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Preface

The Sixth Workshop on Non-Classical Models of Automata and Applications (NCMA 2014) has
been organized to bring together researchers who work on various aspects of non-classical and
classical models of automata, providing an excellent opportunity to develop and discuss novel
ideas. Numerous models of automata, both classical and non-classical, are natural objects of
theoretical computer science. They are studied from di↵erent points of view in various areas,
both as theoretical concepts and as formal models for applications. The purpose of the NCMA
workshop series is to promote a deeper and interdisciplinary coverage of this particular area
and in this way foster new insights and substantial progress in computer science as a whole.

The first workshop on Non-Classical Models of Automata and Applications, NCMA 2009, was
held in Wroc law, Poland, in 2009 as a satellite event of the 17th International Symposium
on Fundamentals of Computation Theory (FCT 2009). It was sponsored by the AutoMathA
project of the European Science Foundation (ESF). The second workshop, NCMA 2010, was
held in Jena, Germany, as an associated workshop of the 11th International Conference on
Membrane Computing (CMC 11), and the third workshop, NCMA 2011, was organized at the
Università degli Studi di Milano, Milan, Italy, in close proximity to the 15th Conference on
Developments in Language Theory (DLT 2011). In contrast to the previous workshops, the
fourth workshop, NCMA 2012, and the fifth workshop, NCMA 2013, were organized as stand-
alone workshops. NCMA 2012 was held in Fribourg, Switzerland, in August 2012, and NCMA
2013 took place in Ume̊a, Sweden, in August 2013. Now the Sixth Workshop on Non-Classical
Models of Automata and Applications (NCMA 2014) takes place in Kassel, Germany, on July 28
and 29, 2014, right before the 19th International Conference on Implementation and Application
of Automata (CIAA 2014) in Giessen. We expect it to be again a scientifically valuable event
with interesting presentations, exciting results, and stimulating discussions. In addition to
invited talks and contributed full papers, NCMA 2014 also features six short presentations
to emphasize its workshop character; the extended abstracts of the short presentations are
contained in this booklet. We hope that the friendly atmosphere and the nice surroundings will
also help to make this workshop a worthwhile event that will lead to new insights and possibly
new cooperations.

At NCMA 2014 there are two invited presentations by

• Peter Leupold (University of Leipzig, Germany) and

• Frantǐsek Mráz (Charles University in Prague, Czech Republic),

and 14 presentations of contributed full papers. The invited presentations and the full papers
are published in the proceedings of NCMA 2014, which appear as volume 304 in the series
books@ocg.at of the Austrian Computer Society.
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We are grateful to the University of Kassel for the support in the local organization of NCMA
2014, to the Deutsche Forschungsgemeinschaft (DFG) for financial support, and to the Institute
of Computer Languages of the Vienna University of Technology for covering the printing costs
of this booklet of short papers, as well as to Gernot Salzer (Vienna University of Technology,
Austria) for his useful advice with editing these volumes.

July 2014

Suna Bensch, Ume̊a
Rudolf Freund, Vienna
Friedrich Otto, Kassel
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VISIBLY PUSHDOWN AUTOMATA AND
TRANSDUCERS WITH COUNTERS

Oscar H. Ibarra
Department of Computer Science

University of California, Santa Barbara, CA 93106, USA
ibarra@cs.ucsb.edu

Abstract
We generalize the models of visibly pushdown automata (VPDAs) and visibly pushdown trans-

ducers (VPDTs) by equipping them with reversal-bounded counters. We show that some of the

results for VPDAs and VPDTs (e.g., closure under intersection and decidability of emptiness for

VPDA languages) carry over to the generalized models, but other results (e.g., determinization

and closure under complementation) do not carry over. We also investigate the finite-ambiguity

and finite-valuedness problems concerning these devices.

Keywords: pushdown automaton, pushdown transducer, visibly pushdown automaton, visibly
pushdown transducer, reversal-bounded counters, ambiguous, finite-valued, decidable, undecid-
able.

1 Introduction

A visibly pushdown automaton (VPDA), which was introduced in [1], is a restricted version of
a nondeterministic pushdown automation (NPDA). In a VPDA, the input symbol determines
when the automaton can push or pop. It was shown in [1] that the class of languages accepted
by VPDAs enjoys many of the properties of regular languages. For example, the class is closed
under union, intersection, complementation, renaming, concatenation, and Kleene-*. Unlike
NPDAs, the containment and equivalence problems are decidable for VPDAs. It was shown in
[1] that the VPDA framework unifies and generalizes many of the decision procedures in the
program analysis literature, and it provides algorithmic verification of recursive programs with
respect to many context-free properties. Since its introduction, many papers have been written
concerning VPDAs and their variants/extensions. One, in particular, is the visibly pushdown
transducer (VPDT), which is simply a VPDA with outputs [12, 4].

In this paper, we generalize the models of VPDAs and VPDTs by equipping them with reversal-
bounded counters. We investigate the closure and decidability properties of these generalized
models. In particular, we show that some of the results for VPDAs and VPDTs (e.g., closure
under intersection and decidability of emptiness for VPDA languages) carry over to languages

Supported in part by NSF Grant CCF-1117708.



8 Oscar H. Ibarra

accepted by VPDAs with reversal-bounded counters, but other results (e.g., determinization
and closure under complementation) do not carry over. We also look at the ambiguity ques-
tions concerning VPDAs with reversal-bounded counters and the finite-valuedness problem for
VPDTs with reversal-bounded counters.

No proofs are provided in this paper. The results reported here and their proofs are part
of an invited paper, “Automata with Reversal-Bounded Counters: A Survey”, which will be
presented at DCFS 2014.

2 Preliminaries

A counter is an integer variable that can be incremented by 1, decremented by 1, and tested
for zero. It starts at zero and can only store nonnegative integer values. (Thus, one can think
of a counter as a pushdown stack with a unary alphabet, in addition to the bottom of the stack
symbol which is never altered.)

An automaton (DFA, NFA, DPDA, NPDA, etc.) can be augmented with multiple counters,
where the “move” of the machine also now depends on the status (zero or non-zero) of the
counters, and the move can update the counters. See [9] for formal definitions.

It is well known that a DFA augmented with two counters is equivalent to a Turing ma-
chine (TM) [11]. However, when we restrict the operation of the counters so that during the
computation, the number of times each counter alternates between nondecreasing mode and
nonincreasing mode is at most some fixed number r (such a counter is called reversal-bounded),
the computational power of a DFA (and even an NPDA) augmented with reversal-bounded
counters is significantly weaker than a TM. Note that a counter that makes r reversals can be
simulated by d r+1

2 e 1-reversal counters.

We will use the following notations: DCM (resp., NCM, DPCM, NPCM) will denote a DFA
(resp., NFA, DPDA, NPDA) augmented with a finite number of reversal-bounded counters.

The following fundamental result was shown in [9]:

Theorem 2.1. The emptiness and infiniteness problems for NPCMs are decidable.

Note: All proofs are omitted in this short paper. The proofs will appear elsewhere.

3 VPDAs with Reversal-Bounded Counters

The model of a visibly pushdown automaton (VPDA) was first introduced and studied in [1].
It is an NPDA where the input symbol determines the (push/stack) operation of the stack.
The input alphabet ⌃ is partitioned into three disjoint alphabets: ⌃c,⌃r,⌃int. The machine
pushes a specified symbol on the stack if it reads a call symbol in ⌃c on the input; it pops a
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specified symbol (if the specified symbol is at top of the stack) if it reads a return symbol in ⌃r

on the input; it does not use the (top symbol of) the stack and can only change state if it reads
an internal symbol in ⌃int on the input. The machine has no "-moves, i.e, it reads an input at
every step. An input x 2 ⌃⇤ is accepted if the machine, starting from one of a designated set
of initial states with a distinguished symbol ? at bottom of the stack (which is never altered),
eventually enters an accepting sate after processing all symbols in x. For details, see [1]. In
this paper, we assume without loss of generality, that the VPDA has only one initial state.

A 1-ambiguous NPDA is one where every input is accepted in at most one accepting computa-
tion. A 1-ambiguous NPDA is more powerful than a visibly pushdown automaton (VPDA) since
the former can accept languages, like L1 = {x#x

R | x 2 (a + b)+} and L2 = {akbak | k � 1},
that cannot be accepted by the latter. There are languages accepted by 1-ambiguous NPDAs
that are not deterministic context-free languages (DCFLs), whereas languages accepted by
VPDAs are DCFLs [1]. Note also that a 1-ambiguous NPDA can have "-moves.

Now consider a VPDA augmented with k reversal-bounded counters. We allow the machine to
have "-moves, but in such moves, the stack is not used, only the state and counters are used and
updated. Acceptance of an input string is when machine eventually falls o↵ the right end of
the input in an accepting state. Thus, a VPDA M with k reversal-bounded counters operates
like a VPDA but can now use reversal-bounded counters as auxiliary memory. More precisely,
M ’s operation is defined as follows (where q, p are states, si = 0 or + is the status of counter
i, and di = +1, -1, or 0 is added to counter i):

1. If the current input is a 2 ⌃c, then M can only use rules of the form:

(q, a, �, s1, . . . , sk) ! (p, d1, . . . , dk)

which means that � (which cannot be?) is pushed, and the state and counters are updated,
or of the form:

(q, ", s1, . . . , sk) ! (p, d1, . . . , dk)

which means an "-move: the input head is not moved, the stack is not used, but the state
and counters are updated.

2. If the current input is a 2 ⌃r, then M can only use rules of the form:

(q, a, �, s1, . . . , sk) ! (p, d1, . . . , dk)

which means that if � is top of the stack and 6=?, it is popped (otherwise, if � =?, it is
not popped), and the state and counters are updated, or of the form :

(q, ", s1, . . . , sk) ! (p, d1, . . . , dk)

3. If the current input is a 2 ⌃int, then M can only use rules of the form:

(q, a, s1 . . . , sk) ! (p, d1, . . . , dk)

which means the stack is not used, but the state and counters are updated, or of the form:

(q, ", s1, . . . , sk) ! (p, d1, . . . , dk)

Consider the language L1 = {w | w = xy for some x 2 (a + b)+, y 2 (0 + 1)+, x when a, b are
mapped to 0, 1, respectively, is the reverse of y}. Clearly, L1 can be accepted by a VPDA M1.



10 Oscar H. Ibarra

However, the language L2 = {w | w 2 L1, the number of a’s + number of 0’s in w = the
number of b’s + number of 1’s in w} cannot be accepted by a VPDA. But L2 can be accepted
by a VPDA M2 with two 1-reversal counters C1 and C2 as follows: On a given input w, M2

simulates M1, and stores the number of a’s and 0’s (resp., the number of b’s and 1’s) it sees
on the input in counters C1 and C2, respectively. Then when M1 accepts, M2 (on "-moves)
decreases the counters simultaneously and accepts if the counters become zero at the same
time.

Denote a VPDA augmented with a finite number of reversal-bounded counters by VPCM.
Clearly, VPCMs are a special case of NPCMs. Hence, from Theorem 2.1, we have:

Theorem 3.1. The emptiness and infiniteness problems for VPCMs are decidable.

We can show:

Theorem 3.2. The class of languages accepted by VPCMs is closed under union, intersection,

renaming, concatenation, Kleene-*.

With respect to complementation, unlike for VPDAs, we have:

Theorem 3.3. The class of languages accepted by VPCMs is not closed under complementa-

tion.

Every VPDA can be converted to an equivalent deterministic VPDA [1]. In contrast, from
Theorem 3.3, we have:

Corollary 3.4. There are VPCMs that cannot be converted to equivalent deterministic VPCMs.

We can define a deterministic VPCM (DVPCM) as follows. For every tuple (q, �, s1, . . . , sk):

1. For every a 2 ⌃[ {"}, there is at most one transition (q, a, �, s1, . . . , sk) ! (p, d1, . . . , dk).

2. If there is a transition (q, ", �, s1, . . . , sk) ! (p, d1, . . . , dk), then there is no transition
(q, a, �, s1, . . . , sk) ! (p, d1, . . . , dk) for any a 2 ⌃.

We also assume that the machine always halts. Thus a DVPCM is a deterministic VPDA
with reversal-bounded counters. (Note that a VPDA has no "-transitions.) Since a VPDA
can always be made deterministic, it follows that DVPCMs are strictly more powerful than
deterministic VPDAs.

The first part of the next result is obvious. The second part follows from the first using Theorem
3.1.

Corollary 3.5.

1. The class of languages accepted by DVPCMs is closed under Boolean operations.

2. The containment and equivalence problems for DVPCMs are decidable.
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The second part of the above corollary does not hold for VPCMs, since the universe problem
(does a given transducer accept all strings?) is already undecidable even for an NFA augmented
with one 1-reversal counter [2]. A VPCM is k-ambiguous (k � 1) if every input is accepted in
at most k distinct accepting computations. We can show:

Theorem 3.6. It is decidable, given a VPCM M and k � 1, whether M is k-ambiguous.

Note that the above contrasts the undecidability of k-ambiguity (even for k = 1) for NPDAs
whose stack makes at most one reversal: when it pops, it can no longer push.

4 VPDTs with Reversal-Bounded Counters

Visibly pushdown transducers (VPDT) were introduced in [12], where "-transitions that can
produce outputs were allowed. Allowing such transitions makes some decision problems (e.g.,
single-valuedness) undecidable. Later, in [4], VPDTs that do not allow "-transitions were
investigated, where it was shown that the k-valuedness problem for VPDTs is decidable. (A
transducer is k-valued if every accepted input generates at most k distinct outputs. It is finite-
valued if it is k-valued for some k.)

We can generalize the result above for VPDTs with reversal-bounded counters. A VPCMT T

is a VPCM with outputs. Since a VPCM is allowed "-transitions (where the stack is not used),
we assume that on an "-transition, the VPCMT can only output ".

Theorem 4.1. It is decidable, given a VPCMT T and k � 1, whether T is k-valued.

5 Containment and Equivalence Problems for VPCMTs

It is known that the equivalence problem for two-way deterministic finite transducers (2DFTs)
is decidable [6]. However, if nondeterminism is allowed, the problem becomes undecidable even
for one-way nondeterministic finite transducers (NFTs) [5]. The undecidability holds even for
NFTs operating on a unary input (or output) alphabet [10]. For single-valued (i.e., 1-valued)
NFTs, the problem becomes decidable [7], and the decidability result was later extended to
finite-valued NFTs in [3]. The complexity of the problem was subsequently derived in [13].

Now consider the containment and equivalence problems for VPCMTs and DVPCMTs. As we
mentioned earlier, the containment and equivalence problems for NFTs is undecidable. Hence
these problems are also undecidable for VPCMTs. However, we can prove:

Theorem 5.1. The following problems are decidable:

1. Given a VPCMT T1 and a DVPCMT T2, is R(T1) ✓ R(T2)?

2. Given two DVPCMTs T1 and T2, is R(T1) = R(T2)?
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6 Conclusion

The emptiness problem for NPDAs with reversal-bounded counters has recently been shown
to be NP-complete [8]. Using this result, we can derive lower and upper bounds for many
decidable problems discussed in the paper. We intend to do this in the journal version of the
paper. There are a number of interesting open questions that we are currently working on, two
of which are:

1. Is it decidable, given a VPCM M , whether M is finitely-ambiguous (i.e., k-ambiguous for
some k)?

2. Is it decidable, given a VPCMT T , whether it is finite-valued (i.e., k-valued for some k)?
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abuzer@lncc.br

Abstract
In this paper, we introduce a new non-uniform two-way deterministic and nondeterministic
automata, i.e. each tape square can induce a di↵erent transition function. For these models,
we present some hierarchy results based on the sizes (the numbers of states) of automata where
the gaps are linear and quadratic for deterministic and nondeterministic models, respectively.
We obtain the results for the automata for which the size of the set of its states is less than the
square root of the length of its input. We also enhance these automata by giving the capability
of shu✏ing the symbols of a given input at the beginning of the computation with respect to
a permutation. We prove that the same hierarchy results are also obtained for them. On the
other hand, we prove that the original automata are incomparable with some smaller enhanced
automata where the size of the enhanced one is constant times less than the original one for
deterministic models and sub-quadratic size of the original one for nondeterministic models.

1 Introduction

There are many di↵erent models of non-uniform automata in the literature, e.g. [4, 7, 9,
3]. However, compared to the uniform ones, the size of non-uniform automata has been less
investigated and there are still some open problems. For example, Sakoda and Sipser [13]
conjectured that simulating a 2NFA by a 2DFA requires exponential number of states in the
worst case. But, the best known separation is only quadratic (O(n2)) [5, 8] and the researchers
have succeeded to obtain better bounds only for some modified models, e.g. see [12, 10, 6, 11].

We investigate some hierarchies depending on the size of automata and so, for each input
length, our models can have di↵erent number of states. Therefore, we define an automaton
for a fixed non-negative integer n (the input length). Moreover, like Branching programs or
the data-independent models defined by Holzer [7], the transition functions can be changed
during the computation. Holzer’s model can use a di↵erent transition function for each step.

(A)Khadiev was partially supported by RFBR Grant 14-07-00557.
(B)Yakaryılmaz was partially supported by CAPES, ERC Advanced Grant MQC, and FP7 FET project
QALGO.
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We restrict this property as follows: The transition function is the same for the same tape
positions. Thus, we can have at most n di↵erent transition functions. If we restrict ourselves
to a single transition function, then we obtain a “standard” non-uniform automaton. Our
alphabet is a binary one, ⌃ = {0, 1}, and we use the terminologies of Branching programs: Our
decision problems are solving/computing Boolean functions instead of recognizing languages.
That is, the automaton must accept the inputs where the function gets the value true and
rejects the inputs where the function gets the value false if this function is solved/computed by
the automaton.

A non-uniform head-position-dependent two-way deterministic finite automaton working on the
inputs of length/size of n � 0 (2DAn) Dn is a 6-tuple Dn = (⌃, S, s1, � = {�1, . . . , �n}, sa, sr),
where (i) S = {s1, . . . , sd} is the set of states (d can be a function in n) and s1, sa 2 S, and
sr 2 S (sa 6= sr) are the initial, accepting, and rejecting states, respectively; and, (ii) � is
a collection of n transition functions such that �i : S \ {sa, sr} ⇥ ⌃̃ ! S ⇥ { , #,!} is the
transition function that governs the behaviour of Dn when reading the ith symbol/variable of
the input, where 1  i  n. Any given input u 2 ⌃n is placed on a read-only tape with a single
head as u from the squares 1 to |u| = n. When Dn is in s 2 S \ {sa, sr} and reads ui 2 ⌃ (the
ith symbol of u) on the tape, it switches to state s0 2 S and updates the head as position with
respect to d 2 { , #,!} if �i(s, ui)! (s0, d). If d = “ ” (“! ”), the head moves one square
to the left (the right), and, it stays on the same square, otherwise. The transition functions
�1 and �n must be defined to guarantee that the head never leaves u during the computation.
Moreover, the automaton enters sa or sr only on the right end-marker and then the input is
respectively accepted or rejected.

A nondeterministic counterpart of 2DAn, denoted 2NAn, can choose from more than one tran-
sition in each step. So, the range of each transition function is P(S ⇥ { , #,!}), where P(·)
is the power set of any given set. Therefore, a 2NAn can follow more than one computational
path and the input is accepted only if one of them ends with the decision of “acceptance”.
Note that some paths may end without any decision since the transition function can yield the
empty set for some transitions. A function fn : ⌃n ! ⌃ is said to be computed by a 2DAn Dn

(a 2NAn Nn) if each member of f�1
n (1) is accepted by Dn (Nn) and each member of f�1

n (0) is
rejected by Dn (Nn). The class 2DSIZE(d(n)) is formed by the functions f = {f0, f1, f2, . . .}
such that each fi is computed by a 2DAi Di whose number of states is no more than d(i), where
i is a non-negative integer. We can similarly define nondeterministic counterparts of this class,
denoted 2NSIZE(d(n)).

We also introduce a generalization of our non-uniform models that can shu✏e the input at the
beginning of the computation with respect to a permutation. A non-uniform head-position-
dependent shu✏ing two-way deterministic finite automaton working on the inputs of length/size
of n � 0 (2DA⇥

n ), say D✓
n, is a 2DAn that shu✏es the symbols of input with respect to ✓, a

permutation of {1, . . . , n}, i.e. the jth symbol of the input is placed on ✓(j)th place on the tape
(1  j  n), and then execute the 2DAn algorithm on this new input. The nondeterministic
model can be abbreviated as 2NA⇥

n . The class 2D⇥SIZE(d(n)) is formed by the functions
f = {f0, f1, f2, . . .} such that each fi is computed by a 2DA⇥

i D✓
i whose number of states is no

more than d(i), where i is a non-negative integer and ✓ is a permutation of {1, . . . , n}. The
nondeterministic class is represented by 2N⇥SIZE(d(n)).
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2 Summary of Results

We obtain the following hierarchy results for our deterministic models.

Theorem 1. Let d : N! N be a non-constant function such that d2(n) < n. Then, we have

2DSIZE

✓�
d� 4

13

⌫
� 4

◆
( 2DSIZE(d) and 2D⇥SIZE

✓�
d� 4

13

⌫
� 4

◆
( 2D⇥SIZE(d).

We also show that our deterministic models are incomparable.

Theorem 2. Let d : N! N be a non-constant function such that d2(n) < n
2 � 1. Then for any

d0 : N! N satisfying 4  d0(n) 
⌅
d�4
13

⇧
� 4, 2DSIZE(d) and 2D⇥SIZE(d0) are incomparable.

We can extend our results to nondeterministic models.

Theorem 3. Let d : N! N be a non-constant function such that d2(n) < n. Then, we have

2NSIZE

 $s�
d� 4

13

⌫
� 4

%!
( 2NSIZE(d) and 2N⇥SIZE

 $s�
d� 4

13

⌫
� 4

%!
( 2N⇥SIZE(d).

Theorem 4. Let d : N! N be a non-constant function such that d2(n) < n
2 � 1. For any d0 :

N! N satisfying 4  d0(n) 
jq⌅

d�4
13

⇧
� 4
k
, 2NSIZE(d) and 2N⇥SIZE(d0) are incomparable.

In our proofs, we use two witness Boolean functions: Shu✏ed Address Function (see Figure 1),
denoted 2-SAFw, which is a modification of Boolean function given in [1], and the ”shu✏ed”
version [2] of well known Equality function EQ(X) =

Wbn/2c�1
0 xi = xi+bn/2c.

First, we present some generic lower bounds for our models by using some similar techniques
from communication complexity.

Lower bounds

Let ⇡ = ({xj1 , . . . , xju}, {xi1 , . . . , xiv}) = (XA, XB) be a partition of the set X into two partsXA

and XB = X\XA and f |⇢ be the subfunction of Boolean function f (X), where ⇢ is a mapping
⇢ : XA ! {0, 1}|XA|. Function f |⇢ is obtained from f by fixing the values of the variables
xj1 , . . . , xju to ⇢(xj1), . . . , ⇢(xju). We denote N⇡(f) to be the number of di↵erent subfunctions
with respect to partition ⇡. Let ⇥(n) be the set of all permutations of {1, . . . , n}.

We say that partition ⇡ agrees with permutation ✓ = (j1, . . . , jn) 2 ⇥(n) if for some u (1 < u <
n), the following holds: ⇡ = ({xj1 , . . . , xju}, {xju+1 , . . . , xjn}). We denote ⇧(✓) to be the set of
all partitions agreeing with ✓. Moreover, we define

N ✓(f) = max
⇡2⇧(✓)

N⇡(f) and N(f) = min
✓2⇥(n)

N ✓(f),

and, for any Boolean function f , N id(f) (id = (1, . . . , n)) is the analogue of the rank of language
Ln (the number of Myhill-Nerode classes) such that f is the characteristic function of Ln.
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2-SAFw(X) : {0, 1}n ! {0, 1} for integer w = w(n) such that

2w(2w + dlog 2we) < n. (1)

We divide the input variables (the symbols of the input) into 2w blocks. There are
⌅

n
2w

⇧
= a variables in

each block. After that, we divide each block into address and value variables. The first dlog 2we variables
of block are address and the other a� dlog 2we = b variables of block are value.
We call xp

0

, . . . , x

p
b�1

and y

p
0

, . . . , y

p
dlog 2we are the value and the address variables of the pth block, respec-

tively, for p 2 {0, . . . , 2w � 1}.
Boolean function 2-SAFw(X) can be calculated iteratively based on the following five functions:

1. Function Adr : {0, 1}n ⇥ {0, . . . , 2w � 1}! {0, . . . , 2w � 1} gets the address of a block:

Adr(X, p) =

dlog 2we�1X

j=0

y

p
j · 2j(mod 2w).

2. Function Ind : {0, 1}n ⇥ {0, . . . , 2w � 1}! {�1, . . . , 2w � 1} gets the number of block by address:

Ind(X, i) =

⇢
p , where p is the minimal number such that Adr(X, p) = i,

�1 , if there are no such p

.

3. Function V al : {0, 1}n ⇥ {0, . . . , 2w � 1} ! {�1, . . . , w � 1} gets the value of the block which has
the address i:

V al(X, i) =

⇢Pb�1

j=0

x

p
j (mod w) , where p = Ind(X, i) for p � 0,
�1 , if Ind(X, i) < 0

.

For computing 2-SAFw(X), we make two steps of iterations. Two functions Step
1

and Step

2

get the result
of the tth step of iteration.

4. Function Step

1

: {0, 1}n ⇥ {0, . . . , 1} ! {�1, w . . . , 2w � 1} gets the first part of the tth step of
iteration:

Step

1

(X, t) =

⇢
�1 , if Step

2

(X, t� 1) = �1,
V al(X,Step

2

(X, t� 1)) + w , otherwise
.

5. Function Step

2

: {0, 1}n ⇥ {�1, . . . , 1} ! {�1, . . . , w � 1} gets the second part of the tth step of
iteration:

Step

2

(X, t) =

8
<

:

�1 , if Step
1

(X, t) = �1,
2 , if t = �1

V al(X,Step

1

(X, t)) , otherwise
.

Remark that the address of the current block is computed in the previous step. The function 2-SAFw(X)
is computed as:

2-SAFw(X) =

⇢
0, if Step

2

(X, 1)  0,
1, otherwise

.

Figure 1: The formal definition of 2-SAFw
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Theorem 5. If function f(X) is computed by a 2DA⇥
n of size d, say A✓

n, for a permutation ✓,
then N(f)  (d+ 1)d+1.

Corollary 6. If the function f(X) is computed by a 2DAn of size d, then N id(f)  (d+1)d+1.

Theorem 7. If the function f(X) is computed by a 2NA⇥
n of size d, say A✓

n, for a permutation
✓, then N(f)  2d(d+1).

Corollary 8. If function f(X) is computed by a 2NAn of size d, then N id(f)  2d(d+1).

With a 2DAn computing 2-SAFw we will be able to prove our hierarchy results:

Lemma 9. There is a 2DAn An of size 13w + 4 which computes 2-SAFw.

The Proof of Theorem 1: It is obvious that 2D⇥SIZE(bd�4
13 c � 4) ✓ 2D⇥SIZE(d) and

2DSIZE(bd�4
13 c � 4) ✓ 2DSIZE(d). By Lemma 9, we have that 2-SAFb d�4

13 c is in both 2D⇥SIZE(d)

and 2DSIZE(d). After some certain calculations, we can show that

N
⇣
2-SAFb d�4

13 c
⌘
>

✓�
d� 4

13

⌫
� 4 + 1

◆b d�4
13 c�4+1

.

Then, by Theorem 5, we infer that 2-SAFb d�4
13 c�4 62 2DSIZE(

⌅
d�4
13

⇧
� 4) and 2-SAFb d�4

13 c�4 62
2D⇥SIZE(

⌅
d�4
13

⇧
� 4).

The Proof of Theorem 2: Remember that d0 
⌅
d�4
13

⇧
� 4. We have already shown that

2-SAFb d�4
13 c 62 2D⇥SIZE(

⌅
d�4
13

⇧
� 4) and 2-SAFb d�4

13 c 2 2DSIZE(d). On the other hand, we can

easily obtain that N id(EQ) = 2bn/2c and N ✓(EQ)  4 for ✓ = (0, bn/2c, 1, bn/2c+ 1, . . . ).

Therefore, EQ 2 2D⇥SIZE(4) but, due to Corollary 6, we have EQ 62 2DSIZE(d0).

The Proof of Theorem 3: It is obvious that 2N⇥SIZE
⇣jq⌅

d�4
13

⇧
� 4
k⌘
✓ 2N⇥SIZE(d) and

2NSIZE
⇣jq⌅

d�4
13

⇧
� 4
k⌘
✓ 2NSIZE(d). By Lemma 9 we have that 2-SAFb d�4

13 c 2 2N⇥SIZE(d)

and 2-SAFb d�4
13 c 2 2NSIZE(d). After some certain calculations, we can show that

N
⇣
2-SAFb d�4

13 c
⌘
> 2

jq
b d�4

13 c�4
k⇣jq
b d�4

13 c�4
k
+1

⌘

.

Then, by Theorem 7, we infer that 2-SAFb d�4
13 c 62 2N⇥SIZE

⇣jq⌅
d�4
13

⇧
� 4
k⌘

and 2-SAFb d�4
13 c 62

2NSIZE
⇣jq⌅

d�4
13

⇧
� 4
k⌘

.

The Proof of Theorem 4: Let us recall that d0 
jq⌅

d�4
13

⇧
� 4
k
. We have already shown

that 2-SAFb d�4
13 c 62 2N⇥SIZE

⇣jq⌅
d�4
13

⇧
� 4
k⌘

and 2-SAFb d�4
13 c 2 2NSIZE(d).

Moreover, EQ 2 2N⇥SIZE(4), but by Corollary 8 we have EQ 62 2N⇥SIZE(d0).
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Abstract
Euclidean Automata (EA) are finite state computational devices that take continuous parameter

vectors as input. We investigate decompositions of EA into simpler Euclidean and classical finite

state automata, relate them to better known computational devices such as artificial neural nets

and electronic devices, and show that they are plausible Big Mechanism candidates.

1 Introduction

Euclidean automata (EA) were introduced and motivated from the perspective of Artificial
Intelligence, in [8]. For convenience, we repeat some of the definitions and examples here, but
the focus of the current paper is with the decomposition of EA and relating the concept to
better known computational frameworks, subjects that could not be discussed in the earlier
work. EA are modified Finite State Automata (FSA) that draw their input not from a finite
alphabet as usual, but rather from vectors from a parameter space P , typically Rn. For quantum
applications, Cn would also be of interest, but we concentrate on the real case.

Definition 1.1 A Euclidean automaton (EA) over a parameter space P is defined as a 4-tuple
(P , I, F, T ) where P ⇢ 2P is a finite set of states given as subsets of P ; I ⇢ P is the set of
initial states; F ⇢ P is the set of accepting states; and T : P ⇥P ! P is the transition function
that assigns for each parameter setting ~v 2 P and each state s 2 P a next state t = T (~v, s)
that satisfies ~v 2 t.

Thus, while the input is drawn (in discrete steps) from a continuous domain, EA are still finite
in that states are simply subsets Pi of P indexed from a finite index set S. If Pi \ Pj = ; for
all i, j 2 S we call the EA deterministic, if

S
i2S Pi = P we call it complete. If all Pi are open

subsets of the the Euclidean space, we call the EA open.

In problems of linguistic pattern classification the number of classes (e.g. the set of valid
characters in optical character recognition (OCR) or the set of phonemes in automated speech
recognition (ASR)) is finite, and small continuous deformations of the input leave the output

†Work supported by OTKA grant #82333 and by the European Union and the European Social Fund
through project FuturICT.hu (grant # TAMOP-4.2.2.C-11/1/KONV-2012-0013).
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unchanged, suggesting that the classifier is an open EA. The main problem with this is that we
cannot partition Rn or Cn into finitely many disjoint open sets. Approximate solutions thus
must give up non-overlapping, e.g. by permitting probabilistic or fuzzy outcomes, or exhaus-
tiveness, e.g. by leaving ‘gray areas’ near decision boundaries where the system produces no
output. As discussed in [8], EA take the first route, sacrificing determinism (non-overlapping).
This enables modeling of the nondeterminism actually seen in cases of perceptual hysteresis
[12]. In fact, we observe that the appearance of hysteresis in such situations is not an accident:

Observation 1.1 There is no deterministic classification of a connected parameter space P ⇢
Rn by some open EA.

Proof By definition, connected subspaces of Euclidean space cannot be the discrete union of
open sets.

Figure 1: Decision boundary in 2-20-10-1 layer perceptron

As an example, consider the multilayer perceptron depicted in Fig. 1, trained in [5]. Despite
the complexity of the decision boundary, the EA with equivalent behavior has only two states,
corresponding to the black and the white subsets of the image. The input vectors are two-
dimensional, and there is no output to speak of (we could designate one of the two states final).
To account for output, we consider the following definitions (repeated from [8] for convenience):

Definition 1.2 A Euclidean transducer (ET) over a parameter space P is defined as a 5-tuple
(P , I, F, T, E) where P , I, F, and T are as in Def. 1.1 and E is an emission function that assigns
a string (possibly empty) over a finite alphabet ⌃ to each transition defined by T .

Definition 1.3 A Euclidean Eilenberg Machine (EEM) over a parameter space P is defined as
a 5-tuple (P , I, F, T, R) where P , I, F, and T are as in Def. 1.1 and R is a mapping P ⇥P ! P
which assigns to each transition a (not necessarily linear, or even deterministic) transformation
of the parameter space.
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2 Decomposition

The definition of EA leaves open the possibility that the parameter space P is embedded in Rn

in a partially discrete manner, e.g. as indexed subsets of lower-dimensional spaces. Consider,
for example, a three-stop elevator running from the basement to the top (first) floor of some
building. This will have both continuous parameters, such as the reading from the position
sensor, and discrete parameters, such as the reading from the engine sensor, with only three
possible values “going up”, “stopped”, and “going down”. Some of the parameters, such as
the reading from the weight sensor, are seemingly continuous but e↵ectively quantized to two
discrete values, “above safety limit” or “below safety limit”. In such cases, we may want to
select canonical representatives ~pi from Pi. (Other input values, pertaining to the state of call
buttons at each floor and inside the cab, to accelerometer readings, or to sensors for AC power
quality could be added, but we don’t aim at realistic details here.)

As long as the parameters can be isolated from one another we can view P as being the
direct product of smaller parameter spaces Pi, some Euclidean, some discrete. Isolating the
parameters is easy enough for elevators with di↵erent sensors, but not at all trivial in pattern
recognition tasks where the individual coordinates, such as spectral peaks in ASR, can show
all kinds of interdependence. There is notable uncertainty how we wish to embed the discrete
spaces in R, for example two-valued parameters are often encoded as 0 or 1, but often as �1 or
+1, and there is no easy way to select a canonical embedding. In many applications, n-valued
parameters are encoded as 0, . . . , n�1, in others as 1, . . . , n, in yet others as 0, 1/(n�1), 2/(n�
1), . . . , 1. Let us first consider a family M of P ! P mappings with the goal of replacing one
conventional encoding by another. As the examples show, such mappings are typically taken
from continuous/di↵erentiable families, but are not necessarily linear.

Definition 2.1 An EA  is the homeomorphic image of � under a mapping m 2 M i↵ for any
sequence of inputs ~v1, . . . ,~vn we have  (m(~v1), . . .m(~vn)) = m(�(~v1, . . . ,~vn)).

Here we assume that both � and  are started from the same unique initial state (if we permit
several initial states the definition needs to be complicated accordingly) and that equality means
equality of result state. This is meaningful, since m naturally maps not just inputs on inputs,
but also EA states (subsets of parameter vectors) on one another. We will say � and  are
isomorphic if they are homomorphic images of each other under some m and m�1.

Definition 2.2 The skeleton of an EA � is a standard (Mealy) FSA whose alphabet corresponds
to canonical representatives from each Boolean atom of P .

In the deterministic case, this is also a Moore automaton, as there is a one-to-one correspondence
between input letters and automaton states. As is clear from Definition 1.1, the sequential
behavior of EA is relatively simple in this case, since the result state depends only on the input,
and not on the previous state. In the nondeterministic case (which is the more interesting case
as per Observation 1.1) we may not be able to select distinct canonical representatives for each
state Pi, or even for the set of Boolean atoms formed by the Pi. Here skeleta must be replaced
by what we will call subjective EA, unique only up to canonical isomorphism, but sacrificing
the one-to-one correspondence between state set and input set.
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Besides the well understood serial and parallel modes of composition (see 3.2 for examples),
EA admit a further possibility. This can already be illustrated in the simplest case of a mixed
parameter space, where Pc, the continuous part of the parameter space, is just R, and Pd, the
discrete part, is just a binary choice >,?. We may think of an EA � over P = Pc⇥Pd as being
composed of two simpler EA �> and �? by means of a real parameter p that influences whether
the �> or the �? behavior dominates. Importantly, the parameter that does the influencing
may just be the input parameter, providing a crude form of memory, as in Example 3 of [8].

3 Relating EA to Other Computational Mechanisms

3.1 Artificial neural nets In classification tasks our interest is with the inverse images Ci

of the possible outputs i. As our example in Fig. 1 shows, EA o↵er a method for directly
encoding the information concerning the shape of the Ci where it belongs, in Rn, where n is
the dimension of the input parameter vector, rather than in Rm⇥m, the matrix of connection
strengths. As is well known, in pattern recognition a great deal depends on the preprocessing
of the signal, and using EA can make this dependence explicit. For example, consider the “two
circles” data set presented in [10] reproduced here as Fig. 2: while it is evident that no linear
separator (simple NN) exists, transforming the data to a system of polar coordinates around
the center of gravity of the datapoints would make the task trivial. In ASR, we routinely apply
a far more elaborate sequence of data transformation steps (power cepstra [1], mel warping [3],
and delta cepstra [6]) to make the data manageable. Altogether, the use of EA is expected to
bring new insights, especially for the increasingly popular but not yet well understood “deep
learning” neural net architectures such as LSTM [7].

Figure 2: “Two circles” data from Ng (2001)
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3.2 Electronics For many applications it makes sense to define the initial state as a parameter
region P0 that has no overlap with the other states of the automaton (even for EA not otherwise
deterministic), since this will guarantee that we can reset the EA to the initial state by making
sure that there are outbound transitions from every Pi. If we have another region we can reset
to, we obtain an EA corresponding to the classical flip-flop (or latch) circuit. As discussed
in [8], we can also obtain classical circuits with hysteresis, such as a Schmitt trigger [13]. By
creating EA corresponding to elementary building blocks such as transistors, all forms of logic
circuitry operating on continuous variables such as voltages could be recast as networks of
EEMs. Modeling of transient behavior is not facilitated by the framework.

As is standard in logic design, digital circuitry can be conceptualized as series-parallel composi-
tion of standard FSTs, either with output string length limited to 1 (otherwise issues of timing
and synchrony become paramount) or with clock signals added in. For semi-analog circuitry,
where the outputs of each buiding block can be characterized as constant values (or values
with very little variation) the same series-parallel conceptualization is available with Eucldean
transducers (ETs), as long as we take the outputs of the upstream ETs to be the canonical
representatives of the inputs of the downstream ETs. This means that in principle all physical
models of digital computation, realized by discrete electronics as they are in current comput-
ers, are within scope of the EA/ET/EEM model as defined in D1.1-3. These are theoretical
models, unlikely to gain much traction in circuit design, where transitional behavior and syn-
chrony are highly relevant, but the connection makes clear that EA don’t su↵er from the kind
of realizability problems that plague many theoretical computing devices from quantum gates
to memristors.

3.3 WFSA, Bayes/Markov nets Here the relationship is much more tenuous, in that both
weighted FSA (WFSA) and Bayesian nets take discrete inputs (in the Bayesian case just 0-1,
for WFSA strings from an arbitrary finite alphabet) and produce continuous values on output,
not the other way round as in EA. In the case of WFSA and WFST, there is no way to
pass the weights to later automata, so in investigating how automata can influence each other
we are restricted to communication by means of strings from a discrete alphabet. While the
di�culties are not insurmounatble (after all, we can always encode good approximations of
continuous values in discrete strings) the system is highly unnatural, requiring a great deal of
decoding and re-encoding to express any simple arithmetical relation such as the activation of
a node being determined by the sum of the inbound activation levels.

Bayesian/Markov nets o↵er a highly coherent way of thinking about probabilistic influences, but
here the technical di�culties are even worse. There is nothing to say, at least in principle, that
the random variables at the nodes couldn’t be continuous, but to compute the marginal density
of a child node we have to integrate out all the parents. Really the only parametric family that
makes sense in this setting is (multivariate) normal [9], which excludes many systems of great
interest to which we now turn.

3.4 Big Mechanism Following the success of Big Data, DARPA has started a search towards
a Big Mechanism that is capable of modeling cancer signaling pathways, the brain, climate, the
economy, and other large interconnected systems, focusing initial attention on cancer signaling
pathways. Acquiring the data from medical journals and databases, requiring both considerable
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standardization of terminology and sophisticated natural language processing (NLP) capabili-
ties, are seen as part of the task of developing Big Mechanisms, which are “large, explanatory
models of complicated systems in which interactions have important causal e↵ects” [2]. In the
graphical language standard for systems biology [11], which notes the functional analogy with
electronic circuit diagrams and algorithm block diagrams, we see both discrete, FSA-like ele-
ments such as a channel being open or closed, a muscle being tense or relaxed, and continuous,
additive elements such as the level of various chemicals. Eilenberg Machines [4] were developed,
for the discrete case, with block diagrams in mind, and EEM provide the kind of continuous
generalization that makes e.g. stoichiometry possible to be modeled.
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Abstract
Main result: Two dissections rotations “top down” schemes are constructed transforming (in
stages) a context-free grammar (CFG) G, provided:

1. If G is non-expansive (NE), then G is transformed to a bounded-size vector of linear
grammars (G(1), . . . , G(k)). Membership/parsing (for a terminal string w) is reduced to
that of G(i), using rotation-extended CYK tables for the linear grammar G(i). The overall
complexity is O(n2), where n is the length of w.

2. If ambiguity-deg(G) = l < 1, then G is transformed to a bounded-size union of deg 1-
grammars. This provides a positive answer to a question Sam Eilenberg posed 1970.
“Bounded size” means polynomial in |G|, the size of the grammar G, or |G| and l.

The key operation driving those schemes is Top Trunk Rotation (TTR) of a product of two
grammars, which also rotates derivation trees in a 1-1 onto manner, and induces a cyclic
rotation on the derived strings.

1 Introduction

In formal language theory, some subtle transformations on grammars (e.g. to normal forms)
may destroy essential structural properties. The scheme presented in Section 3, for non-
expansive context tree grammars, preserves derivation trees, and enables their quicker discov-
ery (i.e. parsing). Solutions of the associated algebraic system are also preserved (see Remark
1, Section 5). Section 4 describes a scheme for decomposing grammars with bounded degree of
ambiguity.
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2 Context-Free Grammars (CFG) - Basics

A context-free grammar G = (V, T, P, S = root) is a well-known model to derive/generate a set
of terminal strings in T ⇤. G defines a derivation relation between strings over V [ T :

One step x ! y : y is obtained from x by rewriting a single occurrence of some A by B1 . . . Bk

if A ! B1 . . . Bk is production rule in P .

Several steps x
?! y if x ! x1 · · · ! y.

Let LA(G) = {w 2 T ⇤ | A ?! w}. Then L(G) = LS(G), the language generated by G.

A derivation is best described by a labeled tree in which the k sons of a node labeled A are
labeled B1, . . . , Bk if A ! B1 . . . Bk is production rule in P .

The ambiguity degree of (A
?! w) is the number of distinct trees for A

?! w; we write
deg(A

?! w).

deg(GA) = maxw2T ⇤deg(A
?! w).

A
?! �B� defines a partial order on V [ T , denoted A > B. it induces a complete order on

any branch of a derivation tree.

B in G is pumping if B > B0 > B. Then B0 is also pumping; both belong to the pumping
equivalence class [B].

Normal form. For most purposes one can assume G is reduced, i.e. superfluous symbols and
productions are removed, and the remaining productions are binary or unary. In addition, we
call a production B ! ↵ EXIT rule if B is pumping and ↵ does not contain symbols of [B].
Then replace each EXIT rule B ! ↵ by B ! B^ and B^ ! ↵, B^ is a new symbol.

Thus B^ takes over the non-pumping role of the symbols in [B]. This entails a clear-cut
classification of each symbol in V as

(i) B pumping,

(ii) C pre-terminal if NOT [C > B, B pumping],

(iii) D spread if D is not pumping but D > B, B pumping.

Lemma 2.1 (Spread).

1. A pre-terminal C derives a bounded number of bounded terminal strings.

2. In each derivation tree a spread node D derives a bounded sub-tree the leaves of which are
terminals or pump nodes.

3. In G, each spread symbol D derives a bounded number of sub-trees as mentioned in (2).
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This lemma is proved by simple enumerations, since the branches in those sub-trees are shorter
than |V |.

Definition 2.2. G is called non-expansive (NE) if no production rule has the form B !
�B0�B00� where the B’s are from the same pumping class (NE is the class quasi-rational in
[1]). Equivalently, no derivation B? ! �B � B� is possible (sideway pumping is forbidden!).

Definition 2.3. E-depth of a node D is the maximal size of a strictly decreasing chain with
respect to the > order along a branch from D to terminals.

Lemma 2.4 (Top Trunk). If G is non-expansive and B is a pump root in a sub-tree then
symbols of [B] appear only on the top trunk of the branch going down from B to a uniquely
determined EXIT B^. For this B^ and for all other side-symbols of the sub-tree the E-depth
decreases.

3 Bounded Operation Tree for a NE Grammar G

The bounded operation tree [BOT] has nodes of degree 1 (with a single child) labeled CYC or
TTR, and nodes of degree � 1 labeled SPR. At each node, the current grammar is a product
⇧ of factors, which are grammars or terminals. The operation at the node acts on the right
end (as described below) or the left hand in a similar fashion (see TERMINATION below).

1. If ⇧ = N(1) . . . N(k)v, where v is a bounded terminal string and N(k) has a pumping
root, then the operation CYC rotates ⇧ to vN(1) . . . N(k) at the child node.

2. If v is empty and N(k) has a pump root, then the operation is TTR as described in
Definition 3.1 below, acting on M = N(1) . . . N(k � 1), N = N(k). The grammar at the
child node becomes M⇤N^.

3. If (after TTR at the father node) the root of N^ is a spread symbol of G, the operation is
SPR: by the SPREAD Lemma 2.1, this root derives [j2J⇧(j). This spread node then will
have |J | children and the current grammar at the child number j is the product M⇤⇧(j).

The grammar at the root of BOT is #G,# is a special marker which does not appear elsewhere
in G, assuring that no proper cyclic rotation of terminal strings w = #v can have a derivation
tree of G.

Definition 3.1. The operation TTR transforms the product MN into M⇤N^. It takes the top
trunk (see Lemma 2.4) of N which is labeled by symbols of the pumping class [B], rotates it by
180� and mounts it as top trunk on M , which becomes now M⇤, while N^ is the subgrammar
of N below the removed top trunk.

TTR on the grammars, assuming that the productions are binary, is:

B ! B0C in N goes to B0 ! CB in M⇤,

B ! DB0 in N goes to B0 ! BD in M⇤.
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All other productions not including symbols of the main trunk, in particular those of N^ and
M , do not change.

TTR induces a cyclic relation on the derived strings (by MN and M⇤N^):

w = x1x2 . . . n
^ . . . y2y1m is rotated to . . . y2y1mx1x2 . . . n

^ = ⇢w.

In particular, M and N^ switch places.

Bounded Termination for BOT

The operation at the child of a CYC node must be TTR, after which it is TTR again or SPR
and after SPR the children are labeled TTR or CYC followed by TTR. Thus, TTR repeats
after three steps at most. Now, TTR decreases the E-depth (see Definition 2.3) for N^ and for
the left and right factors hanging on both sides of the main trunk of M? (which was mounted
from N after rotation by 180 degrees). These side factors will be operated upon later, from the
left or right side respectively, and finally the bottom N^ will be operated upon. Clearly this
entail bounded termination. Moreover, the “top towers” of the M? factors, which get another
floor in TTR, grow taller and thinner until they become linear grammars at the leaves of the
BOT tree.

Correctness for BOT (for enhancing the membership/parsing of L(G))

Following the branches from the root of BOT with grammar #G to the leaves of BOT with
linear grammars, we claim: any derivation tree � for w = #v is transformed along a branch of
BOT to a tree �0 of grammar G0 at some leaf and V.V., each such tree �0 at a leaf comes from
a tree � for w at the root of BOT. Indeed following the operation on the branch step by step,
SPR distributes a union grammar, hence all possible trees, among its children. The operation
TTR rotates the grammar, the trees and the derived strings, in a one to one invertible fashion.
In the CYC operation, the grammar and trees are just copied to the child node since we use:

Definition 3.2. A ⇢-derivation tree for w is any usual derivation for some rotation ⇢w. This
entails no loss of generality since the special marker # assures that at the root of BOT no
non-trivial rotation has a derivation tree.

For the membership testing: we construct rotation-extended CYK tables at all (bounded in
number) leaves of BOT in time O(n2) since the grammars at the leaves are linear. There is a
tree for #w at the root if and only if there is one at some leaf node, and we can extract an
explicit parse tree. In fact, all trees are implicit at the CYK tables but explicitly listing them
will require cubic time. Even a single linear grammar can have O(n) distinct trees for the same
w (as in the example given below).

Example 3.3. (taken from [4]) MN = uIuRvRJv, u, v 2 {0.1}⇤ = I = JuR = reversal of u.
It has unbounded “direct (product) ambiguity” which increases the time in CYK algorithm.
But after one TTR step MN is rotated to
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M⇤N^ = vuIuRvRJ,

which has a linear grammar. All product ambiguity trees are rotated to union trees for
M⇤N^.

4 Decomposing Bounded Ambiguity

We briefly sketch the scheme for result (2) in the abstract. Starting with #G, and using the
SPREAD Lemma 2.1, the claim is reduced to:

Lemma 4.1. Let ⇧ = MN(1) . . . N(k), deg(M) = 1, deg(⇧) = l < 1, N(i) are terminals or
with pump roots, then there exists a bounded J such that

L(M) = [j2JL(M(j)) with deg(M(j)) = 1 for all j 2 J . (4.1)

It su�ces to prove it for a pair, starting with MN(1), after which M(j)N(2) are decomposed
and so on. For a pairMN the operation TTR is used transforming it toM⇤N^. Now deg(M⇤) 
l and its ambiguity must be concentrated along the top trunk which it got from N . An easy
direct argument shows it decomposes into a bounded union of M(j) of degree 1. As for N^ its
E-depth is smaller than that of N , for M(j)N^ we can use induction on the E-depth of the
second factor or, more explicitly, continue the recursive descent on N^ until it is consumed.

5 Concluding Remarks

1. The BOT scheme for non-expansive G is analogous to producing characteristic vectors of
a matrix transformation. Indeed, BOT preserves derivation trees of G and reveals them
more e�ciently. Moreover, it is easy to show similar preservation for solutions of the
algebraic equation systems associated with a CF grammar. Hence, as for the linear case,
non-expansive systems have a unique solution. Also, proving that languages are inherently
expansive (e.g. Dyck languages) is simplified.

2. The concept of “hardest context free grammar” is due to Greibach (see [3]). The
simplest one is based on Shamir’s homomorphism theorem (see [1]), mapping each b in T
into a finite set �(b) of strings over the vocabulary of the Dyck language and claiming that
w is in L(G) if and only if �(w) contains a string in the Dyck language (see the description
in [1]).

In fact, the categorical grammar model in the 1960 article (see [2]) provides another ho-
momorphism which makes it a hardest CFG.

However, those hardest CFG languages are inherently expansive. Indeed, an NE candidate
grammar for Dyck will be negated by its BOT scheme, upon using local pump-shrinks,
which for linear grammars can operate near any point of the (su�ciently long)
main branch of non-terminals.
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We conjecture that any hardest CFG must be expansive. Note that finding a non-expansive
one would entail O(n2) complexity of membership test for any context-free grammar.

3. Ambiguity in natural languages can be resolved (or created) by cyclic rotation. Consider
the Biblical verse in book of Job chapter 6 verse 14 (six Hebrew words). Translated to
English: “a friend should extend # mercy to a su↵erer $, even if he abandons God’s fear.”

The ambiguity here is anaphoric, does the pronoun “he” refer to the su↵erer or to the
friend? The poetic beautiful answer is: to both. The rotated sentences, starting at the
symbols # and $, resolve the ambiguity towards one way or the other.

Another famous example: Tom saw # Eve $ with the telescope.
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Abstract
In game development, procedural content generation (PCG) is an important area of research

that aims at generating content algorithmically rather than manually. This paper shows the

successful application of a probabilistic grammar in order to procedurally generate a game

environment at run-time. The proposed approach helps saving memory, reduces development

e↵ort and increases longevity.

1 Introduction

In the context of game development, procedural content generation (PCG) is an increasingly
important area of research that aims at generating content algorithmically rather than man-
ually. Traditionally, games are characterized by static content which are precomputed during
development. For example, levels are fixed, non-player characters move along predefined paths,
objects can be found often in the same places. This has some disadvantages: from the point
of view of developers, the e↵ort required during development is time-consuming; on the other
hand, from the point of view of players, longevity may be a↵ected. The goal of PCG techniques
is to avoid these limitations.

PCG was pioneered in the early ‘80s by the game Rogue, in which dungeons to be explored
are generated randomly. To the same period belongs Elite, a space adventure game in which
hundreds of star systems are encapsulated in few tens of kilobytes. A game that makes extensive
use of PCG is Minecraft : here, the initial state of the world is mostly random and new areas
are generated randomly whenever the player moves towards its boundaries. Recently, PCG
has been exploited in combination with a↵ective computing : the aim is to adjust content at
run-time according to the user needs and preferences recorded during the game (e.g. [3], [9]).

According to Togelius et al. [7], PCG o↵ers several benefits from three di↵erent perspectives:
memory consumption, since content can be generated only when needed; development e↵ort,
because the expense of manually creating content is alleviated; and longevity, since the same
game looks di↵erent every time it is played.
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However, the application of PCG presents some drawbacks. Since it can result in an unpre-
dictable range of possible game scenarios, there is the need to impose some constraints that
allow generating content in a correct and manageable way.

In this paper we explore the application of a probabilistic right-linear grammar [2] in order to
procedurally generate the environment of The Ball: Lost in Space

1 game. In particular, the
grammar allows for generating the path the player character has to go through and, simulta-
neously, the obstacles to avoid. We show the advantages of employing this technique in terms
of reducing development e↵ort and memory usage while increasing the longevity.

The usage of generative grammars in this field has been quite limited, mostly for generating
buildings at development-time (e.g. [8], [5]), or for creating 2D levels at run-time (e.g. [1]). A
greater contribution is provided by the so-called L-systems, for example see [6] and [4]; however,
the main di↵erence with respect to generative grammars is that rules are applied in parallel
rather than once at a time, so resulting in fractal-like structures.

2 The Game

The Ball: Lost in Space is an endless running game with a third-person perspective. Like
other endless running games, such as Temple Run, the player character has to move forward
continuously through a path and the main goal is to cover as much distance as possible before
inevitably succumbing. Controls are limited to making the character jump, and move left or
right, in order to avoid obstacles. These features makes the game suitable for mobile platforms
that typically require only a single screen tap to make an action. More precisely, the game
consists in controlling the movements of a ball that goes through a wormhole. It ends when the
ball crashes into one of the many asteroids that lie on the path or when the ball falls out in the
cosmic void. Moreover, it is worth noting that the game includes the task of collecting coins;
however, since coins are generated in a totally random way, this feature is not considered. The
game was developed with Unity 3D2.

The core algorithm of The Ball: Lost in Space (aiming at generating both the path and the
obstacles to avoid) is based on a probabilistic right-linear grammar [2]. Briefly speaking, a
generative grammar G is a quadruple (T , N , S, R), where T and N are disjoint finite sets
of symbols, called terminal and non-terminal symbols, respectively; S 2 N is a non-terminal
symbol called the start symbol ; and R is a finite set of so-called productions. A production is
a rewriting rule of the form ↵ ! �, where ↵ 2 N

+ and � 2 (N [ T )⇤. Starting from S, pro-
ductions are applied iteratively so that non-terminal symbols can be replaced by combinations
of non-terminal and terminal symbols, resulting in the generation of a well-formed sentence of
the language described by G.

According to the Chomsky hierarchy, a right-linear grammar has all productions in the form
A ! bB or A ! b, where A and B are non-terminal symbols and b is a terminal symbol.

1
http://www.theball.it/

2
https://unity3d.com/
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A right-linear grammar becomes probabilistic by equipping each production with a certain
probability of occurring. Obviously, the sum of the probabilities of all the productions with the
same non-terminal symbol on the left-hand side must evaluate to 1. The main di↵erence with
respect to non-determinism is that in the latter it is deliberately decided to not specify how a
certain choice is made.

Using grammars for generating a game environment requires that terminal symbols refer to
elements to be drawn on the screen. In our case, terminal symbols refer to the 3D fragments of
the wormhole and the asteroids. They are composed in order to generate at run-time a complex
and each time di↵erent path along which the ball can move. Table 1 shows the correspondence
between terminal symbols and the objects to be composed. Note that we have an overall number
of thirteen di↵erent types of fragments plus one type of asteroid. In Fig. 1 three examples of
path fragments are shown. The others are quite similar; they mostly di↵er from the point of
view of the inclination.

Symbols Meanings

a, b, c, d, e Five types of plan
f , g, h, i Four types of hump
l, m, n, o Four types of bump

z Obstacle

Table 1:: Terminal symbols of the grammar

(a) A plan (b) A hump (c) A bump

Figure 1:: Three examples of path fragments

The grammar allows us to manage the pure randomness of the path generation, which would be
ungovernable, by applying some constraints that we have established a priori. The constraints
can be simply inferred from the rules of the grammar: they allow us to generate paths not too
dissimilar from city streets. In particular, they prevent the generation of “unwanted” shapes; for
example, steep uphills immediately followed by steep downhills, or steep slopes that suddenly
become straight stretches.

Given the 3D models and the constraints for composing them, we can now formalize the gram-
mar as follows: G = (T , N , S, P ), with T = {a, b, c, d, e, f , g, h, i, l, m, n, o, z}, N = {A,
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B, C, D, E, F, G, H, I, L, M, N, O, Z, S}, and productions and production probabilities in
parentheses:

S ! aA
A ! aA (0.65) | nN (0.05) | lL (0.05) | gG (0.05) | iI (0.05) | zZ (0.15)
B ! bB (0.75) | fF (0.25)
C ! cC (0.75) | hH (0.25)
D ! dD (0.75) | mM (0.25)
E ! eE (0.75) | oO (0.25)
F ! aA (0.7) | iI (0.2) | zZ (0.1)
G ! dD (0.7) | mM (0.3)
H ! aA (0.65) | gG (0.05) | iI (0.05) | lL (0.05) | nN (0.05) | zZ (0.15)
I ! eE (0.7) | oO (0.3)
L ! bB (0.7) | fF (0.3)
M ! aA (0.7) | gG (0.07) | iI (0.08) | zZ (0.15)
N ! hH (0.7) | cC (0.3)
O ! aA (0.7) | gG (0.07) | iI (0.08) | zZ (0.15)
Z ! aA.

Note that the terminal symbol z formalizes the positioning of an obstacle on the last generated
path fragment. For instance, the substring aza is translated on the screen in a short straight,
where is placed an obstacle, followed by another short straight. Moreover, in order to generate
a theoretically infinite path, it is worth noting that rules get stuck in an infinite loop. At any
moment, only n = 100 path fragments are stored in memory, and whenever the ball reaches the�
n
2 + 1

�
-th fragment, the previous n

2 fragments are removed from memory, and n
2 new fragments

are generated.

For what concerns probabilities, it is evident that we preferred flatter paths. In fact, during
tests, we realized that assuming equiprobable rules causes the generation of too fluctuating
paths, such that the gameplay is negatively a↵ected.

Finally, as regards the amount of obstacles, we opted for an average of ten obstacles each one
hundred path fragments, such that the game di�culty can be considered medium.

3 Discussion

Using the classification proposed by Togelius et al. [7], our approach can be defined as: on-line,
because content generation is performed at run-time; necessary, because content is required by
the player to make progress; parametric, because generation is managed by some constraints;
stochastic, since the variation in the outcome between di↵erent runs is totally random; con-
structive, because content is generated and outputted at once without being tested.

Therefore, the proposed approach provides advantages from three di↵erent points of views.
First of all, from the point of view of the usage of memory, it is worth noting that the path
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is generated only when needed. Moreover, since only 100 path fragments are stored at any
moment, the path does not need to be kept in memory in all its length from the starting of
the execution. Secondly, development e↵ort is reduced: few constraints allow to obtain an
incredible number of di↵erent combinations in an automatic way. This means that human
imagination is augmented and also the e↵ort of composing the fragments together is alleviated.
Finally, longevity is increased: since the output is totally random, the player cannot memorize
either the path or the positioning of the obstacles. So, he cannot get bored easily.

Grammars are well suited when the content generation requires the composition of few and no
complex elements in order to obtain more articulated structures. However, in cases where the
elements to be composed are more complex we recognize the di�culty to manage constraints
and, so, production rules and their probabilities. Nevertheless, we think probabilistic grammars
represent an excellent tool for developing mobile games; in fact, in such a context of use, players
typically prefer simple and every time di↵erent games.

4 Conclusions

In this paper we have presented The Ball: Lost in Space: an endless running game whose
core algorithm is based on a probabilistic right-linear grammar. The grammar allows the
algorithmic generation of the environment of the game on the basis of few constraints. The
proposed approach helps saving memory, reduces development e↵ort and increases longevity.
These features makes it suitable for mobile game development.

An interesting future development of our work could be to explore our grammar in combination
with a↵ective computing techniques. In this way, it could be possible to monitor players’
emotional states and adjust the path generation at run-time. For example, if the player is
bored, the algorithm could make the path more tortuous; vice versa, if the player is nervous,
the algorithm could make the path more flat.
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Abstract
Restarting automata have been introduced to model the linguistic technique of analysis by re-

duction, which is used for checking the correctness or incorrectness of a sentence of a natural

language. In order to study quantitative aspects of restarting automata, we introduce the concept

of a weighted restarting automaton. In this work, we describe the weighted restarting automaton

in detail, present some examples, state a few preliminary results, and give some hints on future

research.

1 Introduction

Analysis by reduction [15] is a linguistic technique used to verify the correctness of sentences
of natural languages by a stepwise simplification. During the process of simplifying a given
sentence, each step preserves the correctness or incorrectness of the sentence. After a finite
number of steps, either we obtain a correct simple sentence, or an error is found. Furthermore,
by such a simplification we can also analyze the structure of the sentence and gain some deeper
information on dependencies and independencies between certain parts of the sentence.

The restarting automaton [6] was invented by Jancǎr et al. in 1995 as a useful tool for modeling
analysis by reduction. As defined in [9] a restarting automaton consists of a finite control, a
read/write window and a flexible tape. Initially, the tape contains a string as the input as well as
border markers. When reading the input, the window moves along the tape performing various
operations. During a Rewrite operation, some symbols from the content of the read/write
window are deleted or replaced by a shorter string. After performing a Restart operation, the
automaton places its window to the left end of the tape and re-enters the initial state, so that a
new restarting configuration is reached. Such a phase that starts in a restarting configuration
and ends with a restart operation is called a cycle. During any cycle, the automaton performs
exactly one Rewrite operation, therefore each cycle starts on a shorter string than the previous
one.

In recent years restarting automata gained much attention and many variants of them were
developed. For example, by adding some restrictions on the Rewrite operation, we can obtain
some various types of restarting automata, including RRWW-automata, RRW-automata and
RR-automata (see [7] and [8]). RRWW-automata can use auxiliary symbols in the Rewrite



38 Qichao Wang

operation, but RRW-automata cannot. RR-automata can only remove some symbols from the
content of the read/write window in the Rewrite operation. In other words, RRW-automata
and RR-automata have more restrictions on the Rewrite operation than RRWW-automata. In
fact, we can also obtain many other types of restarting automata, e.g. by changing the size
of read/write window [11] or by restricting the position of performing the Rewrite operation
in each cycle [7]. Besides these, even some systems containing a finite collection of restarting
automata that work together and communicate with each other in order to analyze a common
sentence were introduced in [10] and [13]. A recent overview on restarting automata was given
in [12].

Just as typical finite automata, also restarting automata accept or reject their input. There-
fore, such a computing can be seen as a Boolean function. In 1960s, Schützenberger introduced
weighted automata [14], which assign a numerical value as the weight to each transition. These
weights can model the cost involved when executing a transition such as the needed resources
or time, or the probability or reliability of its successful execution. For example, by using the
weights, we can determine the number of ways that a word can be accepted by a finite au-
tomaton. After the introduction of weighted automata, they have been widely applied in many
areas like natural-language processing, speech recognition, optimization of energy consumption
and probabilistic systems. Additionally, their applications can also be found in digital image
compression and model checking. Droste et al. systematically decribe weighted automata and
their properties in [4], and obtained many new results on them, e.g. [1], [3] and [2]. Analogously,
we introduce weighted restarting automata in order to study quantitative aspects of restarting
automata, e.g. the minimal number of cycles in an accepting computation on an input. In the
forthcoming sections, we will describe them in detail.

2 Definitions and Examples

A weighted restarting automaton is described by a couple (M,!), where M is a restarting
automaton on some input alphabet ⌃ and ! is a weight function that assigns a weight from
some semiring S to each transition ofM. A computation on an input consists of a finite number
of transitions, and each transition is induced by an instruction of the transition function. The
weight of a computation p is defined by

weight(p) =
Y

1in�1

!(r(ci, ci+1)),

where r(ci, ci+1) is the instruction used for the transition from the configuration ci to the
configuration ci+1. The weight of a computation is essentially an element from the semiring S.

For an input, there may be several accepting computations. By summing the weights of all
accepting computations, we obtain the following function:
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fM
! (w) =

X

p2P

weight(p),

where P is the set of accepting computations of M on the input w. Since the number of
accepting computations is finite, this sum is also finite. Additionally, the value of this function
is an element from the semiring S. Hence, a weighted restarting automaton induces a functions
from some input alphabet into a semiring. We describe the function shown above as the behavior
of a weighted restarting automaton. By using di↵erent semirings and weight functions, we can
study various quantative aspects of a restarting automaton.

However, as mentioned above, there are various types of restarting automata. For di↵erent
types of restarting automata, the induced functions may also be di↵erent. Thus, for a type t
of restarting automata, we define the class of representable functions as follows:

F t
⌃,S = {f : ⌃⇤ ! S | 9 a restarting automaton M of type t over ⌃ and a weight

function ! with f = fM
! }.

In the following we will show some examples. The first two examples are the starting point
of weighted finite automata and shown in many works on them. The third example involves a
special quantitative aspect of restarting automata.

Example 2.1. For the semiring S = (N,+, ·, 0, 1), if !(r) = 1 for all r 2 �, then the product
of the weight of all used transitions in a computation is 1, which is exactly the weight of this
computation. By adding the weight of all accepting computations, we can count the number
of accepting computations on an input.

Example 2.2. For the semiring S = (N,min,+,1, 0), if !(r) = 1 for all r 2 �, then the weight
of a computation is the sum of the weight of all used transitions in this computation, which is
the number of steps in this computation. By using the min operation, we can determine the
minimal number of steps in an accepting computation on an input.

Example 2.3. Similarly, for the semiring S = (N,min,+,1, 0), if !(r) = 1 for r 2 � involving
the Restart operation and !(r) = 0 otherwise, then we can determine the minimal number of
cycles in an accepting computation on an input, because after performing a Restart operation
the automaton enters a new cycle.

3 Results

In this section, we will present some preliminary results on the properties of weighted restarting
automata. As mentioned above, each weighted restarting automaton represents a function from
some input alphabet into a semiring. For some linearly ordered semirings, e.g. the semiring of
natural numbers with addition and multiplication, there is a maximal element. Given a linearly
ordered semiring S, a restarting automaton M and a weight function !, we define the function
f̂M
! : N ! S as follows:
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f̂M
! (n) = max{ fM

! (w) | w 2 ⌃n }.

First, we found that the functions f̂M
! can represent any polynomial without auxiliary symbol.

Theorem 3.1. Any polynomial can be represented by the functions f̂M
! : N ! S, where M is

of type RRW .

For a linearly odered semring, another interesting question is what is the upper bound of the
functions f̂M

! . We obtained the next theorem.

Theorem 3.2. For the semiring S = (N,+, ·, 0, 1), the functions f̂M
! : N ! S are bounded by

2O(n2)
.

Additionally, we successfully showed that the upper bound given above is sharp. This means
that this upper bound can be reached by some functions.

Theorem 3.3. The upper bound 2O(n2)
is sharp for the functions f̂M

! : N ! S with S =
(N,+, ·, 0, 1).

Now we turn to the closure properties. We mainly studied the closure properties of the func-
tions from FRRWW

⌃,S . Until now, we considered three semirings, including Boolen semiring, the
semiring of natural numbers with addition and multiplication, and tropical semiring. But we
guess that this result holds for all semirings. As shown in Table 1, the functions from FRRWW

⌃,S

are closed under pointwise addition, Cauchy product, and scalar multiplication. But it is still
open, if they are also closed under pointwise multiplication.

4 Future Work

There are many open problems on weighted restarting automata. Firstly, as mentioned above,
we considered only three semirings. It is still unknown whether the functions from FRRWW

⌃,S are
closed also for other semirings under those operations.

Another question is whether the restrictions on the Rewrite operation influence the class of
representable functions. For example, as introduced above, RRW-automata and RR-automata
have more restrictions on the Rewrite operations than RRWW-automata. However, until now,
we do not know whether RRWW-automata can represent more functions than RRW-automata
and RR-automata. In other words, it remains the question of whether the inclusions FRR

⌃,S ✓
FRRW
⌃,S ✓ FRRWW

⌃,S are proper.

Additionally, by using the semiring of formal languages over � (i.e. (P(�⇤),[, ·,?, {"})), the
weight of a computation is essentially a language over �, and summing the weight of all accpet-
ing computations yields a further language. Now the question arises, which languages can be
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B N T
Pointwise Addition

p p p

Pointwise Multiplication ? ? ?
Cauchy Product

p p p

Scalar Multiplication
p p p

Table 1: The closure properties of the functions from FRRWW
⌃,S . B denotes Boolean semiring

({1, 0},_,^, 0, 1). N denotes the semiring of natural numbers (N,+, ·, 0, 1). T denotes tropical semiring
(N,min,+,1, 0).

expressed by the functions fM
! : ⌃⇤ ! S. Restarting transducer [5] introduced by Hundeshagen

and Otto is a model for computing a binary word relation between the input and output. A
restarting transducer works similarly as a restarting automaton. The di↵erence is only that
a restarting transducer outputs a word over an output alphabet after performing a Restart
operation, and there is no output for other operations. Therefore, the restarting transducer is
a special case for the weighted restarting automaton with the semiring (P(�⇤),[, ·,?, {"}).

In future, we will continue studying these problems.
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[1] M. DROSTE, S. DÜCK, Weighted Automata and Logics for Infinite Nested Words. In: LATA.
2014, 323–334.
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