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Abstract. Answer Set Programming (ASP) has become an established paradigm
for Knowledge Representation and Reasoning, in particular, when it comes to
solving knowledge-intense combinatorial (optimization) problems. ASP’s unique
pairing of a simple yet rich modeling language with highly performant solving
technology has led to an increasing interest in ASP in academia as well as industry.
To further boost this development and make ASP fit for real world applications
it is indispensable to equip it with means for an easy integration into software
environments and for adding complementary forms of reasoning.
In this tutorial, we describe how both issues are addressed in the ASP system
clingo. At first, we outline features of clingo’s application programming inter-
face (API) that are essential for multi-shot ASP solving, a technique for dealing
with continuously changing logic programs. This is illustrated by realizing two
exemplary reasoning modes, namely branch-and-bound-based optimization and
incremental ASP solving. We then switch to the design of the API for integrating
complementary forms of reasoning and detail this in an extensive case study deal-
ing with the integration of difference constraints. We show how the syntax of these
constraints is added to the modeling language and seamlessly merged into the
grounding process. We then develop in detail a corresponding theory propagator
for difference constraints and present how it is integrated into clingo’s solving
process.

1 Introduction

Answer Set Programming (ASP [4]) has established itself among the popular paradigms
for Knowledge Representation and Reasoning (KRR), in particular, when it comes to
solving knowledge-intense combinatorial (optimization) problems. ASP’s unique combi-
nation of a simple yet rich modeling language with highly performant solving technology
has led to an increasing interest in ASP in academia as well as industry. Another primary
asset of ASP is its versatility, arguably elicited by its roots in KRR. On the one hand,
ASP’s first-order modeling language offers, for instance, cardinality and weight con-
straints as well as means to express multi-objective optimization functions. This allows
ASP to readily express problems in neighboring fields such as Satisfiability Testing
(SAT [7]) and Pseudo-Boolean Solving (PB [37]), as well as Maximum Satisfiability
Testing (MaxSAT [28]) and even more general constraint satisfaction problems possibly
involving optimization. On the other hand, these constructs must be supported by the
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corresponding solvers, leading to dedicated treatments of cardinality and weight con-
straints along with sophisticated optimization algorithms. Moreover, mere satisfiability
testing is often insufficient for addressing KRR problems. That is why ASP solvers offer
additional reasoning modes involving enumerating, intersecting, or unioning solutions,
as well as combinations thereof, e.g., intersecting all optimal solutions.

In a sense, the discussed versatility of modern ASP can be regarded as the result of hy-
bridizing the original approach [24] in several ways. So far, however, most hybridization
was accomplished within the solvers and is thus inaccessible to the user. For instance, the
dedicated treatment of aggregates like cardinality and weight constraints is fully opaque.
The same applies to the control of successive solver calls happening during optimization.
Although a highly optimized implementation of such prominent concepts makes perfect
sense, the increasing range and resulting diversification of applications of ASP calls for
easy and generic means to enrich ASP with dedicated forms of reasoning. This involves
the extension of ASP’s solving capacities with means for handling constraints foreign
to ASP as well as means for customizing solving processes to define complex forms of
reasoning. The former extension is usually called theory reasoning (or theory solving)
and the resulting conglomerate of ASP extensions is subsumed under the umbrella term
ASP modulo theories. The other extension addresses the customization of ASP solving
processes by multi-shot ASP solving, providing operative solving processes that deal
with continuously changing logic programs.

Let us motivate both techniques by means of two exemplary ASP extensions, ag-
gregate constraints and optimization. With this end in view, keep in mind that ASP is
a model, ground, and solve paradigm. Hence such extensions are rarely limited to a
single component but often spread throughout the whole workflow. This begins with the
addition of new language constructs to the input language, requiring in turn amendments
to the grounder as well as syntactic means for passing the ground constructs to a down-
stream system. In case they are to be dealt with by an ASP solver, it must be enabled to
treat the specific input and incorporate corresponding solving capacities. Finally, each
such extension is theory-specific and requires different means at all ends.

So first of all, consider what is needed to extend an ASP system like clingo with a
new type of aggregate constraint? The first step consists in defining the syntax of the
aggregate type. Afterwards, the ASP grounder has to be extended to be able to parse and
instantiate the corresponding constructs. Then, there are two options, either the ground
aggregates are translated into existing ASP language constructs (and we are done),3 or
they are passed along to a downstream ASP solver. The first alternative is also referred to
as eager, the latter as lazy theory solving. The next step in the lazy approach is to define
an intermediate format (or data structure) to pass instances of the aggregate constraints
from the grounder to the solver, not to forget respective extensions to the back- and front-
ends of the two ASP components. Now, that the solver can internalize the new constructs,
it must be equipped with corresponding processing capacities. They are usually referred
to as theory propagators and inserted into the solver’s infrastructure for propagation.
When solving, the idea is to leave the Boolean solving machinery intact by associating
with each theory constraint an auxiliary Boolean variable. During propagation, the truth
values of the auxiliary variables are passed to the corresponding theory propagators that

3 Alternatively, this could also be done before instantiation.



then try to satisfy or falsify the respective theory constraints, respectively. Finally, when
an overall solution is found, the theory propagators are in charge of outputting their
part (if applicable). One can imagine that each such extension involves a quite intricate
engineering effort since it requires working with the ASP system’s low level API. clingo
allows us to overcome this problem by providing easy and generic means for adding
theory solving capacities. On the one side, it offers theory grammars for expressing
theory languages whose expressions are seamlessly integrated in its grounding process.
On the other side, a simple interface consisting of four methods offers an easy integration
of theory propagators into the solver, either in C, C++, Lua, or Python.

Let us now turn to (branch-and-bound-based) optimization and see what infrastruc-
ture is needed to extend a basic ASP solver. In fact, for the setup, we face a similar
situation as above and all steps from syntax definition to internalization are analogous for
capturing objective functions. The first step in optimization is to find an initial solution.
If none exists, we are done. Otherwise the system enters a simple loop. The objective
value of the previous solution is determined and a constraint is added to the problem
specification requiring that a solution must have a strictly better objective value than
the one just obtained. Then, the solver is launched again to compute a better solution. If
none is found, the last solution is optimal. Otherwise, the system re-enters the loop in
order to find an even better solution. This solving process faces a succession of solver
invocations dealing with slightly changing problem specifications. The direct way to
implement this is to use a script that repeatedly calls an ASP solver after each problem
expansion. However, such an approach bears great redundancies due to repeated ground-
ing and solving efforts from scratch. Unlike this, clingo offers evolving grounding and
solving processes. Such processes lead to operative ASP systems that possess an internal
state that can be manipulated by certain operations. Such operations allow for adding,
grounding, and solving logic programs as well as setting truth values of (external) atoms.
The latter does not only provide a simple means for incorporating external input but also
for enabling or disabling parts of the current logic program. These functionalities allow
for dealing with changing logic programs in a seamless way. As above, corresponding
application programming interfaces (APIs) are available in C, C++, Lua, or Python.

The remainder of this tutorial is structured as follows. Section 2 provides some
formal underpinnings for the following sections without any claim to completeness.
Rather we refer the reader to the literature for comprehensive introductions to ASP
and its computing machinery, among others [4,30,14,19,23]. As a result, this tutorial
is not self-contained and rather aims at a hands-on introduction to using clingo’s API
for multi-shot and theory solving. Both approaches are described in Section 3 and 4
by drawing on material from [20,21] and [18], respectively. Section 5 is dedicated to a
case-study detailing how clingo can be extended with difference constraints over integers,
or more precisely Quantifier-free Integer Difference Logic (QF-IDL).

2 Answer Set Programming

As usual, a logic program consists of rules of the form

a1;...;am :- am+1,...,an,not an+1,...,not ao



where each ai is an atom of form p(t1,...,tk) and all ti are terms, composed of
function symbols and variables. Atoms a1 to am are often called head atoms, while
am+1 to an and not an+1 to not ao are also referred to as positive and negative
body literals, respectively. An expression is said to be ground, if it contains no variables.
As usual, not denotes (default) negation. A rule is called a fact if m = o = 1, normal if
m = 1, and an integrity constraint if m = 0. Semantically, a logic program induces a set
of stable models, being distinguished models of the program determined by the stable
models semantics; see [25] for details.

To ease the use of ASP in practice, several extensions have been developed. First of
all, rules with variables are viewed as shorthands for the set of their ground instances. Fur-
ther language constructs include conditional literals and cardinality constraints [38]. The
former are of the form a:b1,...,bm, the latter can be written as4 s{d1;...;dn}t,
where a and bi are possibly default-negated (regular) literals and each dj is a con-
ditional literal; s and t provide optional lower and upper bounds on the number of
satisfied literals in the cardinality constraint. We refer to b1,...,bm as a condition.
The practical value of both constructs becomes apparent when used with variables. For
instance, a conditional literal like a(X):b(X) in a rule’s antecedent expands to the
conjunction of all instances of a(X) for which the corresponding instance of b(X)
holds. Similarly, 2{a(X):b(X)}4 is true whenever at least two and at most four
instances of a(X) (subject to b(X)) are true. Finally, objective functions minimiz-
ing the sum of a set of weighted tuples (wi, ti) subject to condition ci are expressed
as #minimize{w1@l1,t1:c1;. . .;wn@ln,tn:cn}. Lexicographically ordered objec-
tive functions are (optionally) distinguished via levels indicated by li. An omitted level
defaults to 0.

As an example, consider the rule in Line 9 of Listing 1.1:
1 { move(D,P,T) : disk(D), peg(P) } 1 :- ngoal(T-1), T<=n.

This rule has a single head atom consisting of a cardinality constraint; it comprises all
instances of move(D,P,T) where T is fixed by the two body literals and D and P vary
over all instantiations of predicates disk and peg, respectively. Given 3 pegs and 4
disks as in Listing 1.2, this results in 12 instances of move(D,P,T) for each valid
replacement of T, among which exactly one must be chosen according to the above rule.

Full details on the input language of clingo along with various examples can be
found in [16].

3 Multi-shot ASP solving

Let us begin with an informal overview of the central features and language constructs of
clingo’s multi-shot solving capacities. We illustrate them in the two following sections
by implementing two exemplary reasoning modes, namely branch-and-bound-based
optimization and incremental ASP solving. The material in Section 3.1 and 3.3 is
borrowed from [20] and [21], respectively, where more detailed accounts can be found.

4 More elaborate forms of aggregates can be obtained by explicitly using function (eg. #count)
and relation symbols (eg. <=).



3.1 A gentle introduction

A key feature, distinguishing clingo from its predecessors, is the possibility to structure
(non-ground) input rules into subprograms. To this end, a program can be partitioned into
several subprograms by means of the directive #program; it comes with a name and an
optional list of parameters. Once given in the input, the directive gathers all rules up to
the next such directive (or the end of file) within a subprogram identified by the supplied
name and parameter list. As an example, two subprograms base and acid(k) can be
specified as follows:

1 a(1).
2 #program acid(k).
3 b(k).
4 c(X,k) :- a(X).
5 #program base.
6 a(2).

Note that base is a dedicated subprogram (with an empty parameter list): in addition
to the rules in its scope, it gathers all rules not preceded by any #program directive.
Hence, in the above example, the base subprogram includes the facts a(1) and a(2),
although, only the latter is in the actual scope of the directive in line 5. Without further
control instructions (see below), clingo grounds and solves the base subprogram only,
essentially, yielding the standard behavior of ASP systems. The processing of other
subprograms such as acid(k) is subject to scripting control.

For customized control over grounding and solving, a main routine (taking a control
object representing the state of clingo as argument) can be supplied. For illustration, let
us consider two Python main routines: 5

7 #script(python)
8 def main(prg):
9 prg.ground([("base",[])])

10 prg.solve()
11 #end.

While the above control program matches the default behavior of clingo, the one below
ignores all rules in the base program but rather contains a ground instruction for
acid(k) in line 8, where the parameter k is to be instantiated with the term 42.

7 #script(python)
8 def main(prg):
9 prg.ground([("acid",[42])])

10 prg.solve()
11 #end.

Accordingly, the schematic fact b(k) is turned into b(42), no ground rule is obtained
from ‘c(X,k) :- a(X)’ due to lacking instances of a(X), and the solve command
in line 10 yields a stable model consisting of b(42) only. Note that ground instructions

5 The ground routine takes a list of pairs as argument. Each such pair consists of a subprogram
name (e.g. base or acid) and a list of actual parameters (e.g. [] or [42]).



apply to the subprograms given as arguments, while solve triggers reasoning w.r.t. all
accumulated ground rules.

In order to accomplish more elaborate reasoning processes, like those of iclingo [17]
and oclingo [15] or other customized ones, it is indispensable to activate or deactivate
ground rules on demand. For instance, former initial or goal state conditions need
to be relaxed or completely replaced when modifying a planning problem, e.g., by
extending its horizon.6 While the two mentioned predecessors of clingo relied on the
#volatile directive to provide a rigid mechanism for the expiration of transient rules,
clingo captures the respective functionalities and customizations thereof in terms of the
#external directive. This directive goes back to lparse [39] and was also supported
by clingo’s predecessors to exempt (input) atoms from simplifications (and fixing them
to false). As detailed in the following, the #external directive of clingo provides a
generalization that, in particular, allows for a flexible handling of yet undefined atoms.

For continuously assembling ground rules evolving at different stages of a reasoning
process, #external directives declare atoms that may still be defined by rules added
later on. In terms of module theory [35], such atoms correspond to inputs, which (unlike
undefined output atoms) must not be simplified. For declaring input atoms, clingo
supports schematic #external directives that are instantiated along with the rules of
their respective subprograms. To this end, a directive like

#external p(X,Y) : q(X,Z), r(Z,Y).

is treated similar to a rule ‘p(X,Y) :- q(X,Z), r(Z,Y)’ during grounding. How-
ever, the head atoms of the resulting ground instances are merely collected as inputs,
whereas the ground rules as such are discarded.

Once grounded, the truth value of external atoms can be changed via the clingo
API (until the atoms become defined by corresponding rules). By default, the initial
truth value of external atoms is set to false. Then, for example, with clingo’s Python
API, assign_external(self,p(a,b),True)7 can be used to set the truth
value of the external atom p(a,b) to true. Among others, this can be used to ac-
tivate and deactivate rules in logic programs. For instance, the integrity constraint
‘:- q(a,c), r(c,b), p(a,b)’ is ineffective whenever p(a,b) is false.

A full specification of clingo’s Python API can be found at https://potassco.
org/clingo/python-api/current/clingo.html.

3.2 Branch-and-bound-based optimization

We illustrate clingo’s multi-shot solving machinery in this as well as the next section via
a simple Towers of Hanoi puzzle. The complete source code of this example is available at
https://github.com/potassco/clingo/tree/master/examples/clingo/
opt. Our example consists of three pegs and four disks of different size; it is shown
in Figure 1. The goal is to move all disks from the left peg to the right one. Only the

6 The planning horizon is the maximum number of steps a planner takes into account when
searching for a plan.

7 In order to construct atoms, symbolic terms, or function terms, respectively, the clingo API
function Function has to be used. Hence, the expression p(a,b) actually stands for
Function("p", [Function("a"), Function("b")]).

https://potassco.org/clingo/python-api/current/clingo.html
https://potassco.org/clingo/python-api/current/clingo.html
https://github.com/potassco/clingo/tree/master/examples/clingo/opt
https://github.com/potassco/clingo/tree/master/examples/clingo/opt


topmost disk of a peg can be moved at a time. Furthermore, a disk cannot be moved to a
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Fig. 1: Towers of Hanoi: initial and goal situation

peg already containing a disk of smaller size. Although there is an efficient algorithm
to solve our simple puzzle, we do not exploit it and below merely specify conditions
for sequences of moves being solutions. More generally, the Towers of Hanoi puzzle
is a typical planning problem, in which the aim is to find a plan, that is, a sequence of
actions, that leads from an initial state to a state satisfying a goal.

To illustrate how multi-shot solving can be used for realizing branch-and-bound-
based optimization, we consider the problem of finding the shortest plan solving our
puzzle within a given horizon. To this end, we adapt the Towers of Hanoi encoding
from [19] in Listing 1.1. Here, the length of the horizon is given by parameter n.
The problem instance in Listing 1.2 together with line 2 in Listing 1.1 gives the initial
configuration of disks in Figure 1. Similarly, the goal is checked in lines 5–6 of Listing 1.1
(by drawing on the problem instance in Listing 1.2). Because the overall objective is
to solve the problem in the minimum number of steps within a given bound, it is
successively tested in line 5. Once the goal is established, it persists in the following
steps. This allows us to read off whether the goal was reached at the planning horizon
(in line 6). The state transition function along with state constraints are described in
lines 9–19. Since the encoding of the Towers of Hanoi problem is fairly standard, we
refer the interested reader to [19] and devote ourselves in the sequel to implementing
branch-and-bound-based minimization. In view of this, note that line 9 ensures that
moves are only permitted if the goal is not yet achieved in the previous state. This
ensures that the following states do not change anymore and allows for expressing the
optimization function in line 23 as: minimize the number of states where the goal is not
reached.

Listing 1.3 contains a logic program for bounding the next solution and the actual
optimization algorithm. The logic program expects a bound b as parameter and adds an
integrity constraint in line 3 ensuring that the next stable model yields a better bound
than the given one. The minimization algorithm starts by grounding the base program
in line 10 before it enters the loop in lines 11–26. This loop implements the branch-and-
bound-based search for the minimum by searching for stable models while updating
the bound until the problem is unsatisfiable. Note the use of the with clause in line 13
that is used to acquire and release a solve handle. With it, the nested loop in lines 14–21
iterates over the found stable models. If there is a stable model, lines 15–20 iterate over
the atoms of the stable model while summing up the current bound by extracting the



1 % initial situation
2 on(D,P,0) :- init_on(D,P).

4 % check goal situation
5 ngoal(T) :- on(D,P,T), not goal_on(D,P).
6 :- ngoal(n).

8 % state transition and state constraints
9 1 { move(D,P,T) : disk(D), peg(P) } 1 :- ngoal(T-1), T<=n.

11 move(D,T) :- move(D,P,T).
12 on(D,P,T) :- move(D,P,T).
13 on(D,P,T) :- on(D,P,T-1), not move(D,T), T<=n.
14 blocked(D-1,P,T) :- on(D,P,T-1).
15 blocked(D-1,P,T) :- blocked(D,P,T), disk(D).

17 :- move(D,P,T), blocked(D-1,P,T).
18 :- move(D,T), on(D,P,T-1), blocked(D,P,T).
19 :- disk(D), not 1 { on(D,P,T) } 1, T=1..n.

21 #show move/3.

23 _minimize(1,T) :- ngoal(T).

Listing 1.1: Bounded towers of hanoi encoding (tohB.lp)

1 peg(a;b;c).
2 disk(1..4).
3 init_on(1..4,a).
4 goal_on(1..4,c).

Listing 1.2: Towers of hanoi instance (tohI.lp)

weight of atoms over predicates _minimize/n with n > 0.8 We check that the first
argument of the atom is an integer and ignore atoms where this is not the case; just as is
the case of the #sum aggregate in line 3. The loop over the stable models is exited in
line 21. Note that this bypasses the else clause in line 22 and the algorithm continues in
line 25 with printing the bound and adding an integrity constraint in line 26 making sure
that the next stable model is strictly better than the current one. Furthermore, note that
grounding happens after the with clause because it must not interfere with an active
search for stable models. Finally, if the program becomes unsatisfiable, the branch and
bound loop in lines 11–26 is exhausted. Hence, control continues in the else clause
in lines 22–24 printing that the previously found stable model (if any) is the optimal
solution and exiting the outermost while loop in line 24 terminating the algorithm.

8 In our case, n = 2 would be sufficient.



1 #program bound(b).

3 :- #sum { V,I: _minimize(V,I) } >= b.

5 #script (python)

7 import clingo

9 def main(prg):
10 prg.ground([("base", [])])
11 while True:
12 bound = 0
13 with prg.solve(yield_=True) as h:
14 for m in h:
15 for atom in m.symbols(atoms=True):
16 if (atom.name == "_minimize"
17 and len(atom.arguments) > 0
18 and atom.arguments[0].type
19 is clingo.SymbolType.Number):
20 bound += atom.arguments[0].number
21 break

22 else:
23 print "Optimum found"
24 break

25 print "Found new bound: {}".format(bound)
26 prg.ground([("bound", [bound])])

28 #end.

Listing 1.3: Branch and bound optimization (opt.lp)

When running the augmented logic program in Listing 1.1, 1.2, and 1.3 with a
horizon of 17, the solver finds plans of length 17, 16, and 15 and shows that no plan of
length 14 exists. This is reflected by clingo’s output indicating 4 solver calls and 3 found
stable models:

$ clingo tohB.lp tohI.lp opt.lp -c n=17
clingo version 5.2.0
Reading from tohB.lp ...
Solving...
[...]
Solving...
Answer: 1
move(3,c,2) move(4,b,1) move(4,c,3) move(2,b,4) \
move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \
move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \
move(4,b,13) move(3,c,14) move(4,c,15)
Found new bound: 15
Solving...



Optimum found
UNSATISFIABLE

Models : 3
Calls : 4
Time : 0.048s (Solving: 0.01s [...])
CPU Time : 0.040s

Last but not least, note that the implemented above functionality is equivalent to
using clingo’s inbuilt optimization mode by replacing line 23 in Listing 1.1 with

23 #minimize { 1,T : ngoal(T) }.

3.3 Incremental ASP solving

As mentioned, clingo fully supersedes its special-purpose predecessor iclingo aiming at
incremental ASP solving. To illustrate this, we give below in Listing 1.5 a Python imple-
mentation of iclingo’s control loop, corresponding to the one shipped with clingo.9,10

Roughly speaking, iclingo offers a step-oriented, incremental approach to ASP that
avoids redundancies by gradually processing the extensions to a problem rather than
repeatedly re-processing the entire extended problem (as in iterative deepening search).
To this end, a program is partitioned into a base part, describing static knowledge inde-
pendent of the step parameter t, a cumulative part, capturing knowledge accumulating
with increasing t, and a volatile part specific for each value of t. In clingo, all three parts
are captured by #program declarations along with #external atoms for handling
volatile rules. More precisely, the implementation in Listing 1.5 relies upon subprograms
named base, step, and check along with external atoms of form query(t).11

We illustrate this approach by adapting the Towers of Hanoi encoding from Listing1.1
in Section 3.2 to an incremental version in Listing 1.4. To this end, we arrange the original
encoding in program parts base, check(t), and step(t), use t instead of T as
time parameter, and simplify checking the goal. Checking the goal is easier here because
the iterative deepening approach guarantees a shortest plan and, hence, does not require
additional minimization.

At first, we observe that the problem instance in Listing 1.2 as well as line 2 in
Listing 1.4 constitute static knowledge and thus belong to the base program. More
interestingly, the query is expressed in line 5 of Listing 1.4. Its volatility is realized
by making it subject to the truth assignment to the external atom query(t). For
convenience, this atom is predefined in line 33 in Listing 1.5 as part of the check
program (cf. line 32). Hence, subprogram check consists of a user- and predefined
part. Finally, the transition function along with state constraints are described in the
subprogram step in lines 8–19.

The idea is now to control the successive grounding and solving of the program
parts in Listing 1.2 and 1.4 by the Python script in Listing 1.5. Lines 5–11 fix the

9 Alternatively, this can be invoked by ‘#include <incmode>.’.
10 The Python as well as a Lua implementation can be found in examples/clingo/iclingo

in the clingo distribution.
11 These names have no general, predefined meaning; their meaning emerges from their usage in

the associated script (see below).



1 #program base.
2 on(D,P,0) :- init_on(D,P).

4 #program check(t).
5 :- goal_on(D,P), not on(D,P,t), query(t).

8 #program step(t).
9 1 { move(D,P,t) : disk(D), peg(P) } 1.

11 move(D,t) :- move(D,P,t).
12 on(D,P,t) :- move(D,P,t).
13 on(D,P,t) :- on(D,P,t-1), not move(D,t).
14 blocked(D-1,P,t) :- on(D,P,t-1).
15 blocked(D-1,P,t) :- blocked(D,P,t), disk(D).

17 :- move(D,P,t), blocked(D-1,P,t).
18 :- move(D,t), on(D,P,t-1), blocked(D,P,t).
19 :- disk(D), not 1 { on(D,P,t) } 1.

21 #show move/3.

Listing 1.4: Towers of hanoi incremental encoding (tohE.lp)

values of the constants imin, imax, and istop. In fact, the setting in line 9 and 11
relieves us from adding ‘-c imin=0 -c istop="SAT"’ when calling clingo. All
three constants mimic command line options in iclingo. imin and imax prescribe a
least and largest number of iterations, respectively; istop gives a termination criterion.
The initial values of variables step and ret are set in line 13. The value of step is
used to instantiate the parametrized subprograms and ret comprises the solving result.
Together, the previous five variables control the loop in lines 14–29.

The subprograms grounded at each iteration are accumulated in the list parts.
Each of its entries is a pair consisting of a subprogram name along with its list of
actual parameters. In the very first iteration, the subprograms base and check(0)
are grounded. Note that this involves the declaration of the external atom query(0)
and the assignment of its default value false. The latter is changed in line 28 to true in
order to activate the actual query. The solve call in line 29 then amounts to checking
whether the goal situation is already satisfied in the initial state. As well, the value of
step is incremented to 1.

As long as the termination condition remains unfulfilled, each following iteration
takes the respective value of variable step to replace the parameter in subprograms
step and check during grounding. In addition, the current external atom query(t)
is set to true, while the previous one is permanently set to false. This disables the
corresponding instance of the integrity constraint in line 5 of Listing 1.4 before it is
replaced in the next iteration. In this way, the query condition only applies to the current
horizon.



1 #script (python)

3 from clingo import Function

5 def get(val, default):
6 return val if val != None else default

8 def main(prg):
9 imin = get(prg.get_const("imin"), 1)

10 imax = prg.get_const("imax")
11 istop = get(prg.get_const("istop"), "SAT")

13 step, ret = 0, None
14 while ((imax is None or step < imax) and

15 (step == 0 or step < imin or (
16 (istop == "SAT" and not ret.satisfiable) or

17 (istop == "UNSAT" and not ret.unsatisfiable) or

18 (istop == "UNKNOWN" and not ret.unknown)))):
19 parts = []
20 parts.append(("check", [step]))
21 if step > 0:
22 prg.release_external(Function("query", [step-1]))
23 parts.append(("step", [step]))
24 prg.cleanup()
25 else:
26 parts.append(("base", []))
27 prg.ground(parts)
28 prg.assign_external(Function("query", [step]), True)
29 ret, step = prg.solve(), step+1
30 #end.

32 #program check(t).
33 #external query(t).

Listing 1.5: Python script implementing iclingo functionality in clingo (inc.lp)



An interesting feature is given in line 24. As its name suggests, this function cleans
up domains used during grounding. That is, whenever the truth value of an atom is
ultimately determined by the solver, it is communicated to the grounder where it can be
used for simplifications.

The result of each call to solve is printed by clingo. In our example, the solver is
called 16 times before a plan of length 15 is found:

$ clingo tohE.lp tohI.lp inc.lp 0
clingo version 5.2.0
Reading from tohE.lp ...
Solving...
[...]
Solving...
Answer: 1
move(4,b,1) move(3,c,2) move(4,c,3) move(2,b,4) \
move(4,a,5) move(3,b,6) move(4,b,7) move(1,c,8) \
move(4,c,9) move(3,a,10) move(4,a,11) move(2,c,12) \
move(4,b,13) move(3,c,14) move(4,c,15)
SATISFIABLE

Models : 1
Calls : 16
Time : 0.020s (Solving: 0.00s [...])
CPU Time : 0.020s

4 Theory-enhanced ASP solving

This section provides the fundamental concepts for extending clingo with theory-specific
reasoning. We begin by showing how its input language can be customized with theory-
specific constructs. We then sketch clingo’s algorithmic approach to ASP solving with
theory propagation in order to put the following description of clingo’s theory reasoning
interface on firm grounds. The below material is an abridged version of [18].

4.1 Input language

This section introduces the theory-related features of clingo’s input language. All of them
are situated in the underlying grounder gringo and can thus also be used independently
of clingo. We start with a detailed description of gringo’s generic means for defining
theories and complement this in Appendix A with an overview of the corresponding
intermediate language.

Our generic approach to theory specification rests upon two languages: the one
defining theory languages and the theory language itself. Both borrow elements from the
underlying ASP language, foremost an aggregate-like syntax for formulating variable
length expressions. To illustrate this, consider Listing 1.6, where a logic program is
extended by constructs for handling difference and linear constraints. While the former
are binary constraints of the form12 x1 − x2 ≤ k, the latter have a variable size and are
12 For simplicity, we consider normalized difference constraints rather than general ones of form
x1 − x2 ◦ k.



1 #theory lc {

3 constant { - : 0, unary };
4 diff_term { - : 0, binary, left };
5 linear_term { + : 2, unary; - : 2, unary;
6 * : 1, binary, left;
7 + : 0, binary, left; - : 0, binary, left };
8 domain_term { .. : 1, binary, left };
9 show_term { / : 1, binary, left };

11 &dom/0 : domain_term, {=}, linear_term, any;
12 &sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
13 &diff/0 : diff_term, {<=}, constant, any;
14 &show/0 : show_term, directive
15 }.

17 #const n=2. #const m=1000.

19 task(1..n).
20 duration(T,200*T) :- task(T).

22 &dom { 1..m } = start(T) :- task(T).
23 &dom { 1..m } = end(T) :- task(T).
24 &diff { end(T)-start(T) } <= D :- duration(T,D).
25 &sum { end(T) : task(T); -start(T) : task(T) } <= m.

27 &show { start/1; end/1 }.

Listing 1.6: Logic program enhanced with difference and linear constraints (lc.lp)

of form a1x1 + · · · + anxn ◦ k, where xi are integer variables, ai and k are integers,
and ◦ ∈ {≤,≥, <,>,=} for 1 ≤ i ≤ n. Note that solving difference constraints is
polynomial, while solving linear equations (over integers) is NP-complete. The theory
language for expressing both types of constraints is defined in lines 1–15 and preceded
by the directive #theory. The elements of the resulting theory language are preceded
by & and used as regular atoms in the logic program in lines 17–27.

To be more precise, a theory definition has the form

#theory T {D1;. . .;Dn}.

where T is the theory name and each Di is a definition for a theory term or a theory
atom for 1 ≤ i ≤ n. The language induced by a theory definition is the set of all theory
atoms constructible from its theory atom definitions.

A theory atom definition has form

&p/k : t,o or &p/k : t,{�1,. . .,�m},t′,o

where p is a predicate name and k its arity, t, t′ are names of theory term definitions,
each �i is a theory operator for m ≥ 1, and o ∈ {head,body,any,directive}
determines where theory atoms may occur in a rule. Examples of theory atom definitions



are given in lines 11–14 of Listing 1.6. The language of a theory atom definition as above
contains all theory atoms of form

&a {C1:L1;. . .;Cn:Ln} or &a {C1:L1;. . .;Cn:Ln} � c

where a is an atom over predicate p of arity k, each Ci is a tuple of theory terms in the
language for t, c is a theory term in the language for t′, � is a theory operator among
{�1, . . . , �m}, and each Li is a regular condition (i.e., a tuple of regular literals) for
1 ≤ i ≤ n. Whether the last part ‘ � c’ is included depends on the form of a theory atom
definition. Further, observe that theory atoms with occurrence type any can be used
both in the head and body of a rule; with occurrence types head and body, their usage
can be restricted to rule heads and bodies only. Occurrence type directive is similar
to type head but additionally requires that the rule body must be completely evaluated
during grounding. Five occurrences of theory atoms can be found in lines 22–27 of
Listing 1.6.

A theory term definition has form
t {D1;. . .;Dn}

where t is a name for the defined terms and each Di is a theory operator definition for
1 ≤ i ≤ n. A respective definition specifies the language of all theory terms that can be
constructed via its operators. Examples of theory term definitions are given in lines 3–9
of Listing 1.6. Each resulting theory term is one of the following:

– a constant term: c
– a variable term: v
– a binary theory term: t1 � t2
– a unary theory term: � t1

– a function theory term: f(t1, . . . , tk)
– a tuple theory term: (t1, . . . , tl, )
– a set theory term: {t1, . . . , tl}
– a list theory term: [t1, . . . , tl]

where each ti is a theory term, � is a theory operator defined by some Di, c and f are
symbolic constants, v is a first-order variable, k ≥ 1, and l ≥ 0. (The trailing comma
in tuple theory terms is optional if l 6= 1.) Parentheses can be used to specify operator
precedence.

A theory operator definition has form
� : p,unary or � : p,binary,a

where � is a unary or binary theory operator with precedence p ≥ 0 (determining implicit
parentheses). Binary theory operators are additionally characterized by an associativity
a ∈ {right,left}. As an example, consider lines 5–6 of Listing 1.6, where the
left associative binary operators + and * are defined with precedence 2 and 1.
Hence, parentheses in terms like ‘(X+(2*Y))+Z’ can be omitted. In total, lines 3–9 of
Listing 1.6 include nine theory operator definitions. Specific theory operators can be
assembled (written consecutively without spaces) from the symbols ‘!’, ‘<’, ‘=’, ‘>’,
‘+’, ‘-’, ‘*’, ‘/’, ‘\’, ‘?’, ‘&’, ‘|’, ‘.’, ‘:’, ‘;’, ‘~’, and ‘^’. For instance, in line 8 of
Listing 1.6, the operator ‘..’ is defined as the concatenation of two periods. The tokens
‘.’, ‘:’, ‘;’, and ‘:-’ must be combined with other symbols due to their dedicated usage.
Instead, one may write ‘..’, ‘::’, ‘;;’, ‘::-’, etc.

While theory terms are formed similar to regular ones, theory atoms rely upon an
aggregate-like construction for forming variable-length theory expressions. In this way,
standard grounding techniques can be used for gathering theory terms. (However, the
actual atom &a within a theory atom comprises regular terms only.) The treatment of



1 task(1).
2 task(2).
3 duration(1,200).
4 duration(2,400).

6 &dom { 1..1000 } = start(1).
7 &dom { 1..1000 } = start(2).
8 &dom { 1..1000 } = end(1).
9 &dom { 1..1000 } = end(2).

11 &diff { end(1)-start(1) } <= 200.
12 &diff { end(2)-start(2) } <= 400.

14 &sum { end(1); end(2); -start(1); -start(2) } <= 1000.

16 &show { start/1; end/1 }.

Listing 1.7: Human-readable result of grounding Listing 1.6 via ‘gringo -text
lc.lp’

theory terms still differs from their regular counterparts in that the grounder skips simpli-
fications like, e.g., arithmetic evaluation. This can be nicely seen on the different results
in Listing 1.7 of grounding terms formed with the regular and theory-specific variants of
operator ‘..’. Observe that the fact task(1..n) in line 19 of Listing 1.6 results in
n ground facts, viz. task(1) and task(2) because of n=2. Unlike this, the theory
expression 1..m stays structurally intact and is only transformed into 1..1000 in
view of m=1000. That is, the grounder does not evaluate the theory term 1..1000 and
leaves its interpretation to a downstream theory solver. A similar situation is encountered
when comparing the treatment of the regular term ‘200*T’ in line 20 of Listing 1.6 to
the theory term ‘end(T)-start(T)’ in line 24. While each instance of ‘200*T’ is
evaluated during grounding, instances of the theory term ‘end(T)-start(T)’ are
left intact in lines 11 and 12 of Listing 1.7. In fact, if ‘200*T’ had been a theory term as
well, it would have resulted in the unevaluated instances ‘200*1’ and ‘200*2’.

4.2 Semantic underpinnings

Given the hands-on nature of this tutorial, we only give an informal idea of the semantic
principles underlying theory solving in ASP.

As mentioned in Section 2, a logic program induces a set of stable models. To extend
this concept to logic programs with theory expressions, we follow the approach of lazy
theory solving [5]. We abstract from the specific semantics of a theory by considering
the theory atoms representing the underlying theory constraints. The idea is that a regular
stable model of a program over regular and theory atoms is only valid with respect
to a theory, if the constraints induced by the truth assignment to the theory atoms are
satisfiable in the theory.



In the above example, this amounts to finding a numeric assignment to all theory
variables satisfying all difference and linear constraints associated with theory atoms.
The ground program in 1.7 has a single stable model consisting of all regular and theory
atoms in lines 1-16. Here, we easily find assignments satisfying the induced constraints,
e.g. start(1) 7→ 1, end(1) 7→ 2, start(2) 7→ 2, and end(1) 7→ 3.

In fact, there are alternative semantic options for capturing theory atoms, as detailed
in [18]. First of all, we may distinguish whether imposed constraints are only determined
outside or additionally inside a logic program. This leads to the distinction between
defined and external theory atoms.13 While external theory atoms must only be satisfied
by the respective theory, defined ones must additionally be derivable through rules
in the program. The second distinction concerns the interplay of ASP with theories.
More precisely, it is about the logical correspondence between theory atoms and theory
constraints. This leads us to the distinction between strict and non-strict theory atoms.
The strict correspondence requires a constraint to be satisfied iff the associated theory
atom is true. A weaker since only implicative condition is imposed in the non-strict
case. Here, a constraint must hold only if the associated theory atom is true. In other
words, only non-strict theory atoms assigned true impose requirements, while constraints
associated with falsified non-strict theory atoms are free to hold or not. However, by
contraposition, a violated constraint leads to a false non-strict theory atom.

4.3 Algorithmic aspects

The algorithmic approach to ASP solving modulo theories of clingo, or more precisely
that of its underlying ASP solver clasp, follows the lazy approach to solving in Satisfia-
bility Modulo Theories (SMT [5]). We give below an abstract overview that serves as
light algorithmic underpinning for the description of clingo’s implementation given in
the next section.

As detailed in [22], a ground program P induces completion and loop nogoods,
called ∆P or ΛP , respectively, that can be used for computing stable models of P .
Nogoods represent invalid partial assignments and can be thought of as negative Boolean
constraints. We represent (partial) assignments as consistent sets of literals. An assign-
ment is total if it contains either the positive or negative literal of each atom. We say that
a nogood is violated by an assignment if the former is contained in the latter; a nogood is
unit if all but one of its literals are in the assignment. Each total assignment not violating
any nogood in ∆P ∪ ΛP yields a regular stable model of P , and such an assignment is
called a solution (for ∆P ∪ ΛP ). To accommodate theories, we identify a theory T with
a set ∆T of theory nogoods,14 and extend the concept of a solution in the straightforward
way.

The nogoods in∆P ∪ΛP ∪∆T provide the logical fundament for the Conflict-Driven
Constraint Learning (CDCL) procedure (cf. [32,22]) outlined in Figure 2. While the
completion nogoods in ∆P are usually made explicit and subject to unit propagation,15

13 This distinction is analogous to that between head and input atoms, defined via rules or
#external directives [20], respectively.

14 See [18] for different ways of associating theories with nogoods.
15 Unit propagation extends an assignment with literals complementary to the ones missing in unit

nogoods.



(I) initialize // register theory propagators and initialize watches
loop

propagate completion, loop, and recorded nogoods // deterministically assign literals
if no conflict then

if all variables assigned then
(C) if some δ ∈ ∆T is violated then record δ // theory propagators check ∆T

else return variable assignment // theory-based stable model found
else

(P) propagate theories // theory propagators may record theory nogoods from ∆T

if no nogood recorded then decide // non-deterministically assign some literal
else

if top-level conflict then return unsatisfiable
else

analyze // resolve conflict and record a conflict constraint
(U) backjump // undo assignments until conflict constraint is unit

Fig. 2: Basic algorithm for Conflict-Driven Constraint Learning (CDCL) modulo theories

the loop nogoods in ΛP as well as theory nogoods in ∆T are typically handled by
dedicated propagators and particular members are selectively recorded.

While a dedicated propagator for loop nogoods is built-in in systems like clingo,
those for theories are provided via the interface Propagator in Figure 3. To utilize
custom propagators, the algorithm in Figure 2 includes an initialization step in line (I).
In addition to the “registration” of a propagator for a theory as an extension of the basic
CDCL procedure, common tasks performed in this step include setting up internal data
structures and so-called watches for (a subset of) the theory atoms, so that the propagator
will be invoked (only) when some watched literal gets assigned.

As usual, the main CDCL loop starts with unit propagation on completion and loop
nogoods, the latter handled by the respective built-in propagator, as well as any nogoods
already recorded. If this results in a non-total assignment without conflict, theory propa-
gators for which some of their watched literals have been assigned are invoked in line (P).
A propagator for a theory T can then inspect the current assignment, update its data
structures accordingly, and most importantly, perform theory propagation determining
theory nogoods δ ∈ ∆T to record. Usually, any such nogood δ is unit in order to trigger
a conflict or unit propagation, although this is not a necessary condition. The interplay
of unit and theory propagation continues until a conflict or total assignment arises, or no
(further) watched literals of theory propagators get assigned by unit propagation. In the
latter case, some non-deterministic decision is made to extend the partial assignment at
hand and then to proceed with unit and theory propagation.

If no conflict arises and an assignment is total, in line (C), theory propagators are
called, one by one, for a final check. The idea is that, e.g., a “lazy” propagator for
a theory T that does not exhaustively test violations of its theory nogoods by partial
assignments can make sure that the assignment is indeed a solution for ∆T , or record
some violated nogood(s) from ∆T otherwise. Even in case theory propagation on
partial assignments is exhaustive and a final check is not needed to detect conflicts, the



information that search led to a total assignment can be useful in practice, e.g., to store
values for integer variables like start(1), start(2), end(1), and end(2) in
Listing 1.7 that witness the existence of a solution for T .

Finally, in case of a conflict, i.e., some completion or recorded nogood is violated
by the current assignment, provided that some non-deterministic decision is involved
in the conflict, a new conflict constraint is recorded and utilized to guide backjumping
in line (U), as usual with CDCL. In a similar fashion as the assignment of watched
literals serves as trigger for theory propagation, theory propagators are informed when
they become unassigned upon backjumping. This allows the propagators to undo earlier
operations, e.g., internal data structures can be reset to return to a state taken prior to the
assignment of watches.

In summary, the basic CDCL procedure is extended in four places to account for
custom propagators: initialization, propagation of (partial) assignments, final check of
total assignments, and undo steps upon backjumping.

4.4 Propagator interface

We now turn to the implementation of theory propagation in clingo 5 and detail the
structure of its interface depicted in Figure 3. The interface Propagator has to be

clingo

SymbolicAtom
+ symbol
+ literal

TheoryAtom
+ name
+ elements
+ guard
+ literal

PropagateInit
+ num threads
+ symbolic atoms
+ theory atoms
+ add watch(lit)
+ solver literal(lit)

�interface�
Propagator

+ init(init)
+ propagate(control, changes)
+ undo(thread id, assignment, changes)
+ check(control)

PropagateControl
+ thread id
+ assignment
+ add nogood(nogood, tag, lock)
+ propagate()

Assignment
+ decision level
+ has conflict
+ value(lit)
+ level(lit)
+ ...

Fig. 3: Class diagram of clingo’s (theory) propagator interface

implemented by each custom propagator. After registering such a propagator with clingo,
its functions are called during initialization and search as indicated in Figure 2. Function
Propagator.init16 is called once before solving (line (I) in Figure 2) to allow
16 For brevity, we below drop the qualification Propagator and use its function names unquali-

fied.



for initializing data structures used during theory propagation. It is invoked with a
PropagateInit object providing access to symbolic (SymbolicAtom) as well
as theory (TheoryAtom) atoms. Both kinds of atoms are associated with program
literals,17 which are in turn associated with solver literals.18 Program as well as solver
literals are identified by non-zero integers, where positive and negative numbers represent
positive or negative literals, respectively. In order to get notified about assignment
changes, a propagator can set up watches on solver literals during initialization.

During search, function propagate is called with a PropagateControl ob-
ject and a (non-empty) list of watched literals that got assigned in the recent round
of unit propagation (line (P) in Figure 2). The PropagateControl object can be
used to inspect the current assignment, record nogoods, and trigger unit propagation.
Furthermore, to support multi-threaded solving, its thread_id property identifies the
currently active thread, each of which can be viewed as an independent instance of the
CDCL algorithm in Figure 2.19 Function undo is the counterpart of propagate and
called whenever the solver retracts assignments to watched literals (line (U) in Figure 2).
In addition to the list of watched literals that have been retracted (in chronological order),
it receives the identifier and the assignment of the active thread. Finally, function check
is similar to propagate, yet invoked without a list of changes. Instead, it is (only)
called on total assignments (line (C) in Figure 2), independently of watches. Overriding
the empty default implementations of propagator methods is optional. For brevity, we
below focus on implementations of the methods in Python, while C, C++, or Lua could
be used as well.

5 A case-study on ASP modulo Difference Logic

In this section, we develop a propagator to extend ASP with quantifier free inte-
ger difference logic (IDL). The complete source code of this propagator is available
in the github repository at https://github.com/potassco/clingo/tree/
master/examples/clingo/dl.

In addition to the rules introduced in Section 2, we now also support rules of form
&diff{u-v} <= d :- a1,...,an,not an+1,...,not ao

where u and v are (regular) terms, d is an integer constant, each ai is an atom, and 0 ≤
n ≤ o. For simplicity, we restrict the occurrence of theory atoms to rule heads.20 Hence,
stable models may now also include theory atoms of form ‘&diff {u-v} <= d’.
More precisely, for a stable model X , let CX be the set of difference constraints such as
u− v ≤ d associated with theory atoms ‘&diff {u-v} <= d’ in X and VX be the
set of all (integer) variables occurring in the difference constraints in CX . In our case, a
17 Program literals are also used in the aspif format (see Appendix A).
18 Note that clasp’s preprocessor might associate a positive or even negative solver literal with

multiple atoms.
19 Depending on the configuration of clasp, threads can communicate with each other. For example,

some of the recorded nogoods can be shared. This is transparent from the perspective of theory
propagators.

20 More general settings are discussed in [26] and made available at https://potassco.
org/clingo.

https://github.com/potassco/clingo/tree/master/examples/clingo/dl
https://github.com/potassco/clingo/tree/master/examples/clingo/dl
https://potassco.org/clingo
https://potassco.org/clingo


1 #theory dl {
2 constant { - : 1, unary };
3 diff_term { - : 1, binary, left };
4 &diff/0 : diff_term, {<=}, constant, head
5 }.

7 #script (python)

9 import clingo, dl

11 def print_assignment(p, m):
12 a = p.get_assignment(m.thread_id)
13 print "Valid assignment for constraints found:"
14 print " ".join(["{}={}".format(n, v) for n, v in a])

16 def main(prg):
17 p = dl.Propagator()
18 prg.register_propagator(p)
19 prg.ground([("base", [])])
20 prg.solve(on_model = lambda m: print_assignment(p, m))

22 #end.

Listing 1.8: Theory language and main loop for difference constraints (dl.lp)

stable model X is then IDL-stable, if there is a mapping from VX to the set of integers
satisfying all constraints in CX .

To allow for writing difference constraints in rule heads, we define theory dl in
lines 1–5 in Listing 1.8, a subset of the theory lc presented in Listing 1.6 in Section 4.1.
The following lines 16–20 implement a customized main function. The difference to
clingo’s regular main function is that a propagator for difference constraints is registered
at the beginning; grounding and solving then follow as usual. Note that the solve function
in line 20 takes a model callback as argument. Whenever an IDL-stable modelX is found,
this callback prints the mapping satisfying the corresponding difference constraints CX .
The model X (excluding theory atoms) is printed as part of clingo’s default output.

Our exemplary propagator implements the algorithm presented in [10]. The idea is
that deciding whether a set of difference constraints is satisfiable can be mapped to a
graph problem. Given a set of difference constraints, let (V,E) be the weighted directed
graph where V is the set of variables occurring in the constraints, and E the set of edges
(u, v, d) for each constraint u − v ≤ d. The set of difference constraints is satisfiable
if the corresponding graph does not contain a negative cycle. The Graph class whose
interface is given in Figure 4 is in charge of cycle detection. We refrain from giving the
code of the Graph class and rather concentrate on describing its interface:

– Function add_edge adds an edge of form (u,v,d) to the graph. If after adding
the edge to the graph there is a negative cycle, the function returns the cycle in form
of a list of edges; otherwise, it returns None. Furthermore, each edge added to the



dl

Graph

+ add edge(level, edge)
+ backtrack(level)
+ get assignment()

Fig. 4: Class diagram for the graph class

graph is associated with a decision level21. This additional information is used to
backtrack to a previous state of the graph, whenever the solver has to backtrack to
recover from a conflict.

– Function backtrack takes a decision level as argument. It removes all edges
added on that level from the graph. For this to work, decision levels have to be
backtracked in chronological order. Note that the CDCL algorithm in Figure 2
calling our propagator also backtracks decision levels in chronological order.

– As a side effect, the Graph class internally maintains an assignment of integers
to nodes. This assignment can be turned into an assignment to the variables such
that the difference constraints corresponding to the edges of the graph are satisfied.
Function get_assignment returns this assignment in form of a list of pairs of
variables and integers.

We give our exemplary propagator for difference constraints in Listing 1.9. It im-
plements the Propagator interface (except for check) in Figure 3 in lines 105–133,
while featuring aspects like incremental propagation and backtracking, solving with
multiple threads, and multi-shot solving. Whenever the set of edges associated with the
current partial assignment of a solver induces a negative cycle and, hence, the correspond-
ing difference constraints are unsatisfiable, it adds a nogood forbidding the negative
cycle. To this end, it maintains data structures for, given newly added edges, detecting
whether there is a conflict. More precisely, the propagator has three data members:

1. The self.__l2e dictionary in line 101 maps solver literals for difference con-
straint theory atoms to their corresponding edges22,

2. the self.__e2l dictionary in line 102 maps edges back to solver literals,23

3. and the self.__state list in line 103 stores for each solver thread its current
graph with the edges assigned so far.

Function init in lines 105–119 sets up watches as well as the dictionaries in
self.__l2e and self.__e2l. To this end, it traverses the theory atoms over

21 The assignment maintains the decision level; it is incremented for each decision made and
decremented for each decision undone while backjumping; initially, the decision level is zero.

22 A solver literal might be associated with multiple edges, see Footnote 18.
23 In one solving step, the clingo API guarantees that a (grounded) theory atom is associated with

exactly one solver literal. Theory grounded in later solving steps can be associated with fresh
solver literals though.



99 class Propagator:
100 def __init__(self):
101 self.__l2e = {} # {literal: [(node, node, weight)]}
102 self.__e2l = {} # {(node, node, weight): [literal]}
103 self.__states = [] # [Graph]

105 def init(self, init):
106 for atom in init.theory_atoms:
107 term = atom.term
108 if term.name == "diff" and len(term.arguments) == 0:
109 if len(atom.guard[1].arguments) > 0:
110 weight = -atom.guard[1].arguments[0].number
111 else:
112 weight = atom.guard[1].number
113 u = str(atom.elements[0].terms[0].arguments[0])
114 v = str(atom.elements[0].terms[0].arguments[1])
115 edge = (u, v, weight)
116 lit = init.solver_literal(atom.literal)
117 self.__l2e.setdefault(lit, []).append(edge)
118 self.__e2l.setdefault(edge, []).append(lit)
119 init.add_watch(lit)

121 def propagate(self, control, changes):
122 state = self.__state(control.thread_id)
123 level = control.assignment.decision_level
124 for lit in changes:
125 for edge in self.__l2e[lit]:
126 cycle = state.add_edge(level, edge)
127 if cycle is not None:
128 c = [self.__literal(control, e) for e in cycle]
129 control.add_nogood(c) and control.propagate()
130 return

132 def undo(self, thread_id, assign, changes):
133 self.__state(thread_id).backtrack(assign.decision_level)

135 def get_assignment(self, thread_id):
136 return self.__state(thread_id).get_assignment()

138 def __state(self, thread_id):
139 while len(self.__states) <= thread_id:
140 self.__states.append(Graph())
141 return self.__states[thread_id]

143 def __literal(self, control, edge):
144 for lit in self.__e2l[edge]:
145 if control.assignment.is_true(lit):
146 return lit

Listing 1.9: Propagator for difference constraints (dl.py)



diff/0 in lines 106–119. Note that the loop simply ignores all other theory atoms
making it possible to also add propagators for other theories. In lines 109–115 we extract
the edge from the theory atom.24 Each such atom is associated with a solver literal,
obtained in line 116. The mappings between solver literals and corresponding edges are
then stored in the self.__l2e and self.__e2l dictionaries in lines 117 and 118.25

In the last line of the loop, a watch is added for each solver literal at hand, so that the
solver calls propagate whenever the edge has to be added to the graph.

Function propagate, given in lines 121–130, accesses control.thread_id
in line 122 to obtain the graph associated with the active thread. The loops in lines 124–
130 then iterate over the list of changes and associated edges. In line 126 each such
edge is added to the graph. If adding the edge produced a negative cycle, a nogood
is added in line 129. Because an edge can be associated with multiple solver literals,
we use function __literal retrieving the first solver literal associated with an edge
that is true, to construct the nogood forbidding the cycle. Given that the solver has to
resolve the conflict and backjump, the call to add_nogood always yields false, so that
propagation is stopped without processing the remaining changes any further.26

Given that each edge added to the graph in line 126 is associated with the current
decision level, the implementation of function undo is quite simple. It calls function
backtrack on the solver’s graph to remove all edges added on the current decision
level.

task duration on machine

a

b

c

Fig. 5: Flow shop: instance with three tasks and two machines

To see our propagator in action, we consider the flow shop problem, dealing with a
set of tasks T that have to be consecutively executed on m machines. Each task has to
be processed on each machine from 1 to m. Different parts of one task are completed on
each machine resulting in the completion of the task after execution on all machines is
finished. Before a task can be processed on machine i, it has to be finished on machine
i− 1. The duration of different tasks on the same machine may vary. A task can only be
executed on one machine at a time and a machine must not be occupied by more than

24 Here we assume that the user supplied a valid theory atom. A propagator for production should
check validity and provide proper error messages.

25 Python’s setdefault function is used to update the mappings. Depending on whether the
given key already appears in the dictionary, the function either retrieves the associated value or
inserts and returns the second argument.

26 The optional arguments tag and lock of add_nogood can be used to control the scope and
lifetime of recorded nogoods. Furthermore, if a propagator adds nogoods that are not necessarily
violated, function control.propagate can be invoked to trigger unit propagation.
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Fig. 6: Flow shop: solutions for all possible permutations with the total execution length
in the top right corner and optimal solutions with a blue background

one task at a time. An (optimal) solution to the problem is a permutation of tasks so that
all tasks are finished as early as possible.

Figure 5 depicts a possible instance for the flow shop problem. The three tasks a, b,
and c have to be scheduled on two machines. The colored boxes indicate how long a
task has to run on a machine. Lighter shades of the same color are for the first and darker
ones for the second machine. For example, task a needs to be processed for 3 time units
on the first and 4 time units on the second machine.

1 machine(1). machine(2).
2 task(a). duration(a,1,3). duration(a,2,4).
3 task(b). duration(b,1,1). duration(b,2,6).
4 task(c). duration(c,1,5). duration(c,2,5).

Listing 1.10: Flow shop instance (fsI.lp)

Next we encode this problem using difference constraints. We give in Listing 1.10 a
straightforward encoding of the instance in Figure 5. Listing 1.11 depicts the encoding
of the flow shop problem. Following the generate, define, and test methodology of ASP,
we first generate in lines 1–14 all possible permutations of tasks, where atoms of form
permutation(T,U) encode that task T has to be executed before task U . Then, in
the following lines 16–21, we use difference constraints to calculate the duration of the
generated permutation. The difference constraint in line 20 guarantees that the tasks are
executed in the right order. For example, (a,1) − (a,2) ≤ −d ensures that task a
can only be executed on machine 2 if it has finished on machine 1. Hence, variable
(a,2) has to be assigned so that it is greater or equal to (a,2) − d where d is the
duration of task a on machine 1. Similarly, (a,1) − (b,1) ≤ −d makes sure that



1 % select a cycle
2 1 { cycle(T,U) : task(U), U != T } 1 :- task(T).
3 1 { cycle(T,U) : task(T), U != T } 1 :- task(U).

5 % make sure the cycle is connected
6 reach(M) :- M = #min { T : task(T) }.
7 reach(U) :- reach(T), cycle(T,U).
8 :- task(T), not reach(T).

10 % select a start point
11 1 { start(T) : task(T) } 1.

13 % obtain an order
14 permutation(T,U) :- cycle(T,U), not start(U).

16 % place tasks sequentially on machines
17 seq((T,M),(T,M+1),D) :- task(T), duration(T,M,D), machine(M+1).
18 seq((T1,M),(T2,M),D) :- permutation(T1,T2), duration(T1,M,D).

20 &diff { T1-T2 } <= -D :- seq(T1,T2,D).
21 &diff { 0-(T,M) } <= 0 :- duration(T,M,D).

23 #show permutation/2.

Listing 1.11: Encoding of flow shop using difference constraints (fsE.lp)

task b can only be executed on machine 1 if task a has finished on machine 1. While
the first constraint is a fact (see line 17), the latter is subject to the generated permutation
of tasks (see line 18). The difference constraint in line 21 ensures that all time points
at which a task is started are greater than zero. Note that this constraint is in principle
redundant but since sets of difference constraints always have infinitely many solutions it
is good practice to encode relative to a starting point. Furthermore, note that 0 is actually
a variable. In fact, the Graph class takes care of subtracting the value of variable 0 from
all other variables when returning an assignment to get easier interpretable solutions.

Running encoding and instance with the dl propagator results in the following 6
solutions corresponding to the solutions in Figure 6.27 One for each possible permutation
of tasks:

$ clingo dl.lp fsE.lp fsI.lp 0
clingo version 5.2.0
Reading from dl.lp ...
Solving...
Answer: 1
permutation(b,a) permutation(c,b)
Valid assignment for constraints found:

27 Note that in each solution all tasks are executed as early as possible. This is no coincidence and
actually guaranteed by the algorithm implemented in the Graph class.



(b,2)=10 (a,2)=16 (c,1)=0 (a,1)=6 (c,2)=5 (b,1)=5
Answer: 2
permutation(c,b) permutation(a,c)
Valid assignment for constraints found:
(b,2)=13 (a,2)=3 (c,1)=3 (a,1)=0 (c,2)=8 (b,1)=8
Answer: 3
permutation(b,a) permutation(a,c)
Valid assignment for constraints found:
(b,2)=1 (a,2)=7 (c,1)=4 (a,1)=1 (c,2)=11 (b,1)=0
Answer: 4
permutation(c,a) permutation(a,b)
Valid assignment for constraints found:
(b,2)=14 (a,2)=10 (c,1)=0 (a,1)=5 (c,2)=5 (b,1)=8
Answer: 5
permutation(b,c) permutation(c,a)
Valid assignment for constraints found:
(b,2)=1 (a,2)=12 (c,1)=1 (a,1)=6 (c,2)=7 (b,1)=0
Answer: 6
permutation(b,c) permutation(a,b)
Valid assignment for constraints found:
(b,2)=7 (a,2)=3 (c,1)=4 (a,1)=0 (c,2)=13 (b,1)=3
SATISFIABLE

Models : 6
Calls : 1
Time : 0.032s (Solving: 0.00s [...])
CPU Time : 0.020s

Finally, to find optimal solutions, we combine the algorithms in Listing 1.3 and
Listing 1.8 to minimize the total execution time of the tasks. The adapted algorithm is
given in Listing 1.12 . As with algorithm in 1.8, a propagator is registered before solving.
And the control flow is similar to the branch-and-bound-based optimization algorithm in
Listing 1.3 except that we now minimize the variable bound; or better the difference
between variable 0 and bound by adding the difference constraint 0− bound ≤ b to
the program in line 9 where b is the best known execution time of the tasks as obtained
from the assignment in line 23 minus 1. To bound maximum execution time of the task,
we have to add one more line to the encoding in Listing 1.11:

22 &diff { (T,M)-bound } <= -D :- duration(T,M,D).

This makes sure that each task ends within the given bound. Running encoding and
instance with the dl propagator results in the optimum bound 16 where the obtained
solution corresponds to the left of the two optimal solutions indicated by a light blue
background in Figure 6:

$ clingo dlO.lp fsE.lp fsI.lp 0
clingo version 5.2.0
Reading from dlO.lp ...
Solving...
[...]
Solving...
Answer: 1



1 #theory dl {
2 constant {- : 1, unary};
3 diff_term {- : 1, binary, left};
4 &diff/0 : diff_term, {<=}, constant, any
5 }.

7 #program bound(b).

9 &diff { bound-0 } <= b.

11 #script (python)

13 import clingo, dl

15 def main(prg):
16 p = dl.Propagator()
17 prg.register_propagator(p)
18 prg.ground([("base", [])])
19 while True:
20 bound = 0
21 with prg.solve(yield_=True) as h:
22 for m in h:
23 a = p.get_assignment(m.thread_id)
24 for n, v in a:
25 if n == "bound":
26 bound = v
27 break

28 print "Valid assignment for constraints found:"
29 print " ".join(["{}={}".format(n, v) for n, v in a])
30 break

31 else:
32 print "Optimum found"
33 break

34 print "Found new bound: {}".format(bound)
35 prg.ground([("bound", [bound-1])])
36 #end.

Listing 1.12: Main loop for difference constraints with optimization (dlO.lp)



permutation(b,a) permutation(a,c)
Valid assignment for constraints found:
(b,2)=1 (a,2)=7 bound=16 (c,1)=4 (a,1)=1 (c,2)=11 (b,1)=0
Found new bound: 16
Solving...
Optimum found
UNSATISFIABLE

Models : 4
Calls : 5
Time : 0.017s (Solving: 0.00s [...])
CPU Time : 0.010s

6 Discussion

We described two essential techniques, viz. multi-shot and theory solving, for enhancing
ASP solving by different forms of hybridization. While multi-shot solving allows for
fine-grained control of ASP reasoning processes, theory solving allows for refining
basic ASP solving by incorporating foreign types of constraints. Since ASP follows a
model, ground, and solve methodology both techniques pervade the whole work-flow
of ASP, starting with extensions to the input language, over means for incremental and
theory-enhanced grounding, to stateful and theory-enhanced solving. Multi-shot solving
even adds a fourth dimension to control ASP reasoning processes.

Our focus on clingo should not conceal other approaches to hybrid ASP solving.
Foremost, dlvhex [36] builds upon clingo’s infrastructure to provide a higher level of
hybridization via higher-order logic programs. As well, clingcon [3] and lc2casp [8] rely
on clingo for extending ASP with linear constraints over integers. Similar yet customized
approaches include adsolver [33], inca [13], and ezcsp [1]. Another category of ASP
systems, such us ezsmt [29], dingo [27], and aspmt [6] translate ASP with constraints to
SAT Modulo Theories (SMT [34]) and use appropriate back-ends. Similarly, mingo [31]
translates to Mixed Integer Linear Programming (MILP) and aspartame [2] back to ASP
using the order encoding [11,40].

Theory propagators have recently also been added to the ASP solver wasp [12];
these can be made accessible via the theory language of Section 4.1 along with the
intermediate format described in Appendix A.

A Intermediate language

To accommodate the richer input language, a more general grounder-solver interface is
needed. Although this could be left internal to clingo 5, it is good practice to explicate
such interfaces via an intermediate language. This also allows for using alternative
downstream solvers or transformations.

Unlike the block-oriented smodels format, the aspif 28 format is line-based. Notably,
it abolishes the need of using symbol tables in smodels’ format29 for passing along meta-
28 ASP Intermediate Format
29 http://www.tcs.hut.fi/Software/smodels

http://www.tcs.hut.fi/Software/smodels


expressions and rather allows gringo 5 to output information as soon as it is grounded.
An aspif file starts with a header, beginning with the keyword asp along with version
information and optional tags:

asp vm vn vr t1 . . . tk

where vm, vn, vr are non-negative integers representing the version in terms of major,
minor, and revision numbers, and each ti is a tag for k ≥ 0. Currently, the only tag
is incremental, meant to set up the underlying solver for multi-shot solving. An
example header is given in line 1 of Listing 1.13a and 1.14. The rest of the file is
comprised of one or more logic programs. Each logic program is a sequence of lines of
aspif statements followed by a 0, one statement or 0 per line, respectively. Positive and
negative integers are used to represent positive or negative literals, respectively. Hence,
0 is not a valid literal.

Let us now briefly describe the format of aspif statements and illustrate them with
a simple logic program in Listing 1.13 as well as the result of grounding a subset of
Listing 1.6 in Listing 1.14.

1 {a}.
2 b :- a.
3 c :- not a.

(a) Logic program

1asp 1 0 0
21 1 1 1 0 0
31 0 1 2 0 1 1
41 0 1 3 0 1 -1
54 1 a 1 1
64 1 b 1 2
74 1 c 1 3
80

(b) aspif representation

Listing 1.13: Representing a simple logic program in aspif format

Rule statements have form
1 H B

in which head H has form
h m a1 . . . am

where h ∈ {0,1} determines whether the head is a disjunction or choice, m ≥ 0 is the
number of head elements, and each ai is a positive literal.

Body B has one of two forms:

– Normal bodies have form
0 n l1 . . . ln

where n ≥ 0 is the length of the rule body, and each li is a literal.
– Weight bodies have form

1 l n l1 w1 . . . ln wn



where l is a positive integer to denote the lower bound, n ≥ 0 is the number of
literals in the rule body, and each li and wi are a literal and a positive integer.

All types of ASP rules are included in the above rule format. Heads are disjunctions
or choices, including the special case of singular disjunctions for representing normal
rules. As in the smodels format, aggregates are restricted to a singular body, just that in
aspif cardinality constraints are taken as special weight constraints. Otherwise, a body is
simply a conjunction of literals.

The three rules in Listing 1.13a are represented by the statements in lines 2–4 of
Listing 1.13b. For instance, the four occurrences of 1 in line 2 capture a rule with a
choice in the head, having one element, identified by 1. The two remaining zeros capture
a normal body with no element. For another example, lines 2–7 of Listing 1.14 represent
the four facts in lines 1 and 2 of Listing 1.7 along with the ones (comprising theory
atoms) in line 6 of Listing 1.7.

Minimize statements have form

2 p n l1 w1 . . . ln wn

where p is an integer priority, n ≥ 0 is the number of weighted literals, each li is a literal,
and each wi is an integer weight. Each of the above expressions gathers weighted literals
sharing the same priority p from all #minimize directives and weak constraints in a
logic program. As before, maximize statements are translated into minimize statements.

Projection statements result from #project directives and have form

3 n a1 . . . an

where n ≥ 0 is the number of atoms, and each ai is a positive literal.
Output statements result from #show directives and have form

4 m s n l1 . . . ln

where n ≥ 0 is the length of the condition, each li is a literal, and m ≥ 0 is an integer
indicating the length in bytes of string s (where s excludes byte ‘\0’ and newline). The
output statements in lines 5–7 of Listing 1.13b print the symbolic representation of
atom a, b, or c, whenever the corresponding atom is true. For instance, the string ‘a’
is printed if atom ‘1’ holds. Unlike this, the statements in lines 8–11 of Listing 1.14
unconditionally print the symbolic representation of the atoms stemming from the four
facts in line 1 and 2 of Listing 1.7.

External statements result from #external directives and have form

5 a v

where a is a positive literal, and v ∈ {0, 1, 2, 3} indicates free, true, false, and release.
Assumption statements have form

6 n l1 . . . ln

where n ≥ 0 is the number of literals, and each li is a literal. Assumptions instruct
a solver to compute stable models such that l1, . . . , ln hold. They are only valid for a
single solver call.



Heuristic statements result from #heuristic directives and have form

7 m a k p n l1 . . . ln

where m ∈ {0, . . . , 5} stands for the (m+1)th heuristic modifier among level, sign,
factor, init, true, and false, a is a positive literal, k is an integer, p is a non-
negative integer priority, n ≥ 0 is the number of literals in the condition, and the literals
li are the condition under which the heuristic modification should be applied.

Edge statements result from #edge directives and have form

8 u v n l1 . . . ln

where u and v are integers representing an edge from node u to node v, n ≥ 0 is the
length of the condition, and the literals li are the condition for the edge to be present.

Let us now turn to the theory-specific part of aspif. Once a theory expression is
grounded, gringo 5 outputs a serial representation of its syntax tree. To illustrate this,
we give in Listing 1.14 the (sorted) result of grounding all lines of Listing 1.6 related to
difference constraints, viz. lines 2/3, 11, 15/16, and 19, as well as lines 1 and 13.

Theory terms are represented using the following statements:

9 0 u w (1)
9 1 u n s (2)
9 2 u t n u1 . . . un (3)

where n ≥ 0 is a length, index u is a non-negative integer, integer w represents a numeric
term,

1 asp 1 0 0
2 1 0 1 1 0 0
3 1 0 1 2 0 0
4 1 0 1 3 0 0
5 1 0 1 4 0 0
6 1 0 1 5 0 0
7 1 0 1 6 0 0
8 4 7 task(1) 0
9 4 7 task(2) 0

10 4 15 duration(1,200) 0
11 4 15 duration(2,400) 0
12 9 0 1 200
13 9 0 3 400
14 9 0 6 1
15 9 0 11 2
16 9 1 0 4 diff
17 9 1 2 2 <=
18 9 1 4 1 -
19 9 1 5 3 end
20 9 1 8 5 start



21 9 2 7 5 1 6
22 9 2 9 8 1 6
23 9 2 10 4 2 7 9
24 9 2 12 5 1 11
25 9 2 13 8 1 11
26 9 2 14 4 2 12 13
27 9 4 0 1 10 0
28 9 4 1 1 14 0
29 9 6 5 0 1 0 2 1
30 9 6 6 0 1 1 2 3
31 0

Listing 1.14: aspif format

string s of length n represents a symbolic term (including functions) or an operator,
integer t is either -1, -2, or -3 for tuple terms in parentheses, braces, or brackets,
respectively, or an index of a symbolic term or operator, and each ui is an integer for a
theory term. Statements (1), (2), and (3) capture numeric terms, symbolic terms, as well
as compound terms (tuples, sets, lists, and terms over theory operators).

Fifteen theory terms are given in lines 12–26 of Listing 1.14. Each of them is identi-
fied by a unique index in the third spot of each statement. While lines 12–20 stand for
primitive entities of type (1) or (2), the ones beginning with ’9 2’ represent compound
terms. For instance, line 21 and 22 represent end(1) or start(1), respectively, and
line 23 corresponds to end(1)-start(1).

Theory atoms are represented using the following statements:

9 4 v n u1 . . . un m l1 . . . lm (4)
9 5 a p n v1 . . . vn (5)
9 6 a p n v1 . . . vn g u1 (6)

where n ≥ 0 and m ≥ 0 are lengths, index v is a non-negative integer, a is a positive
literal or 0 for directives, each ui is an integer for a theory term, each li is an integer
for a literal, integer p refers to a symbolic term, each vi is an integer for a theory atom
element, and integer g refers to a theory operator. Statement (4) captures elements of
theory atoms and directives, and statements (5) and (6) refer to the latter.

For instance, line 27 captures the (single) theory element in ‘{ end(1)-start(1) }’,
and line 29 represents the theory atom ‘&diff { end(1)-start(1) } <= 200’.

Comments have form
10 s

where s is a string not containing a newline.
The aspif format constitutes the default output of gringo 5. With clasp 3.2, ground

logic programs can be read in both smodels and aspif format.
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