The reduct, ΠX , of a program Π relative to a set X of atoms is
defined by

ΠX = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩ X = ∅}.

A set X of atoms is a stable model of a program Π, if Cn(ΠX) = X .

Note: Cn(ΠX) is the ⊆–smallest (classical) model of ΠX .

Note: Every atom in X is justified by an “applying rule from Π”

Sorry, but: We interchangeably use the terms answer set and
stable model.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 39 / 226

Semantics

Answer set: Formal Definition
Normal programs

The reduct, ΠX , of a program Π relative to a set X of atoms is
defined by

ΠX = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩ X = ∅}.

A set X of atoms is a stable model of a program Π, if Cn(ΠX) = X .

Note: Cn(ΠX) is the ⊆–smallest (classical) model of ΠX .

Note: Every atom in X is justified by an “applying rule from Π”

Sorry, but: We interchangeably use the terms answer set and
stable model.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 39 / 226

Semantics

Answer set: Formal Definition
Normal programs

The reduct, ΠX , of a program Π relative to a set X of atoms is
defined by

ΠX = {head(r)← body(r)+ | r ∈ Π and body(r)− ∩ X = ∅}.

A set X of atoms is a stable model of a program Π, if Cn(ΠX) = X .

Note: Cn(ΠX) is the ⊆–smallest (classical) model of ΠX .

Note: Every atom in X is justified by an “applying rule from Π”

Sorry, but: We interchangeably use the terms answer set and
stable model.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 39 / 226

Semantics

A closer look at ΠX

In other words, given a set X of atoms from Π,

ΠX is obtained from Π by deleting

1 each rule having a not A in its body with A ∈ X
and then

2 all negative atoms of the form not A
in the bodies of the remaining rules.

Note: Only negative body literals are evaluated wrt X

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 40 / 226

Semantics

A closer look at ΠX

In other words, given a set X of atoms from Π,

ΠX is obtained from Π by deleting

1 each rule having a not A in its body with A ∈ X
and then

2 all negative atoms of the form not A
in the bodies of the remaining rules.

Note: Only negative body literals are evaluated wrt X

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 40 / 226

Examples

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 41 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A first example

Π = {p ← p, q ← not p}

X ΠX Cn(ΠX)

∅ p ← p
q ←

{q} 8

{p} p ← p ∅ 8

{q} p ← p
q ←

{q} 4

{p, q} p ← p ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 42 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A second example

Π = {p ← not q, q ← not p}

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q} 8

{p} p ← {p} 4

{q}
q ←

{q} 4

{p, q} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 43 / 226

Examples

A third example

Π = {p ← not p}

X ΠX Cn(ΠX)

∅ p ← {p} 8
{p} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 44 / 226

Examples

A third example

Π = {p ← not p}

X ΠX Cn(ΠX)

∅ p ← {p} 8
{p} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 44 / 226

Examples

A third example

Π = {p ← not p}

X ΠX Cn(ΠX)

∅ p ← {p} 8
{p} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 44 / 226

Examples

A third example

Π = {p ← not p}

X ΠX Cn(ΠX)

∅ p ← {p} 8
{p} ∅ 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 44 / 226

Examples

Answer set: Some properties

A logic program may have zero, one, or multiple answer sets!

If X is an answer set of a logic program Π,
then X is a model of Π (seen as a formula).

If X and Y are answer sets of a normal program Π,
then X 6⊂ Y .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 45 / 226

Examples

Answer set: Some properties

A logic program may have zero, one, or multiple answer sets!

If X is an answer set of a logic program Π,
then X is a model of Π (seen as a formula).

If X and Y are answer sets of a normal program Π,
then X 6⊂ Y .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 45 / 226

Variables

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 46 / 226

Variables

Programs with Variables

Let Π be a logic program.

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T }

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution.

Ground Instantiation of Π: ground(Π) =
⋃

r∈Πground(r)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 47 / 226

Variables

Programs with Variables

Let Π be a logic program.

Let T be a set of (variable-free) terms (also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T
(also called alphabet or Herbrand base)

Ground Instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T }

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution.

Ground Instantiation of Π: ground(Π) =
⋃

r∈Πground(r)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 47 / 226

Variables

Programs with Variables

Let Π be a logic program.

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T }

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution.

Ground Instantiation of Π: ground(Π) =
⋃

r∈Πground(r)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 47 / 226

Variables

Programs with Variables

Let Π be a logic program.

Let T be a set of (variable-free) terms

(also called Herbrand universe)

Let A be a set of (variable-free) atoms constructable from T

(also called alphabet or Herbrand base)

Ground Instances of r ∈ Π: Set of variable-free rules obtained by
replacing all variables in r by elements from T :

ground(r) = {rθ | θ : var(r)→ T }

where var(r) stands for the set of all variables occurring in r ;
θ is a (ground) substitution.

Ground Instantiation of Π: ground(Π) =
⋃

r∈Πground(r)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 47 / 226

Variables

An example

Π = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(Π) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 48 / 226

Variables

An example

Π = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(Π) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 48 / 226

Variables

An example

Π = { r(a, b)←, r(b, c)←, t(X ,Y)← r(X ,Y) }
T = {a, b, c}

A=

{
r(a, a), r(a, b), r(a, c), r(b, a), r(b, b), r(b, c), r(c , a), r(c , b), r(c , c),
t(a, a), t(a, b), t(a, c), t(b, a), t(b, b), t(b, c), t(c , a), t(c , b), t(c , c)

}

ground(Π) =


r(a, b) ← ,
r(b, c) ← ,
t(a, a) ← r(a, a), t(b, a) ← r(b, a), t(c , a) ← r(c , a),
t(a, b) ← r(a, b), t(b, b) ← r(b, b), t(c , b) ← r(c , b),
t(a, c) ← r(a, c), t(b, c) ← r(b, c), t(c , c) ← r(c , c)


Intelligent Grounding aims at reducing the ground instantiation.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 48 / 226

Variables

Answer sets of programs with Variables

Let Π be a normal logic program with variables.

A set X of (ground) atoms as a stable model of Π,

if Cn(ground(Π)X) = X .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 49 / 226

Variables

Answer sets of programs with Variables

Let Π be a normal logic program with variables.

A set X of (ground) atoms as a stable model of Π,

if Cn(ground(Π)X) = X .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 49 / 226

Language Constructs

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 50 / 226

Language Constructs

Problem solving in ASP: Extended Syntax

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 51 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Language Constructs

Language Constructs

Variables (over the Herbrand Universe)

p(X) :- q(X) over constants {a, b, c} stands for
p(a) :- q(a), p(b) :- q(b), p(c) :- q(c)

Conditional Literals

p :- q(X) : r(X) given r(a), r(b), r(c) stands for
p :- q(a), q(b), q(c)

Disjunction

p(X) | q(X) :- r(X)

Integrity Constraints

:- q(X), p(X)

Choice

2 { p(X,Y) : q(X) } 7 :- r(Y)

Aggregates

s(Y) :- r(Y), 2 #count { p(X,Y) : q(X) } 7

also: #sum, #avg, #min, #max, #even, #odd

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 52 / 226

Reasoning Modes

Introduction: Overview

7 Syntax

8 Semantics

9 Examples

10 Variables

11 Language Constructs

12 Reasoning Modes

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 53 / 226

Reasoning Modes

Problem solving in ASP: Reasoning Modes

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 54 / 226

Reasoning Modes

Reasoning Modes

Satisfiability

Enumeration†

Projection†

Intersection‡

Union‡

Optimization

and combinations of them

† without solution recording
‡ without solution enumeration

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 55 / 226

Basic Modeling: Overview

13 ASP Solving Process

14 Problems as Logic Programs
Graph Coloring

15 Methodology
Satisfiability
Queens
Reviewer Assignment
Planning

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 56 / 226

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 57 / 226

Modeling

For solving a problem class P for a problem instance I,
encode

1 the problem instance I as a set C(I) of facts and

2 the problem class P as a set C(P) of rules

such that the solutions to P for I can be (polynomially) extracted
from the answer sets of C(I) ∪ C(P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 58 / 226

ASP Solving Process

Basic Modeling: Overview

13 ASP Solving Process

14 Problems as Logic Programs
Graph Coloring

15 Methodology
Satisfiability
Queens
Reviewer Assignment
Planning

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 59 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

ASP Solving Process

ASP Solving Process

Program Grounder Solver Models- - -

6

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 60 / 226

Problems as Logic Programs

Basic Modeling: Overview

13 ASP Solving Process

14 Problems as Logic Programs
Graph Coloring

15 Methodology
Satisfiability
Queens
Reviewer Assignment
Planning

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 61 / 226

Problems as Logic Programs Graph Coloring

ASP Solving Process

Program Grounder Solver Models- - -

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 62 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 63 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 63 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 63 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring

node(1..6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(X,C) : col(C)} 1 :- node(X).

:- edge(X,Y), color(X,C), color(Y,C).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 63 / 226

Problems as Logic Programs Graph Coloring

ASP Solving Process

Program Grounder Solver Models- - -

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 64 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring: Grounding

$ gringo -t color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 65 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring: Grounding

$ gringo -t color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5). edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2). edge(6,3). edge(6,5).

col(r). col(b). col(g).

1 {color(1,r), color(1,b), color(1,g)} 1.

1 {color(2,r), color(2,b), color(2,g)} 1.

1 {color(3,r), color(3,b), color(3,g)} 1.

1 {color(4,r), color(4,b), color(4,g)} 1.

1 {color(5,r), color(5,b), color(5,g)} 1.

1 {color(6,r), color(6,b), color(6,g)} 1.

:- color(1,r), color(2,r). :- color(2,g), color(5,g). ... :- color(6,r), color(2,r).

:- color(1,b), color(2,b). :- color(2,r), color(6,r). :- color(6,b), color(2,b).

:- color(1,g), color(2,g). :- color(2,b), color(6,b). :- color(6,g), color(2,g).

:- color(1,r), color(3,r). :- color(2,g), color(6,g). :- color(6,r), color(3,r).

:- color(1,b), color(3,b). :- color(3,r), color(1,r). :- color(6,b), color(3,b).

:- color(1,g), color(3,g). :- color(3,b), color(1,b). :- color(6,g), color(3,g).

:- color(1,r), color(4,r). :- color(3,g), color(1,g). :- color(6,r), color(5,r).

:- color(1,b), color(4,b). :- color(3,r), color(4,r). :- color(6,b), color(5,b).

:- color(1,g), color(4,g). :- color(3,b), color(4,b). :- color(6,g), color(5,g).

:- color(2,r), color(4,r). :- color(3,g), color(4,g).

:- color(2,b), color(4,b). :- color(3,r), color(5,r).

:- color(2,g), color(4,g). :- color(3,b), color(5,b).

:- color(2,r), color(5,r). :- color(3,g), color(5,g).

:- color(2,b), color(5,b). :- color(4,r), color(1,r).
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 65 / 226

Problems as Logic Programs Graph Coloring

ASP Solving Process

Program Grounder Solver Models- - -

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 66 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp 0

clasp version 1.2.1

Reading from stdin

Reading : Done(0.000s)

Preprocessing: Done(0.000s)

Solving...

Answer: 1

color(1,b) color(2,r) color(3,r) color(4,g) color(5,b) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 2

color(1,g) color(2,r) color(3,r) color(4,b) color(5,g) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Answer: 3

color(1,b) color(2,g) color(3,g) color(4,r) color(5,b) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 4

color(1,g) color(2,b) color(3,b) color(4,r) color(5,g) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 5

color(1,r) color(2,b) color(3,b) color(4,g) color(5,r) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 6

color(1,r) color(2,g) color(3,g) color(4,b) color(5,r) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Models : 6

Time : 0.000 (Solving: 0.000)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 67 / 226

Problems as Logic Programs Graph Coloring

Graph Coloring: Solving

$ gringo color.lp | clasp 0

clasp version 1.2.1

Reading from stdin

Reading : Done(0.000s)

Preprocessing: Done(0.000s)

Solving...

Answer: 1

color(1,b) color(2,r) color(3,r) color(4,g) color(5,b) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 2

color(1,g) color(2,r) color(3,r) color(4,b) color(5,g) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Answer: 3

color(1,b) color(2,g) color(3,g) color(4,r) color(5,b) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 4

color(1,g) color(2,b) color(3,b) color(4,r) color(5,g) color(6,r) node(1) ... edge(1,2) ... col(r) ...

Answer: 5

color(1,r) color(2,b) color(3,b) color(4,g) color(5,r) color(6,g) node(1) ... edge(1,2) ... col(r) ...

Answer: 6

color(1,r) color(2,g) color(3,g) color(4,b) color(5,r) color(6,b) node(1) ... edge(1,2) ... col(r) ...

Models : 6

Time : 0.000 (Solving: 0.000)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 67 / 226

Methodology

Basic Modeling: Overview

13 ASP Solving Process

14 Problems as Logic Programs
Graph Coloring

15 Methodology
Satisfiability
Queens
Reviewer Assignment
Planning

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 68 / 226

Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester
(+ Optimizer)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 69 / 226

Methodology

Basic Methodology

Generate and Test (or: Guess and Check) approach

Generator Generate potential answer set candidates
(typically through non-deterministic constructs)

Tester Eliminate invalid candidates
(typically through integrity constraints)

Nutshell

Logic program = Data + Generator + Tester
(+ Optimizer)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 69 / 226

Methodology Satisfiability

Satisfiability

Problem Instance: A propositional formula φ in CNF.

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true.

Example: Consider formula (a ∨ ¬b) ∧ (¬a ∨ b).

Logic Program:

Generator Tester Stable models
{a,b} ← ← not a, b

← a, not b
X1 = {a,b}
X2 = {}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 70 / 226

Methodology Satisfiability

Satisfiability

Problem Instance: A propositional formula φ in CNF.

Problem Class: Is there an assignment of propositional variables to
true and false such that a given formula φ is true.

Example: Consider formula (a ∨ ¬b) ∧ (¬a ∨ b).

Logic Program:

Generator Tester Stable models
{a,b} ← ← not a, b

← a, not b
X1 = {a,b}
X2 = {}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 70 / 226

Methodology Queens

The n-Queens Problem

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Place n queens on an n × n
chess board

Queens must not attack one
another

Q Q Q

Q Q

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 71 / 226

Methodology Queens

Defining the Field

queens.lp

row (1..n).

col (1..n).

Create file queens.lp

Define the field

n rows
n columns

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 72 / 226

Methodology Queens

Defining the Field

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

SATISFIABLE

Models : 1

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 73 / 226

Methodology Queens

Placing some Queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

Guess a solution candidate

Place some queens on the board

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 74 / 226

Methodology Queens

Placing some Queens

Running . . .

$ clingo queens.lp -c n=5 3

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(1,1)

Answer: 3

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) queen(2,1)

SATISFIABLE

Models : 3+

...
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 75 / 226

Methodology Queens

Placing some Queens: Answer 1

Answer 1

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 Z0Z0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 76 / 226

Methodology Queens

Placing some Queens: Answer 2

Answer 2

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 0Z0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 77 / 226

Methodology Queens

Placing some Queens: Answer 3

Answer 3

5 Z0Z0Z
4 0Z0Z0
3 Z0Z0Z
2 QZ0Z0
1 Z0Z0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 78 / 226

Methodology Queens

Placing n Queens

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

Place exactly n queens on the board

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 79 / 226

Methodology Queens

Placing n Queens

Running . . .

$ clingo queens.lp -c n=5 2

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,1) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

Answer: 2

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(1,2) queen(4,1) queen(3,1) \

queen(2,1) queen(1,1)

...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 80 / 226

Methodology Queens

Placing n Queens: Answer 1

Answer 1

5 L0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 81 / 226

Methodology Queens

Placing n Queens: Answer 2

Answer 2

5 Z0Z0Z
4 QZ0Z0
3 L0Z0Z
2 QZ0Z0
1 LQZ0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 82 / 226

Methodology Queens

Horizontal and vertical Attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 83 / 226

Methodology Queens

Horizontal and vertical Attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

Forbid horizontal attacks

Forbid vertical attacks

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 83 / 226

Methodology Queens

Horizontal and vertical Attack

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(5,5) queen(4,4) queen(3,3) \

queen(2,2) queen(1,1)

...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 84 / 226

Methodology Queens

Horizontal and vertical Attack: Answer 1

Answer 1

5 Z0Z0L
4 0Z0L0
3 Z0L0Z
2 0L0Z0
1 L0Z0Z

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 85 / 226

Methodology Queens

Diagonal Attack

queens.lp

row (1..n).

col (1..n).

{ queen(I,J) : row(I) : col(J) }.

:- not n { queen(I,J) } n.

:- queen(I,J), queen(I,JJ), J != JJ.

:- queen(I,J), queen(II,J), I != II.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ),

I-J == II-JJ.

:- queen(I,J), queen(II,JJ), (I,J) != (II,JJ),

I+J == II+JJ.

Forbid diagonal attacks

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 86 / 226

Methodology Queens

Diagonal Attack

Running . . .

$ clingo queens.lp -c n=5

Answer: 1

row(1) row(2) row(3) row(4) row(5) \

col(1) col(2) col(3) col(4) col(5) \

queen(4,5) queen(1,4) queen(3,3) \

queen(5,2) queen(2,1)

SATISFIABLE

Models : 1+

Time : 0.000

Prepare : 0.000

Prepro. : 0.000

Solving : 0.000

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 87 / 226

Methodology Queens

Diagonal Attack: Answer 1

Answer 1

5 ZQZ0Z
4 0Z0ZQ
3 Z0L0Z
2 QZ0Z0
1 Z0ZQZ

1 2 3 4 5

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 88 / 226

Methodology Queens

Optimizing

queens-opt.lp

1 { queen(I,1..n) } 1 :- I = 1..n.

1 { queen (1..n,J) } 1 :- J = 1..n.

:- { queen(D-J,J) } 2, D = 2..2*n.

:- { queen(D+J,J) } 2, D = 1-n..n-1.

Encoding can be optimized

Much faster to solve

See Section Tweaking N-Queens

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 89 / 226

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 90 / 226

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 90 / 226

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 90 / 226

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 90 / 226

Methodology Reviewer Assignment

Reviewer Assignment
by Ilkka Niemelä

reviewer(r1). paper(p1). classA(r1,p1). classB(r1,p2). coi(r1,p3).

reviewer(r2). paper(p2). classA(r1,p3). classB(r1,p4). coi(r1,p6).

...

3 { assigned(P,R) : reviewer(R) } 3 :- paper(P).

:- assigned(P,R), coi(R,P).

:- assigned(P,R), not classA(R,P), not classB(R,P).

:- 9 { assigned(P,R) : paper(P) } , reviewer(R).

:- { assigned(P,R) : paper(P) } 6, reviewer(R).

assignedB(P,R) :- classB(R,P), assigned(P,R).

:- 3 { assignedB(P,R) : paper(P) }, reviewer(R).

#minimize { assignedB(P,R) : paper(P) : reviewer(R) }.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 90 / 226

Methodology Planning

Simplistic STRIPS Planning

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:- query(F), not holds(F,T), lasttime(T).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 91 / 226

Methodology Planning

Simplistic STRIPS Planning

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:- query(F), not holds(F,T), lasttime(T).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 91 / 226

Methodology Planning

Simplistic STRIPS Planning

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

time(1..k). lasttime(T) :- time(T), not time(T+1).

holds(P,0) :- init(P).

1 { occ(A,T) : action(A) } 1 :- time(T).

:- occ(A,T), pre(A,F), not holds(F,T-1).

ocdel(F,T) :- occ(A,T), del(A,F).

holds(F,T) :- occ(A,T), add(A,F).

holds(F,T) :- holds(F,T-1), not ocdel(F,T), time(T).

:- query(F), not holds(F,T), lasttime(T).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 91 / 226

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 92 / 226

Motivation

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 93 / 226

Motivation

Language extensions

The expressiveness of a language can be enhanced by introducing new
constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 94 / 226

Motivation

Language extensions

The expressiveness of a language can be enhanced by introducing new
constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 94 / 226

Motivation

Language extensions

The expressiveness of a language can be enhanced by introducing new
constructs

To this end, we must address the following issues:

What is the syntax of the new language construct?
What is the semantics of the new language construct?
How to implement the new language construct?

A way of providing semantics is to furnish a translation removing the
new constructs, eg. classical negation

This translation might also be used for implementing the language
extension

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 94 / 226

Integrity Constraints

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 95 / 226

Integrity Constraints

Integrity Constraints

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom

Example :- edge(X,Y), color(X,C), color(Y,C).

Embedding For a new symbol x , map

← A1, . . . ,Am, not Am+1, . . . , not An

7→ x ← A1, . . . ,Am, not Am+1, . . . , not An, not x

Another example Π = {p ← not q, q ← not p}
versus Π′ = Π ∪ {← p} and Π′′ = Π ∪ {← not p}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 96 / 226

Integrity Constraints

Integrity Constraints

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom

Example :- edge(X,Y), color(X,C), color(Y,C).

Embedding For a new symbol x , map

← A1, . . . ,Am, not Am+1, . . . , not An

7→ x ← A1, . . . ,Am, not Am+1, . . . , not An, not x

Another example Π = {p ← not q, q ← not p}
versus Π′ = Π ∪ {← p} and Π′′ = Π ∪ {← not p}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 96 / 226

Integrity Constraints

Integrity Constraints

Idea Eliminate unwanted solution candidates

Syntax An integrity constraint is of the form

← A1, . . . ,Am, not Am+1, . . . , not An,

where n ≥ m ≥ 1, and each Ai (1 ≤ i ≤ n) is a atom

Example :- edge(X,Y), color(X,C), color(Y,C).

Embedding For a new symbol x , map

← A1, . . . ,Am, not Am+1, . . . , not An

7→ x ← A1, . . . ,Am, not Am+1, . . . , not An, not x

Another example Π = {p ← not q, q ← not p}
versus Π′ = Π ∪ {← p} and Π′′ = Π ∪ {← not p}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 96 / 226

Choice Rules

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 97 / 226

Choice Rules

Choice rules

Idea Choices over subsets

Syntax

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A1, . . . ,Am} can be included in the answer set

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example Program Π = { {a} ← b, b ←} has two
answer sets: {b} and {a, b}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 98 / 226

Choice Rules

Choice rules

Idea Choices over subsets

Syntax

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A1, . . . ,Am} can be included in the answer set

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example Program Π = { {a} ← b, b ←} has two
answer sets: {b} and {a, b}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 98 / 226

Choice Rules

Choice rules

Idea Choices over subsets

Syntax

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

Informal meaning If the body is satisfied in an answer set,
then any subset of {A1, . . . ,Am} can be included in the answer set

Example 1 {color(X,C) : col(C)} 1 :- node(X).

Another Example Program Π = { {a} ← b, b ←} has two
answer sets: {b} and {a, b}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 98 / 226

Choice Rules

Embedding in normal logic programs

A choice rule of form

{A1, . . . ,Am} ← Am+1, . . . ,An, not An+1, . . . , not Ao

can be translated into 2m + 1 rules

A ← Am+1, . . . ,An, not An+1, . . . , not Ao

A1 ← A, not A1 . . . Am ← A, not Am

A1 ← not A1 . . . Am ← not Am

by introducing new atoms A,A1, . . . ,Am

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 99 / 226

Cardinality Constraints

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 100 / 226

Cardinality Constraints

Cardinality constraints

Syntax A (positive) cardinality constraint is of the form

l {A1, . . . ,Am} u

Informal meaning A cardinality constraint is satisfied in an answer set
X , if the number of atoms from {A1, . . . ,Am} satisfied in X is
between l and u (inclusive)
More formally, if l ≤ |{A1, . . . ,Am} ∩ X | ≤ u

Example 2 {hd(a),. . . ,hd(m)} 4

Conditions l {A1 : B1, . . . ,Am : Bm} u
where B1, . . . ,Bm are used for restricting instantiations of variables
occurring in A1, . . . ,Am

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 101 / 226

Cardinality Constraints

Cardinality constraints

Syntax A (positive) cardinality constraint is of the form

l {A1, . . . ,Am} u

Informal meaning A cardinality constraint is satisfied in an answer set
X , if the number of atoms from {A1, . . . ,Am} satisfied in X is
between l and u (inclusive)
More formally, if l ≤ |{A1, . . . ,Am} ∩ X | ≤ u

Example 2 {hd(a),. . . ,hd(m)} 4

Conditions l {A1 : B1, . . . ,Am : Bm} u
where B1, . . . ,Bm are used for restricting instantiations of variables
occurring in A1, . . . ,Am

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 101 / 226

Cardinality Constraints

Cardinality rules

Syntax

A0 ← l {A1, . . . ,Am, not Am+1, . . . , not An}

Informal meaning If at least l elements of the “body” are true in an
answer set, then add A0 to the answer set

å l is a lower bound on the “body”

Example Program Π = { a← 1{b, c}, b ←} has answer set {a, b}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 102 / 226

Cardinality Constraints

Embedding in normal logic programs

Replace each cardinality rule

A0 ← l {A1, . . . ,Am} by A0 ← cc(A1, l)

where atom cc(Ai , j) represents the fact that at least j of the atoms
in {Ai , . . . ,Am}, that is, of the atoms that have an equal or greater
index than i , are in a particular answer set

The definition of cc(Ai , j) is given by the rules

cc(Ai , j+1) ← cc(Ai+1, j),Ai

cc(Ai , j) ← cc(Ai+1, j)
cc(Am+1, 0) ←

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 103 / 226

Cardinality Constraints

Embedding in normal logic programs

Replace each cardinality rule

A0 ← l {A1, . . . ,Am} by A0 ← cc(A1, l)

where atom cc(Ai , j) represents the fact that at least j of the atoms
in {Ai , . . . ,Am}, that is, of the atoms that have an equal or greater
index than i , are in a particular answer set

The definition of cc(Ai , j) is given by the rules

cc(Ai , j+1) ← cc(Ai+1, j),Ai

cc(Ai , j) ← cc(Ai+1, j)
cc(Am+1, 0) ←

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 103 / 226

Cardinality Constraints

. . . and vice versa

A normal rule

A0 ← A1, . . . ,Am, not Am+1, . . . , not An,

can be represented by the cardinality rule

A0 ← n {A1, . . . ,Am, not Am+1, . . . , not An}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 104 / 226

Cardinality Constraints

Cardinality rules with upper bounds

A rule of the form

A0 ← l {A1, . . . ,Am, not Am+1, . . . , not An} u

stands for

A0 ← B, not C

B ← l {A1, . . . ,Am, not Am+1, . . . , not An}
C ← u+1 {A1, . . . ,Am, not Am+1, . . . , not An}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 105 / 226

Cardinality Constraints

Cardinality constraints as heads

A rule of the form

l {A1, . . . ,Am} u ← Am+1, . . . ,An, not An+1, . . . , not Ao ,

stands for

B ← Am+1, . . . ,An, not An+1, . . . , not Ao

{A1, . . . ,Am} ← B

C ← l {A1, . . . ,Am} u

← B, not C

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 106 / 226

Cardinality Constraints

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

stands for 0 ≤ i ≤ n

Bi ← li Si

Ci ← ui+1 Si

A ← B1, . . . ,Bn, not C1, . . . , not Cn

← A, not B0

← A,C0

S0 ∩ A ← A

where A is the underlying alphabet

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 107 / 226

Cardinality Constraints

Full-fledged cardinality rules

A rule of the form

l0 S0 u0 ← l1 S1 u1, . . . , ln Sn un

stands for 0 ≤ i ≤ n

Bi ← li Si

Ci ← ui+1 Si

A ← B1, . . . ,Bn, not C1, . . . , not Cn

← A, not B0

← A,C0

S0 ∩ A ← A

where A is the underlying alphabet

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 107 / 226

Weight Constraints

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 108 / 226

Weight Constraints

Weight constraints

Syntax l [A1 = w1, . . . ,Am = wm,
not Am+1 = wm+1, . . . , not An = wn] u

Informal meaning A weight constraint is satisfied in an answer set X ,
if

l ≤

 ∑
1≤i≤m,Ai∈X

wi +
∑

m<i≤n,Ai 6∈X
wi

 ≤ u

å Generalization of cardinality constraints

Example 80 [hd(a)=50,. . . ,hd(m)=100] 400

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 109 / 226

Optimization statements

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 110 / 226

Optimization statements

Optimization statements

Idea Compute optimal answer sets by minimizing (or maximizing)
a weighted sum of given elements

Syntax

#minimize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

#maximize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

Example

#minimize [hd(a)=30,. . . ,hd(m)=50]
#minimize [road(X,Y) : length(X,Y,L) = L]

Multi-criteria optimization can be accomplished by adding priority
levels to weighted literals, that is, by replacing Li = wi by Li = wi@Pi

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 111 / 226

Optimization statements

Optimization statements

Idea Compute optimal answer sets by minimizing (or maximizing)
a weighted sum of given elements

Syntax

#minimize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

#maximize [A1 =w1, . . . ,Am =wm,
not Am+1 =wm+1, . . . , not An =wn]

Example

#minimize [hd(a)=30,. . . ,hd(m)=50]
#minimize [road(X,Y) : length(X,Y,L) = L]

Multi-criteria optimization can be accomplished by adding priority
levels to weighted literals, that is, by replacing Li = wi by Li = wi@Pi

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 111 / 226

Conditional literals

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 112 / 226

Conditional literals

Conditional literals

Idea Encode the contents of a (multi-)set without enumerating
its elements

Syntax A0 : A1 : . . . : Am : not Am+1 : . . . : not An

Informal meaning List all ground instances of A0 such that
corresponding instances of A1, . . . ,Am, not Am+1, . . . , not An are true

Example Given ‘ p(1). p(2). p(3). q(2).’
the choice

{r(X) : p(X) : not q(X)}.

is instantiated to

{r(1), r(3)}.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 113 / 226

smodels format

Language Extensions: Overview

16 Motivation

17 Integrity Constraints

18 Choice Rules

19 Cardinality Constraints

20 Weight Constraints

21 Optimization statements

22 Conditional literals

23 smodels format

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 114 / 226

smodels format

smodels format

Logic programs in smodels format consist of

normal rules
choice rules
cardinality rules
weight rules
optimization statements

Such a format is obtained by grounders lparse and gringo

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 115 / 226

Conflict-Driven Answer Set Solving:
Overview

24 Motivation

25 Boolean Constraints

26 Nogoods from Logic Programs
Nogoods from program completion
Nogoods from loop formulas

27 Conflict-Driven Nogood Learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 116 / 226

Motivation

Conflict-Driven Answer Set Solving:
Overview

24 Motivation

25 Boolean Constraints

26 Nogoods from Logic Programs
Nogoods from program completion
Nogoods from loop formulas

27 Conflict-Driven Nogood Learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 117 / 226

Motivation

Motivation

Goal Approach to computing answer sets of logic programs,
based on concepts from

Constraint Processing (CP) and
Satisfiability Checking (SAT)

Idea View inferences in ASP as unit propagation on nogoods

Benefits

A uniform constraint-based framework for different
kinds of inferences in ASP
Advanced techniques from the areas of CP and SAT
Highly competitive implementation

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 118 / 226

Boolean Constraints

Conflict-Driven Answer Set Solving:
Overview

24 Motivation

25 Boolean Constraints

26 Nogoods from Logic Programs
Nogoods from program completion
Nogoods from loop formulas

27 Conflict-Driven Nogood Learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 119 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Assignments

An assignment A over dom(A) = atom(Π) ∪ body(Π) is a sequence

(σ1, . . . , σn)

of signed literals σi of form Tp or Fp for p ∈ dom(A) and 1 ≤ i ≤ n.

+ Tp expresses that p is true and Fp that it is false.

The complement, σ, of a literal σ is defined as Tp = Fp and
Fp = Tp.

A ◦ B denotes the concatenation of assignments A and B.

Given A = (σ1, . . . , σk−1, σk , . . . , σn), we let A[σk] = (σ1, . . . , σk−1).

We sometimes identify an assignment with the set of its literals.
Given this, we access true and false propositions in A via

AT = {p ∈ dom(A) | Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 120 / 226

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn.

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A.

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 121 / 226

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn.

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A.

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 121 / 226

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn.

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A.

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 121 / 226

Boolean Constraints

Nogoods, Solutions, and Unit Propagation

A nogood is a set {σ1, . . . , σn} of signed literals,
expressing a constraint violated by any assignment
containing σ1, . . . , σn.

An assignment A such that AT ∪ AF = dom(A) and AT ∩ AF = ∅
is a solution for a set ∆ of nogoods, if δ 6⊆ A for all δ ∈ ∆.

For a nogood δ, a literal σ ∈ δ, and an assignment A, we say that
σ is unit-resulting for δ wrt A, if

1 δ \ A = {σ} and
2 σ 6∈ A.

For a set ∆ of nogoods and an assignment A, unit propagation is the
iterated process of extending A with unit-resulting literals until no
further literal is unit-resulting for any nogood in ∆.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 121 / 226

Nogoods from Logic Programs

Conflict-Driven Answer Set Solving:
Overview

24 Motivation

25 Boolean Constraints

26 Nogoods from Logic Programs
Nogoods from program completion
Nogoods from loop formulas

27 Conflict-Driven Nogood Learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 122 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

The completion of a logic program Π can be defined as follows:

{pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn |
β ∈ body(Π), β = {p1, . . . , pm, not pm+1, . . . , not pn}}

∪ {p ↔ pβ1 ∨ · · · ∨ pβk |
p ∈ atom(Π), body(p) = {β1, . . . , βk}} ,

where body(p) = {body(r) | r ∈ Π, head(r) = p}.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 123 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

Let β = {p1, . . . , pm, not pm+1, . . . , not pn} be a body.

The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

1 We get

pβ → p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

which is equivalent to the conjunction of

¬pβ ∨ p1, . . . , ¬pβ ∨ pm, ¬pβ ∨ ¬pm+1, . . . , ¬pβ ∨ ¬pn

This set of clauses expresses the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 124 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

Let β = {p1, . . . , pm, not pm+1, . . . , not pn} be a body.

The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

1 We get

pβ → p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

which is equivalent to the conjunction of

¬pβ ∨ p1, . . . , ¬pβ ∨ pm, ¬pβ ∨ ¬pm+1, . . . , ¬pβ ∨ ¬pn

This set of clauses expresses the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 124 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

Let β = {p1, . . . , pm, not pm+1, . . . , not pn} be a body.

The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

2 The converse of the previous implication, viz.

p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn → pβ

gives rise to the nogood

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}

Intuitively, δ(β) is a constraint enforcing the truth of body β, or the
falsity of a contained literal.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 125 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

Let β = {p1, . . . , pm, not pm+1, . . . , not pn} be a body.

The equivalence

pβ ↔ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn

can be decomposed into two implications.

2 The converse of the previous implication, viz.

p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn → pβ

gives rise to the nogood

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}

Intuitively, δ(β) is a constraint enforcing the truth of body β, or the
falsity of a contained literal.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 125 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
via program completion

Proceeding analogously with the atom-based equivalences, viz.

p ↔ pβ1 ∨ · · · ∨ pβk

we obtain for an atom p ∈ atom(Π) along with its bodies
body(p) = {β1, . . . , βk} the nogoods

∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } and δ(p) = {Tp,Fβ1, . . . ,Fβk} .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 126 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
atom-oriented nogoods

For an atom p where body(p) = {β1, . . . , βk}, recall that

δ(p) = {Tp,Fβ1, . . . ,Fβk}
∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} } .

For example, for atom x with body(x) = {{y}, {not z}}, we obtain

x ← y
x ← not z

δ(x) = {Tx ,F{y},F{not z}}
∆(x) = { {Fx ,T{y}}, {Fx ,T{not z}} }

For nogood δ(x) = {Tx ,F{y},F{not z}}, the signed literal

Fx is unit-resulting wrt assignment (F{y},F{not z}) and

T{not z} is unit-resulting wrt assignment (Tx ,F{y})

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 127 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, recall that

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 128 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, recall that

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 128 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, recall that

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 128 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, recall that

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 128 / 226

Nogoods from Logic Programs Nogoods from program completion

Nogoods from logic programs
body-oriented nogoods

For a body β = {p1, . . . , pm, not pm+1, . . . , not pn}, recall that

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}
∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} } .

For example, for body {x , not y}, we obtain

. . .← x , not y...

. . .← x , not y

δ({x , not y}) = {F{x , not y},Tx ,Fy}
∆({x , not y}) = { {T{x , not y},Fx}, {T{x , not y},Ty} }

For nogood δ({x , not y}) = {F{x , not y},Tx ,Fy}, the signed literal

T{x , not y} is unit-resulting wrt assignment (Tx ,Fy) and

Ty is unit-resulting wrt assignment (F{x , not y},Tx).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 128 / 226

Nogoods from Logic Programs Nogoods from program completion

Characterization of answer sets
for tight logic programs

Let Π be a logic program and

∆Π = {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)}
∪ {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)} .

Theorem

Let Π be a tight logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 129 / 226

Nogoods from Logic Programs Nogoods from program completion

Characterization of answer sets
for tight logic programs

Let Π be a logic program and

∆Π = {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)}
∪ {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)} .

Theorem

Let Π be a tight logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 129 / 226

Nogoods from Logic Programs Nogoods from program completion

Characterization of answer sets
for tight logic programs, ie. free of positive recursion

Let Π be a logic program and

∆Π = {δ(p) | p ∈ atom(Π)} ∪ {δ ∈ ∆(p) | p ∈ atom(Π)}
∪ {δ(β) | β ∈ body(Π)} ∪ {δ ∈ ∆(β) | β ∈ body(Π)} .

Theorem

Let Π be a tight logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 129 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let Π be a normal logic program and recall that:

For L ⊆ atom(Π), the external supports of L for Π are

ESΠ(L) = {r ∈ Π | head(r) ∈ L, body(r)+ ∩ L = ∅}.
The (disjunctive) loop formula of L for Π is

LF Π(L) =
(∨

A∈LA
)
→
(∨

r∈ESΠ(L)body(r)
)

≡
(∧

r∈ESΠ(L)¬body(r)
)
→
(∧

A∈L¬A
)

+ The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported.

The external bodies of L for Π are

EB(L) = {body(r) | r ∈ ESΠ(L)}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 130 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let Π be a normal logic program and recall that:

For L ⊆ atom(Π), the external supports of L for Π are

ESΠ(L) = {r ∈ Π | head(r) ∈ L, body(r)+ ∩ L = ∅}.
The (disjunctive) loop formula of L for Π is

LF Π(L) =
(∨

A∈LA
)
→
(∨

r∈ESΠ(L)body(r)
)

≡
(∧

r∈ESΠ(L)¬body(r)
)
→
(∧

A∈L¬A
)

+ The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported.

The external bodies of L for Π are

EB(L) = {body(r) | r ∈ ESΠ(L)}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 130 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
via loop formulas

Let Π be a normal logic program and recall that:

For L ⊆ atom(Π), the external supports of L for Π are

ESΠ(L) = {r ∈ Π | head(r) ∈ L, body(r)+ ∩ L = ∅}.
The (disjunctive) loop formula of L for Π is

LF Π(L) =
(∨

A∈LA
)
→
(∨

r∈ESΠ(L)body(r)
)

≡
(∧

r∈ESΠ(L)¬body(r)
)
→
(∧

A∈L¬A
)

+ The loop formula of L enforces all atoms in L to be false
whenever L is not externally supported.

The external bodies of L for Π are

EB(L) = {body(r) | r ∈ ESΠ(L)}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 130 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program Π and some ∅ ⊂ U ⊆ atom(Π),
define the loop nogood of an atom p ∈ U as

λ(p,U) = {Tp,Fβ1, . . . ,Fβk}
where EB(U) = {β1, . . . , βk}.
In all, we get the following set of loop nogoods for Π:

ΛΠ =
⋃
∅⊂U⊆atom(Π){λ(p,U) | p ∈ U}

The set ΛΠ of loop nogoods denies cyclic support among true atoms.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 131 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program Π and some ∅ ⊂ U ⊆ atom(Π),
define the loop nogood of an atom p ∈ U as

λ(p,U) = {Tp,Fβ1, . . . ,Fβk}
where EB(U) = {β1, . . . , βk}.
In all, we get the following set of loop nogoods for Π:

ΛΠ =
⋃
∅⊂U⊆atom(Π){λ(p,U) | p ∈ U}

The set ΛΠ of loop nogoods denies cyclic support among true atoms.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 131 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Nogoods from logic programs
loop nogoods

For a logic program Π and some ∅ ⊂ U ⊆ atom(Π),
define the loop nogood of an atom p ∈ U as

λ(p,U) = {Tp,Fβ1, . . . ,Fβk}
where EB(U) = {β1, . . . , βk}.
In all, we get the following set of loop nogoods for Π:

ΛΠ =
⋃
∅⊂U⊆atom(Π){λ(p,U) | p ∈ U}

The set ΛΠ of loop nogoods denies cyclic support among true atoms.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 131 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Example

Consider

Π =

 x ← not y
y ← not x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}

Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 132 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Example

Consider

Π =

 x ← not y
y ← not x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}

Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 132 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Example

Consider

Π =

 x ← not y
y ← not x

u ← x
u ← v
v ← u, y


For u in the set {u, v}, we obtain the loop nogood:

λ(u, {u, v}) = {Tu,F{x}}

Similarly for v in {u, v}, we get:

λ(v , {u, v}) = {Tv ,F{x}}

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 132 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Characterization of answer sets

Theorem

Let Π be a logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π ∪ ΛΠ.

Some remarks

Nogoods in ΛΠ augment ∆Π with conditions checking
for unfounded sets, in particular, those being loops.
While |∆Π| is linear in the size of Π, ΛΠ may contain
exponentially many (non-redundant) loop nogoods

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 133 / 226

Nogoods from Logic Programs Nogoods from loop formulas

Characterization of answer sets

Theorem

Let Π be a logic program. Then,
X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π ∪ ΛΠ.

Some remarks

Nogoods in ΛΠ augment ∆Π with conditions checking
for unfounded sets, in particular, those being loops.
While |∆Π| is linear in the size of Π, ΛΠ may contain
exponentially many (non-redundant) loop nogoods

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 133 / 226

Conflict-Driven Nogood Learning

Conflict-Driven Answer Set Solving:
Overview

24 Motivation

25 Boolean Constraints

26 Nogoods from Logic Programs
Nogoods from program completion
Nogoods from loop formulas

27 Conflict-Driven Nogood Learning
CDNL-ASP Algorithm
Nogood Propagation
Conflict Analysis

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 134 / 226

Conflict-Driven Nogood Learning

Conflict-driven search

Boolean constraint solving algorithms pioneered for SAT led to:

Traditional DPLL-style approach

(Unit) propagation
(Chronological) backtracking

Modern CDCL-style approach

(Unit) propagation
Conflict analysis (via resolution)
Learning + Backjumping + Assertion

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 135 / 226

Conflict-Driven Nogood Learning

DPLL-style solving

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

backtrack // undo assignments made after last decision
flip // assign complement of last decision literal

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 136 / 226

Conflict-Driven Nogood Learning

CDCL-style solving

loop

propagate // compute deterministic consequences

if no conflict then
if all variables assigned then return variable assignment
else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable
else

analyze // analyze conflict and add a conflict constraint
backjump // undo assignments until conflict constraint is unit

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 137 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆Π]
Loop nogoods, determined and recorded on demand [ΛΠ]

+ Dedicated unfounded set detection !

Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆Π ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding an answer set (a solution for ∆Π ∪ ΛΠ)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 138 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆Π]
Loop nogoods, determined and recorded on demand [ΛΠ]

+ Dedicated unfounded set detection !

Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆Π ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding an answer set (a solution for ∆Π ∪ ΛΠ)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 138 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Outline of CDNL-ASP algorithm

Keep track of deterministic consequences by unit propagation on:

Program completion [∆Π]
Loop nogoods, determined and recorded on demand [ΛΠ]

+ Dedicated unfounded set detection !

Dynamic nogoods, derived from conflicts and unfounded sets [∇]

When a nogood in ∆Π ∪∇ becomes violated:

Analyze the conflict by resolution
(until reaching a Unique Implication Point, short: UIP)
Learn the derived conflict nogood δ
Backjump to the earliest (heuristic) choice such that the
complement of the UIP is unit-resulting for δ
Assert the complement of the UIP and proceed
(by unit propagation)

Terminate when either:

Finding an answer set (a solution for ∆Π ∪ ΛΠ)
Deriving a conflict independently of (heuristic) choices

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 138 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Algorithm 1: CDNL-ASP
Input : A logic program Π.
Output : An answer set of Π or “no answer set”.

A← ∅ // assignment over atom(Π) ∪ body(Π)
∇ ← ∅ // set of (dynamic) nogoods
dl ← 0 // decision level
loop

(A,∇)← NogoodPropagation(Π,∇,A)
if ε ⊆ A for some ε ∈ ∆Π ∪∇ then

if dl = 0 then return no answer set
(δ, k)← ConflictAnalysis(ε,Π,∇,A)
∇ ← ∇∪ {δ} // learning
A← (A \ {σ ∈ A | k < dl(σ)}) // backjumping
dl ← k

else if AT ∪ AF = atom(Π) ∪ body(Π) then
return AT ∩ atom(Π) // answer set

else
σd ← Select(Π,∇,A) // heuristic choice of σd /∈ A
dl ← dl + 1
A← A ◦ (σd) // dl(σd) = dl

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 139 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal σd = Tp or σd = Fp, respectively, we
require p ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF).

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned.

A conflict is detected from violation of a nogood ε ⊆ ∆Π ∪∇.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl .

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.
No explicit flipping of heuristically chosen literals !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 140 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal σd = Tp or σd = Fp, respectively, we
require p ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF).

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned.

A conflict is detected from violation of a nogood ε ⊆ ∆Π ∪∇.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl .

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.
No explicit flipping of heuristically chosen literals !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 140 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Observations

Decision level dl , initially set to 0, is used to count the number of
heuristically chosen literals in assignment A.

For a heuristically chosen literal σd = Tp or σd = Fp, respectively, we
require p ∈ (atom(Π) ∪ body(Π)) \ (AT ∪ AF).

For any literal σ ∈ A, dl(σ) denotes the decision level of σ, viz. the
value dl had when σ was assigned.

A conflict is detected from violation of a nogood ε ⊆ ∆Π ∪∇.

A conflict at decision level 0 (where A contains no heuristically
chosen literals) indicates non-existence of answer sets.

A nogood δ derived by conflict analysis is asserting, that is,
some literal is unit-resulting for δ at a decision level k < dl .

After learning δ and backjumping to decision level k,
at least one literal is newly derivable by unit propagation.
No explicit flipping of heuristically chosen literals !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 140 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
...

...
{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 141 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{not x}} = δ(y)
Fw {Tw ,F{not x , not y}} = δ(w)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 142 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{not x}} = δ(y)
Fw {Tw ,F{not x , not y}} = δ(w)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 142 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{not x}} = δ(y)
Fw {Tw ,F{not x , not y}} = δ(w)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 142 / 226

Conflict-Driven Nogood Learning CDNL-ASP Algorithm

Example: CDNL-ASP

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu
Tx {Tu,Fx} ∈ ∇
...

...
Tv {Fv ,T{x}} ∈ ∆(v)
Fy {Ty ,F{not x}} = δ(y)
Fw {Tw ,F{not x , not y}} = δ(w)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 142 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆Π and ∇;
Unfounded sets U ⊆ atom(Π).

Note that U is unfounded if EB(U) ⊆ AF.

+ For any p ∈ U, we have (λ(p,U) \ {Tp}) ⊆ A.

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(Π) \ AF) .

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of Π.

å Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some p ∈ U, adding λ(p,U) to ∇
triggers a conflict or further derivations by unit propagation.

+ Add loop nogoods atom by atom to eventually falsify all p ∈ U.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 143 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆Π and ∇;
Unfounded sets U ⊆ atom(Π).

Note that U is unfounded if EB(U) ⊆ AF.

+ For any p ∈ U, we have (λ(p,U) \ {Tp}) ⊆ A.

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(Π) \ AF) .

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of Π.

å Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some p ∈ U, adding λ(p,U) to ∇
triggers a conflict or further derivations by unit propagation.

+ Add loop nogoods atom by atom to eventually falsify all p ∈ U.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 143 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆Π and ∇;
Unfounded sets U ⊆ atom(Π).

Note that U is unfounded if EB(U) ⊆ AF.

+ For any p ∈ U, we have (λ(p,U) \ {Tp}) ⊆ A.

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(Π) \ AF) .

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of Π.

å Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some p ∈ U, adding λ(p,U) to ∇
triggers a conflict or further derivations by unit propagation.

+ Add loop nogoods atom by atom to eventually falsify all p ∈ U.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 143 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Outline of NogoodPropagation

Derive deterministic consequences via:

Unit propagation on ∆Π and ∇;
Unfounded sets U ⊆ atom(Π).

Note that U is unfounded if EB(U) ⊆ AF.

+ For any p ∈ U, we have (λ(p,U) \ {Tp}) ⊆ A.

An “interesting” unfounded set U satisfies:

∅ ⊂ U ⊆ (atom(Π) \ AF) .

Wrt a fixpoint of unit propagation,
such an unfounded set contains some loop of Π.

å Tight programs do not yield “interesting” unfounded sets !

Given an unfounded set U and some p ∈ U, adding λ(p,U) to ∇
triggers a conflict or further derivations by unit propagation.

+ Add loop nogoods atom by atom to eventually falsify all p ∈ U.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 143 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Algorithm 2: NogoodPropagation
Input : A logic program Π, a set ∇ of nogoods, and an assignment A.
Output : An extended assignment and set of nogoods.

U ← ∅ // set of unfounded atoms
loop

repeat
if δ ⊆ A for some δ ∈ ∆Π ∪∇ then return (A,∇) // conflict
Σ← {δ ∈ ∆Π ∪∇ | (δ \ A) = {σ}, σ /∈ A} // unit-resulting nogoods
if Σ 6= ∅ then

let σ ∈ (δ \ A) for some δ ∈ Σ in
A← A ◦ (σ) // dl(σ) = max({dl(ρ) | ρ ∈ (δ \ {σ})} ∪ {0})

until Σ = ∅

if Π is tight then return (A,∇) // no unfounded set ∅ ⊂ U ⊆ (atom(Π) \ AF)
else

U ← (U \ AF)
if U = ∅ then U ← UnfoundedSet(Π,A)

if U = ∅ then return (A,∇)// no unfounded set ∅ ⊂ U ⊆ (atom(Π) \ AF)
let p ∈ U in
∇ ← ∇∪ {λ(p,U)} // record unit-resulting or violated loop nogood

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 144 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following for a
result U

1 U ⊆ (atom(Π) \ AF)
2 EB(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(Π) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of Π

Usually, the latter option is implemented in ASP solvers

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 145 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Requirements for UnfoundedSet

Implementations of UnfoundedSet must guarantee the following for a
result U

1 U ⊆ (atom(Π) \ AF)
2 EB(U) ⊆ AF

3 U = ∅ iff there is no nonempty unfounded subset of (atom(Π) \ AF)

Beyond that, there are various alternatives, such as:

Calculating the greatest unfounded set
Calculating unfounded sets within strongly connected components of
the positive atom dependency graph of Π

Usually, the latter option is implemented in ASP solvers

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 145 / 226

Conflict-Driven Nogood Learning Nogood Propagation

Example: NogoodPropagation

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ

1 Tu

2 F{not x , not y}
Fw {Tw ,F{not x , not y}} = δ(w)

3 F{not y}
Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x})
F{x , y} {T{x , y},Fx} ∈ ∆({x , y})
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 146 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆Π ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0.

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆Π ∪∇.
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ}) .

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}.

Iterated resolution progresses in inverse order of assignment.

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl .

This literal σ is called First Unique Implication Point (First-UIP).
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 147 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆Π ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0.

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆Π ∪∇.
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ}) .

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}.

Iterated resolution progresses in inverse order of assignment.

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl .

This literal σ is called First Unique Implication Point (First-UIP).
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 147 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Outline of ConflictAnalysis

Conflict analysis is triggered whenever some nogood δ ∈ ∆Π ∪∇
becomes violated, viz. δ ⊆ A, at a decision level dl > 0.

Note that all but the first literal assigned at dl have been unit-resulting
for nogoods ε ∈ ∆Π ∪∇.
If σ ∈ δ has been unit-resulting for ε, we obtain a new violated nogood
by resolving δ and ε as follows:

(δ \ {σ}) ∪ (ε \ {σ}) .

Resolution is directed by resolving first over the literal σ ∈ δ derived
last, viz. (δ \ A[σ]) = {σ}.

Iterated resolution progresses in inverse order of assignment.

Iterated resolution stops as soon as it generates a nogood δ
containing exactly one literal σ assigned at decision level dl .

This literal σ is called First Unique Implication Point (First-UIP).
All literals in (δ \ {σ}) are assigned at decision levels smaller than dl .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 147 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Algorithm 3: ConflictAnalysis
Input : A violated nogood δ, a logic program Π, a set ∇ of nogoods, and

an assignment A.
Output : A derived nogood and a decision level.

loop
let σ ∈ δ such that (δ \ A[σ]) = {σ} in

k ← max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})
if k = dl(σ) then

let ε ∈ ∆Π ∪∇ such that (ε \ A[σ]) = {σ} in
δ ← (δ \ {σ}) ∪ (ε \ {σ}) // resolution

else return (δ, k)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 148 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Example: ConflictAnalysis

Consider

Π =

{
x ← not y
y ← not x

u ← x , y
u ← v

v ← x
v ← u, y

w ← not x , not y
}

dl σd σ δ
1 Tu
2 F{not x , not y}

Fw {Tw ,F{not x , not y}} = δ(w)
3 F{not y}

Fx {Tx ,F{not y}} = δ(x)
F{x} {T{x},Fx} ∈ ∆({x}) {Tu,Fx}
F{x , y} {T{x , y},Fx} ∈ ∆({x , y}) {Tu,Fx ,F{x}}
T{not x} {F{not x},Fx} = δ({not x})
Ty {F{not y},Fy} = δ({not y})
T{v} {Tu,F{x , y},F{v}} = δ(u)
T{u, y} {F{u, y},Tu,Ty} = δ({u, y})
Tv {Fv ,T{u, y}} ∈ ∆(v)

{Tu,F{x},F{x , y}} = λ(u, {u, v}) 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 149 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates.

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl .

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A.

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl .

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting.

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 150 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates.

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl .

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A.

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl .

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting.

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 150 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates.

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl .

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A.

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl .

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting.

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 150 / 226

Conflict-Driven Nogood Learning Conflict Analysis

Remarks

There always is a First-UIP at which conflict analysis terminates.

In the worst, resolution stops at the heuristically chosen literal
assigned at decision level dl .

The nogood δ containing First-UIP σ is violated by A, viz. δ ⊆ A.

We have k = max({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0}) < dl .

After recording δ in ∇ and backjumping to decision level k,
σ is unit-resulting for δ !
Such a nogood δ is called asserting.

Asserting nogoods direct conflict-driven search into a different region
of the search space than traversed before,
without explicitly flipping any heuristically chosen literal !

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 150 / 226

Effective Modeling: Overview

28 Problems as Logic Programs (Revisited)
Graph Coloring
Hamiltonian Cycle
Traveling Salesperson

29 Encoding Methodology
Tweaking N-Queens
Do’s and Dont’s

30 Hints

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 151 / 226

Problems as Logic Programs (Revisited)

Effective Modeling: Overview

28 Problems as Logic Programs (Revisited)
Graph Coloring
Hamiltonian Cycle
Traveling Salesperson

29 Encoding Methodology
Tweaking N-Queens
Do’s and Dont’s

30 Hints

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 152 / 226

Problems as Logic Programs (Revisited)

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 153 / 226

Problems as Logic Programs (Revisited)

Modeling and Interpreting

Problem

Logic Program

Solution

Stable Models
?

-

6

Modeling Interpreting

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 153 / 226

Problems as Logic Programs (Revisited)

Problems as Logic Program

For solving a problem class P for a problem instance I,
encode

1 the problem instance I as a set C(I) of facts and

2 the problem class P as a set C(P) of rules

such that the solutions to P for I can be (polynomially) extracted
from the answer sets of C(I) ∪ C(P).

Uniform encoding

A uniform encoding C(P) is a first-order logic program,
encoding the solutions to P for any set C(I) of facts.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 154 / 226

Problems as Logic Programs (Revisited)

Problems as Logic Program

For solving a problem class P for a problem instance I,
encode

1 the problem instance I as a set C(I) of facts and

2 the problem class P as a set C(P) of rules

such that the solutions to P for I can be (polynomially) extracted
from the answer sets of C(I) ∪ C(P).

Uniform encoding

A uniform encoding C(P) is a first-order logic program,
encoding the solutions to P for any set C(I) of facts.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 154 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Problem Instance as Facts

Given: a (directed) graph G

G =



V = {1, 2, 3, 4, 5, 6},
E = {(1, 2), (1, 3), (1, 4),

(2, 4), (2, 5), (2, 6),
(3, 1), (3, 4), (3, 5),
(4, 1), (4, 2),
(5, 3), (5, 4), (5, 6),
(6, 2), (6, 3), (6, 5)}

 �
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@
@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 155 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Problem Instance as Facts

Given: a (directed) graph G

G =



V = {1, 2, 3, 4, 5, 6},
E = {(1, 2), (1, 3), (1, 4),

(2, 4), (2, 5), (2, 6),
(3, 1), (3, 4), (3, 5),
(4, 1), (4, 2),
(5, 3), (5, 4), (5, 6),
(6, 2), (6, 3), (6, 5)}

 �
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@
@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 155 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Problem Instance as Facts

Given: a (directed) graph G

node(1). node(2). node(3).

node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2).

edge(6,3). edge(6,5).

�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@
@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 155 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Problem Instance as Facts

Given: a (directed) graph G

node(1). node(2). node(3).

node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2).

edge(6,3). edge(6,5).

�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@
@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 155 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 color(X,C) :- iscol(C),

node(X), not other(X,C).

other(X,C) :- iscol(C),

color(X,D), D != C.

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
(Extended) Problem Encoding

Natural Language

1 Each node has a unique color.

2 Any two connected nodes
must not have the same color.

3 Let there be three colors.

4 A solution is a coloring.

Logical Language

1 1 #count{ color(X,C) :

iscol(C) } 1

:- node(X).

2 :- color(X,C), color(Y,C),

edge(X,Y).

3 #const n=3.

iscol(1..n).

4 #hide.

#show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 156 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Recapitulation I

Instance as Facts (in graph.lp)

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2).

edge(5,3). edge(5,4). edge(5,6).

edge(6,2). edge(6,3). edge(6,5).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 157 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Recapitulation II

Uniform Encoding (in color.lp)

% DOMAIN

#const n=3. iscol(1..n).

% GENERATE

1 #count{ color(X,C) : iscol(C) } 1 :- node(X).

% color(X,C) :- iscol(C), node(X), not other(X,C).

% other(X,C) :- iscol(C), color(X,D), D != C.

% TEST

:- color(X,C), color(Y,C), edge(X,Y).

% DISPLAY

#hide. #show color/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 158 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Run it!

gringo graph.lp color.lp | clasp 0

clasp version 2.0.2

Reading from stdin

Solving...

Answer: 1

color(6,2) color(5,3) color(4,2) color(3,1) color(2,1) color(1,3)

Answer: 2

color(6,1) color(5,3) color(4,1) color(3,2) color(2,2) color(1,3)

Answer: 3

color(6,3) color(5,2) color(4,3) color(3,1) color(2,1) color(1,2)

Answer: 4

color(6,1) color(5,2) color(4,1) color(3,3) color(2,3) color(1,2)

Answer: 5

color(6,3) color(5,1) color(4,3) color(3,2) color(2,2) color(1,1)

Answer: 6

color(6,2) color(5,1) color(4,2) color(3,3) color(2,3) color(1,1)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 159 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Run it!

gringo graph.lp color.lp | clasp 0

clasp version 2.0.2

Reading from stdin

Solving...

Answer: 1

color(6,2) color(5,3) color(4,2) color(3,1) color(2,1) color(1,3)

Answer: 2

color(6,1) color(5,3) color(4,1) color(3,2) color(2,2) color(1,3)

Answer: 3

color(6,3) color(5,2) color(4,3) color(3,1) color(2,1) color(1,2)

Answer: 4

color(6,1) color(5,2) color(4,1) color(3,3) color(2,3) color(1,2)

Answer: 5

color(6,3) color(5,1) color(4,3) color(3,2) color(2,2) color(1,1)

Answer: 6

color(6,2) color(5,1) color(4,2) color(3,3) color(2,3) color(1,1)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 159 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Interpret it!

Found: 3-coloring(s)

Answer: 1

color(1,3) color(5,3)

color(2,1) color(3,1)

color(4,2) color(6,2) �
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@

@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 160 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Interpret it!

Found: 3-coloring(s)

Answer: 1

color(1,3) color(5,3)

color(2,1) color(3,1)

color(4,2) color(6,2)
~1

�
��3

�
��4

�
��6
�
��2

~5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@

@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 160 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Interpret it!

Found: 3-coloring(s)

Answer: 1

color(1,3) color(5,3)

color(2,1) color(3,1)

color(4,2) color(6,2)
~1

~3

�
��4

�
��6
~2

~5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@

@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 160 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Let’s Interpret it!

Found: 3-coloring(s)

Answer: 1

color(1,3) color(5,3)

color(2,1) color(3,1)

color(4,2) color(6,2)
~1

~3

~4

~6
~2

~5

-

6

@
@
@
@R

�
�

�
�	

6

Q
Q

Q
Qk

?

z

-

@
@

@
@I

�
�
�
��

�

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 160 / 226

Problems as Logic Programs (Revisited) Graph Coloring

Interlude: Answer Set(s) Computation

Problem
Instance

Problem
Encoding

�� ��Grounder
Propositional

Logic Program

�� ��Solver

Stable Models

6

- -

6

? Grounding

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 161 / 226

Problems as Logic Programs (Revisited) Graph Coloring

Interlude: Answer Set(s) Computation

Problem
Instance

Problem
Encoding

�� ��Grounder
Propositional

Logic Program

�� ��Solver

Stable Models

6

- -

6

? Grounding

Solving

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 161 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Grounding

gringo -t graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). ...

iscol(1). iscol(2). iscol(3).

1 #count{ color(1,1), color(1,2), color(1,3) } 1.

1 #count{ color(2,1), color(2,2), color(2,3) } 1.

1 #count{ color(3,1), color(3,2), color(3,3) } 1.

1 #count{ color(4,1), color(4,2), color(4,3) } 1.

1 #count{ color(5,1), color(5,2), color(5,3) } 1.

1 #count{ color(6,1), color(6,2), color(6,3) } 1.

:- color(1,1), color(2,1).

:- color(1,2), color(2,2).

:- color(1,3), color(2,3). ...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 162 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Grounding

gringo -t graph.lp color.lp

node(1). node(2). node(3). node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4). edge(2,4). edge(2,5). ...

iscol(1). iscol(2). iscol(3).

1 #count{ color(1,1), color(1,2), color(1,3) } 1.

1 #count{ color(2,1), color(2,2), color(2,3) } 1.

1 #count{ color(3,1), color(3,2), color(3,3) } 1.

1 #count{ color(4,1), color(4,2), color(4,3) } 1.

1 #count{ color(5,1), color(5,2), color(5,3) } 1.

1 #count{ color(6,1), color(6,2), color(6,3) } 1.

:- color(1,1), color(2,1).

:- color(1,2), color(2,2).

:- color(1,3), color(2,3). ...

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 162 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Solving

gringo graph.lp color.lp | clasp --stats 0

...

Models : 6

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 5

Conflicts : 0

Restarts : 0

Atoms : 63

Rules : 113 (1: 95 2: 12 3: 6)

Bodies : 64

Equivalences: 106 (Atom=Atom: 31 Body=Body: 6 Other: 69)

Tight : Yes

Variables : 63 (Eliminated: 0 Frozen: 30)

Constraints : 45 (Binary: 73.3% Ternary: 0.0% Other: 26.7%)

Lemmas : 0 (Binary: 0.0% Ternary: 0.0% Other: 0.0%)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 163 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Solving

gringo graph.lp color.lp | clasp --stats 0

...

Models : 6

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 5

Conflicts : 0

Restarts : 0

Atoms : 63

Rules : 113 (1: 95 2: 12 3: 6)

Bodies : 64

Equivalences: 106 (Atom=Atom: 31 Body=Body: 6 Other: 69)

Tight : Yes

Variables : 63 (Eliminated: 0 Frozen: 30)

Constraints : 45 (Binary: 73.3% Ternary: 0.0% Other: 26.7%)

Lemmas : 0 (Binary: 0.0% Ternary: 0.0% Other: 0.0%)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 163 / 226

Problems as Logic Programs (Revisited) Graph Coloring

N-Colorability
Solving

gringo graph.lp color.lp | clasp --stats 0

...

Models : 6

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 5

Conflicts : 0

Restarts : 0

Atoms : 63

Rules : 113 (1: 95 2: 12 3: 6)

Bodies : 64

Equivalences: 106 (Atom=Atom: 31 Body=Body: 6 Other: 69)

Tight : Yes

Variables : 63 (Eliminated: 0 Frozen: 30)

Constraints : 45 (Binary: 73.3% Ternary: 0.0% Other: 26.7%)

Lemmas : 0 (Binary: 0.0% Ternary: 0.0% Other: 0.0%)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 163 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Problem Instance as Facts

Recall: a directed graph G

node(1). node(2). node(3).

node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2).

edge(6,3). edge(6,5).

�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

@
@
@
@R

�
�
�
�	

6

Q
Q
Q
Qk

?

z

-

@
@

@
@I

�
�
�
��

�

9

�
�
�
�+

Q
Q
Q
Qs

Q
Q
Q
Qk

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 164 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(X).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(X).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(X).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(X).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

reach(X) :- first(X).

reach(Y) :- reach(X), cycle(X,Y).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

reach(X) :- first(X).

reach(Y) :- reach(X), cycle(X,Y).

+ The definition of reach is recursive!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

reach(X) :- first(X).

reach(Y) :- reach(X), cycle(X,Y).

first(X) :- X = #min[node(Y) = Y].

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Engineering an Encoding

Problem Specification

A (directed) graph G = (V ,E) is Hamiltonian if it contains
a cycle C that visits every node of V exactly once.

+ C traverses exactly one incoming and one outgoing edge per node.
+ C traverses every node of V (starting from an arbitrary node in V).

Problem Encoding

reach(X) :- first(X).

reach(Y) :- reach(X), cycle(X,Y).

:- node(Y), not reach(Y).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 165 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
The Complete Picture

Uniform Encoding (in cycle.lp)

% DOMAIN

first(X) :- X = #min[node(Y) = Y].

% GENERATE

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(X).

1 #count{ cycle(X,Y) : edge(X,Y) } 1 :- node(Y).

% DEFINE

reach(X) :- first(X).

reach(Y) :- reach(X), cycle(X,Y).

% TEST

:- node(Y), not reach(Y).

% DISPLAY

#hide. #show cycle/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 166 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Run it!

gringo graph.lp cycle.lp | clasp --stats

Answer: 1

cycle(6,5) cycle(5,3) cycle(4,2) cycle(3,1) cycle(2,6) cycle(1,4)

SATISFIABLE

Models : 1+

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 3

Conflicts : 0

Restarts : 0

Atoms : 84

Rules : 117 (1: 84 2: 21 3: 12)

Bodies : 81

Equivalences: 174 (Atom=Atom: 36 Body=Body: 12 Other: 126)

Tight : No (SCCs: 1 Nodes: 20)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 167 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Run it!

gringo graph.lp cycle.lp | clasp --stats

Answer: 1

cycle(6,5) cycle(5,3) cycle(4,2) cycle(3,1) cycle(2,6) cycle(1,4)

SATISFIABLE

Models : 1+

Time : 0.001s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 3

Conflicts : 0

Restarts : 0

Atoms : 84

Rules : 117 (1: 84 2: 21 3: 12)

Bodies : 81

Equivalences: 174 (Atom=Atom: 36 Body=Body: 12 Other: 126)

Tight : No (SCCs: 1 Nodes: 20)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 167 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

~4

�
��6
�
��2

�
��5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

~4

�
��6
~2

�
��5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

~4

~6
~2

�
��5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

~4

~6
~2

~5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

~3

~4

~6
~2

~5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Hamiltonian Cycle

Hamiltonian Cycle
Let’s Interpret it!

Found: Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)

~1

~3

~4

~6
~2

~5

-

6

�
�

�
�	

6

z

-

@
@

@
@I

9

�
�

�
�+

Q
Q
Q
Qs

Q
Q

Q
Qk

@
@
@
@R �

�
�
��

Q
Q

Q
Qk

�
�
�
�3

�

?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 168 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Problem Instance as Facts

Given: a directed graph G plus edge costs

node(1). node(2). node(3).

node(4). node(5). node(6).

edge(1,2). edge(1,3). edge(1,4).

edge(2,4). edge(2,5). edge(2,6).

edge(3,1). edge(3,4). edge(3,5).

edge(4,1). edge(4,2). edge(5,3).

edge(5,4). edge(5,6). edge(6,2).

edge(6,3). edge(6,5).

�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-2

6

3

@
@
@
@R

1
�

�
�
�	

2

6

2

Q
Q
Q
Qk 4

?

z

2

-2

@
@

@
@I

�
�
�
��

�

9

2

�
�
�
�+

1

Q
Q
Q
Qs

Q
Q
Q
Qk

3

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 169 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Problem Instance as Facts

Given: a directed graph G plus edge costs

cost(1,2,2).

cost(1,3,3). cost(3,1,3).

cost(1,4,1). cost(4,1,1).

cost(2,4,2). cost(4,2,2).

cost(2,5,2).

cost(2,6,4). cost(6,2,4).

cost(3,4,2).

cost(3,5,2). cost(5,3,2).

cost(5,4,2).

cost(5,6,1). cost(6,5,1).

cost(6,3,3).

�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

-2

6

3

@
@
@
@R

1
�

�
�
�	

2

6

2

Q
Q
Q
Qk 4

?

z

2

-2

@
@

@
@I

�
�
�
��

�

9

2

�
�
�
�+

1

Q
Q
Q
Qs

Q
Q
Q
Qk

3

�
�
�
�3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 169 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Solution Optimization

Optimization Objective

A Hamiltonian cycle is optimal if its accumulated edge costs are minimal.

+ Use #minimize (and/or #maximize) to associate each answer set with
objective value(s).

Optimization Encoding

% OPTIMIZE

#minimize[cycle(X,Y) : cost(X,Y,C) = C@1].

Target: minimal sum of costs C (at priority level 1) associated with
instances of cycle in an answer set

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 170 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Let’s Run it!

gringo graph.lp costs.lp cycle.lp price.lp | clasp --stats 0

Answer: 1

cycle(6,5) cycle(5,3) cycle(4,2) cycle(3,1) cycle(2,6) cycle(1,4)

Optimization: 13

Answer: 2

cycle(6,5) cycle(5,3) cycle(4,1) cycle(3,4) cycle(2,6) cycle(1,2)

Optimization: 12

Answer: 3

cycle(6,3) cycle(5,6) cycle(4,1) cycle(3,4) cycle(2,5) cycle(1,2)

Optimization: 11

OPTIMUM FOUND

Models : 1

Enumerated: 3

Optimum : yes

Optimization: 11

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 171 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Let’s Run it!

gringo graph.lp costs.lp cycle.lp price.lp | clasp --stats 0

Answer: 1

cycle(6,5) cycle(5,3) cycle(4,2) cycle(3,1) cycle(2,6) cycle(1,4)

Optimization: 13

Answer: 2

cycle(6,5) cycle(5,3) cycle(4,1) cycle(3,4) cycle(2,6) cycle(1,2)

Optimization: 12

Answer: 3

cycle(6,3) cycle(5,6) cycle(4,1) cycle(3,4) cycle(2,5) cycle(1,2)

Optimization: 11

OPTIMUM FOUND

Models : 1

Enumerated: 3

Optimum : yes

Optimization: 11

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 171 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Let’s Interpret it!

Found: optimal Hamiltonian cycle

Answer: 1

cycle(1,4)

cycle(4,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,1)
�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

9

2Q
Q

Q
QkQ
Q
Q
Qs

4

6

?

3

�
�

�
�	�
�
�
��

2

-� 2

�
�

�
�+�
�
�
�31

-2

@
@

@
@I@
@
@
@R

1

z

2

6

2
Q
Q

Q
Qk 3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 172 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Let’s Interpret it!

Found: optimal Hamiltonian cycle

Answer: 2

cycle(1,2)

cycle(2,6)

cycle(6,5)

cycle(5,3)

cycle(3,4)

cycle(4,1)
�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

9

2Q
Q

Q
QkQ
Q
Q
Qs

4

6

?

3

�
�

�
�	�
�
�
��

2

-� 2

�
�

�
�+�
�
�
�31

-2

@
@

@
@I@
@
@
@R

1

z

2

6

2
Q
Q

Q
Qk 3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 172 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Mr Hamilton as Traveling Salesperson
Let’s Interpret it!

Found: optimal Hamiltonian cycle

Answer: 3

cycle(1,2)

cycle(2,5)

cycle(5,6)

cycle(6,3)

cycle(3,4)

cycle(4,1)
�
��1

�
��3

�
��4

�
��6
�
��2

�
��5

9

2Q
Q

Q
QkQ
Q
Q
Qs

4

6

?

3

�
�

�
�	�
�
�
��

2

-� 2

�
�

�
�+�
�
�
�31

-2

@
@

@
@I@
@
@
@R

1

z

2

6

2
Q
Q

Q
Qk 3

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 172 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Problems as Logic Programs (Revisited) Traveling Salesperson

Take-Home Messages

For solving a problem (class) in ASP, provide

1 facts describing an instance and
2 a (uniform) encoding of solutions.

Encodings are often structured by the following logical parts:

1 Domain information (by deduction from facts)
2 Generator providing solution candidates (choice rules)
3 Define rules analyzing properties of candidates (normal rules)
4 Tester eliminating invalid candidates (integrity constraints)
5 Display statements projecting answer sets (onto characteristic atoms)
6 Optimizer evaluating answer sets (#minimize/#maximize)

In a Nutshell
Logic Program ⊆ (Data + Deduction) + (Generation + Analysis) +

Selection + Projection [+ Optimization]

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 173 / 226

Encoding Methodology

Effective Modeling: Overview

28 Problems as Logic Programs (Revisited)
Graph Coloring
Hamiltonian Cycle
Traveling Salesperson

29 Encoding Methodology
Tweaking N-Queens
Do’s and Dont’s

30 Hints

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 174 / 226

Encoding Methodology

The Camel through the Eye of a Needle

ASP offers

1 rich yet easy modeling languages

2 efficient instantiation procedures

3 powerful search engines

Question: Anything left to worry about?
Answer: Yes! (unfortunately)

+ Even in declarative programming, the problem encoding matters.

Consider sorting [4, 7, 2, 5, 1, 8, 6, 3]

divide-and-conquer (Quicksort) ∼ 8(log28) = 16 “operations”

permutation guessing ∼ 8!/2 = 20, 160 “operations”

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 175 / 226

Encoding Methodology

The Camel through the Eye of a Needle

ASP offers

1 rich yet easy modeling languages

2 efficient instantiation procedures

3 powerful search engines

Question: Anything left to worry about?
Answer: Yes! (unfortunately)

+ Even in declarative programming, the problem encoding matters.

Consider sorting [4, 7, 2, 5, 1, 8, 6, 3]

divide-and-conquer (Quicksort) ∼ 8(log28) = 16 “operations”

permutation guessing ∼ 8!/2 = 20, 160 “operations”

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 175 / 226

Encoding Methodology

The Camel through the Eye of a Needle

ASP offers

1 rich yet easy modeling languages

2 efficient instantiation procedures

3 powerful search engines

Question: Anything left to worry about?
Answer: Yes! (unfortunately)

+ Even in declarative programming, the problem encoding matters.

Consider sorting [4, 7, 2, 5, 1, 8, 6, 3]

divide-and-conquer (Quicksort) ∼ 8(log28) = 16 “operations”

permutation guessing ∼ 8!/2 = 20, 160 “operations”

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 175 / 226

Encoding Methodology

The Camel through the Eye of a Needle

ASP offers

1 rich yet easy modeling languages

2 efficient instantiation procedures

3 powerful search engines

Question: Anything left to worry about?
Answer: Yes! (unfortunately)

+ Even in declarative programming, the problem encoding matters.

Consider sorting [4, 7, 2, 5, 1, 8, 6, 3]

divide-and-conquer (Quicksort) ∼ 8(log28) = 16 “operations”

permutation guessing ∼ 8!/2 = 20, 160 “operations”

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 175 / 226

Encoding Methodology Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally).

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 176 / 226

Encoding Methodology Tweaking N-Queens

N-Queens Problem

Problem Specification

Given an N×N chessboard,
place N queens such that they do not attack each other
(neither horizontally, vertically, nor diagonally).

N = 4

Chessboard

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

Placement

4 0ZQZ
3 L0Z0
2 0Z0L
1 ZQZ0

1 2 3 4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 176 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.

2 No row, column, or diagonal hosts two queens.

3 A placement is given by instances of queen in an answer set.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding

1 Each square may host a queen.
2 No row, column, or diagonal hosts two queens.
3 A placement is given by instances of queen in an answer set.
4 We have to place (at least) N queens.

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

[...]

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Anything missing?

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 177 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 178 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 178 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 178 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 8 Queens!

gringo -c n=8 queens_0.lp | clasp --stats

Answer: 1

queen(1,6) queen(2,3) queen(3,1) queen(4,7)

queen(5,5) queen(6,8) queen(7,2) queen(8,4)

SATISFIABLE

Models : 1+

Time : 0.006s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Choices : 18

Conflicts : 13

Restarts : 0

Variables : 793

Constraints : 729

8 0Z0L0Z0Z
7 ZQZ0Z0Z0
6 0Z0Z0Z0L
5 Z0Z0L0Z0
4 0Z0Z0ZQZ
3 L0Z0Z0Z0
2 0ZQZ0Z0Z
1 Z0Z0ZQZ0

1 2 3 4 5 6 7 8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 178 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 179 / 226

Encoding Methodology Tweaking N-Queens

A First Encoding
Let’s Place 22 Queens!

gringo -c n=22 queens_0.lp | clasp --stats

Answer: 1

queen(1,10) queen(2,6) queen(3,16) queen(4,14) queen(5,8) ...

SATISFIABLE

Models : 1+

Time : 150.531s (Solving: 150.37s 1st Model: 150.34s Unsat: 0.00s)

CPU Time : 147.480s

Choices : 594960

Conflicts : 574565

Restarts : 19

Variables : 17271

Constraints : 16787

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 179 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- queen(X1,Y1), queen(X1,Y2), Y1 < Y2.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 180 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y1), X1 < X2.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 180 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_0.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

:- not n #count{ queen(X,Y) }.

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 180 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement

At least N queens? Exactly one queen per row and column!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 180 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 181 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Let’s Place 22 Queens!

gringo -c n=22 queens_1.lp | clasp --stats

Answer: 1

queen(1,18) queen(2,10) queen(3,21) queen(4,3) queen(5,5) ...

SATISFIABLE

Models : 1+

Time : 0.113s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.020s

Choices : 132

Conflicts : 105

Restarts : 1

Variables : 7238

Constraints : 6710

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 181 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 182 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 182 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_1.lp | clasp --stats

Answer: 1

queen(1,24) queen(2,52) queen(3,37) queen(4,60) queen(5,76) ...

SATISFIABLE

Models : 1+

Time : 79.475s (Solving: 1.06s 1st Model: 1.06s Unsat: 0.00s)

CPU Time : 6.930s

Choices : 1373

Conflicts : 845

Restarts : 4

Variables : 1211338

Constraints : 1196210

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 182 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | clasp --stats

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Where Time Has Gone

time(gringo -c n=122 queens_1.lp | wc)

1241358 7402724 24950848

real 1m15.468s

user 1m15.980s

sys 0m0.090s

+ Grounding causes the problem!

Just kidding :)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 183 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2.

Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A First Refinement
Grounding Time ∼ Space

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n). O(n×n)

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y). O(n×n)

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)
:- Y = 1..n, not 1 #count{ queen(X,Y) } 1. O(n×n)

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|. O(n2×n2)

% DISPLAY

#hide. #show queen/2. Diagonals cause trouble!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 184 / 226

Encoding Methodology Tweaking N-Queens

A Nomenclature for Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

#diagonal2 =
(#row−#column) + N

+ #diagonal1/2 can be determined in this way for arbitrary N.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 185 / 226

Encoding Methodology Tweaking N-Queens

A Nomenclature for Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

+ #diagonal1/2 can be determined in this way for arbitrary N.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 185 / 226

Encoding Methodology Tweaking N-Queens

A Nomenclature for Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

+ #diagonal1/2 can be determined in this way for arbitrary N.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 185 / 226

Encoding Methodology Tweaking N-Queens

A Nomenclature for Diagonals

N = 4

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

1

2

2

3

3

3

4

4

4

4

5

5

5

6

6

7

#diagonal1 =
(#row + #column)− 1

4 0Z0Z
3 Z0Z0
2 0Z0Z
1 Z0Z0

1 2 3 4

7

6

6

5

5

5

4

4

4

4

3

3

3

2

2

1

#diagonal2 =
(#row−#column) + N

+ #diagonal1/2 can be determined in this way for arbitrary N.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 185 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- queen(X1,Y1), queen(X2,Y2), X1 < X2, X2-X1 == |Y2-Y1|.

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 186 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 186 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_1.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 186 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s go for Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 186 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 187 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 187 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 122 Queens!

gringo -c n=122 queens_2.lp | clasp --stats

Answer: 1

queen(1,98) queen(2,54) queen(3,89) queen(4,83) queen(5,59) ...

SATISFIABLE

Models : 1+

Time : 2.211s (Solving: 0.13s 1st Model: 0.13s Unsat: 0.00s)

CPU Time : 0.210s

Choices : 11036

Conflicts : 499

Restarts : 3

Variables : 16098

Constraints : 970

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 187 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 188 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 188 / 226

Encoding Methodology Tweaking N-Queens

A Second Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_2.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 35.450s (Solving: 6.69s 1st Model: 6.68s Unsat: 0.00s)

CPU Time : 7.250s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 188 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 189 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X+Y)-1 }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : D == (X-Y)+n }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 189 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

queens_2.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 189 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Precompute Diagonals!

queens_3.lp

% DOMAIN

#const n=4. square(1..n,1..n).

diag1(X,Y,(X+Y)-1) :- square(X,Y). diag2(X,Y,(X-Y)+n) :- square(X,Y).

% GENERATE

0 #count{ queen(X,Y) } 1 :- square(X,Y).

% TEST

:- X = 1..n, not 1 #count{ queen(X,Y) } 1.

:- Y = 1..n, not 1 #count{ queen(X,Y) } 1.

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag1(X,Y,D) }. % Diagonal 1

:- D = 1..2*n-1, 2 #count{ queen(X,Y) : diag2(X,Y,D) }. % Diagonal 2

% DISPLAY

#hide. #show queen/2.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 189 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 190 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 190 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Place 300 Queens!

gringo -c n=300 queens_3.lp | clasp --stats

Answer: 1

queen(1,62) queen(2,232) queen(3,176) queen(4,241) queen(5,207) ...

SATISFIABLE

Models : 1+

Time : 8.889s (Solving: 6.61s 1st Model: 6.60s Unsat: 0.00s)

CPU Time : 7.320s

Choices : 141445

Conflicts : 7488

Restarts : 9

Variables : 92994

Constraints : 2394

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 190 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 191 / 226

Encoding Methodology Tweaking N-Queens

A Third Refinement
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 191 / 226

Encoding Methodology Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 192 / 226

Encoding Methodology Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,477) queen(2,365) queen(3,455) queen(4,470) queen(5,237) ...

SATISFIABLE

Models : 1+

Time : 76.798s (Solving: 65.81s 1st Model: 65.75s Unsat: 0.00s)

CPU Time : 68.620s

Choices : 869379

Conflicts : 25746

Restarts : 12

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 192 / 226

Encoding Methodology Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 192 / 226

Encoding Methodology Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,422) queen(2,458) queen(3,224) queen(4,408) queen(5,405) ...

SATISFIABLE

Models : 1+

Time : 37.454s (Solving: 26.38s 1st Model: 26.26s Unsat: 0.00s)

CPU Time : 29.580s

Choices : 961315

Conflicts : 3222

Restarts : 7

Variables : 365994

Constraints : 4794

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 192 / 226

Encoding Methodology Tweaking N-Queens

A Case for Oracles
Let’s Place 600 Queens!

gringo -c n=600 queens_3.lp | clasp --stats

--heuristic=vsids --trans-ext=dynamic

Answer: 1

queen(1,90) queen(2,452) queen(3,494) queen(4,145) queen(5,84) ...

SATISFIABLE

Models : 1+

Time : 22.654s (Solving: 10.53s 1st Model: 10.47s Unsat: 0.00s)

CPU Time : 15.750s

Choices : 1058729

Conflicts : 2128

Restarts : 6

Variables : 403123

Constraints : 49636

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 192 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,cheap), pro(X,fresh), pro(X,tasty), pro(X,clean).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap).

pro(asparagus,fresh). pro(cucumber,fresh).

pro(asparagus,tasty). pro(cucumber,tasty).

pro(asparagus,clean).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), pro(X,P) : pre(P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Implementing Universal Quantification

Goal: identify objects such that ALL properties from a “list” hold

1 check all properties explicitly . . . obsolete if properties change 8

2 use variable-sized conjunction (via ‘:’) . . . adapts to changing facts 4

3 use negation of complement . . . adapts to changing facts 4

Example: vegetables to buy

veg(asparagus). veg(cucumber).

pro(asparagus,cheap). pro(cucumber,cheap). pre(cheap).

pro(asparagus,fresh). pro(cucumber,fresh). pre(fresh).

pro(asparagus,tasty). pro(cucumber,tasty). pre(tasty).

pro(asparagus,clean). pre(clean).

buy(X) :- veg(X), not bye(X). bye(X) :- veg(X), pre(P), not pro(X,P).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 193 / 226

Encoding Methodology Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 194 / 226

Encoding Methodology Do’s and Dont’s

Running Example: Latin Square

Given: an N×N board

1
2
3
4
5
6

1 2 3 4 5 6

represented by facts:

square(1,1). ... square(1,6).

square(2,1). ... square(2,6).

square(3,1). ... square(3,6).

square(4,1). ... square(4,6).

square(5,1). ... square(5,6).

square(6,1). ... square(6,6).

Wanted: assignment of 1, . . . ,N

1 1 2 3 4 5 6
2 2 3 4 5 6 1
3 3 4 5 6 1 2
4 4 5 6 1 2 3
5 5 6 1 2 3 4
6 6 1 2 3 4 5

1 2 3 4 5 6

represented by atoms:

num(1,1,1) num(1,2,2) ... num(1,6,6)

num(2,1,2) num(2,2,3) ... num(2,6,1)

num(3,1,3) num(3,2,4) ... num(3,6,2)

num(4,1,4) num(4,2,5) ... num(4,6,3)

num(5,1,5) num(5,2,6) ... num(5,6,4)

num(6,1,6) num(6,2,1) ... num(6,6.5)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 194 / 226

Encoding Methodology Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 195 / 226

Encoding Methodology Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 195 / 226

Encoding Methodology Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- square(X1,Y1), N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- square(X1,Y1), N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 195 / 226

Encoding Methodology Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 195 / 226

Encoding Methodology Do’s and Dont’s

Projecting Irrelevant Details Out

A Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

squareX(X) :- square(X,Y). squareY(Y) :- square(X,Y).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- squareX(X1) , N = 1..n, not num(X1,Y2,N) : square(X1,Y2).

:- squareY(Y1) , N = 1..n, not num(X2,Y1,N) : square(X2,Y1).

+ unreused “singleton variables”

gringo latin_0.lp | wc

105480 2558984 14005258

gringo latin_1.lp | wc

42056 273672 1690522

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 195 / 226

Encoding Methodology Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 196 / 226

Encoding Methodology Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 196 / 226

Encoding Methodology Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 != Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 != X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 196 / 226

Encoding Methodology Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 196 / 226

Encoding Methodology Do’s and Dont’s

Unraveling Symmetric Inequalities

Another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ duplicate ground rules (swapping Y1/Y2 and X1/X2 gives the “same”)

gringo latin_2.lp | wc

2071560 12389384 40906946

gringo latin_3.lp | wc

1055752 6294536 21099558

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 196 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- num(X1,Y1,N), num(X1,Y2,N), Y1 < Y2.

:- num(X1,Y1,N), num(X2,Y1,N), X1 < X2.

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Linearizing Existence Tests

Still another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

gtX(X-1,Y,N) :- num(X,Y,N), 1 < X. gtY(X,Y-1,N) :- num(X,Y,N), 1 < Y.

gtX(X-1,Y,N) :- gtX(X,Y,N), 1 < X. gtY(X,Y-1,N) :- gtY(X,Y,N), 1 < Y.

:- num(X,Y,N), gtX(X,Y,N). :- num(X,Y,N), gtY(X,Y,N).

+ uniqueness of N in a row/column checked by ENUMERATING PAIRS!

gringo latin_3.lp | wc

1055752 6294536 21099558

gringo latin_4.lp | wc

228360 1205256 4780744

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 197 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X]. 4

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C #count{ num(X,Y,N) } C, C = 0..n.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

+ internal transformation by gringo

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

sigma(S) :- S = #sum[square(X,n) = X].

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }. 7

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3. #show sigma/1.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% DEFINE + TEST

occX(X,N,C) :- X = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

occY(Y,N,C) :- Y = 1..n, N = 1..n, C = #count{ num(X,Y,N) }.

:- occX(X,N,C), C != 1. :- occY(Y,N,C), C != 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Assigning Aggregate Values

Yet another Latin square encoding

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo latin_5.lp | wc

304136 5778440 30252505

gringo latin_6.lp | wc

48136 373768 2185042

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 198 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

+ many symmetric solutions (mirroring, rotation, value permutation)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

+ easy and safe to fix a full row/column!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

+ easy and safe to fix a full row/column!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

+ Let’s compare enumeration speed!

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_6.lp | clasp -q 0

Models : 161280 Time : 2.078s

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 161280 Time : 2.078s

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Encoding Methodology Do’s and Dont’s

Breaking Symmetries

The ultimate Latin square encoding?

% DOMAIN

#const n=32. square(1..n,1..n).

% GENERATE

1 #count{ num(X,Y,N) : N = 1..n } 1 :- square(X,Y).

% TEST

:- X = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- Y = 1..n, N = 1..n, not 1 #count{ num(X,Y,N) } 1.

:- square(1,Y), not num(1,Y,Y). % Symmetry Breaking

% DISPLAY

#hide. #show num/3.

gringo -c n=5 latin_7.lp | clasp -q 0

Models : 1344 Time : 0.024s

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 199 / 226

Hints

Effective Modeling: Overview

28 Problems as Logic Programs (Revisited)
Graph Coloring
Hamiltonian Cycle
Traveling Salesperson

29 Encoding Methodology
Tweaking N-Queens
Do’s and Dont’s

30 Hints

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 200 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Encode With Care!

1 Create a working encoding

Q1: Do you need to modify the encoding if the facts change?
Q2: Are all variables significant (or statically functionally dependent)?
Q3: Can there be (many) identic ground rules?
Q4: Do you enumerate pairs of values (to test uniqueness)?
Q5: Do you assign dynamic aggregate values (to check a fixed bound)?
Q6: Do you admit (obvious) symmetric solutions?
Q7: Do you have additional domain knowledge simplifying the problem?
Q8: Are you aware of anything else that, if encoded, would reduce

grounding and/or solving efforts?

2 Revise until no “Yes” answer!

+ If the format of facts makes encoding painful (for instance, abusing
grounding for “scientific calculations”), revise the fact format as well.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 201 / 226

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Some Hints on (Preventing) Debugging

Kinds of errors

syntactic . . . follow error messages by the grounder

semantic . . . (most likely) encoding/intention mismatch

Ways to identify semantic errors (early)

1 develop and test incrementally

prepare toy instances with “interesting features”
build the encoding bottom-up and verify additions (eg. new predicates)

2 compare the encoded to the intended meaning

check whether the grounding fits (use gringo -t)
if answer sets are unintended, investigate conditions that fail to hold
if answer sets are missing, examine integrity constraints (add heads)

3 ask tools (eg. http://www.kr.tuwien.ac.at/research/projects/mmdasp/)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 202 / 226

http://www.kr.tuwien.ac.at/research/projects/mmdasp/

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Hints

Overcoming Performance Bottlenecks

Grounding

monitor time spent by and output size of gringo

1 system tools (eg. time(gringo [. . .] | wc))
2 profiling info (eg. gringo --gstats --verbose=3 [. . .] > /dev/null)

+ once identified, reformulate “critical” logic program parts

Solving

check solving statistics (use clasp --stats)

+ if great search efforts (Conflicts/Choices/Restarts), then

1 try auto-configuration (offered by claspfolio)
2 try manual fine-tuning (requires expert knowledge!)
3 if possible, reformulate the problem or add domain knowledge

(“redundant” constraints) to help the solver

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 203 / 226

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 204 / 226

Potassco

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 205 / 226

Potassco

http://potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder: gringo, pyngo

Solver: clasp, claspd, claspar

Grounder+Solver: clingo, iclingo, oclingo, clingcon

Further Tools: claspfolio, coala, inca, plasp, sbass, xorro

Benchmark repository: http://asparagus.cs.uni-potsdam.de

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 206 / 226

http://potassco.sourceforge.net
http://asparagus.cs.uni-potsdam.de

Potassco

http://potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder: gringo, pyngo

Solver: clasp, claspd, claspar

Grounder+Solver: clingo, iclingo, oclingo, clingcon

Further Tools: claspfolio, coala, inca, plasp, sbass, xorro

Benchmark repository: http://asparagus.cs.uni-potsdam.de

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 206 / 226

http://potassco.sourceforge.net
http://asparagus.cs.uni-potsdam.de

Potassco

http://potassco.sourceforge.net

Potassco, the Potsdam Answer Set Solving Collection,
bundles tools for ASP developed at the University of Potsdam,
for instance:

Grounder: gringo, pyngo

Solver: clasp, claspd, claspar

Grounder+Solver: clingo, iclingo, oclingo, clingcon

Further Tools: claspfolio, coala, inca, plasp, sbass, xorro

Benchmark repository: http://asparagus.cs.uni-potsdam.de

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 206 / 226

http://potassco.sourceforge.net
http://asparagus.cs.uni-potsdam.de

gringo

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 207 / 226

gringo

gringo

Accepts safe programs with aggregates

Tolerates unrestricted use of function symbols
(as long as it yields a finite ground instantiation :)

Expressive power of a Turing machine

Basic architecture of gringo:

Parser Preprocessor Grounder Output

--lparse
--text
--reify

--ground

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 208 / 226

clasp

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 209 / 226

clasp

clasp

Native ASP solver combining conflict-driven search with
sophisticated reasoning techniques:

Advanced preprocessing including, e.g., equivalence reasoning
Lookback-based decision heuristics
Restart policies
Nogood deletion
Progress saving
Dedicated data structures for binary and ternary nogoods
Lazy data structures (watched literals) for long nogoods
Dedicated data structures for cardinality and weight constraints
Lazy unfounded set checking based on “source pointers”
Tight integration of unit propagation and unfounded set checking
Reasoning modes
Multi-threaded search
. . .

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 210 / 226

clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

Optimization

Enumeration [without solution recording]

Projective Enumeration [without solution recording]

Brave and Cautious Reasoning determining the

union or
intersection

of all answer sets by computing only linearly many of them

and combinations thereof

clasp also allows for solving

propositional CNF formulas (extended dimacs)

pseudo-Boolean formulas (opb and wbo)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 211 / 226

clasp

Reasoning modes of clasp

Beyond deciding answer set existence, clasp allows for:

Optimization

Enumeration [without solution recording]

Projective Enumeration [without solution recording]

Brave and Cautious Reasoning determining the

union or
intersection

of all answer sets by computing only linearly many of them

and combinations thereof

clasp also allows for solving

propositional CNF formulas (extended dimacs)

pseudo-Boolean formulas (opb and wbo)

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 211 / 226

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 212 / 226

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 212 / 226

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 212 / 226

clasp

Multi-threaded architecture of clasp

Solver 1. . . n

Decision
Heuristic
Decision
Heuristic

Conflict
Resolution

Conflict
Resolution

Assignment
Atoms/Bodies

Recorded Nogoods

Propagation

Unit
Propagation

Unit
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Post
Propagation

Coordination

SharedContext

Propositional
Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelContext

Threads S1 S2
. . . Sn

Counter T W . . . S

Queue P1 P2
. . . Pn

Shared Nogoods

EnumeratorEnumerator

Nogood
Distributor

Nogood
Distributor

Logic
Program

Preprocessing

Program
Builder

Program
Builder

PreprocessorPreprocessorPreprocessorPreprocessor

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 212 / 226

Siblings

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 213 / 226

Siblings claspfolio

claspfolio

Automatic selection of clasp configuration
among 22 configuration via (learned) classifiers

Basic architecture of claspfolio:

gringo clasp Prediction clasp

Models claspfolio

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 214 / 226

Siblings clingcon

clingcon

Hybrid grounding and solving

Solving in hybrid domains, like Bio-Informatics

Basic architecture of clingcon:

Theory
Language

gringo clasp

Theory
Propagator

Theory
Solver

clingcon

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 215 / 226

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) + amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 216 / 226

Siblings clingcon

Pouring Water into Buckets on a Scale

time(0..t). $domain(0..500).

bucket(a). volume(a,0) $== 0.

bucket(b). volume(b,0) $== 100.

1 { pour(B,T) : bucket(B) } 1 :- time(T), T < t.

1 $<= amount(B,T) :- pour(B,T), T < t.

amount(B,T) $<= 30 :- pour(B,T), T < t.

amount(B,T) $== 0 :- not pour(B,T), bucket(B), time(T), T < t.

volume(B,T+1) $== volume(B,T) + amount(B,T) :- bucket(B), time(T), T < t.

down(B,T) :- volume(C,T) $< volume(B,T), bucket(B;C), time(T).

up(B,T) :- not down(B,T), bucket(B), time(T).

:- up(a,t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 216 / 226

Siblings iclingo

iclingo

Incremental grounding and solving

Offline solving in dynamic domains, like Automated Planning

Basic architecture of iclingo:

gringo clasp

iclingo

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 217 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder Solver

Answer
Sets

- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder Solver

Answer
Sets

- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program

Grounder Solver
Answer

Sets
- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program

Grounder Solver
Answer

Sets
- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8
?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8
P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8
...

Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Incremental ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

Q1

P1

B

8

?

P2

Q2

8

P3

Q3

8

...
Pn

Qn

4

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 218 / 226

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 219 / 226

Siblings iclingo

Simplistic STRIPS Planning

#base.

fluent(p). fluent(q). fluent(r).

action(a). pre(a,p). add(a,q). del(a,p).

action(b). pre(b,q). add(b,r). del(b,q).

init(p). query(r).

holds(P,0) :- init(P).

#cumulative t.

1 { occ(A,t) : action(A) } 1.

:- occ(A,t), pre(A,F), not holds(F,t-1).

ocdel(F,t) :- occ(A,t), del(A,F).

holds(F,t) :- occ(A,t), add(A,F).

holds(F,t) :- holds(F,t-1), not ocdel(F,t).

#volatile t.

:- query(F), not holds(F,t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 219 / 226

Siblings oclingo

oclingo

Reactive grounding and solving

Online solving in dynamic domains, like Robotics

Basic architecture of oclingo:

gringo clasp

oclingo

Controller

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 220 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Answer
Sets

- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder Solver

Answer
Sets

- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Answer

Sets
- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program

Grounder Solver
Answer

Sets
- - -

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder
Qk

Pk

B

6

E1

F1

E1

F1

B

P1
...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...
Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4

Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

Update

QueryErasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

Update

Query

Erasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Reactive ASP Solving Process

Logic
Program Grounder

Solver
Answer

Sets

- -

-

6�
�
�
�Modeling

Qk

Pk

B

Grounder

Qk

Pk

B

6

E1

F1

E1

F1

B
P1

...

Pn1

Qn1

4

E2

F2

E1

F1

E2

F2

Pn2

Qn2

4

E3

F3

E2

F2

E1

F1

E3

F3

Pn3

Qn3

4
Pn41

Qn41

E42

F42

E41

F41

E40

F40

E39

F39

E38

F38

E37

F37

E36

F36

E35

F35

E42
...

F42

Pn42

Qn42

4

UpdateQuery

Erasure

8

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 221 / 226

Siblings oclingo

Elevator Control

#base.

floor(1..3).

atFloor(1,0).

#cumulative t.

#external request(F,t) : floor(F).

1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).

:- atFloor(F,t), not floor(F).

requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).

requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).

goal(t) :- not requested(F,t) : floor(F).

#volatile t.

:- not goal(t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 222 / 226

Siblings oclingo

Elevator Control

#base.

floor(1..3).

atFloor(1,0).

#cumulative t.

#external request(F,t) : floor(F).

1 { atFloor(F-1;F+1,t) } 1 :- atFloor(F,t-1), floor(F).

:- atFloor(F,t), not floor(F).

requested(F,t) :- request(F,t), floor(F), not atFloor(F,t).

requested(F,t) :- requested(F,t-1), floor(F), not atFloor(F,t).

goal(t) :- not requested(F,t) : floor(F).

#volatile t.

:- not goal(t).

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 222 / 226

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 223 / 226

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 223 / 226

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 223 / 226

Siblings oclingo

Pushing a button

oClingo acts as a server listening on a port
waiting for client requests

To issue such requests, a separate controller program
sends online progressions using network sockets

For instance,

#step 1.

request(3,1).

#endstep.

This process terminates when the client sends

#stop.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 223 / 226

Book

Systems: Overview

31 Potassco

32 gringo

33 clasp

34 Siblings
claspfolio
clingcon
iclingo
oclingo

35 Book

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 224 / 226

Book

The (forthcoming) Potassco Book

1. Motivation
2. Introduction
3. Basic modeling
4. Grounding
5. Characterizations
6. Solving
7. Systems
8. Advanced modeling
9. Conclusions

Answer Set Solving in Practice

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
University of Potsdam

SYNTHESIS LECTURES ON SAMPLE SERIES #1

C
M
&

cLaypoolMorgan publishers&

http://potassco.sourceforge.net/teaching.html

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 225 / 226

http://potassco.sourceforge.net/teaching.html

Summary

ASP is emerging as a viable tool for Knowledge Representation
and Reasoning

ASP offers efficient and versatile off-the-shelf solving technology

http://potassco.sourceforge.net

ASP’07/09/11, CASC’11, MISC’11, PB’09/11, and SAT’09/11

ASP offers an expanding functionality and ease of use

Rapid application development tool

ASP has a growing range of applications

ASP = KR+DB+SAT+LP

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

http://potassco.sourceforge.net

C. Anger, M. Gebser, T. Linke, A. Neumann, and T. Schaub.
The nomore++ approach to answer set solving.
In G. Sutcliffe and A. Voronkov, editors, Proceedings of the Twelfth
International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR’05), volume 3835 of Lecture Notes
in Artificial Intelligence, pages 95–109. Springer-Verlag, 2005.

Y. Babovich and V. Lifschitz.
Computing answer sets using program completion.
Unpublished draft; available at
http://www.cs.utexas.edu/users/tag/cmodels.html, 2003.

C. Baral.
Knowledge Representation, Reasoning and Declarative Problem
Solving.
Cambridge University Press, 2003.

C. Baral, G. Brewka, and J. Schlipf, editors.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

http://www.cs.utexas.edu/users/tag/cmodels.html

Proceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07), volume
4483 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2007.

S. Baselice, P. Bonatti, and M. Gelfond.
Towards an integration of answer set and constraint solving.
In M. Gabbrielli and G. Gupta, editors, Proceedings of the Twenty-first
International Conference on Logic Programming (ICLP’05), volume
3668 of Lecture Notes in Computer Science, pages 52–66.
Springer-Verlag, 2005.

A. Biere.
Adaptive restart strategies for conflict driven SAT solvers.
In H. Kleine Büning and X. Zhao, editors, Proceedings of the Eleventh
International Conference on Theory and Applications of Satisfiability
Testing (SAT’08), volume 4996 of Lecture Notes in Computer
Science, pages 28–33. Springer-Verlag, 2008.

A. Biere.
PicoSAT essentials.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Journal on Satisfiability, Boolean Modeling and Computation,
4:75–97, 2008.

A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors.
Handbook of Satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications.
IOS Press, 2009.

M. Brain, O. Cliffe, and M. de Vos.
A pragmatic programmer’s guide to answer set programming.
In M. de Vos and T. Schaub, editors, Proceedings of the Second
Workshop on Software Engineering for Answer Set Programming
(SEA’09), volume 546, pages 49–63. CEUR Workshop Proceedings,
2009.

M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and
S. Woltran.
Debugging ASP programs by means of ASP.
In Baral et al. , pages 31–43.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

M. Brain, M. Gebser, J. Pührer, T. Schaub, H. Tompits, and
S. Woltran.
That is illogical captain! — the debugging support tool spock for
answer-set programs: System description.
In M. de Vos and T. Schaub, editors, Proceedings of the Workshop on
Software Engineering for Answer Set Programming (SEA’07), volume
281, pages 71–85. CEUR Workshop Proceedings, 2007.

K. Clark.
Negation as failure.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
293–322. Plenum Press, 1978.

O. Cliffe, M. de Vos, M. Brain, and J. Padget.
ASPVIZ: Declarative visualisation and animation using answer set
programming.
In Garcia de la Banda and Pontelli , pages 724–728.

M. D’Agostino, D. Gabbay, R. Hähnle, and J. Posegga, editors.
Handbook of Tableau Methods.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Kluwer Academic Publishers, 1999.

E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov.
Complexity and expressive power of logic programming.
In Proceedings of the Twelfth Annual IEEE Conference on
Computational Complexity (CCC’97), pages 82–101. IEEE Computer
Society Press, 1997.

M. Davis, G. Logemann, and D. Loveland.
A machine program for theorem-proving.
Communications of the ACM, 5:394–397, 1962.

M. Davis and H. Putnam.
A computing procedure for quantification theory.
Journal of the ACM, 7:201–215, 1960.

C. Drescher, M. Gebser, T. Grote, B. Kaufmann, A. König,
M. Ostrowski, and T. Schaub.
Conflict-driven disjunctive answer set solving.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

In G. Brewka and J. Lang, editors, Proceedings of the Eleventh
International Conference on Principles of Knowledge Representation
and Reasoning (KR’08), pages 422–432. AAAI Press, 2008.

C. Drescher, M. Gebser, B. Kaufmann, and T. Schaub.
Heuristics in conflict resolution.
In M. Pagnucco and M. Thielscher, editors, Proceedings of the
Twelfth International Workshop on Nonmonotonic Reasoning
(NMR’08), number UNSW-CSE-TR-0819 in School of Computer
Science and Engineering, The University of New South Wales,
Technical Report Series, pages 141–149, 2008.

N. Eén and N. Sörensson.
An extensible SAT-solver.
In E. Giunchiglia and A. Tacchella, editors, Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’03), volume 2919 of Lecture Notes in Computer
Science, pages 502–518. Springer-Verlag, 2004.

T. Eiter and G. Gottlob.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

On the computational cost of disjunctive logic programming:
Propositional case.
Annals of Mathematics and Artificial Intelligence, 15(3-4):289–323,
1995.

F. Fages.
Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

P. Ferraris.
Answer sets for propositional theories.
In C. Baral, G. Greco, N. Leone, and G. Terracina, editors, Proceedings
of the Eighth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’05), volume 3662 of Lecture
Notes in Artificial Intelligence, pages 119–131. Springer-Verlag, 2005.

M. Fitting.
A Kripke-Kleene semantics for logic programs.
Journal of Logic Programming, 2(4):295–312, 1985.

M. Garcia de la Banda and E. Pontelli, editors.
Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Proceedings of the Twenty-fourth International Conference on Logic
Programming (ICLP’08), volume 5366 of Lecture Notes in Computer
Science. Springer-Verlag, 2008.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel,
S. Thiele, and P. Veber.
Repair and prediction (under inconsistency) in large biological
networks with answer set programming.
In F. Lin and U. Sattler, editors, Proceedings of the Twelfth
International Conference on Principles of Knowledge Representation
and Reasoning (KR’10), pages 497–507. AAAI Press, 2010.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele.
A user’s guide to gringo, clasp, clingo, and iclingo.

M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
S. Thiele.
Engineering an incremental ASP solver.
In Garcia de la Banda and Pontelli , pages 190–205.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
On the implementation of weight constraint rules in conflict-driven
ASP solvers.
In Hill and Warren , pages 250–264.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Multi-criteria optimization in answer set programming.
In J. Gallagher and M. Gelfond, editors, Technical Communications of
the Twenty-seventh International Conference on Logic Programming
(ICLP’11), volume 11, pages 1–10. Leibniz International Proceedings
in Informatics (LIPIcs), 2011.

M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub.
Multi-criteria optimization in ASP and its application to Linux
package configuration.
Unpublished draft, 2011.
Available at
http://www.cs.uni-potsdam.de/wv/pdfformat/gekakasc11b.pdf.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and
S. Ziller.
A portfolio solver for answer set programming: Preliminary report.
In J. Delgrande and W. Faber, editors, Proceedings of the Eleventh
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’11), volume 6645 of Lecture Notes in Artificial
Intelligence, pages 352–357. Springer-Verlag, 2011.

M. Gebser, R. Kaminski, and T. Schaub.
Complex optimization in answer set programming.
Theory and Practice of Logic Programming, 11(4-5):821–839, 2011.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
clasp: A conflict-driven answer set solver.
In Baral et al. , pages 260–265.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set enumeration.
In Baral et al. , pages 136–148.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Conflict-driven answer set solving.
In Veloso , pages 386–392.

M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub.
Advanced preprocessing for answer set solving.
In M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris, editors,
Proceedings of the Eighteenth European Conference on Artificial
Intelligence (ECAI’08), pages 15–19. IOS Press, 2008.

M. Gebser, B. Kaufmann, and T. Schaub.
The conflict-driven answer set solver clasp: Progress report.
In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings of the Tenth
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in Artificial
Intelligence, pages 509–514. Springer-Verlag, 2009.

M. Gebser, B. Kaufmann, and T. Schaub.
Solution enumeration for projected Boolean search problems.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

In W. van Hoeve and J. Hooker, editors, Proceedings of the Sixth
International Conference on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems
(CPAIOR’09), volume 5547 of Lecture Notes in Computer Science,
pages 71–86. Springer-Verlag, 2009.

M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Hill and Warren , pages 235–249.

M. Gebser, J. Pührer, T. Schaub, and H. Tompits.
A meta-programming technique for debugging answer-set programs.
In D. Fox and C. Gomes, editors, Proceedings of the Twenty-third
National Conference on Artificial Intelligence (AAAI’08), pages
448–453. AAAI Press, 2008.

M. Gebser and T. Schaub.
Tableau calculi for answer set programming.
In S. Etalle and M. Truszczyński, editors, Proceedings of the
Twenty-second International Conference on Logic Programming

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

(ICLP’06), volume 4079 of Lecture Notes in Computer Science, pages
11–25. Springer-Verlag, 2006.

M. Gebser and T. Schaub.
Generic tableaux for answer set programming.
In V. Dahl and I. Niemelä, editors, Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), volume
4670 of Lecture Notes in Computer Science, pages 119–133.
Springer-Verlag, 2007.

M. Gelfond.
Answer sets.
In V. Lifschitz, F. van Harmelen, and B. Porter, editors, Handbook of
Knowledge Representation, chapter 7, pages 285–316. Elsevier
Science, 2008.

M. Gelfond and N. Leone.
Logic programming and knowledge representation — the A-Prolog
perspective.
Artificial Intelligence, 138(1-2):3–38, 2002.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

M. Gelfond and V. Lifschitz.
The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth
International Conference and Symposium of Logic Programming
(ICLP’88), pages 1070–1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz.
Logic programs with classical negation.
In Proceedings of the International Conference on Logic Programming,
pages 579–597, 1990.

E. Giunchiglia, Y. Lierler, and M. Maratea.
Answer set programming based on propositional satisfiability.
Journal of Automated Reasoning, 36(4):345–377, 2006.

P. Hill and D. Warren, editors.
Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), volume 5649 of Lecture Notes in Computer
Science. Springer-Verlag, 2009.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

J. Huang.
The effect of restarts on the efficiency of clause learning.
In Veloso , pages 2318–2323.

H. Kautz and B. Selman.
Planning as satisfiability.
In B. Neumann, editor, Proceedings of the Tenth European
Conference on Artificial Intelligence (ECAI’92), pages 359–363. John
Wiley & sons, 1992.

K. Konczak, T. Linke, and T. Schaub.
Graphs and colorings for answer set programming.
Theory and Practice of Logic Programming, 6(1-2):61–106, 2006.

R. Kowalski.
Logic for data description.
In H. Gallaire and J. Minker, editors, Logic and Data Bases, pages
77–103. Plenum Press, 1978.

J. Lee.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

A model-theoretic counterpart of loop formulas.
In L. Kaelbling and A. Saffiotti, editors, Proceedings of the Nineteenth
International Joint Conference on Artificial Intelligence (IJCAI’05),
pages 503–508. Professional Book Center, 2005.

N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and
F. Scarcello.
The DLV system for knowledge representation and reasoning.
ACM Transactions on Computational Logic, 7(3):499–562, 2006.

V. Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138(1-2):39–54, 2002.

V. Lifschitz and A. Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7(2):261–268, 2006.

V. Lifschitz, L. Tang, and H. Turner.
Nested expressions in logic programs.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Annals of Mathematics and Artificial Intelligence, 25(3-4):369–389,
1999.

F. Lin and Y. Zhao.
ASSAT: computing answer sets of a logic program by SAT solvers.
Artificial Intelligence, 157(1-2):115–137, 2004.

J. Lloyd.
Foundations of Logic Programming.
Symbolic Computation. Springer-Verlag, 1987.

V. Marek and M. Truszczyński.
Stable models and an alternative logic programming paradigm.
In K. Apt, V. Marek, M. Truszczyński, and D. Warren, editors, The
Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

J. Marques-Silva, I. Lynce, and S. Malik.
Conflict-driven clause learning SAT solvers.
In Biere et al. , chapter 4, pages 131–153.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

J. Marques-Silva and K. Sakallah.
GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers, 48(5):506–521, 1999.

V. Mellarkod and M. Gelfond.
Integrating answer set reasoning with constraint solving techniques.
In J. Garrigue and M. Hermenegildo, editors, Proceedings of the Ninth
International Symposium on Functional and Logic Programming
(FLOPS’08), volume 4989 of Lecture Notes in Computer Science,
pages 15–31. Springer-Verlag, 2008.

V. Mellarkod, M. Gelfond, and Y. Zhang.
Integrating answer set programming and constraint logic
programming.
Annals of Mathematics and Artificial Intelligence, 53(1-4):251–287,
2008.

D. Mitchell.
A SAT solver primer.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Bulletin of the European Association for Theoretical Computer
Science, 85:112–133, 2005.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver.
In Proceedings of the Thirty-eighth Conference on Design Automation
(DAC’01), pages 530–535. ACM Press, 2001.

I. Niemelä.
Logic programs with stable model semantics as a constraint
programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273,
1999.

R. Nieuwenhuis, A. Oliveras, and C. Tinelli.
Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

J. Oetsch, J. Pührer, and H. Tompits.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Catching the ouroboros: On debugging non-ground answer-set
programs.
In Theory and Practice of Logic Programming. Twenty-sixth
International Conference on Logic Programming (ICLP’10) Special
Issue, volume 10(4-6), pages 513–529. Cambridge University Press,
2010.

K. Pipatsrisawat and A. Darwiche.
A lightweight component caching scheme for satisfiability solvers.
In J. Marques-Silva and K. Sakallah, editors, Proceedings of the Tenth
International Conference on Theory and Applications of Satisfiability
Testing (SAT’07), volume 4501 of Lecture Notes in Computer
Science, pages 294–299. Springer-Verlag, 2007.

L. Ryan.
Efficient algorithms for clause-learning SAT solvers.
Master’s thesis, Simon Fraser University, 2004.

J. Schlipf.
The expressive powers of the logic programming semantics.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

Journal of Computer and System Sciences, 51:64–86, 1995.

P. Simons, I. Niemelä, and T. Soininen.
Extending and implementing the stable model semantics.
Artificial Intelligence, 138(1-2):181–234, 2002.

T. Syrjänen.
Lparse 1.0 user’s manual.

A. van Gelder, K. Ross, and J. Schlipf.
The well-founded semantics for general logic programs.
Journal of the ACM, 38(3):620–650, 1991.

M. Veloso, editor.
Proceedings of the Twentieth International Joint Conference on
Artificial Intelligence (IJCAI’07). AAAI Press/The MIT Press, 2007.

L. Zhang, C. Madigan, M. Moskewicz, and S. Malik.
Efficient conflict driven learning in a Boolean satisfiability solver.
In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01), pages 279–285, 2001.

Torsten Schaub et al. (KRR@UP) Modeling and Solving in ASP 226 / 226

	Motivation
	Motivation
	Nutshell
	Shifting paradigms
	Rooting ASP
	Problem solving
	Use

	Introduction
	Syntax
	Semantics
	Examples
	Variables
	Language Constructs
	Reasoning Modes

	Basic Modeling
	ASP Solving Process
	Problems as Logic Programs
	Graph Coloring

	Methodology
	Satisfiability
	Queens
	Reviewer Assignment
	Planning

	Language Extensions
	Motivation
	Integrity Constraints
	Choice Rules
	Cardinality Constraints
	Weight Constraints
	Optimization statements
	Conditional literals
	smodels format

	Conflict-Driven Answer Set Solving
	Motivation
	Boolean Constraints
	Nogoods from Logic Programs
	Nogoods from program completion
	Nogoods from loop formulas

	Conflict-Driven Nogood Learning
	CDNL-ASP Algorithm
	Nogood Propagation
	Conflict Analysis

	Effective Modeling
	Problems as Logic Programs (Revisited)
	Graph Coloring
	Hamiltonian Cycle
	Traveling Salesperson

	Encoding Methodology
	Tweaking N-Queens
	Do's and Dont's

	Hints

	Systems
	Potassco
	gringo
	clasp
	Siblings
	claspfolio
	clingcon
	iclingo
	oclingo

	Book

	Summary
	Bibliography

