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Preface

The Eighth Workshop on Non-Classical Models of Automata and Applications (NCMA 2016)

has been organized to provide an opportunity for researchers who work on di↵erent aspects of
non-classical and classical models of automata and grammars to exchange and develop novel
ideas. Many non-classical models of automata and grammar-like structures are the natural
objects of theoretical computer science. They are studied from di↵erent points of view in
various areas, both as theoretical concepts and as formal models for applications. The purpose
of the NCMA workshop series is to promote a deeper and interdisciplinary coverage of this
particular area and in this way to foster new insights and substantial progress in computer
science as a whole.

The first workshop on Non-Classical Models of Automata and Applications, NCMA 2009, was
held in Wroclaw, Poland, in 2009 as a satellite event of the 17th International Symposium
on Fundamentals of Computation Theory (FCT 2009). It was sponsored by the AutoMathA
project of the European Science Foundation (ESF). The second workshop, NCMA 2010, was
held in Jena, Germany, as an associated workshop of the 11th International Conference on
Membrane Computing (CMC 11); the third workshop, NCMA 2011, was organized at the Uni-
versity of Milan, Italy, in close proximity to the 15th Conference on Developments in Language
Theory (DLT 2011). In contrast to the previous workshops, the next NCMA workshops were
organized as stand-alone events; NCMA 2012 was held in Fribourg, Switzerland, in August
2012, NCMA 2013 took place in Ume̊a, Sweden, in August 2013, NCMA 2014 was held in
Kassel, Germany, in July 2014, and NCMA 2015 took place in Porto, Portugal, August 31st –
September 1st, 2015.

Now the Eighth Workshop on Non-Classical Models of Automata and Applications (NCMA
2016) is held in Debrecen, Hungary, in the period of August 29th – 30th, 2016. It is organized by
the Department of Computer Science of the Faculty of Informatics at the University of Debrecen.
We expect NCMA 2016 to be again a scientifically valuable event with interesting presentations,
exciting results, and stimulating discussions. We hope that the friendly atmosphere and the
nice surroundings will also help to make this workshop a worthwhile event that will lead to new
insights and possibly new cooperations.
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In addition to the four invited talks and the 15 regular contributions, NCMA 2016 also features
seven short presentations to emphasize its workshop character, each of them also having been
evaluated by at least two members of the program committee. The extended abstracts of these
short presentations are contained in this volume.

We are grateful to the Department of Computer Science and the Faculty of Informatics of the
University of Debrecen for the local organization and for the financial support of NCMA 2016,
and we would also like to thank the Institute of Computer Languages of the TU Wien for
covering the production costs of the proceedings and this collection of short papers.

August 2016

Rudolf Freund, Wien

Henning Bordihn, Potsdam

Benedek Nagy, Debrecen and Famagusta

György Vaszil, Debrecen
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ON REGULAR LANGUAGES ACCEPTED
BY ONE-WAY JUMPING FINITE

AUTOMATA

Szilárd Zsolt Fazekas Akihiro Yamamura

Graduate School of Engineering Science
Department of Mathematical Science and Electrical-Electronic-Computer Engineering

Akita University
1-1 Tegata Gakuen-machi, Akita 010-8502, Japan
{szilard.fazekas,yamamura}@ie.akita-u.ac.jp

Abstract
The recently introduced one-way jumping finite automata (OWJFA) model processes the input
in a determnistic but non-contiguous manner, by making jumps whenever the current state has
no defined transitions for the upcoming input letter and continuing from the start upon reaching
the end. The class of languages accepted by (right-)OWJFA is a strict superset of the class of
regular languages. In this paper we explore su�cient conditions for the accepted language to be
regular by analyzing the number of times the automaton jumps over a position.

1. Introduction

Most classical computer science methods process information in a contiguous way. For instance,
in the case of deterministic finite automata[3], the read head starts at the beginning of the input
word, it moves in a left-to-right direction, and it reads the input symbol-by-symbol. In certain
cases, however, the processing is conceptually simpler if the letters of the input are rearranged.
Take as an easy example, checking whether a binary word has an equal number of both letters
of its alphabet. If the input were processed by always jumping to a letter di↵erent than the
last one read, then a finite state machine with the same graph as a DFA accepting {ab}⇤ could
perform the required computation. However, the language of words having the same number
of a’s and b’s is one of the textbook examples of a non-regular language.

In recent years new automata models were introduced, which diverge from the usual sequence
in which the input letters are read. Several of these models work by “processing” the input
non-contiguously, i.e., reading and deleting/marking a letter and then moving to a position
which is not necessarily the next one to the right. Restarting automata process the input by
looking at a constant sized window of it and moving the window to the beginning of the input
after a letter is read and deleted [4]. Input revolving automata are equipped with an extra
transition function, based on which in every step the remaining part of the input can be shifted
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cyclically before reading it [1]. Jumping finite automata [5] can jump over a part of the input
word after reading and deleting a symbol and continue processing from there.

To restrict the inherent non-determinism in jumping finite automata, a variant of it, the one-
way jumping finite automata has been proposed recently [2]. The moves are similar to jumping
finite automata, but with some changes leading to a deterministic behavior. The read head
moves in one direction only and starts at the beginning of the input word. It moves from left to
right (and possibly jumps over parts of the input) and upon reaching the end of the input word
it is returned to the beginning of the input, continuing the computation until all the letters are
read or the automaton is stuck in a state in which it cannot read any letter of the remaining
input. If a transition is defined for the current state and the next letter to be read, then the
automaton reads and marks the symbol as read. If not, but in the remaining input there are
letters for which a transition is defined from the current state, the read head jumps to the
nearest such letter to the right.

After briefly presenting a few definitions and an example we go on to discuss a su�cient
condition for the language accepted by a right one-way jumping finite automaton to be regular.
We conjecture that the condition is necessary, too.

An alphabet ⌃ is a finite, non-empty set and its elements are called letters. A word is a sequence
of letters and the set of all words formed by concatenating (0 or more) elements of ⌃ is ⌃⇤.
The empty word, i.e., the word containing no letters is ".

A (nondeterministic) finite automaton, a NFA for short, is a quintuple M = (Q,⌃, R, s, F ),
where Q is the finite set of states, ⌃ is the finite input alphabet, ⌃\Q = ;, R ✓ Q⇥{⌃["}⇥Q,
s 2 Q is the start state, and F ✓ Q is the set of final states. Elements of R are referred to
as rules of M and we write py ! q 2 R instead of (p, y,q) 2 R. A configuration of M is a
string in Q⇥ ⌃⇤. M is an "-free FA if py ! q 2 R implies |y| = 1. M is a deterministic finite
automaton, a DFA for short, if (1) it is an "-free FA and (2) for each p 2 Q and each a 2 ⌃,
there is no more than one q 2 Q such that pa ! q 2 R. A NFA or DFA makes a transition from
configuration pw to configuration qw0 if w = aw

0 and pa ! q 2 R, where p,q 2 Q, w,w0 2 ⌃⇤

and a 2 ⌃ [ {"}. We denote this by pw ) qw0 and the reflexive and transitive closure of the
relation ) by )⇤. A word w is accepted by a FA (or DFA) M if there exists f 2 F , such that
sw )⇤ f. Then, the language accepted by M is L(M) = {w 2 ⌃⇤ | 9f 2 F : sw )⇤ f}

The cardinality of Q, denoted by |Q|, is the number of elements of Q. We extend this notation
to words w 2 ⌃⇤, where |w| is the length of the word w, the number of all occurrences of all
letters of ⌃ in w. Further extending the notation, |w|a denotes the number of occurrences of
the letter a in w.

2. One-Way Jumping Finite Automata

A right one-way jumping finite automaton M is based on a deterministic finite automaton. The
read head of M starts at the leftmost letter of the input word and it moves rightward. M can
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jump over a part of the word after reading a symbol. If the read head of M reaches the right
end of the word, then it continues from the the left end, again.

A right one-way jumping finite automaton, ROWJFA for short, is a quintupleM = (Q,⌃, R, s, F ),
where Q, ⌃, R, s and F are defined as in a DFA. By analogy with a DFA, members of R are
referred to as rules of M and we write pa ! q 2 R instead of (p, a,q) 2 R. A configuration of
M is any string in Q⌃⇤.

The right one-way jumping relation, symbolically denoted by �, over Q⌃⇤, is defined as follows.
Suppose that x and y belong to ⌃⇤, a belongs to ⌃, p and q are states in Q and pa ! q 2 R.
Then the ROWJFA M makes a jump from the configuration pxay to the configuration qyx,
symbolically written as

pxay � qyx

if x belongs to {⌃ \ ⌃p}⇤ where ⌃p = {b 2 ⌃ | (p, b,p0) 2 R for some p0 2 Q}.

In the standard manner, we extend � to �m, where m � 0. Let �⇤ denote the transitive-
reflexive closure of �.

The language accepted by the ROWJFA M , denoted by L(M), is defined to be

L(M) = {w 2 ⌃⇤ | sw �⇤ f, f 2 F}

We say that M accepts a string w in ⌃⇤ if w belongs to L(M), and M rejects w otherwise.

Example 2.1 Let M be a ROWJFA given by

M = ({q0,q1,q2}, {a, b, c}, R,q0, {q0}),

where R consists of the rules q0a ! q1, q1b ! q2 and q2c ! q0. Starting from q0, M has
to read some a, some b and some c entering again the start (and also the final) state q0. All
these occurrences of a, b and c can appear anywhere in the input word. Therefore, the accepted
language is the non-context-free language {w 2 {a, b, c}⇤ | |w|a = |w|b = |w|c}

We denote the families of languages accepted by right one-way jumping finite automata by
ROWJ.

Through some languages commonly used for distinguishing classes of the Chomsky hierarchy
and a pumping lemma for ROWJFA, one can easily determine [2] the relations between ROWJ
and the classes of the Chomsky hierarchy, REG, CF and CS, the families of regular languages,
context-free languages and context-sensitive languages, respectively.

• REG ( ROWJ.

• CF and ROWJ are incomparable.

• ROWJ ( CS.
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Furthermore, the class ROWJ is not closed under any of the usual operations on languages,
i.e., intersection, concatenation, reversal, intersection with regular languages, concatenation
with regular languages, substitution and Kleene star or Kleene plus.

3. Regularity of ROWJ Languages

To put the su�cient regularity condition in context, let us recall first another type of automata.
In [1] the authors define input revolving automata and describe the way they work as follows
(we recall only the description of right-revolving automata here).

Definition 3.1 [1] An extended finite automaton is a 6-tuple (Q,⌃, �,�, q0, F ), where Q is the
(finite) set of states, ⌃ is the input alphabet, � and � are mappings from Q⇥ (⌃[ {�}) to 2Q,
where � is called the transition function, and � is called the input operation function, q0 2 Q

is the initial state, and F ✓ Q is the set of accepting states.

The di↵erent operations on the input are formally distinguished by di↵erent interpretations of
the mapping �. Consider configurations of extended finite automata to be tuples (q, w), where
q 2 Q is the current state, and w 2 ⌃⇤ is the yet unread part of the input. The transition of a
configuration into a successor configuration can be induced by either � or �. In the case that
both are applicable, the automaton chooses a transition nondeterministically.

• Let a be in ⌃ [ {�} and w 2 ⌃⇤. If p is in �(q, a), then (q, aw) `A (p, w).

• An input operation is performed by applying the mapping �. For a 2 ⌃ [ {�}, b 2 ⌃,
w 2 ⌃⇤, and p 2 �(q, a), a right-revolving transition is defined by (q, aw) `A (p, wa), if
a 2 ⌃, and (q, bw) `A (p, wb) and (q,�) `A (p,�), if a = �. This means that in the latter
case, a = �, the next input letter is shifted to the end regardless of what it is.

So, right-revolving automata may skip certain letters of the input depending on the current
state. This is exactly what happens when a ROWJFA reads the input word and finds a letter
for which there is no transition defined from the current state.

Proposition 3.2 [2] For any ROWJFA M = (Q,⌃, R, s, F ) there exists a right-revolving au-
tomaton M

0 = (Q0
,⌃, �,�, q0, F

0), such that L(M) = L(M 0).

We note that not all languages accepted by right revolving input automata are inROWJ. Take,
for instance, the right-revolving automaton M = ({q0, q1, qa, qb}, {a, b}, �,�, q0, {q0, q1}), with
transitions given by �(q0, a) = qa, �(q0, b) = qb, �(q1, b) = qb and �(qa,�) = q0, �(qb,�) = q1. It
is easy to see that for a word w 2 L(M), if |w|a = |w|b, then w = (ab)n, whereas |w|a = k|w|b
implies w = (akb)n, etc. In general, if the first b occurs at position i, then between every
two consecutive b’s there are at least i� 1 occurrences of a. There exists no ROWJFA, which
accepts L(M).

In the case of revolving automata (having also left revolving operations), putting a constant
bound on the number of input revolving operations results in these machines accepting only reg-
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ular languages[1] and, in fact, constant-bound revolving characterizes regular languages. This,
together with Proposition 3.2 implies that ROWJFA which only jump over a constant-bounded
number of letters, accept regular languages. However, in the case of ROWJFA, this condition
does not characterize regular languages, as can be seen, for instance, from the automaton in
Example 3.3 accepting input adncbcba for any n, by jumping over dn in the first sweeps.

To prove regularity conditions of languages accepted by ROWJFA, we need to look at the case
when the automaton jumps over the same position multiple times, or equivalently, the number
of times the automaton reaches the last letter of the original input word. We say that states
for which there is no transition labeled by the upcoming input letter are deficient, i.e., p 2 Q

is S-deficient if for all a 2 S ⇢ ⌃ we have pa ! q /2 R for any q 2 Q.

If a position is jumped over, then the input symbol in that position will be processed in another
sweep. The number of sweeps needed to process the whole input is the number of times the
automaton reaches the last letter of the original input word or, equivalently, one more than the
maximum number of times any position is jumped over.

To formalize the notion of sweeps, we introduce an alternative definition for the way a ROWJFA
works. Let ROWJFA A be defined as before by a tuple (Q,⌃, R, q0, F ). We will use a counter
i 2 N and a binary status for each input letter, which can be read or unread.. When starting
to read the input word w, we start the counter i from 0, the status of all input symbols is
unread and A is in state q0. In each step the transition from some state q works as follows:

• i is incremented by 1;

• if the status of w[i mod |w|] is unread and there exists a state p such that qw[i mod |w|] !
p 2 R then the current state changes to p and w[i mod |w|] is marked read; otherwise,
the current state and the status of w[i mod |w|] does not change.

The computation ends when either

1. the status of all positions in w is read, or

2. when the current state is q and there exists no pair i 2 N and p 2 Q such that w[i
mod |w|] is unread and qw[i mod |w|] ! p 2 R.

In case 1, if the current state is a final state, then the input is accepted, in all other cases it is
rejected.

At the end of the computation the number of sweeps is bi/|w|c.

Example 3.3 Consider the computation in Figure 1 on input w1,1w4,1w3,1w2,1w3,2w2,2w1,2,
where wi,j 2 ⌃+. The ROWJFA needs 4 sweeps to process it. The order in which the parts of
the input are processed is given by the sweeps, first the factors w1,1 followed by w1,2 in the first
sweep, then the ones in the second sweep, etc., so the order in which the factors are read is
w1,1w1,2w2,1w2,2w3,1w3,2w4,1. The computation starts in the initial state q0. After reading wi,j

the ROWJFA is in state qi,j. State q1,1 is S-deficient with S = {a 2 ⌃ | |w4,1w3,1w2,1w3,2w2,2|a >
0}, state q2,1 is T -deficient with T = {a 2 ⌃ | |w3,2|a > 0}, etc. The input is accepted if q4,1 is
a final state.
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Figure 1: The input word w1,1w4,1w3,1w2,1w3,2w2,2w1,2 processed by a ROWJFA in 4 sweeps.

Figure 2: A ROWJFA accepting words w with |w|a = |w|b = |w|c = 2 and |w|d � 1}.

The ROWJFA jumps over the letters in w4,1 three times before processing them, hence the
number of sweeps is four. As an example for a ROWJFA performing such an accepting com-
putation consider the automaton in Figure 2 and the input adcbcba, processed in the order
aabbccd.

Theorem 3.4 Let A = (Q,⌃, R, q0, F ) be a ROWJFA. If there exists a constant k, such that
for any word w 2 L(A) the number of sweeps needed by A to process w is at most k, then the
language L(A) is regular.

Proof. We will prove the statement by constructing a NFA, which simulates accepting runs of
A. Let our NFA be B = (Q0

,⌃, R0
, q

0
0, F

0). The set of states is

Q

0 = {qs1,c1,f1,...,sk,ck,fk | si, ci 2 Q, 1  i  k}.

The indices of the states can be interpreted as follows:

• the index of a state is a series of pairs of the form si, ci, meaning

• i  k - the number of the sweep

• si 2 Q - in which state we started sweep i

• ci 2 Q - current state in sweep i

• fi 2 {0, 1} - a flag indicating whether sweep i was needed to process the input: 0 if there
have been less than i sweeps, 1 if any letter has been read in a sweep j � i.
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The letters which are in sweep i will all be processed after the ones in sweep i� 1 and before
the ones in sweep i+ 1 and the number of sweeps does not exceed a previously fixed constant.
Hence, we can keep track of the computation performed in sweep i by tracking the change of
state of A in the components si, ci, fi of the states of the NFA.

The construction could be done directly by DFA, but the number of state indices needed to
keep track of sweeps, starting and current states of the sweeps, is too large and the construction
would be more di�cult to follow.

The NFA has the following transitions

qs1,c1,f1,...,si,ci,fi,...sk,ck,fka ! qs1,c1,f 0
1,...,si,p,f

0
i ,...,sk,ck,f

0
k

(1)

where

• c1, . . . , ci�1 are {a}-deficient,
• cia ! p 2 R,

• after the transition the flags for sweeps 1 to i are set, i.e., f 0
1 = · · · = f

0
i = 1,

• the rest of the flags remain unchanged, f 0
j = fj, 8i < j  k.

The initial state is q00. In addition to the transitions described above, the automaton has the
following transitions:

q

0
0� ! qq0,q0,1,s2,s2,0,...,sk,sk,0, (2)

for all possible values s2, . . . , sk 2 Q.

For all `  k there are final states of the form

qq0,c1,1,s2,c2,f2,...,sk,ck,fk ,

with ci�1 = si, fi = 1 and c` 2 F , 8i 2 {2, . . . , `} and fj = 0, 8j 2 {`+ 1, . . . , k}.

The NFA defined above has an accepting path for input w if and only if w 2 L(A) , because of
the following.

• B can only change at most one of the ci in any transition of type (1) and does so according
to the transition table of A.

• A letter a 2 ⌃ can only be processed in sweep i if the sweeps before jumped over it,
ensured by the condition c1, . . . , ci�1 are {a}-deficient.

• If a letter is processed in sweep i by A, then the flags of all sweeps up to i of the NFA
state are set to 1, meaning that we know which sweeps were activated.

• The condition ci�1 = si in the final states ensures that the computation continues between
sweeps according to the transition table of A. It might be the case that sweep i was
activated but did not process any letters. However, this is not a problem, as in that case
the condition ci�1 = si = ci = si+1 is checked by the final states of the NFA.
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• In the states reachable through transitions (2) we set the flags to 0 for all sweeps but
the first and each transition changes the flags of the current sweep processing some input
letter and the flags of the sweeps before it; hence, we know that the greatest i with fi = 1
is the last sweep, and we know that at least one letter was processed in that sweep.

• the conditions fi = 1, 8i 2 {1, . . . , `} and fj = 0, 8j 2 {` + 1, . . . , k} on the final states
means that ` is the last sweep and c` 2 F means the last sweep ends in a final state.

2

We conjecture that the condition in the theorem above is both necessary and su�cient, but
we have no proof of the opposite implication yet. The reason for the conjecture is that, while
processing a long enough input, if the ROWJFA jumps over a certain input position more than
a constant-bounded number of times being in some S-deficient state, it will have to jump over
at least another position “roughly” the same number of times being in some T -deficient state,
thereby “matching the number of ⌃ \ S letters to the number of ⌃ \ T ones.

The goal of this line of study is to establish an algorithm which decides whether the language
accepted by a given ROWJFA is regular. Therefore, even if the condition above is necessary
and su�cient, one needs to translate it into a property of the ROWJFA which can be checked
in finitely many steps. A likely candidate for this property is that the number of sweeps is
always less than a constant bound if and only there is no deficient state which occurs in a cycle
in the graph of the automaton.
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Abstract
We examine the nondeterministic and deterministic state complexity of the following opera-

tions on unary star-free and union-free regular languages: intersection, union, concatenation,

squaring, positive closure, Kleene closure, and complementation. The results are compared to

the complexity of these operations on unary regular languages. We prove that all lower bounds

for regular languages except for complementation hold also for union-free languages for both

nondeterministic and deterministic complexity. We also point out that nondeterminism does

not accelerate any operation on unary star-free languages but complementation and closures.

1. Introduction

The state complexity of a regular language L, sc(L), is the smallest number of states in any
deterministic finite automaton (DFA) recognizing the language L. Similarly, the nondetermin-
istic state complexity of a regular language L, nsc(L), is the smallest number of states in any
nondeterministic finite automaton (NFA) with a single initial state recognizing the language
L. The state complexity of a regular operation is defined as the maximal state complexity of
languages resulting from the operation, considered as a function of state complexities of the
operands. Recently, state complexities of operations on certain subclasses of regular languages
came into interest. The complexities of operations on star-free languages are determined in [1]
and [5]. The complexities of operations on union-free languages has been investigated in [6].
These papers left some cases unresolved, namely the complexities on unary star-free and unary
union-free languages. Here we provide lower bounds of complexities on these classes.

2. Preliminaries

A language is union-free if it can be represented by a regular expression without +, the sign of
union. In 2006, Nagy [9] proved that a language is union-free if and only if it can be represented

Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091.
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by an automaton which has exactly one cycle-free accepting path from any state. Such automata
have single final state since two reachable final states would result in two accepting paths.

Star-free languages are the smallest class containing the finite languages and closed under
boolean operations and concatenation. In 1965, Schützenberger [11] proved that a language is
star-free if and only if its syntactic monoid is group-free, that is, has only trivial subgroups.
An equivalent condition is that the minimal DFA of a star-free language is permutation-free,
that is, it has no non-trivial permutation on its states.

The nondeterministic complexities of intersection, union, concatenation, squaring, positive clo-
sure, Kleene closure, reversal, and complementation are known to be (mn,m + n + 1,m +
n, 2n, n, n+1, n+1, 2n) (see [4]). All these bounds are met by star-free languages, all but rever-
sal by union-free languages. The deterministic complexities of intersection, union, concatena-
tion, squaring, Kleene closure, reversal, and complementation are known to be (mn,mn,m2n�
2n�1, n2n�2n�1, 2n�1+2n�2, 2n, n) (see [12]). Since complementation on DFAs does not change
the number of states, we do not deal with it. The complexity of positive closure on DFAs is
not of interest since the resulting language di↵ers from Kleene closure in at most one string, ",
so the DFAs only di↵er in at most one state. Therefore we do not mention the deterministic
complexity of positive closure.

3. Complexities on arbitrary alphabet

The complexity of operations on union-free languages was investigated by Jirásková and Maso-
pust [6]. The complexity of operations on star-free languages were investigated by Brzozowski
and Liu [1] in the deterministic case and by Holzer, Kutrib, and Meckel [5] in the nondeter-
minsitic case. Here are their results.

Theorem 3.1 (cf. [6], Theorem 6) Let m,n � 2. Let K, L be union-free languages over an

alphabet ⌃ with nsc(K) = m and nsc(L) = n. Then

(a) nsc(K \ L)  mn, and this bound is tight if |⌃| � 2;
(b) nsc(K [ L)  m+ n+ 1, and this bound is tight if |⌃| � 2;
(c) nsc(KL)  m+ n, and this bound is tight if |⌃| � 2;
(d) nsc(L2)  2n, and this bound is tight if |⌃| � 2;
(e) nsc(L+)  n, and this bound is tight if |⌃| � 1;
(f) nsc(L⇤)  n+ 1, and this bound is tight if |⌃| � 1;
(g) nsc(LR)  n, and this bound is tight if |⌃| � 1;
(h) nsc(Lc)  2n, and this bound is tight if |⌃| � 3.

Theorem 3.2 (cf. [6], Theorem 8) Let m,n � 2. Let K, L be union-free languages over an

alphabet ⌃ with sc(K) = m and sc(L) = n. Then

(a) sc(K \ L)  mn, and this bound is tight if |⌃| � 2;
(b) sc(K [ L)  mn, and this bound is tight if |⌃| � 2;
(c) sc(KL)  m2n � 2n�1

, and this bound is tight if |⌃| � 2;
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0 1 . . . n�1
a a a

b

Figure 1: The automaton for the union-free and star-free language an�1(ban�1)⇤.

(d) sc(L2)  n2n � 2n�1

, and this bound is tight if |⌃| � 2;
(e) sc(L⇤)  2n�1 + 2n�2

, and this bound is tight if |⌃| � 2;
(f) sc(LR)  2n, and this bound is tight if |⌃| � 2 ([8, Theorem 5]).

Theorem 3.3 Let m,n � 2. Let K,L be star-free languages over an alphabet ⌃ with nsc(K)=m
and nsc(L) = n. Then

(a) nsc(K \ L)  mn, and this bound is tight if |⌃| � 2 ([5, Theorem 3]);

(b) nsc(K [ L)  m+ n+ 1, and this bound is tight if |⌃| � 2 ([5, Theorem 2]);

(c) nsc(KL)  m+ n, and this bound is tight if |⌃| � 2 ([5, Theorem 6]);

(d) nsc(L2)  2n, and this bound is tight if |⌃| � 2 (cf. [2, Theorem 3]);

(e) nsc(L+)  n, and this bound is tight if |⌃| � 1;
(f) nsc(L⇤)  n+ 1, and this bound is tight if |⌃| � 2 ([5, Theorem 7]);

(g) nsc(LR)  n+ 1, and this bound is tight if |⌃| � 2 ([5, Theorem 8]);

(h) nsc(Lc)  2n, and this bound is tight if |⌃| � 2 ([5, Theorem 5]).

Proof. All upper bounds are the same as for regular languages. The lower bound for squaring
was proven in [2, Theorem 3] by the star-free language L = an�1(ban�1)⇤ shown in Fig. 1. The
lower bound for positive closure is met by the star-free language L = an�1a⇤ since L = L+. 2

Theorem 3.4 Let m,n � 2. Let K,L be star-free languages over an alphabet ⌃ with sc(K) = m
and sc(L) = n. Then

(a) sc(K \ L)  mn, and this bound is tight if |⌃| � 2 ([1, Theorem 1]);

(b) sc(K [ L)  mn, and this bound is tight if |⌃| � 2 ([1, Theorem 1]);

(c) sc(KL)  m2n � 2n�1

, and this bound is tight if |⌃| � 4 ([1, Theorem 2]);

(d) sc(L2)  n2n � 2n�1

;

(e) sc(L⇤)  2n�1 + 2n�2

, and this bound is tight if |⌃| � 4 ([1, Theorem 4]);

(f) sc(LR)  2n � 1, and this bound is tight if |⌃| � n� 1 for n � 3 ([1, Theorem 5]).

We let the lower bound for the complexity of squaring on star-free languages as an open problem.

4. Complexities on unary alphabet

In the unary case, di↵erent upper bounds hold for some operations. For example, if L is unary,
then nsc(LR) = nsc(L) since LR = L. We prove the lower bounds for union-free and star-free
languages in both nondeterministic and deterministic case. First we prove that the lower bound
for concatenation m+n� 1 ([4, Theorem 8]) cannot be exceeded by some classes of languages.
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Lemma 4.1 Let K, L be unary regular languages with nsc(K) = m and nsc(L) = n such that

any NFA for K has single final state or L is finite or co-finite. Then nsc(KL)  m + n � 1
and nsc(L2)  2n� 1.

Proof. Let A = (Q
A

, {a}, �
A

, q
s

, F
A

) be an NFA for K and B = (Q
B

, {a}, �
B

, s, F
B

) be an NFA
for L. We construct the NFA C for KL by some of these (not disjoint) cases.

(1) If |F
A

| = 1, then let F
A

= {q
f

}. We define C = (Q, {a}, �, q
s

, F
B

) as follows:
Q = Q

A

[ Q
B

\ {s}; �(q, a) = �
A

(q, a) if q 2 Q
A

\ F
A

; �(q
f

, a) = �
A

(q, a) [ �
B

(s, a);
�(p, a) = �

B

(p, a) if p 2 Q
B

and �
B

(p, a) 6= s; �(p, a) = q
f

if p 2 Q
B

and �
B

(p, a) = s.
(2) If L is finite, then the NFA B has no cycles, so no transition goes to s in B. We define

C = (Q, {a}, �, q
s

, F
B

) as follows: Q = Q
A

[Q
B

\{s}; �(q, a) = �
A

(q, a)[ �
B

(s, a) for every
q 2 F

A

, in other cases the transition function � works like �
A

and �
B

.
(3) If L is co-finite, then the NFA B has single cycle, the loop on f , so no transition goes to s in

B unless L = a⇤. We define C in the same way as in (2), or recall that nsc(Ka⇤)  nsc(K).

The computation on C thus can walk between the states of Q
A

and the states of Q
B

\ {s}
through F

B

. Since every unary word is equal to its permutatuon, we have L(C) = KL. 2

0 1 . . . n�1 0 1 . . . n�1
a a a

a

a a a

a

Figure 2: The automata for the union-free languages an�1(an)⇤ (left) and (an)⇤ (right).

Now look at the class of unary union-free languages. The upper bounds for unary regular
languages from [4] are met with the exception of concatenation and squaring.

Theorem 4.2 Let m,n � 2, m � n. Let K, L be unary union-free languages with nsc(K) = m
and nsc(L) = n. Then

(a) nsc(K \ L)  mn, and this bound is tight if gcd(m,n) = 1;
(b) nsc(K [ L)  m+ n+ 1, and this bound is tight if m 6= kn for any natural number k;
(c) nsc(KL)  m+ n� 1, and this bound is tight;

(d) nsc(L2)  2n� 1, and this bound is tight;

(e) nsc(L+)  n, and this bound is tight;

(f) nsc(L⇤)  n+ 1, and this bound is tight;

(g) nsc(Lc)  (n� 1)2, and this bound is tight.

Proof.

(a) The upper bound mn is met by the union-free languages K = am�1(am)⇤ and
L = an�1(an)⇤ (see Fig. 2, left), as is proven in [4, Theorem 4].

(b) These languages K and L meet the upper bound m+n+1, as is shown in [4, Theorem 2].
(c) By Lemma 4.1, the upper bound is m+n�1. The unary union-free languages K = am�1a⇤

and L = an�1a⇤ meet this bound since NFA for KL = am+n�2a⇤ needs m+ n� 1 states.
(d) By Lemma 4.1, the upper bound is 2n� 1. The language L = an�1a⇤ meets this bound.
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(e) The upper bound n is met by the union-free language L = an�1(an)⇤ from [4, Theorem 9].
(f) The upper bound n+ 1 is met by the same union-free language L = an�1(an)⇤.
(g) Every unary union-free language has the form L = at(ax1)⇤(ax2)⇤ . . . (axk)⇤. If k = 0, then

L = at is finite. If k � 2 and gcd(x
i

, x
j

) = 1 for some i, j, then L is co-finite. To maximize
nsc(Lc), we look for the longest string possible in Lc. Since for 1  i  k holds x

i

 n,
and the smaller is x

i

, the more strings it adds to L, we have k = 2, x
1

= n�1 and x
2

= n.
The greatest number that does not equal i(n � 1) + jn for i � 1, j � 0 is (n � 1)2 � 1.
It follows that nsc(Lc)  (n � 1)2. For tightness, let A be the unary NFA with n states
shown in Fig. 3. Then L(A) = an�1(an�1)⇤(an)⇤. Hence the complement L(A)c is finite
with the longest string a(n�1)

2�1, and the minimal NFA for L(A)c needs (n� 1)2 states.
2

Now consider the deterministic case. Every unary one-cycle-free-path DFA has single cycle and
single final state. Let A = ({0, 1, . . . , n� 1}, {a}, �, 0, {f}) be a unary one-cycle-free-path DFA
where �(i, a) = i + 1 for 0  i  n � 2 and �(n � 1, a) = t; t  f . Then the number of states
in the cycle is c = n� t. Hence L(A) = af (ac)⇤. Any language of this form is union-free.

Theorem 4.3 Let m,n � 2. Let K, L be unary union-free languages with sc(K) = m and

sc(L) = n. Then

(a) sc(K \ L)  mn, and this bound is tight if gcd(m,n) = 1;
(b) sc(K [ L)  mn, and this bound is tight if gcd(m,n) = 1;
(c) sc(KL)  mn, and this bound is tight if m 6= n;
(d) sc(L2)  2n� 1, and this bound is tight;

(e) sc(L⇤)  (n� 1)2 + 1, and this bound is tight;

Proof.

(a) The upper bound mn is met by the union-free languages K = (am)⇤ and L = (an)⇤ since
K \ L = (amn)⇤.

(b) The upper bound mn is met by the languages K = (am)⇤ and L = (an)⇤ also for union.
(c) The upper bound mn is proven in [12, Theorem 5.5] and met by the union-free languages

K = am�1(am)⇤ and L = an�1(an)⇤, as is proven in [12, Theorem 5.4].
(d) The upper bound 2n� 1 is proven in [10, Theorem 3] and met by the union-free language

L = an�1a⇤ since the longest string not in L2 is a2n�3.
(e) The tight bound (n � 1)2 + 1 is proven in [12, Theorem 5.3] by the union-free language

L = an�1(an)⇤, since the longest string not in L⇤ is an(n�2).
2

0 1 . . . n�2 n�1
a a a a

a
a

Figure 3: The automaton for the union-free language an�1(an�1)⇤(an)⇤.

Now we look on the star-free languages. Every finite language and every co-finite language
is star-free. Since every minimal DFA for a star-free language is permutation-free, and every
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unary DFA with cycle of length at least two is not permutation-free, unary star-free languages
are accepted only by DFAs whose only cycle is a loop. Such automata represent either finite or
co-finite languages, so every unary star-free language is either finite or co-finite. On the other
hand, the language {a, b}⇤a is star-free, but it is neither finite nor co-finite.

The unary star-free languages were not considered in [5], so we prove some results here. Every
finite language L has the longest accepted string a`. Then `  nsc(L)� 1 since the NFA needs
`+ 1 states to read the string a`. Similarly, every co-finite language L has the longest rejected
string a`. Then `  nsc(L) � 2 since the NFA needs ` + 1 states to reach a nonfinal state by
the string a` and one more final state to accept all longer strings.

Theorem 4.4 Let m,n � 1. Let K, L be unary star-free languages with nsc(K) = m and

nsc(L) = n. Then

(a) nsc(K \ L)  max{m,n}, and this bound is tight;

(b) nsc(K [ L)  max{m,n}, and this bound is tight;

(c) nsc(KL)  m+ n� 1, and this bound is tight;

(d) nsc(L2)  2n� 1, and this bound is tight;

(e) nsc(L+)  n, and this bound is tight;

(f) nsc(L⇤)  n, and this bound is tight;

(g) nsc(Lc) 2 ⇥(n2).

Proof.

(a) Let K and L be unary co-finite languages, with longest string not in K be ak and longest
string not in L be a`. Let k  `. Then the longest string not in K\L is a`, so nsc(K\L) =
max{m,n}. The witness languages meeting this bound are K = am�1a⇤ and L = an�1a⇤.

(b) Let K and L be unary finite languages, with longest string in K be ak and longest string
in L be a`. Let k  `. Then the longest string in K [L is a`, so nsc(K [L) = max{m,n}.
The witness languages meeting this bound are K = am�1 and L = an�1.

(c) By Lemma 4.1, the upper bound is m + n � 1. It is met by the co-finite languages
K = am�1a⇤ and L = an�1a⇤ since KL = am+n�2a⇤.

(d) By Lemma 4.1, the upper bound is 2n� 1. It is met by the co-finite language L = an�1a⇤.
(e) The upper bound n for positive closure is met by the co-finite language L = an�1a⇤.
(f) The upper bound for Kleene closure is n since L⇤ \ L is finite for every co-finite L. It is

met by the unary co-finite language L = an�1a⇤.
(g) If we transform a unary NFA with n states to the Chrobak normal form, we get a tail

with at most n2�2 states and disjoint cycles with at most n�1 states ([3, Theorem 3.5]).
Since every minimal NFA in Chrobak normal form for a co-finite language has single cycle
of length one (a loop), total number of states is n2 � 1. While this NFA is also a complete
DFA, it gives us the upper bound O(n2) on complement of co-finite languages.
Let L = a⇤\{an}. As shown in [7], nsc(L) is in⇥(

p
n). Next, we have Lc = an, so nsc(Lc) =

n+1. This gives the lower bound ⌦(n2). Hence the bound ⇥(n2) is asymptotically tight.
2

Lemma 4.5 (cf. [1], Theorem 6) Let m,n � 1. Let K, L be unary star-free languages with

sc(K) = m and sc(L) = n. Then
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(a) sc(K \ L)  max(m,n);

(b) sc(K [ L)  max(m,n);

(c) sc(KL)  m+ n� 1;

(d) sc(L2)  2n� 1;

(e) sc(L⇤)  2 if n = 1; sc(L⇤)  n if 2  n  5; sc(L⇤)  n2 � 7n+ 13 if n � 6.

All these bounds are tight.

Proof. The bounds for boolean operations, concatenation, and Kleene closure are proven in [1].
For squaring, the upper bound proven in [10] is met by the star-free language L = an�1a⇤. 2

5. Conclusions

We investigated the nondeterministic and deterministic state complexity of basic operations on
union-free and star-free languages. Since most results were known for arbitrary alphabet, we
focused on the unary case. The tight upper bounds for intersection, union, positive closure, and
Kleene closure on unary union-free languages are the same as for unary regular languages in
both nondeterministic and deterministic case. For unary star-free languages, the upper bounds
are di↵erent, especially for boolean operations, but they are the same in both deterministic and
nondeterministic case except for complementation and closures. The following table provides
the complexities of operations on the examined classes of unary languages. The second table
shows the tight bounds for complexities of operations on examined classes; the witness languages
are on an alphabet of size |⌃|. The lower bound of deterministic complexity of squaring on
star-free languages remains an open problem.

Unary union-free Unary star-free Unary regular

nsc(K\L) mn ; gcd(m,n) = 1 max{m,n} mn ; gcd(m,n) = 1
nsc(K[L) m+ n+ 1 ; m 6= kn max{m,n} m+ n+ 1 ; m 6= kn
nsc(KL) m+ n� 1 m+ n� 1 � m+ n� 1
nsc(L2) 2n� 1 2n� 1 � 2n� 1
nsc(L+) n n n
nsc(L⇤) n+ 1 n n+ 1
nsc(Lc) (n� 1)2 ⇥(n2) 2⇥(

p
n logn)

sc(K\L) mn; gcd(m,n) = 1 max{m,n} mn ; gcd(m,n) = 1
sc(K[L) mn; gcd(m,n) = 1 max{m,n} mn ; gcd(m,n) = 1
sc(KL) mn ; gcd(m,n) = 1 m+ n� 1 mn ; gcd(m,n) = 1
sc(L2) 2n� 1 2n� 1 2n� 1
sc(L⇤) (n� 1)2 + 1 n2 � 7n+ 13 ; n � 6 (n� 1)2 + 1

n ; 2  n  5
2 ; n = 1
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Union-free |⌃| Star-free |⌃| Regular |⌃|
nsc(K\L) mn 2 mn 2 mn 2
nsc(K[L) m+ n+ 1 2 m+ n+ 1 2 m+ n+ 1 2
nsc(KL) m+ n 2 m+ n 2 m+ n 2
nsc(L2) 2n 2 2n 2 2n 2
nsc(L+) n 1 n 1 n 1
nsc(L⇤) n+ 1 1 n+ 1 2 n+ 1 1
nsc(LR) n 1 n+ 1 2 n+ 1 2
nsc(Lc) 2n 3 2n 2 2n 2

sc(K\L) mn 2 mn 2 mn 2
sc(K[L) mn 2 mn 2 mn 2
sc(KL) m2n � 2n�1 2 m2n � 2n�1 ; n � 3 4 m2n � 2n�1 2
sc(L2) n2n � 2n�1 2 ? ? n2n � 2n�1 2
sc(L⇤) 2n�1 + 2n�2 2 2n�1 + 2n�2 4 2n�1 + 2n�2 2
sc(LR) 2n 2 2n � 1 n� 1 ; n � 3 2n 2

n ; n  2
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[11] M. P. SCHÜTZENBERGER, On finite monoids having only trivial subgroups. Information and

Control 8 (1965) 2, 190–194.
http://dx.doi.org/10.1016/S0019-9958(65)90108-7

[12] S. YU, Q. ZHUANG, K. SALOMAA, The state complexities of some basic operations on regular
languages. Theoret. Comput. Sci. 125 (1994) 2, 315–328.
http://dx.doi.org/10.1016/0304-3975(92)00011-F

http://dx.doi.org/10.1016/j.tcs.2012.05.008
http://dx.doi.org/10.1016/j.ipl.2005.06.011
http://dx.doi.org/10.1016/S0019-9958(65)90108-7
http://dx.doi.org/10.1016/0304-3975(92)00011-F




JUMPING AND PUMPING LEMMAS
AND THEIR APPLICATIONS

Grzegorz Madejski

Institute of Informatics,
Faculty of Mathematics, Physics and Informatics,

University of Gdańsk,
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Abstract
Jumping grammars, as opposed to the well known classical grammars, use a jumping derivation

mode which works in a discontinuous way. By applying a rule ↵ ! �, we remove ↵ from the

sentential form and place � in an arbitrary position in the string. This di↵ers from the classical

approach where the position of ↵ and � is the same.

This paper presents some initial results of the author’s research on the generative power of

such grammars. With the aid of lemmas utilising some jumping and pumping techniques, an

infinite hierarchy of jumping languages with respect to the length of the rules is constructed. It

is also shown that jumping linear languages are strictly contained within the class of jumping

context-free languages.

1. Introduction

Consider a piece of information encoded as a string, consisting of substrings that could be
read in an arbitrary order. To process such information our algorithm should parse all possible
permutations of the substrings. The task is even more challenging if the strings can be inserted
into one another or even shu✏ed together.

There are many areas of science where such data is expected to be found: information process-
ing, concurrency theory, natural language processing, bioinformatics (such as DNA computing).

Formal grammars with an adequate modification should handle this task. Many attempts were
made last years. For example, context-free grammars extended with permutation rules were
considered in [6, 7, 10], where their potential to generate languages with relatively free word
order was shown. Recently, jumping grammars were introduced [5]. Instead of reordering
symbols, these allow to derive the word in a discontinuous way by means of jumping. By
applying a rule ↵ ! �, we remove ↵ from the sentential form and place � in an arbitrary
position in the string. This di↵ers from the classical approach where the position of ↵ and � is
the same.
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Jumping grammars stem from the research on jumping finite automata introduced in [8] and
later investigated in [2, 3, 9, 11]. Indeed, jumping grammars are a generalisation of jumping
automata, the same way as classical grammars generalise finite automata.

This paper is organised as follows. In Section 2, we provide all the necessary preliminaries.
In Section 3, we present the results on the generative power. In Subsection 3.1, an infinite
hierarchy of jumping monotonous languages with respect to the length of the rules (defined as
span) is constructed. In Subsection 3.2, it is shown that jumping linear languages are strictly
contained within the class of jumping context-free languages (it was stated as an open problem
in [5]). In Section 4, some final remarks and prospects for future research are given.

2. Preliminaries

We assume that the reader is familiar with the basic concepts of the formal language theory,
in particular the classes of the Chomsky hierarchy (see [4]). Let u 2 T

⇤ be a word and a 2 T

a letter. We denote |u| as the length of u or the number of all letters, |u|a as the number of
occurrences of letter a in u.

Before we define jumping grammars let us present a notion of a jumping automaton [2, 3].

Definition 2.1 A general jumping finite automaton (GJFA for short) is a quintuple A =
(Q, T,R, q0, F ) where Q is a finite set of states, T is a set of terminal symbols (letters) or

alphabet, R ✓ Q ⇥ T

⇤ ⇥ Q is a finite relation, q0 2 Q is a start state, F ✓ Q is a set of final

states. The elements of R of the form (q, w, p) are called rules and are denoted as qw ! p.

A GJFA, as opposed to classical finite automata, uses a di↵erent computation step relation. Let

x, y, x

0
, z

0 2 T

⇤
, q, p 2 Q. xqy y x

0
pz

0
if and only if there exist qw ! p 2 R and z 2 T

⇤
such

that y = wz, xz = x

0
z

0
. The language accepted by A is L(A) = {w 2 T

⇤ : 9u,v2T ⇤9f2F w =
uv^uq0v y⇤

f}, where y⇤
is the transitive-reflexive closure of y. A class of all such languages

is denoted by GJFA.

We now present a few definitions regarding grammars. Similarly to GJFAs, jumping grammars
will be deriving words with a jumping derivation mode [5].

Definition 2.2 A jumping grammar (JG for short) is a quadruple G = (N, T, P, S) where N

is a set of non-terminal symbols, T is a set of terminal symbols (letters) or alphabet, P ✓
(N [ T )⇤N(N [ T )⇤ ⇥ (N [ T )⇤ is a finite relation and S 2 N is a start symbol. The elements

of P of the form (x, y) are called rules and are denoted as x ! y.

A jumping grammar uses a jumping derivation step relation to derive words. Let u, v 2 (N[T )⇤,
u /2 T

⇤
. u ) v if and only if there exists x ! y 2 P, w, z, w

0
, z

0 2 (N [ T )⇤ such that

u = wxz, v = w

0
yz

0
and wz = w

0
z

0
.

Definition 2.3 Let G = (N, T, P, S) be a JG. A language generated by G is a set

L(G) = {x 2 T

⇤ : S )⇤
x}
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where )⇤
is the transitive-reflexive closure of ). We say that L(G) is a jumping language

and we denote the class of all jumping languages by JL.

Definition 2.4 A rule is:

• monotonous if it is of the form x ! y where |x|  |y|,
• context-sensitive if it is of the form uXw ! uvw where u, v, w 2 (N [T )⇤, v 6= �, X 2 N ,

• context-free if it is of the form X ! w where .w 2 (N [ T )+, X 2 N ,

• linear if it is of the form X ! uY v | w where u, v 2 T

⇤
, w 2 T

+
, X, Y 2 N ,

• right-linear if it is of the form X ! uY | w where u 2 T

⇤
, w 2 T

+
, X, Y 2 N ,

• regular if it is of the form X ! aY | a, where a 2 T , X, Y 2 N .

If a jumping grammar has rules only of one type, then its name is changed accordingly. There-
fore, we have jumping monotonous grammars, jumping context-sensitive grammars and so on.
For short, we denote them as JMGs, JCSGs, JCFGs, JLGs, JRLGs, JRGs. They generate
jumping monotonous languages, jumping context-sensitive languages, etc. The corresponding
classes of languages are denoted as JML, JCSL, JCFL, JLL, JRLL, JRL.

Definition 2.5 We say that a jumping grammar G = (N, T, P, S) is of span m i↵ every rule

x ! y 2 P satisfies |x|  m, |y|  m. The language L(G) is then called a language of span m

and all such languages denoted as JL(m).

The definition can be extended to all the subclasses of JL. Therefore, we can speak of jumping
context-free languages of span m (JCFL(m)) and so on.

In [5], the following hierarchy was established.

JRL ( GJFA = JRLL = JLL ✓ JCFL ( JCSL ✓ JML ( JL.

We see the lack of two strictness results, one of which is presented in Subsection 3.2.

3. Results

3.1. Infinite Hierarchy of Jumping Monotonous Languages

In this subsection, we formulate a jumping lemma and use it to establish an infinite hierarchy
of jumping monotonous languages.

Simply put, this lemma shows that if one word can be derived using the rules of grammar G,
then other words can be derived too, provided we jump into a di↵erent position. The last rule
is the best to study, as it always has a string of terminals on the right-hand side.
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It should be noted that the lemma generalises some already known proving techniques [5, 8].
However, for the sake of more advanced lemmas and proofs in the next subsection, it is a good
idea to study it first.

Lemma 3.1 (Jumping Lemma for JML(m)) Let L 2 JML(m). For an arbitrary word

w 2 L, |w| > m, there exists a partitioning w = xyz, such that:

• 0 < |y|  m,

• yxz 2 L and xzy 2 L.

Proof. Let L 2 JML(m). Then, there exists a JMG G = (N, T, P, S) of span m such that
L = L(G). If w 2 L and |w| > m, then the derivation of w in G must consist of at least two
steps. The last derivation step uses a rule that has only terminal symbols on the right-hand
side. Suppose this rule is ↵ ! y where ↵ 2 (N [ T )+ � T

⇤, y 2 T

+, |↵|  |y|  m. Suppose
now that w = xyz. Then the derivation of w in G is of the form:

S ) ... ) x

0
↵z

0 ) xyz

where x

0
z

0 = xz 6= �, y � 1. We see that the words yxz and xzy can also be derived in G:

S ) ... ) x

0
↵z

0 ) yxz

S ) ... ) x

0
↵z

0 ) xzy

The derivation of yxz and xzy is the same as of w except for the last derivation step. The
jumping position is di↵erent. 2

The lemma can be used to prove incomparability results. For example, to show that regular
languages are not in JML, we could consider a language a

⇤
b

⇤ and a word w = a

m
b

m. This
result was already established in [5].

The jumping lemma can also be used to establish an infinite hierarchy of monotonous jumping
languages with respect to their span. A similar hierarchy was studied in [8], where it was
shown that there exist languages accepted by general jumping finite automata of degree m

that cannot be accepted by general jumping finite automata of degree m � 1. A degree of
automaton is the maximal number of terminal symbols that can be added in one computation
step. Therefore, the span of grammars in this paper is a generalisation of the degree of automata.
Since GJFA = JRLL, our result is also a generalisation of the construction of the hierarchy of
GJFAs in [8].

Lemma 3.2 A one-word language L = {amb} is in the class JML(m+1), but not in the class

JML(m).

Proof. L can be generated with a grammar with only one rule S ! a

m
b of span m+ 1. Thus,

L 2 JML(m+ 1).

We assume L 2 JML(m) and take the only possible word in L, which is w = a

m
b. By Lemma

3.1, there exists a partitioning w = xyz, where 0 < |y|  m and yxz 2 L, xzy 2 L. If y = a

k,
0 < k  m, then the word xzy = a

m�k
ba

k
/2 L. If y = a

k
b, 0  k < m, then the word

yxz = a

k
ba

m�k
/2 L. In both possible cases we reach a contradiction. Therefore L /2 JML(m).

2
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Theorem 3.3 JML(m) ( JML(m+ 1), where m � 1.

Proof. The inclusion of the classes follows from their definition. The strictness of the inclusion
follows from Lemma 3.2. 2

3.2. Jumping Right-Linear Languages versus Jumping Context-Free
Languages

It was shown in [5] that JLL = JRLL = GJFA. By definition, they are subsets of JCFL, but
it was an open problem, whether the inclusion is proper. In this subsection, we formulate a
second jumping lemma and use it to show that JRLL ( JCFL.

For convenience, we show that we can eliminate rules of the form X ! Y (X, Y are non-
terminals) from any JRLG. We shall call them unit rules.

Lemma 3.4 Let G = (N, T, P, S) be a JRLG. There exists a JRLG G

0 = (N, T, P

0
, S) such

that L(G) = L(G0) and P

0
has no unit rules.

Proof. The construction of grammar G0 based on G is done in the same as in the algorithm for
eliminating unit rules, used to acquire grammars in Chomsky normal form (see [4]). Despite
having a di↵erent derivation mode, proving that L(G) = L(G0) is also analogous. 2

Example 3.5 Let G = ({S,X, Y, Z}, {a, b, c, d}, P, S) be a JRLG of span m = 3, where P

contains the rules:

S ! aaX, X ! aaY, Y ! bbZ, Z ! ccY, Z ! ddd.

We derive a word w = bbaabbaaccddd in G:

S ) aaX ) aaaaY ) aabbZaa ) aabbaaccY ) bbZaabbaacc ) bbaabbaaccddd = w,

It is easy to see that if the number of derivation steps is greater than the number of non-
terminals, then there are two sentential forms containing the same non-terminal symbol. In
our example, we have n = |{S,X, Y, Z}| = 4. Our derivation of w consists of 7 steps and
contains two sentential forms with Y : aaaaY , aabbaaccY . There are two rules used between
them Y ! bbZ, Z ! ccY , that added subwords w1 = bb, w2 = cc to the derived word. Similarly
to the pumping lemma for regular languages, we can copy the words w1, w2 any number of
times. The jumping derivation mode lets us put them in any position in the derived string, for
example at the end:

S ) aaX ) aaaaY ) aabbZaa ) aabbaaccY ) aabbaaccbbZ ) aabbaaccbbccY )

) bbZaabbaaccbbcc ) bbaabbaaccdddbbcc = ww1w2,

Pumping for words derived in 4 steps may be impossible, for example:

S ) aaX ) aaaaY ) aabbZaa ) aabbaaddd.
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We see that the maximal length of the words generated in 4 steps is 3·2+3 = 9. For an arbitrary
grammar of spanm and n non-terminal symbols, this number is (n�1)(m�1)+m = n(m�1)+1.
Words of greater length must contain a loop in derivation.

We now extend the above investigations to any jumping right-linear languages.

Lemma 3.6 (Jumping and Pumping Lemma for JRLL(m)) Let G = (N, T, P, S) be a

JRLG of span m without unit rules and |N | = n. Let w 2 L(G), |w| > r where r = n(m�1)+1.
Then:

• The derivation of w in G consists of at least n+ 1 steps.

• Let X0 ! w1X1, X1 ! w2X2, ..., Xn�1 ! wnXn, Xn ! wn+1 be the rules used in the

last n + 1 steps of the derivation of w (in the given order), where 0 < |wi| < m for all

1  i  n and 0 < |wn+1|  m. Then, there exist indices 1  k  l  n such that for any

permutation

� =

✓
k k + 1 · · · l

�(k) �(k + 1) · · · �(l)

◆

words w1 = w�(k)w�(k+1) · · ·w�(l)w and w2 = ww�(k)w�(k+1) · · ·w�(l) are also in L(G).

Proof. The first point of the lemma is easy to prove, see Example 3.5. If there are at least
n+1 steps, then let the rules used in the last n+1 steps be the following (in the given order):

X0 ! w1X1, X1 ! w2X2, ..., Xn�1 ! wnXn, Xn ! wn+1.

Among the n + 1 non-terminal symbols X0, ..., Xn there exist two which are the same. Let
Xk�1 = Xl for some 1  k  l  n. Then, the rules Xk�1 ! wkXk, ..., Xl�1 ! wlXk�1 allow
us to pump the words wk, ..., wl. Due to the jumping derivation mode, we can put them at the
beginning or the end of the word, in any order represented by a permutation � (see Figure 1).

S ... ↵Xk�1�

↵�wkXk

↵�wk+1Xk+1wk ... ↵�wl�2Xl�2wl�3...wk+1wk

↵�wl�1Xl�1wl�2...wk+1wk

↵�wlXk�1wl�1...wk ... wwlwl�1...wk

J&P

J&P

J&P

J&P

J&P

Figure 1: An example derivation of a pumped word. The steps where jumping and pumping was used
are marked with J&P . A permutation �(i) = l+ k� i was used to order the pumped words wk, ..., wl

at the end of the derived word (after w).

2

The lemma can be generalised. We see that we use pumping only once, but the loop could
be repeated any number of times. We also give a big restriction on the jumping, as we only
consider jumps to the beginning or the end. However, such a restricted version of the lemma
su�ces for the purpose of this paper.
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We now consider an important language and show that it generates words of a specific form.

Example 3.7 Let L be a language generated by the following JCFG

G = ({S,X}, {a, b, c, d}, {S ! adSX, S ! adX,X ! bc}, S).

By definition L 2 JCFL.

We state and briefly prove some important properties of language L from the above example.

Lemma 3.8 L has the following properties:

1. Words from L have the same number of letters a, b, c and d.

2. Words of the form a

r
b

r
c

r
d

r
where r > 0 are in L.

3. Words from L cannot contain any letter a after the last letter d.

4. Words from L cannot contain any letter d before the first letter a.

Proof.

1. We see that in an arbitrary derivation a pair ad always comes with a symbol X, which is
later substituted by bc.

2. We use the jumping rule S ! adSX r � 1-times, always jumping in between a and d.
Then we use S ! adX, acquiring

S ) adSX ) aadSXdX ) ... ) a

r(dX)r.

After that, we use the rule X ! bc r-times firstly jumping between a and d, and afterwards
between b and c.

S ) ... ) a

r(dX)r ) a

r
bcd(dX)r�1 ) a

r
bbccdd(dX)r�2 ) ... ) a

r
b

r
c

r
d

r
.

3. and 4. This is due to the form of the rules, in which the letter a is accompanied by letter
d to the right.

2

We are now ready to prove the following

Proposition 3.9 L /2 JRLL.

Proof. We assume L 2 JRLL. Then, there exists a JRLG G = (N, T, P, S) of span m, with
no unit rules, such that L = L(G). Let n = |N | and r = n(m� 1) + 1. From property 2 from
Lemma 3.8, we know that w = a

r
b

r
c

r
d

r 2 L.

Let wk, wk+1, ..., wl be the words from Lemma 3.6, from the derivation of w. We consider the
following four cases:

• 8v2{wk,wk+1,...,wl} |v|a = 0 ^ |v|d = 0.
In this case, by pumping and jumping we violate the property 1 from Lemma 3.8. The
number of b and c is greater than the number of a and d.



32 Grzegorz Madejski

• 9v2{wk,wk+1,...,wl} |v|a 6= 0 ^ |v|d = 0.
We put the pumped v at the end of the word, which leads to a contradiction with the
property 3 from Lemma 3.8.

• 9v2{wk,wk+1,...,wl} |v|a = 0 ^ |v|d 6= 0.
We violate the property 4 from Lemma 3.8 by putting the pumped v at the beginning of
the derived word.

• 9v2{wk,wk+1,...,wl} |v|a 6= 0 ^ |v|d 6= 0.
Note that a should be before d in v, otherwise it is possible to destroy the property 3.
Before the application of the rule containing v, no letter b or c is derived. Otherwise, w
would contain a subword with b or c appearing either before both a and d, or after. Thus,
all 2r letters b and c must be derived during and after the application of the rule with v.
This is not possible, as in the last n+ 1 steps, only n(m� 1) +m = r+m� 1 letters can
be derived and that is strictly smaller than 2r.

In all cases, we reached a contradiction which is due to a false assumption that L 2 JRLL. 2

Theorem 3.10 JRLL ( JCFL.

Proof. The inclusion of the classes follows from their definition. The strictness of the inclusion
follows from Example 3.7 and Proposition 3.9. 2

4. Conclusions

In this paper, we defined jumping grammars and languages of span m. Similarly to the families
of languages of the Chomsky hierarchy, we defined their jumping counterparts. Then, we
showed that JML(m) ( JML(m + 1) for any m > 0. We also proved that jumping linear
languages are strictly contained in the class of jumping context-free languages.

JRL ( JRLL = JLL (
Thm.3.10

JCFL ( JCSL ✓
strict?

JML ( JL.

There are several interesting problems to consider. It is not known if the inclusion JCSL ✓ JML
is strict. A few other jumping derivations modes can be studied (see [5]). Finally, it would be
interesting to compare the class of jumping languages or its subclasses with families generated
by other models of grammars, for example permutation languages [6, 7, 10].
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Abstract
We study the fixed membership problem for k-uniformly-limited and propagating ET0L sys-
tems (kulEPT0L systems). To this end, the algorithm given in [7] is applied. It follows that
kulEPT0L languages are parsable in polynomial time. Since kulEPT0L languages are semi-
linear [1] and kulEPT0L systems generate certain non-context-free languages, which capture
the non-context-free phenomena occurring in natural languages, this is the last building block
to show that kulEPT0L languages, for k � 2, belong to the family of mildly context-sensitive
languages.

1. Introduction

Context-free languages are parsable in polynomial time and there are several membership al-
gorithms based on the concept of dynamic programming for context-free languages [6, 15]. For
context-sensitive languages, on the other hand, there are no known polynomial time algorithms
for the membership problem. Extended Lindenmayer systems without interaction (E0L sys-
tems) can be considered as parallel counterparts of context-free grammars and E0L languages
are known to be parsable in polynomial time as well [10]. However, for ET0L languages, that is,
languages generated by tabled E0L systems, the membership complexity is NP-complete [12].

Research has studied many language families that lie between “context-free” (or E0L) and
“context-sensitive” (or ET0L), (see, for instance [4]). In [7], for example, the authors study the
membership complexity for context-free languages generated by context-free grammars which
are extended so that context-free productions are applied to a fixed number k of symbols at each
derivation step. The authors use results from scheduling theory and dynamic programming to
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show that the membership for these extended context-free languages is decidable in polynomial
time. The authors in [14], for instance, introduced a restricted version of ET0L systems,
namely k-uniformly-limited ET0L systems (abbreviated kulET0L systems). In these systems
the parallel rewriting mechanism of Lindenmayer systems is limited such that not all symbols
in a word w have to be rewritten, but min{k, |w|} symbols, where k is a positive integer. Note
that, if k = 1, we have a context-free grammar (see [14]). The crucial di↵erences between
these two grammar formalisms are, that (i) the extended context-free grammars in [7] are
extended with respect to their sequential rewriting mechanisms (that is, from rewriting one
symbol to rewriting k symbols) and kulET0L systems are limited with respect that their parallel
substitution mechanisms (that is, from substituting all symbols to substituting k symbols), and
(ii) in [7] the lengths of all sentential forms (after rewriting the start symbol) are at least k.

In mathematical linguistics, researchers also have been investigating language families that
lie between the context-free language family and the context-sensitive language family in the
Chomsky hierarchy. A concept that captures such language families is mild context-sensitivity.
The notion of mild context-sensitivity was first mentioned in [8], where the author proposed that
a class of grammars (and their associated languages) modeling the syntax of natural languages
should have the following three characteristics. First, it should describe certain non-context-free
structures in order to capture the non-context-free phenomena occurring in natural languages.
Second, it should have the constant growth property (the constant growth property is obeyed by
every semilinear language) and, third, it should be parsable in polynomial time. Note, that the
concept mildly context-sensitive captures a family of families of languages, not a single language
family. For a formal definition of mildly context-sensitive grammar formalisms see [2]. In the
literature there have been many investigations of mildly context-sensitive sequential grammar
formalisms and their languages (see, for instance, [9, 13]). There have been less investigations
of mildly context-sensitive parallel grammar formalisms. In [1] the author investigates some
restricted versions of limited parallel Lindenmayer systems with respect to their mild context-
sensitivity.

In this paper, we apply the fixed membership algorithm given in [7] to propagating kulET0L
languages (abbreviated kulEPT0L languages). It follows that kulEPT0L languages are parsable
in polynomial time. Moreover, it is known that kulEPT0L languages are semilinear [1]. Ad-
ditionally, kulEPT0L systems generate non-context-free languages, such as { anbncn | n � 1 },
{ anbmcndm | n,m � 1 }, and {ww | w 2 {a, b}+ }, which capture the non-context-free phenom-
ena occurring in natural languages. From all this, we conclude that kulEPT0L languages, for
k � 2, belong to the family of mildly context-sensitive languages.

2. Definition and Preliminaries

We assume the reader to be familiar with the basic notions of Lindenmayer systems without
interaction such as in [11]. In general we have the following conventions: The set of positive
integers is denoted by N and if we want to include 0, we write N

0

. The cardinality of a set A
is denoted by #A. Let V = {a

1

, a
2

, . . . , an} be some alphabet, where the order of the symbols
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is fix. By V + we denote the set of nonempty words; if the empty word � is included, then we
use the notation V ⇤. The length of a word w in V ⇤ is the number of letters in w and written
as |w|. The length of the empty word � is 0.

An ET0L system is a quadruple G = (⌃, H, ,�), where ⌃ is an alphabet,  2 ⌃⇤ is the axiom,
� ✓ ⌃ is the terminal alphabet, and H is a finite set of finite substitutions from ⌃ into ⌃⇤.
A substitution h in H is called a table. For x in ⌃ we write x ! y if y 2 h(x). By Maxr(G)
we denote the length of the longest right-hand side of a production in G. In general, we write
u =)

G
w if and only if w 2 h(u), for u and w in ⌃⇤ and some h in H. If the table should be

noted explicitly, we write u =)
h

w. The reflexive transitive closure of the derivation relation

=)
G

is denoted by
⇤

=)
G

.

The language generated by G is L(G) = {w 2 �⇤ |  ⇤
=)
G

w }.

An ET0L system G is called propagating (EPT0L system, for short) if for all substitutions h
in H and all x 2 ⌃, we have � /2 h(x).

In a derivation of a kulET0L system at each step of the rewriting process exactly min{k, |w|}
symbols of the word w considered have to be rewritten. That is, if |w| < k then all symbols
have to be rewritten, but if |w| � k then there are

�|w|
k

�
possibilities to rewrite the word w.

Formally, a k-uniformly-limited ET0L system G (kulET0L system, for short) ([14]) is a quin-
tuple G = (⌃, H, ,�, k), where k 2 N and (⌃, H, ,�) is an ET0L system.

The derivation relation =)
G

of a kulET0L system is defined as follows. Let u, w 2 ⌃⇤ and

h 2 H.

1. If |u| � k then u =)
G

w if we can write

u = v
1

x
1

v
2

x
2

· · · xkvk+1

and w = v
1

z
1

v
2

z
2

· · · zkvk+1

with xi 2 ⌃, vj 2 ⌃⇤, zi 2 h(xi), i = 1, . . . , k, j = 1, . . . , k + 1.

2. If |u| < k then u =)
G

w if w 2 h(u).

A sentential form of a kulET0L system G = (⌃, H, ,�, k) is a word w 2 ⌃⇤ with  
⇤

=)
G

w. A

propagating kulET0L (kulEPT0L, for short) is defined the same way as for ET0L systems.

The authors in [14] introduced the notion of pseudo-synchronization for kulET0L grammars. A
kulET0L system G is called pseudo-synchronized if for every a 2 � and for every w 2 ⌃⇤ the
following holds: if a =) w then w /2 �⇤; that is, there are no productions of the form a ! w,
for a 2 � and w 2 �⇤.

Theorem 2.1 ([14], Theorem 3.1) To every kulE(P)T0L system G = (⌃, H, ,�, k), there
exists an equivalent pseudo-synchronized kulE(P)T0L system G0 = (⌃0, H 0, S,�, k) such that
L(G) = L(G0).
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In the following we assume a kulEPT0L system to be pseudo-synchronized without explicitly
mentioning.

The reader is assumed to be familiar with the basic notions of trees, forests, root, parent, child,
ancestor, descendant, internal node and leaf. Let v be a node. The depth of v is its distance
from the root of its tree, plus 1. The height of v is the distance to its furthest descendant.
Leaves have height zero and roots have depth one. Let F be a forest. The height of F is the
maximal height of its roots. By |F | we denote the number of nodes in F and by #F we denote
the number of trees in F . The bare forest of F is obtained by deleting all leaves in F ; the
bare forest of F is denoted by Bare(F ). The child forest of F is obtained by deleting all roots
from F .

To each derivation of a kulEPT0L system one can associate a derivation tree t in a similar
fashion as it is done for context-free grammars. Moreover, if a node is labeled with a symbol
a 2 ⌃, and the label of its children (from left to right) form the word w, then a ! w is a
production in a table of the kulEPT0L system. A derivation forest is a forest containing a
tree for each symbol of the axiom. The roots of the trees are labeled by these symbols. We
illustrate some of these notions by the following example.

Example 2.2 (derivation forest) Let G = (⌃, H, ,�, k) be the kulEPT0L system with
⌃ = {A,B, a, b}, � = {a, b},  = AB, k = 3, H = {h

1

, h
2

}, where the set of tables is given
by

h
1

= {A ! AA,B ! BB, a ! a, b ! b},
h
2

= {A ! a,B ! b, a ! a, b ! b}.

Consider the following derivation, in which we mark the symbols which are rewritten with a
dot. Table h

1

is used in the first two derivation steps and then Table h
2

is applied to terminate
the derivation:

ȦḂ =) ȦȦḂB =) AAAȦḂBḂ =) ȦȦȦabBb =) aaȧaḃḂb =) aaaabbb.

The derivation forest for aaaabbb is illustrated in Figure 1. ⌅

A

A

A

a

A

a

A

A

a

a

A

a

B

B

B

b

b

B

b

B

b

Figure 1: Derivation forest of aaaabbb derived by the kulEPT0L system given in Example 2.2.
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In the following we will divide the derivations of a kulEPT0L system into two phases. The
sentential forms w in a derivation of a kulEPT0L can be divided into a phase in which each
|w| < k and into the phase in which each |w| � k. In the first phase all symbols have to
be rewritten and in the second phase exactly k symbols have to be rewritten. The derivation
steps in the first phase correspond to derivation steps in an EPT0L derivation and the second
phase is called a k-derivation of a kulEPT0L system. Note that in a propagating kulET0L the
lengths of the sentential forms do not decrease. In the following we define a k-derivation of a
kulEPT0L system and its k-derivation forest.

Definition 2.3 (k-derivation forest) Let G = (⌃, H, ,�, k) be a kulEPT0L system. A k-
derivation in G is a sequence of words w

1

, . . . , wl+1

, such that, for all 1  i  l, wi =)
G

wi+1

and |wi| � k, 1  i  l + 1.

The length of the derivation w
1

, . . . , wl+1

is l and the ith step is wi =) wi+1

.

A k-derivation forest is a derivation forest that corresponds to a k-derivation.

Example 2.4 (k-derivation forest) Note that the derivation forest given in Example 2.2 is
not a k-derivation forest, since | | < k. Figure 2 illustrates a k-derivation forest for the k-
derivation ȦȦḂB =) AAAȦḂBḂ =) ȦȦȦabBb =) aaȧaḃḂb =) aaaabbb as derived by the
kulEPT0L system given in Example 2.2. ⌅

A

A

a

A

a

A

A

a

a

A

a

B

B

b

b

B

b

B

b

Figure 2: k-derivation forest of aaaabbb derived by the kulEPT0L system given in Example 2.2.

Next we turn to define schedules on forests following [7]. Let F be a forest. We assume that
there are k processors that correspond to rewriting k symbols in each derivation step. Every
node in F is interpreted as a task. We assume that all tasks are unit-length (that is, they take the
same time to be executed). The parent-child relation in F specifies the precedence constraints
(that is, the parent nodes are scheduled before its children nodes). A k-schedule is then a
sequence of slots, where each slot contains up to k tasks. Each slot has a corresponding time
unit. Each slot indicates which of the at most k tasks are to be scheduled in the corresponding
time unit. Each slot is filled with symbols that occur on the left-hand side of a production
in a table h 2 H of a given kulEPT0L system G = (⌃, H, ,�, k). Figure 3 illustrates these
notions.

Definition 2.5 (k-schedule [7]) Let F be a forest and let k � 1. A k-schedule of F is a
function � mapping the nodes of F onto the set {1, . . . , l}, for some l  |F |, such that
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time ! 1 2 . . . l
processor 1 !
processor 2 !
...
processor k !

slot 1 slot 2 slot l

Figure 3: An illustration of a k-schedule of length l with k processors. Each cell will be filled with
one symbol from an alphabet.

1. 1  #��1(i)  k for all 1  k  l,

2. for each pair of nodes v
1

, v
2

in F , if v
2

is a successor of v
1

, then �(v
2

) > �(v
1

).

The length of � is l and ��1(i) is called the ith slot of �. The tasks of slot i are scheduled at
time i (that is, #��1(i) out of the k processors are assigned a task at that time). There are
k � #��1(i) idle periods in slot i (that is, periods in which not all k processors are used). A
schedule � has p(�) idle periods, where

p(�) =
lX

i=1

(k �#��1(i)) = l · k � |F |.

A schedule � is optimal for F if there is no schedule �0 of F with p(�0)  p(�). Note that
optimal schedules have minimal length. The number of idle periods of F , denoted p(F ), is the
number of idle periods in an optimal schedule for F .

If p(�) = 0 in a schedule �, then � is called perfect.

1 2 3 4 5
A A A A a
B A B A b

B B A B

1 2 3 4
A A A a
A B A b
B B A B

Figure 4: The table on the left side is a k-schedule, k = 3, for the derivation forest given in Figure 1;
the schedule is optimal and has one idle period. The table on the right side is a k-schedule, k = 3, for
the k-derivation forest given in Figure 2; it is a perfect schedule.

Observe that the bare forests of k-derivation forests have perfect k-schedules. If v
1

, . . . , vk are
symbols that are rewritten in step i during a k-derivation, then v

1

, . . . , vk occur in the ith slot
of the corresponding perfect schedule.

Lemma 2.6 ([7]) A derivation forest is a k-derivation forest if and only if its bare forest has
a perfect schedule.

Lemma 2.7 (first and second phase) Let G = (⌃, H, ,�, k) be a kulEPT0L system and let

 =)
G

w
1

⇤
=)
G

· · · ⇤
=)
G

wl
⇤

=)
G

· · · ⇤
=)
G

wn = w be a derivation of w in G, where | | < k,

|wi| < k, for 1  i  l � 1 and |wl| � k.
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A word w is in L(G) if and only if there exists a derivation  
⇤

=)
G

w, such that

1. there is a derivation tree t of wl from  , and

2. there is a k-derivation tree s of w from wl, such that p(Bare(s)) = 0.

We refer to the derivation from  to wl as the first phase and to the derivation from wl to w
as the second phase. If | | � k, then the derivation has no first phase.

Proof. All slots in a k-schedule for a k-derivation are filled with tasks and there are no idle
periods. 2

The following algorithm is for obtaining a Highest Level First (HLF) k-schedule for a forest.
Roughly speaking, the algorithm builds an HLF k-schedule for a forest F by scheduling the
nodes on the longest paths in a tree in F .

Algorithm 2.8 ([7])

1. If F consists of at least k trees, then ��1(1) contains the roots of the k highest trees (for
trees of equal height the choice is arbitrary).

2. Otherwise, ��1(1) is the set of all the roots.

3. The tail of the schedule is constructed similarly, with the nodes in ��1(1) deleted from F .

The k-schedules in Figure 4 are not HLF k-schedules. An HLF k-schedule is given in Figure 5.

1 2 3 4
A A A A
A B A b
B B a B

Figure 5: An HLF k-schedule for the k-derivation forest given in Figure 2.

Theorem 2.9 ([3, 5]) Any HLF schedule for a forest is optimal.

3. Polynomial Membership Algorithm

We divide the membership testing into the two phases of a derivation of a kulEPT0L system
(see Lemma 2.7). The first phase ends when the length of the sentential form is at least k.
Since there are at most (|⌃| + 1)k�1 di↵erent sentential forms whose length is less than k and
the systems are propagating, testing membership in the first phase can be done in constant
time.

For the second phase we use the algorithm in [7] for extended context-free grammars, where k
nonterminal symbols are replaced in each derivation step. The algorithm in [7] is bottom-up
and keeps track of all the derivation trees deriving subwords of the input word, similar to
the CYK algorithm. These derivation trees are parameterized and we obtain a polynomial
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size characterization. There may be a family of derivation forests for a given word. The
parameterized trees are called frames and the parameters are the root symbol, the start and
end position of the subword in w, the height of the subtree and the number of its nodes.

The algorithm computes then the number of idle periods for a frame collection by using the
median. In [5] the median was used to present a polynomial time scheduling algorithm for
forests and other graphs assuming a constant number of processors. Note that the number of
idle periods for various frame collections have to be computed. Intuitively, all those k-derivation
trees which are higher than the median are “hard” to schedule, whereas all other k-derivation
trees are “easy” to schedule. There are only a polynomial number of frame collections that are
“hard” to schedule and this achieves a polynomial time algorithm for solving membership for
a constant k and a constant kulEPT0L system.

Definition 3.1 (k-median [7]) The k-median of a forest F is one plus the height of the kth
highest tree of F . If F contains less than k trees, then the median is zero. The k-high forest
of F is the set of all those trees in F which are strictly higher than the median. The k-low
forest is the set of the remaining trees.

The k-high forest and k-low forest of a forest F are denoted by Highk(F ) and Lowk(F ), respec-
tively.

Theorem 3.2 ([7]) Let F be a forest and � be a k-schedule for Highk(F ) with q idle periods.
Then there is a schedule �0 for the whole forest F , such that:

1. if q � |Lowk(F )|, then the length of �0 is as most as long as the length of �;

2. if q < |Lowk(F )|, then �0 has idle periods only in its last slot.

Lemma 3.3 ([7]) Assume that the HLF schedules for Highk(F ) have q idle periods. Then the
HLF schedules for F have

1. q � |Lowk(F )| idle periods if q � |Lowk(F )|,
2. �|F | mod k idle periods, otherwise.

The following lemma is a restatement for kulEPT0L derivations and restricts the length of a
derivation for a word w in a kulEPT0L language polynomially in n.

Lemma 3.4 Let G = (⌃, H, ,�, k) be a kulEPT0L system and let w 2 �⇤ with |w| = n.
Then w 2 L(G) if and only if there exists a derivation tree t of w from  , such that the height
of t is at most f(n) = nk2k(#⌃)k(k+1)/2 and |t|  nf(n).

The bound on the total number of nodes |t| follows from the fact that in each tree level, there
can be at most n nodes.

The following definition is a restatement for kulEPT0L systems and its k-derivation trees. The
k-derivation trees are parameterized into frames.
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Definition 3.5 Let G be a kulEPT0L and let w = a
1

· · · an, where a
1

, . . . , an 2 � and |w| � k.
A frame R (of w) is a quintuple (A, l, r, h, c), such that A 2 ⌃ is the root of R, 1  l  r  n,
and there is a k-derivation tree t of al · · · ar from A in G, such that its bare tree has height h
and c nodes. If the derivation tree is of height zero, that is, A is a terminal symbol, then c = 0
and h = �1.

A tree t as above is called a frame tree for R. The height of a frame R is h and the size of R,
denoted |R|, is c.
An ordered set R of frames (A, l, r, h, c) is called a frame collection, where all A in R occur on
the left-hand side of a production in a table h 2 H of a given kulEPT0L system. The height
of R is the maximum of the frame heights in R and the size of R is the sum of the sizes of the
frames in R. If F is a forest, such that the ith tree in F is a frame tree for the ith frame in R,
for 1  i  #F = #R, then F is called a frame forest of R (see Example 3.6 for an example).

Example 3.6 The forest in Figure 2 is a frame forest for the frame collection R:

R = {(A, 1, 4, 3, 8), (B, 5, 7, 3, 6)}.

⌅

The notions of k-median, k-high collection (k-high forest), and k-low collection (k-low forest)
are defined similarly for frame collections. In particular, the number of idle periods for a frame
collection is given by

p(R) = min{p(Bare(F )) | F is a frame forest of R}.

The following is a restatement of Lemma 2.7 for frames.

Lemma 3.7 Let G = (⌃, H, ,�, k) be a kulEPT0L system and let  =)
G

w
1

⇤
=)
G

· · · ⇤
=)
G

wl
⇤

=)
G

· · · ⇤
=)
G

wn = w be a derivation of w in G, where | | < k, |wi| < k, for 1  i  l � 1

and |wl| � k. Furthermore, let S ! wl be an additional rule for G, where S is a new symbol
in ⌃ \� and S ! wl a new production in a new table hnew in H.

A word w is in L(G) if and only if there exists a derivation  
⇤

=)
G

w, such that

1. there is a derivation tree t of wl from  , and

2. there exists a frame R = (S, 1, n, h, c), for some h and c, such that p(R) = 0.

If | | � k, then let S !  be an additional rule in a new table in H of G.

Definition 3.8 (child collection [7]) Let R = (A, l, r, h, c) be a frame of a word w, and let
R = {R

1

, . . . , Rj} be a frame collection of w, where Ri = (Ai, li, ri, hi, ci) for all 1 < i  j. We
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say that R is a child collection of R if: A ! A
1

· · ·Aj 2 H, l = l
1

, rj = r, and li = ri�1

+ 1

for all 2  i  j, h = 1 +max{h
1

, . . . , hj}, and c = 1 +
jP

i=1

ci.

A child collection of a frame collection R is obtained by choosing a child collection for each of
the frames in R and taking their union.

By Lemma 3.4, we only consider those frames R = (A, l, r, h, c) with bounded length. Since
there are at most #⌃ choices for A, and n choices for each l and r and since f(n) in Lemma 3.4
is a linear function, the following bound is obtained.

Corollary 3.9 ([7]) There are O(n5) frames to be computed while testing membership for a
word of length n.

The following corollary is a restatement of Lemma 3.3 for frames.

Corollary 3.10 ([7]) Let R be a frame collection. Then

p(R) =

(
p(Highk(R))� |Lowk(R)| if p(Highk(R)) � |Lowk(R)|,
�|R| mod k, otherwise.

By definition, a k-high collection consists of at most k� 1 frames and by Corollary 3.9 at most
O(n5(k�1)) idle periods of k-high collections have to be computed.

Lemma 3.11 ([7]) Let j be the number of frames in a frame collection I, where I = Highk(I).
Then

p(I) =
(
0 if I is empty,

k � j +min{ p(R0) | R0 is a child collection of I }, otherwise.

The algorithm in [7] first constructs all the frames for the input word w, and then, computes
the number of idle periods for each possible high collection. The number of idle periods for
each frame of a word w is computable in polynomial time. The number of idle periods of
various frame collections is computed, by increasing height, using the recurrences stated in
Corollary 3.10 and Lemma 3.11. Finally, it is tested whether there exists a frame that covers
all of w, that is, a frame of the form (S, 1, |w|, h, c) and that has k � 1 idle periods.

The algorithm does not only decide membership but also provides the information necessary
to construct a k-derivation for an input word w (see [7]).

Theorem 3.12 ([7]) Algorithm 1 runs in time polynomial in n, O(n5(k�1)(Maxr(G)+1)+1), if
both k and G are constant.
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Algorithm 1: Adjusted membership algorithm from [7] for the second phase in kulEPT0L
derivations
Data: A kulEPT0L G = ({A

1

, . . . , Am}, H, S,�, k) , where H contains a new table hnew with
S ! w0 as its single production, and a word w = Ap1 · · ·Apn 2 �⇤.

Result: accept if w 2 L(G), otherwise reject.
begin

/* test if w0 = w and S directly derives w0
in one derivation step; */

if S ! w then accept /* construct all the frames of w, of height h; */

for i := 1 to n do (Api , i, i,�1, 0) is a frame for h := 0 to f(n) do
forall the g 2 H do

forall the A ! B
1

B
2

· · ·Bj 2 g do
forall the 1  l

0

 . . .  lj  n do
forall the h

1

, . . . , hj with max{h
1

, . . . , hj} = h� 1 do
forall the 0  c

1

, . . . , cj  nf(n) do
if (Bi, li�1

, li, hi, ci) is a frame or 1  i  j then
(A, l

0

, lj, h, c1 + c
2

+ . . .+ cj + 1) is a frame;

/* compute the number of idle periods for all collections up to k � 1
frames; */

p({}) := 0;
for h := �1 to f(n) do

forall the frame collections R of height h, consisting of up to k � 1 frames, each of
positive height do

q := 1;

forall the child collections R0 of R do
forall the Highk(R0) where all A in the frames occur on the left-hand side of a
production in a table g 2 H do

I := Highk(R0);
/* Since the height of I 0

is h� 1, we can recur on p(I 0); */

if p(I 0) � |Lowk(R0)| then
p(R0) := p(I 0)� |Lowk(R0)|

else p(R0) := �|R0| mod k q := min{q, p(R0)};
p(R) := k �#R+ q;

/* This is the membership test; */

for h := 1 to f(n) do
for c := 2 to n · f(n) do

if (S, 1, n, h, c) is a frame and p((S, 1, n, h, c)) = k � 1 then
accept

else reject
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Abstract
We summarize recent results on ordered restarting automata and present a number of open prob-
lems that concern the expressive power of the various types of ordered restarting automata, the
closure properties of the defined classes of languages, decision problems, and the descriptional
complexity of these types of automata.

1. Introduction

The restarting automaton was introduced in [2] as a formal model for the linguistic technique
of analysis by reduction. Such an automaton has a finite-state control and a flexible tape
with endmarkers, on which a read/write window of a fixed finite size operates. A restarting
automaton works in cycles. Starting in its initial state with the window at the left end of
the tape, it scans the tape from left to right until, at some point, it performs a combined
rewrite/restart operation. Such an operation replaces the content of the window by a shorter
word, and thereafter it moves the window to the left end of the tape and resets the automaton
to its initial state. Since the mid 1990’s, many variants of restarting automata have been
considered (see, e.g., [13]), for example, the combined rewrite/restart operation has been split
into two separate operations [3], or instead of requiring that each rewrite operation is strictly
length-reducing, also types of restarting automata have been introduced for which the rewrite
operations are just weight-reducing with respect to some predefined weight function [4].

The ordered restarting automaton (ORWW-automaton), which was introduced by Mráz and
Otto in [11], can be seen as a very special type of the shrinking restarting automaton of [4].
It has a window of size three, and during a combined rewrite/restart step, it just replaces the
symbol in the middle position of its window by a symbol that is strictly smaller with respect to
a predefined partial ordering on the tape alphabet. Of course, instead of the partial ordering,
one could use a weight function, but the use of a partial ordering seems to be more intuitive.

In [11], and then later in [10, 12], the deterministic variant of the ORWW-automaton was used as
a basic device for several types of two-dimensional restarting automata that accept picture lan-
guages. In [14], the study of the descriptional complexity of deterministic ORWW-automata was
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initiated, which was then continued in [6] and [15]. The nondeterministic ORWW-automaton
was studied in detail in [8], further results are to appear in [9]. Finally, by separating the
rewrite from the restart operation, we obtain the ORRWW-automaton that is studied in [7].

In the current paper we summarize the main results on ORWW- and ORRWW-automata
obtained in these papers and present a number of open problems for future work.

2. Definitions

An ORWW-automaton is a one-tape machine that is described by an 8-tuple M =
(Q,⌃,�,⇤,�, q

0

, �, >), where Q is a finite set of states containing the initial state q
0

, ⌃ is
a finite input alphabet, � is a finite tape alphabet such that ⌃ ✓ �, the symbols ⇤,� 62 � serve
as markers for the left and right border of the work space, respectively,

� : (Q⇥ ((� [ {⇤}) · � · (� [ {�}) [ {⇤�})) ! 2(Q⇥{MVR})[�[{Accept}

is the transition relation, and > is a partial ordering on �. The transition relation describes
three di↵erent types of transition steps:

(1) A move-right step has the form (q0,MVR) 2 �(q, a
1

a
2

a
3

), where q, q0 2 Q, a
1

2 � [ {⇤},
and a

2

, a
3

2 �. It causes M to shift the window one position to the right and to change
from state q to state q0. Observe that no move-right step is possible if the window contains
the right sentinel �.

(2) A rewrite/restart step has the form b 2 �(q, a
1

a
2

a
3

), where q 2 Q, a
1

2 �[ {⇤}, a
2

, b 2 �,
and a

3

2 � [ {�} such that a
2

> b holds. It causes M to replace the symbol a
2

in the
middle of its window by the symbol b and to restart, that is, the window is moved back
to the left end of the tape, and M reenters its initial state q

0

.

(3) An accept step has the form Accept 2 �(q, a
1

a
2

a
3

), where q 2 Q, a
1

2 � [ {⇤}, a
2

2 �,
and a

3

2 � [ {�}. It causes M to halt and accept. In addition, we allow an accept step
of the form �(q

0

,⇤�) = {Accept}.

If �(q, u) = ; for some state q and a word u, then M necessarily halts, when it is in state q
seeing u in its window, and we say that M rejects in this situation. Further, the letters in �r⌃
are called auxiliary symbols. If |�(q, u)|  1 for all q and u, then M is a deterministic ORWW-
automaton (det-ORWW-automaton), and if Q = {q

0

}, then we call M a stateless ORWW-
automaton (stl-ORWW-automaton) or a stateless deterministic ORWW-automaton (stl-det-
ORWW-automaton), as in this case the state is actually not needed.

A configuration of an ORWW-automaton M is a word ↵q�, where q 2 Q is the current state,
↵� is the current content of the tape, and it is understood that the window contains the first
three symbols of �. In addition, we admit the configuration q

0

⇤ �. A restarting configuration
has the form q

0

⇤w�; if w 2 ⌃⇤, then q
0

⇤w� is also called an initial configuration. Further,
we use Accept to denote the accepting configurations, which are those configurations that M
reaches by an accept step.
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Any computation of an ORWW-automaton M consists of certain phases. A phase, called a
cycle, starts in a restarting configuration, the head is moved along the tape by MVR steps
until a rewrite/restart step is performed and thus, a new restarting configuration is reached.
If no further rewrite operation is performed, any computation necessarily finishes in a halting
configuration – such a phase is called a tail. By `c

M we denote the execution of a complete
cycle, and `c⇤

M is the reflexive transitive closure of this relation. It can be seen as the rewrite
relation that is realized by M on the set of restarting configurations.

An input w 2 ⌃⇤ is accepted by M if there is a computation of M which starts with the initial
configuration q

0

⇤ w� and ends with an accept step. The language consisting of all (input)
words that are accepted by M is denoted by L(M).

The ORRWW-automaton is obtained from the ORWW-automaton by splitting the
rewrite/restart operation into separate rewrite and restart operations. However, it is still
required that an ORRWW-automaton executes exactly one rewrite operation in each cycle.

As each cycle (of an ORWW- or ORRWW-automaton) M contains a rewrite operation, which
replaces a symbol a by a symbol b that is strictly smaller than a with respect to the given
ordering >, each computation ofM on an input of length n consists of at most (|�|�1)·n cycles.
Thus, M can be simulated by a nondeterministic single-tape Turing machine in time O(n2).

For restarting automata in general, each RR-variant is at least as powerful as the corresponding
R-variant, but for stateless automata the situation is not that obvious. The feature of continuing
to read the tape after a rewrite step has been executed is problematic for these automata, as
they cannot distinguish between the phase of a cycle before the rewrite step and the phase
after the rewrite step. In [5] this problem has been addressed for various types of deterministic
restarting automata, and two options for dealing with it have been proposed. Here we follow
the second option presented in [5] which distinguishes between two phases of each cycle: the
first phase, which ends with the execution of a rewrite operation, and the second phase, which
starts after the execution of a rewrite operation and ends with either a restart or an accept
step. These two phases are realized by providing two separate transition functions. In [5] the
corresponding stateless restarting automata are called two-phase restarting automata, but as
we will only deal with this type of stateless (deterministic) ORRWW-automata, we just call
them stateless (deterministic) ORRWW-automata (stl-(det-)ORRWW-automata). Formally,
these automata are defined as follows.

Definition 2.1 A stl-ORRWW-automaton is described by a 7-tuple M = (⌃,�,⇤,�, �
1

, �
2

, >),
where ⌃, �, ⇤, �, and > are defined as for ORWW-automata, and

�
1

: ((� [ {⇤}) · � · (� [ {�})) [ {⇤�} ! 2�[{MVR,Accept}

and

�
2

: (�2 · (� [ {�})) ! 2{MVR,Restart,Accept}

are the transition relations. Here it is required that b > b0 holds for each rewrite instruction
b0 2 �

1

(abc).
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Given a word w 2 ⌃+ as input, at first the transition relation �
1

is used until either an accept
instruction is executed, a rewrite instruction b0 2 � is executed, or the window contains a word
for which �

1

is undefined. In the first case, M accepts, in the second case the letter in the
middle of the window is replaced by the letter b0, the window is moved one step to the right,
and the computation is continued using the transition relation �

2

. Finally, in the third case M
simply halts without accepting. The transition relation �

2

, which is used in the second phase of
a cycle after the execution of a rewrite step, shifts the window to the right until either an accept
instruction is executed, and then M accepts, until a restart instruction is executed, which resets
the window to the left end of the tape and starts the next cycle, or until a window content is
reached for which �

2

is undefined. In the latter case M halts without accepting. For w = �,
there either is no applicable operation for the initial configuration ⇤�, or �

1

(⇤�) = {Accept}.

Finally, for each type X of automaton, we denote by L(X) the class of languages that are
accepted by automata of type X.

3. Language Classes and Their Inclusion Relations

Concerning the expressive power of the various types of ordered restarting automata, the fol-
lowing results have been obtained.

Theorem 3.1

(a) L(stl-det-ORWW) = L(stl-ORWW) = L(det-ORWW) = REG ([8, 11, 14]).

(b) L(stl-det-ORRWW) = L(stl-ORRWW) = L(det-ORRWW) = REG ([7]).

The result in (a) also holds for stl-det-ORWW-automata that are reversible [15], where a stl-det-
ORWW-automaton M is called reversible if it has a reverse transition function that undoes
the cycles of the computations of M . Concerning the expressive power of nondeterministic
ORWW-automata, the following results have been obtained.

Theorem 3.2 [8] The language class L(ORWW) is incomparable to the language classes DLIN,
LIN, DCFL, CFL, CRL, and GCSL with respect to inclusion.

Here L0
copy

= {w$u | w, u 2 {a, b}⇤, |w|, |u| � 2, u is a scattered subsequence of w } is a lan-
guage that is accepted by an ORWW-automaton, but that it is not even growing context-
sensitive. On the other hand, the deterministic linear language L

1

= { anbn | n � 1 } is not
accepted by any ORWW-automaton due to the following Cut-and-Paste Lemma.

Theorem 3.3 (Cut-and-Paste Lemma) [8]
For each ORWW-automaton M , there exists a constant Nc(M) > 0 such that each word w 2
L(M), |w| � Nc(M), has a factorization w = xyz satisfying all of the following conditions:

(a) |yz|  Nc(M), (b) |y| > 0, and (c) xz 2 L(M).
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Actually, also a Pumping Lemma has been obtained for ORWW-automata that nicely comple-
ments the above lemma.

Theorem 3.4 (Pumping Lemma) [9]
For each ORWW automaton M , there exists a constant Np(M) > 0 such that each word w 2
L(M), |w| � Np(M), has a factorization w = xyz satisfying all of the following conditions:

(a) |xy|  Np(M), (b) |y| > 0, and (c) xymz 2 L(M) for all m � 1.

By Theorem 3.3, a su�ciently long word from L(M) can be cut within a su�x, and by Theo-
rem 3.4, it can be pumped within a prefix. These results have the following consequence.

Theorem 3.5 [9] If a unary language is accepted by an ORWW-automaton, then it is neces-
sarily a regular language.

Finally, concerning ORRWW-automata, the following result has been obtained.

Theorem 3.6 [7] Each context-free language is accepted by some ORRWW-automaton.

Also it has been observed that ORRWW-automata accept some unary languages that are not
semi-linear, that is, not regular. In summary, we have the hierarchy of language classes depicted
in Figure 1.

CSL

GCSL

OO

? //
ORRWW

jj

CRL
?

1144

CFL

OO 44

ORWW

OO

DCFL

OO
44

LIN

OO

DLIN

OO
44

REG

OO

(stl-)det-ORRWW stl-ORRWW

OO

(stl-)det-ORWW stl-ORWW

REG \ 2{a}
⇤

OO

ORWW \ 2{a}
⇤

OO

Figure 1: The language classes accepted by the various types of ordered restarting automata in relation
to the extended Chomsky hierarchy. The dotted arrows indicate inclusions that are still open.

The following inclusion problems, however, are currently still open.

Open Problem 1 (a) Is GCSL contained in L(ORRWW)?
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(b) Is at least CRL contained in L(ORRWW)?

(c) Is L(ORRWW) a proper subclass of CSL? Observe that the equality CSL = L(ORRWW)
would imply that NP = PSPACE, as CSL contains PSPACE-complete languages, while
L(ORRWW) is a subclass of NP.

(d) Does L(ORWW) only contain languages that have a semi-linear Parikh image? In the
unary case this holds by Theorem 3.5, but how about the general case?

4. Closure Properties of Nondeterministic Classes

Concerning the closure properties for the nondeterministic language classes L(ORWW) and
L(ORRWW), the following results are known.

Theorem 4.1 [8] The language class L(ORWW) is closed under union, intersection, product,
Kleene star, inverse morphisms, and non-erasing morphisms, but it is not closed under com-
plementation nor under reversal.

Theorem 4.2 [7] The language class L(ORRWW) is closed under union, intersection, product,
Kleene star, inverse morphisms, non-erasing morphisms, and reversal.

Here the following questions are still open.

Open Problem 2 (a) Is L(ORWW) closed under arbitrary morphisms?

(b) Is L(ORRWW) closed under complementation? Observe that this class is not closed un-
der arbitrary morphisms, as it is closed under intersection and contains the context-free
languages.

5. Decision Problems for Nondeterministic Classes

Based on the Cut-and-Paste Lemma, the following decidability result has been derived in [8].

Theorem 5.1 For ORWW-automata, the emptiness problem is decidable.

In combination with the Pumping Lemma, the following is shown in [9].

Theorem 5.2 For ORWW-automata, the finiteness problem is decidable.

On the other hand, as L(ORRWW) is closed under intersection, and as it contains all context-
free languages, the following undecidability results hold for ORRWW-automata.

Theorem 5.3 [7] For ORRWW-automata, emptiness, finiteness, universality, regularity, in-
clusion, and equivalence are all undecidable.
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Here the following questions are still open.

Open Problem 3 (a) Is regularity decidable for ORWW-automata? In fact, given an
ORWW-automaton M and a regular language L, is it decidable whether L ✓ L(M)
holds? Observe that the converse inclusion is decidable, as L(ORWW) is closed under
intersection and as emptiness is decidable for ORWW-automata.

(b) Are inclusion or equivalence decidable for ORWW-automata?

(c) The proof of the decidablility of emptiness for ORWW-automata is based on Higman’s
Theorem [1]. Accordingly, the method for solving it given in [8] is quite ine�cient. Is
there a more e�cient algorithm for solving this problem, or can a non-trivial lower bound
be established? The same questions can be asked for the finiteness problem.

6. Descriptional Complexity for Stateless Ordered

Restarting Automata

Finally, as all stateless and/or deterministic types of ordered restarting automata characterize
the regular languages, one can ask about the descriptional complexity of these types of au-
tomata, where for stateless types of automata, the cardinality of the tape alphabet is taken as
a complexity measure. For stl-det-ORWW-automata, the following results have been obtained.

Theorem 6.1 [6, 14]

(a) For each DFA A = (Q,⌃, q
0

, F,'), there is a stl-det-ORWW-automaton M =
(⌃,�,⇤,�, �, >) such that L(M) = L(A) and |�| = |Q|+ |⌃|.

(b) For each stl-det-ORWW-automaton M with an alphabet of size n, there exists an NFA A
of size 2O(n) such that L(A) = L(M) holds.

(c) For each n � 1, there exists a regular language Bn ✓ {0, 1,#, $}⇤ such that Bn is accepted
by a stl-det-ORWW-automaton over an alphabet of size O(n), but each NFA for accepting
Bn has at least 2n states.

Further, in [8] a lower bound of 2O(n) is given for the conversion of a stl-ORWW-automaton
into an equivalent stl-det-ORWW-automaton, and from the results of [7], an upper bound of
2O(n) can be derived for the conversion of a stl-det-ORRWW-automaton into a stl-det-ORWW-
automaton. Here, however, many problems are still open.

Open Problem 4 (a) How can a stl-ORWW-automaton e�ciently be converted into a stl-
det-ORWW-automaton? Is the lower bound mentioned above achievable?

(b) Find a lower bound for the conversion of a stl-det-ORRWW-automaton into a stl-det-
ORWW-automaton!

(c) Find lower and upper bounds for the conversion of a stl-ORRWW-automaton into a stl-
det-ORWW-automaton!

(d) Determine the descriptional complexity of language operations in terms of stl-det-ORWW-
automata! A few preliminary results have been presented in [14].
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Abstract
We give a formal definition of regular array grammars for describing rectangular pictures. By

forbidding one specific direction in the rules of isometric regular array grammars, we obtain four

special types of families of picture languages that we then relate to boustrophedon automata.

1. Introduction

In the area of formal picture languages, which is about the transfer of ideas from classical Formal
Languages (automata, grammars, expressions) to the description of digital images, two main
directions can be identified. We will describe this distinction in the terminology of grammars.
(1) In the isometric approach, local modifications are applied to digital images representing,
say, sentential forms, in order to derive, for instance, images only containing terminal letters.
In particular, nonterminal symbols will always only represent single terminal letters.
(2) In the non-isometric approach, nonterminals can be replaced by whole two-dimensional
pictures. The left-hand sides and right-hand sides of rules have di↵erent sizes, which explain
the name of this approach. The main problem in this idea is that sentential forms have to
be stuck together in a way that the sizes fit together. Therefore, mostly rectangular-shaped
pictures can be described in this way. It is this latter feature that we employ in the following.

In this paper, we want to have a look at the simplest forms of generalizing what is known from
the string case to the two-dimensional case: finite automata and regular grammars. Even here,
many di↵erent approaches have been proposed in the literature [4]. We are deliberately picking
two of them that seem to be among the simplest ones. Interestingly enough, each originated
from one of the mentioned two approaches, although both kind of approaches naturally coincide
in the setting of regular string languages. However, as we will see in this paper, the di↵erence
between describing rectangular-shaped pictures (alone) and the pictures that allow general
shapes is quite crucial for several of our results.
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Isometric regular array grammars (IRAG) [1, 6] have been introduced as the lowest level of the
Chomsky hierarchy of grammars that describe two-dimensional languages. An isometric array
consists of (finitely) many occurrences of symbols from ⌃ placed in the grid points (pixels) of
Z2 (the discretized plane); the points of the plane which are not marked with elements of ⌃ are
supposed to be marked with the blank symbol # /2 ⌃. Notice that the introduction of a blank
symbol allows the description of pictures that are not of rectangular shape. These pictures are
usually formalized (more generally) as mappings Z2 ! ⌃ [ {#} with the understanding that
symbols from ⌃ are assigned to at most finitely many positions (grid points). The collection of
all such mappings (in other words, of all pictures), is denoted by ⌃++ in this paper, with the
implicit understanding that # /2 ⌃ is reserved as a background symbol.

Sometimes, isometric arrays are considered identical if they can be transferred into each other
by shifting. Here, we take the opposite approach, allowing to move the arrays defined by
a grammar to an arbitrary position by arbitrarily selecting the position of the start symbol.
By way of contrast, non-isometric varieties of picture-description mechanisms necessarily only
describe rectangular-shaped pictures. Therefore, these pictures are often described as m ⇥ n
matrices (arrays) containing symbols from ⌃ as entries. In this paper, we are going to denote
the set of all rectangular-shaped arrays over the alphabet ⌃ by ⌃+

+.

Now, we are going to formally relate the isometric arrays with non-isometric arrays. To this
end, we identify some m⇥n matrix (aij) with entries from ⌃, i.e., some element from ⌃+

+, with
the isometric array A with A(i, j) = aij for 1  i  m and 1  j  n and A(i, j) = # for all
other cases. In this sense, we can think of ⌃++ as being the set of all isometric rectangular
arrays whose left upper non-blank entry is at coordinate (1, 1).

Interestingly enough, also some sort of reverse embedding is possible. If A 2 ⌃++ is an isometric
array, then there is some smallest m ⇥ n rectangle such that outside of this rectangle, only
background symbols are attached to grid points via A. This (unique) rectangular-shaped array
can be viewed as an element of (⌃ [ {#})++. In other words, we have an embedding emb1 :
⌃+

+ ! ⌃++ and another embedding emb2 : ⌃++ ! (⌃ [ {#})++ such that

• If A 2 ⌃+
+, then A = emb2(emb1(A)).

• If A 2 ⌃++ has a regular shape (concerning the grid points labeled with symbols from
⌃) and if the uppermost leftmost grid point of this rectangular shaped array has the
coordinate (1, 1), then A = emb1(emb2(A)). Conversely, if A 2 ⌃++ does not satisfy the
mentioned conditions, then A 6= emb1(emb2(A)).

For simplicity, we will identify ⌃+
+ with {A 2 ⌃++ | emb1(A) 2 ⌃+

+}.

2. Definitions and Examples

Definition 2.1 An isometric regular array grammar G, or IRAG for short, is described by a

quintuple G = (N,⌃, P, S,#), where N is the nonterminal alphabet, ⌃ is the terminal alphabet,

P is the set of rules, S 2 N is the start symbol, and # is the blank symbol. Moreover, every
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rule from P is of the form

#A ! Ba , A# ! aB ,
# B

!
A a

,
A a

!
# B

, or A ! a ,

where A,B 2 N and a 2 ⌃. The derivation of a grammar proceeds as follows:

• At the beginning, the whole discretized plane is filled with blank symbols.

• Then, the start symbol S 2 N is placed on some grid position, replacing #. To be more

precise, this means that an initial configuration is described by some mapping ◆ : Z2 !
{S,#} such that |◆�(S)| = 1 (here ◆� denotes the inverse mapping of ◆).

• Intermediately, we find that all non-blank symbols in the plane are terminal symbols but

one, say, A 2 N . Formally, this means that an intermediate configuration can be described

by some mapping � : Z2 ! N [ ⌃ [ {#} satisfying |��(N)| = 1; in the case discussed in

the following, we assume that |��(A)| = 1 (here ��
denotes the inverse mapping of �).

– If the position left to A is blank, then we can apply a rule of the first listed type; this

application replaces the blank symbol to the left of A by B and then A by a. This type
of rule is therefore called a left movement.
Given �, the successor configuration �0

hence satisfies:

�0(x, y) =

8
><

>:

�(x, y) if �(x, y) 6= A

a if �(x, y) = A

B if �(x, y) = # ^ �(x+ 1, y) = A

The successor configurations �0
for the other types of rules informally described below

can be formalized in a similar way.

– If the position right to A is blank, we can similarly apply the second type of rule.

Applying such a rule implements a right movement.

– If the position above A is blank, we can likewise apply the third type of rule. This

means an upward movement.

– If the position below A is blank, we can alternatively apply the fourth type of rule,

which yields a downward movement.

• In any case, we can (if possible) apply the last type of rule; in that case A is replaced by a,
so that none of the previously described rule applications are possible henceforth. That is, a

terminal configuration can be seen as a mapping ⌧ : Z2 ! ⌃[{#} satisfying |⌧�(⌃)| < 1.

Let L(G) collect all isometric terminal arrays that can be derived by a finite sequence of rule

applications in the described way. More formally, we write � ) �0
if �0

is the successor

configuration of �. Then L(G) = {⌧ : Z2 ! (⌃ [ {#}) | ◆ )+ ⌧} .

As the start position is arbitrary, any isometric terminal array W : Z2 ! ⌃ [ {#} 2 L(G)
carries along an infinite number of other arrays W 0 2 L(G) that can be obtained by shifting W .

Definition 2.2 L⌃(IRAG) = {L(G) : G is an IRAG with terminal alphabet ⌃} .
LRect(G) = {L(G) \ ⌃+

+ : G is an IRAG with terminal alphabet ⌃} .
LRect,⌃(IRAG) = {LRect(G) : G is an IRAG with terminal alphabet ⌃} .
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Let us now define four special types of IRAG that are defined by forbidding certain directions.
Correspondingly, we obtain four types of families of picture languages.

Definition 2.3 Let G be some IRAG. If G contains no upwards (or downwards, or left, or

right) movements, we face an U-IRAG (or D-IRAG, L-IRAG, R-IRAG, respectively).

Definition 2.4 Let X 2 {U,D,L,R}. Then,

L⌃(X-IRAG) = {L(G) : G is a X-IRAG with terminal alphabet ⌃} .
LRect,⌃(X-IRAG) = {LRect(G) : G is an X-IRAG with terminal alphabet ⌃} .

Example 2.5 Let us consider the set K of tokens L of all sizes and of all proportions:

K =
�

(x (•)n)m�1

x x

n : n � 1,m � 2
 
.

The U -IRAG G = (N,⌃, P, S,#) such that LRect(G) = K is defined as follows:

– N = {S,A,B,E, F},
– ⌃ = {x, •}, and
– P = {S# ! xA,A# ! •A, #B ! B•, E# ! xE, #F ! Fx,

A •
!

# B
,

A •
!

# F
,

B x

!
# S

,
B x

!
# E

, E ! x, F ! x} .

By way of contrast, the following grammar uses all four types of movements.

Example 2.6 Consider the array language L the set of all square pictures of diagonal lines
from the upper left corner to the lower right corner where the elements in the diagonal are 1
and the other elements are 0. The IRAG G = (N,⌃, P, S,#) such that LRect(G) = L is defined
as follows: N = {S,A,B,C,H,E, F}, ⌃ = {0, 1}, P = P1 [ P2 [ P3 where P1 contains the
following rules, sequentially numbered for the ease of presentation:

1 : # A
!

S 1
, 2 : # A

!
A 0

, 3 : #A ! B 0 , 4 : #B ! B 0 , 5 :
B 1
!

# F
, 6 :

C 0
!

# C
,

7 : C# ! 0 H , 8 : H# ! 0 H , 9 : # E
!

H 0
, a : # A

!
E 1

, b :
F 0
!

# C
, c : S ! 1 ,

P2 = {d : F ! 0} and P3 = {f : E ! 1}.

Note: The rules from P1 [ P2 are used to generate square arrays of even rows and columns
and the rules from P1 [ P3 are used to generate square arrays of odd rows and columns. The
elements in L are the set of all pictures with equal number of rows and columns, i.e., m = n.
Hereafter we only say n and we have two cases for n.

For the sake of presentation, we consider only n = 5 and n = 6 to illustrate the two cases.

n = 5 :

1  4 0  4 0  4 0  3 0

#5 "2
0 1  4 0  3 0 0

#b #5 "2 "2
0 0 1f 0 0

#6 #b "9 "a "2
0 0 !7 0 1 0

#6 "9 "1
0 !7 0 !8 0 !8 0 1

n = 6 :

1  4 0  4 0  4 0  4 0  3 0

#5 "2
0 1  4 0  4 0  3 0 0

#b #5 "2 "2
0 0 1  3 0 0 0

#6 #b #5 "a "2 "2
0 0 0d 1 0 0

#6 #6 "9 "a "2
0 0 !7 0 !8 0 1 0

#6 "9 "1
0 !7 0 !8 0 !8 0 !8 0 1
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We now give the definition of boustrophedon finite automata, or BFA for short, a new au-
tomaton model for picture processing, that was introduced in [2]. A more general variant of
this automaton model, called general boustrophedon finite automaton, or GBFA for short, was
introduced in [3].

Definition 2.7 A boustrophedon finite automaton, or BFA for short, can be specified as a

7-tuple M = (Q,⌃, R, s, F,#,�), where Q is a finite set of states, ⌃ is an input alphabet,

R ✓ Q⇥ (⌃[{#})⇥Q is a finite set of rules. A rule (q, a, p) 2 R is usually written as qa ! p.
The special symbol # /2 ⌃ indicates the border of the rectangular picture that is processed, s 2 Q
is the initial state, F is the set of final states.

We are now going to discuss the notions of configurations, valid configurations and an according

configuration transition to formalize the work of BFAs, based on snapshots of their work.

Let � be a new symbol indicating an erased position and let ⌃#,� := ⌃ [ {#,�}. Then

CM := Q⇥ (⌃#,�)
+
+ ⇥ N is the set of configurations of M .

A configuration (p, A, µ) 2 CM is valid if 1  µ  |A|r and, for every i, 1  i  µ� 1, the ith

row equals # �|A|c�2 #, for every j, µ + 1  j  |A|r, the jth row equals #w#, w 2 ⌃|A|c�2
,

and, for some ⌫, 0  ⌫  |A|c � 2, w 2 ⌃|A|c�⌫�2
, the µth

row equals #�⌫ w#, if µ is odd and

#w �⌫ #, if µ is even. Notice that valid configurations model the idea of observable snapshots

of the work of the BFA.

• If (p, A, µ) and (q, A0, µ) are two valid configurations such that A and A0
are identical but

for one position (i, j), where A0[i, j] = � while A[i, j] 2 ⌃, then (p, A, µ) `M (q, A0, µ) if

pA[i, j] ! q 2 R.

• If (p, A, µ) and (q, A, µ+ 1) are two valid configurations, then (p, A, µ) `M (q, A, µ+ 1) if
the µth

row contains only # and � symbols, and if p# ! q 2 R.

The reflexive transitive closure of the relation `M is denoted by `⇤
M . The BFA M is determin-

istic, or a BDFA for short, if for all p 2 Q and a 2 ⌃ [ {#}, there is at most one q 2 Q with

pa ! q 2 R. The language L(M) accepted by M is then the set of all m⇥ n pictures W over

⌃ such that

(s,#m : W : #m, 1) `⇤
M (f,#m : �n

m : #m,m)

for some f 2 F .

The according array language family is denoted by L⌃(BFA). A BFA looks formally identical
to a string-processing finite automaton, with input alphabet ⌃ [ {#}. However, it is meant to
process arrays from ⌃+

+ by scanning the first row of the rectangle left to right and changing the
reading directions each time when a boundary symbol # is read (as the ox turns). We reserve
a special symbol � to fill the area already read by the BFA to define configurations.

We will also use two unary well-known operators on rectangular arrays, called quarter-turn

(written Q) and reflection about the base [5] (written Rb). As usual, we extend Q and Rb to
array languages and language families.
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3. Characterization Results

Let us introduce a normal form for BFAs [2] that ensures direction-awareness.

Definition 3.1 Let M = (Q,⌃, R, s, F,#,�) be a BFA. M is called direction-aware, or a d-

BFA for short, if there is a mapping d : Q ! {r, `} such that d(q) = d(p) for any rule qa ! p
with a 2 ⌃ and d(q) 6= d(p) for any rule q# ! p. In addition, d(s) = r.

We now prove the direction-aware normal form lemma, in short DANF lemma, for BFAs.

Lemma 3.2 L⌃(BFA) = L⌃(d� BFA).

Proof. L⌃(d� BFA) ✓ L⌃(BFA) is trivial. Conversely, letM = (Q,⌃, R, s, F,#,�) be a BFA.
Define a d-BFA Md = (Qd,⌃, Rd, (s, r), Fd,#,�), where Qd = Q⇥ {r, `}, with d : Qd ! {r, `},
(q, x) 7! x for x 2 {r, `}; Fd = F ⇥ {r, `} and

Rd = {(p, x)a ! (q, x) : pa ! q 2 R and x 2 {r, `}}
[ {(p, x)# ! (q, y) : p# ! q 2 R and x, y 2 {r, `}, x 6= y}.

The idea of the construction is that the second component in the state allows us to keep track
of the direction, depending upon reading odd- or even-numbered rows. 2

As can be seen, the direction of movement is made explicit in a second component of the state
alphabet in BFAs in DANF.

Theorem 3.3 L⌃(BFA) = LRect,⌃(U�IRAG) = LRect,⌃(D�IRAG) .

Proof. We first show that L⌃(BFA) ✓ LRect,⌃(U�IRAG) . Let M = (Q,⌃, R, s, F,#,�) be
some BFA. W.l.o.g., according to Lemma 3.2, we can assume that M is a BFA in DANF; so,
the second component of the state alphabet gives the direction of the movements. We remove
useless states from M so that M has only useful states.

Now define an U�IRAG, G = (N,⌃, P, S,#), with L(M) = LRect(G), in three steps. As a
first step we extract the LEFT, RIGHT movements and terminal rules. As a second step we
extract the DOWNWARD movement rules of the target U�IRAG from the given BFA M by
combining the non-# rule with the # rule of the BFA M . After the second step we eliminate
the non-terminating nonterminals of the target U�IRAG from the given BFA M in DANF in
the elimination step. As a third step we collect all the rules in steps 1 and 2 and eliminate
the non-terminating nonterminals, and we define the U�IRAG, G such that L(M) = LRect(G).
Let us write the three steps formally as follows:

First Step:

• #(p, `) ! (q, `)a 2 P for all (p, `)a ! (q, `) 2 R, a 2 ⌃ (LEFT movement),

• (p, r)# ! a(q, r) 2 P for all (p, r)a ! (q, r) 2 R, a 2 ⌃ (RIGHT movement),

• (p, d) ! a 2 P for all (p, d)a ! (f, d) 2 R, a 2 ⌃, (f, d) 2 F (terminal rules).
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Second Step:

•
(p,r) a

!
# (q0,`)

2 P for all {(p, r)a ! (q, r), (q, r)# ! (q0, `)} ✓ R;

• (p,`) a
!

# (q0,r)
2 P for all {(p, `)a ! (q, `), (q, `)# ! (q0, r)} ✓ R.

Elimination Step: In this step we eliminate some nonterminals, starting from N = Q:

LEFT elimination Delete (p, `) from N if (p, `)a ! (q, `) /2 R for any a 2 ⌃, (q, `) 2 Q.

RIGHT elimination (p, r)a ! (q, r) /2 R for any a 2 ⌃, (q, r) 2 Q.

Third Step: Define the required U�IRAG G = (N,⌃, P, S,#) where N constructed from Q in
the elimination step, S = (s, r), and P collects all rules described in the first and second step.

The idea of the construction is that simulating the U�IRAG with the given BFA M in DANF
that has only useful states. From the second component of the state information of the BFA we
use the directions to categorize the rule types left and right for the extraction of the U�IRAG’s
production rules. For the rule type downward, the turnings of the BFA are used carefully. So,
a step by step computation of the BFA is imitated to be a step by step derivation step of the
target grammar U�IRAG. At any stage of the BFA, the current state of the BFA is matched
with the current nonterminal of the simulating U�IRAG as in the figure below.

Input Array
# x • • • #
# x • • • #
# x • • • #
# x x x x #

BFA

# � � � � #
(p,`)

# x � � � #
# x • • • #
# x x x x #

U�IRAG
x • • •

(p,`) • • •
# # # #
# # # #

The merge of BFA and U�IRAG in the above picture is the input array, where � in BFA
and # in U�IRAG acts like mirror during merging. Hence L⌃(BFA) ✓ LRect,⌃(U�IRAG) .
Similarly we can prove L⌃(BFA) ◆ LRect,⌃(U�IRAG) . Hence L⌃(BFA) = LRect,⌃(U�IRAG) .
According to [3], L⌃(BFA) = Rb(L⌃(BFA)). We can see that Rb(L⌃(BFA)) works with the
RIGHT, UP and LEFT movements starting from the left lower corner of the given picture.
With this idea, we can obtain a similar proof for L⌃(BFA) = LRect,⌃(D�IRAG). Hence,
LRect,⌃(U�IRAG) = LRect,⌃(D�IRAG). 2

As a consequence of Theorem 3.3 and by the definition of quarter-turn Q we obtain:

Corollary 3.4 For each alphabet ⌃,

Q(L⌃(BFA)) = LRect,⌃(R�IRAG) = LRect,⌃(L�IRAG) .

Theorem 3.5 For each alphabet ⌃ with |⌃| > 1, L⌃(BFA) [Q(L⌃(BFA)) ( LRect,⌃(IRAG) .

Proof. The inclusion is a consequence of Theorem 3.3 and Corollary 3.4. The strict inclusion
can be seen through the array language L given in Example 2.6. We know from Section 6 in [2]
that L /2 L{0,1}(BFA)[Q(L{0,1}(BFA)). However, L 2 LRect,{0,1}(IRAG) from Example 2.6. 2
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LRect,⌃(IRAG)

L⌃(BFA) [Q(L⌃(BFA))

L⌃(BFA) = LRect,⌃(U�IRAG) Q(L⌃(BFA)) = LRect,⌃(R�IRAG)

L⌃(BFA) \Q(L⌃(BFA))

Figure 1: Relations between language families; see Thm. 3.5 & 3.3 and [2, 3]

Figure 1 shows the inclusion diagram for non-unary array languages, displaying strict inclusions
and incomparabilities. For the unary case, we know that all language families coincide except
for LRect,{a}(IRAG), for which we only conjecture equality with L{a}(BFA).

4. Discussions

We have discussed with the simple example of regular array grammars how classical array
language mechanisms introduced to follow the isometric approach to picture languages can be
employed to define rectangular-shaped pictures, which is typical for the non-isometric approach.

Conversely, in particular as BFAs process pictures rather in an isometric way, we can use them
also to describe non-rectangular arrays. Informally speaking, the processing should start in
the uppermost row that contains a symbol from ⌃. In this row, the processing starts on the
leftmost symbol, moves to the right, until it reaches the background symbol #. Upon sensing
it, the automaton moves downwards to the next row and continues processing it by moving to
the left, until again a background symbol # is sensed, when the next row is processed, etc.

For comparing these isometric array language classes, it is better to go for looking at equivalence
classes of languages under translation, usually denoted by square brackets. So, we arrive at
classes like [Liso

⌃ (BFA)] or [L⌃(IRAG)]. The picture of the language families become more
intricate here. An illustration can be found in Figure 2.

Theorem 4.1 For isometric array language classes, the inclusion and incomparability relations

stated in Figure 2 holds for any alphabet ⌃ with |⌃| > 1.

Proof. Basically, all arguments can be borrowed from the non-isometric case. Notice, however,
that the (unary!) picture

a

a a

a

cannot be described by any BFA-type mechanism, while three
directions of movements su�ce. 2
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[L⌃(IRAG)]

⇥
L⌃(U�IRAG)

⇤
[
⇥
L⌃(R�IRAG)

⇤

⇥
Liso
⌃ (BFA) [Q(Liso

⌃ (BFA))
⇤⇥

L⌃(U�IRAG)
⇤
=

⇥
L⌃(D�IRAG)

⇤

⇥
Liso
⌃ (BFA)

⇤

⇥
L⌃(R�IRAG)

⇤
=

⇥
L⌃(L�IRAG)

⇤

⇥
Q(Liso

⌃ (BFA))
⇤⇥

L⌃(U�IRAG)
⇤
\
⇥
L⌃(R�IRAG)

⇤

⇥
Liso
⌃ (BFA) \Q(Liso

⌃ (BFA))
⇤

Figure 2: Relations between isometric array language families

Acknowledgements

The third author would like to thank the University of Trier for all the support during his visits
in May 2015 and 2016, partially using overhead money from a DFG project.

References

[1] C. R. COOK, P. S.-P. WANG, A Chomsky hierarchy of isotonic array grammars and languages.
Computer Graphics and Image Processing 8 (1978), 144–152.

[2] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, D. G. THOMAS, Scanning Pictures the
Boustrophedon Way. In: R. P. BARNEVA, B. B. BHATTACHARYA, V. E. BRIMKOV (eds.),
International Workshop on Combinatorial Image Analysis IWCIA. LNCS 9448, Springer, 2015,
202–216.

[3] H. FERNAU, M. PARAMASIVAN, D. G. THOMAS, Picture Scanning Automata. In: R. P.
BARNEVA, V. E. BRIMKOV, J. M. R. S. TAVARES (eds.), International Symposium on Com-
putational Modeling of Objects Presented in Images: Fundamentals, Methods, and Applications
(CompIMAGE). LNCS, Springer, 2016, To appear.

[4] A. ROSENFELD, R. SIROMONEY, Picture Languages – A Survey. Languages of Design 1 (1993),
229–245.

[5] G. SIROMONEY, R. SIROMONEY, K. KRITHIVASAN, Picture Languages with Array Rewrit-
ing Rules. Information and Control (now Information and Computation) 22 (1973) 5, 447–470.

[6] P. S.-P. WANG, Some new results on isotonic array grammars. Information Processing Letters 10
(1980), 129–131.





ON LANGUAGES ACCEPTED BY
WEIGHTED RESTARTING AUTOMATA

Qichao Wang

Fachbereich Elektrotechnik/Informatik
Universität Kassel, 34109 Kassel, Germany
wang@theory.informatik.uni-kassel.de

Abstract
Originally, weighted restarting automata have been introduced in order to study quantitative
aspects of computations of restarting automata. Here we use them to define classes of for-
mal languages by restricting the weight associated to a given input word through an additional
requirement. In this way, a weighted restarting automaton can be used as a language accep-
tor, which may accept more languages than the underlying (unweighted) restarting automaton.
Here we consider the tropical semiring Z1 and its subsemiring N1, and the semirings of formal
languages REG(�) and CFL(�) over a finite alphabet �.

1. Introduction

Analysis by reduction is a linguistic technique that is used to check the correctness of sentences
of natural languages through sequences of local simplifications. Restarting automata have
been introduced as a formal model for the analysis by reduction [1]. After their introduction,
many di↵erent types and variants of restarting automata have been introduced and studied. A
recent overview on restarting automata is given in [7]. In order to study quantative aspects of
computations of restarting automata, weighted restarting automata were introduced in [8].

A weighted restarting automaton M is given by a pair (M,!), where M is a restarting au-
tomaton on some finite input alphabet ⌃, and ! is a weight function that assigns a weight
from some semiring S to each transition of M . The product (in S) of the weights of all tran-
sitions that are used in a computation yields a weight for that computation, and by forming
the sum over the weights of all accepting computations for a given input w 2 ⌃⇤, a value from
S is assigned to w. Thus, a partial function f : ⌃⇤ ! S is obtained. By looking at di↵erent
semirings S and di↵erent weight functions !, various quantitative aspects of the behavior of
M can be expressed through these functions. For example, for each input w 2 ⌃⇤, the value
f(w) can be the number of accepting computations on the input w, or the minimal number
of auxiliary symbols applied during an accepting computation on the input w. Therefore, by
placing a condition T on the value f(w), some words from the language L(M) that is accepted
by the underlying (unweighted) restarting automaton M can be filtered out. In this way, we
can define a sublanguage L

T

(M) of the language L(M) by combining the acceptance condition
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of M with a condition T on the weight f(w) for w 2 L(M).

However, the acceptance conditions relative to di↵erent semirings are not equally powerful. For
example, the boolean semiring ({0, 1},+, ·, 0, 1) can easily be simulated by other semirings. Here
we study the case that the semiring S is the tropical semiring Z1 = (Z [ {1},min,+,1, 0),
and its subsemiring N1 = (N [ {1},min,+,1, 0), and the case that S is the semiring
of context-free languages CFL(�) = (CFL(�),[, ·, ;, {�}), and its subsemiring REG(�) =
(REG(�),[, ·, ;, {�}) over a given finite alphabet �. In the latter case we restrict our at-
tention to the word-weighted restarting automata introduced in [9], that is, the weight of each
transition is taken to be a singleton. In [9] these automata are studied as transducers, while
here we use them as language acceptors.

2. Definitions and Examples

We assume that the reader is familiar with the standard notions and concepts of theoretical
computer science, such as monoids, finite automata, and semirings. Throughout the paper we
use |w| to denote the length of a word w, |w|

a

to denote the number of appearences of the
symbol a in w, and � to denote the empty word. Further, let REG denote the class of regular
languages, let CFL denote the class of context-free languages, and let DCFL denote the class
of deterministic context-free languages. Next,let N denote the set of all non-negative integers,
and let Z denote be the set of all integers. Finally, P(X) denotes the power set of a set X, and
Pfin(X) denotes the set of all finite subsets of X.

A restarting automaton (or RRWW-automaton) is a nondeterministic machine with a finite-
state control, a flexible tape with endmarkers, and a read/write window [1, 2]. Formally, it
is described by an 8-tuple M = (Q,⌃,�, c, $, q0, k, �), where Q is a finite set of states, ⌃ is a
finite input alphabet, � is a finite tape alphabet containing ⌃, the symbols c, $ 62 � are used as
markers for the left and right border of the work space, respectively, q0 2 Q is the initial state,
k � 1 is the size of the read/write window, and

� : Q⇥ PC

(k) ! P((Q⇥ ({MVR} [ PC

(k�1))) [ {Restart,Accept})

is the transition relation. Here PC

(k) is the set of possible contents of the read/write window
of M , where, for i � 0,

PC

(i) := (¢ · �i�1) [ �i [ (�i�1 · $) [ (¢ · �i�2 · $),

and

�i :=
i[

j=0

�j

, and PC

(k�1) :=
k�1[

i=0

PC

(i)
.

The relation � describes four di↵erent types of transition steps:

(1) A move-right step is of the form (q0,MVR) 2 �(q, u), where q, q

0 2 Q and u 2 PC

(k),
u 6= $. If M is in state q and sees the string u in its read/write window, then this move-
right step causes M to shift the read/write window one position to the right and to enter
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state q0. However, if the content u of the read/write window is only the symbol $, then no
move-right step is possible.

(2) A rewrite step is of the form (q0, v) 2 �(q, u), where q, q

0 2 Q, u 2 PC

(k), u 6= $, and
v 2 PC

(k�1) such that |v| < |u|. It causes M to replace the content u of the read/write
window by the string v, and to enter state q

0. Further, the read/write window is placed
immediately to the right of the string v. However, some additional restrictions apply in
that the border markers ¢ and $ must not disappear from the tape nor that new occurrences
of these markers are created. Further, the read/write window must not move across the
right border marker $, that is, if the string u ends in $, then so does the string v, and after
performing the rewrite operation, the read/write window is placed on the $-symbol.

(3) A restart step is of the form Restart 2 �(q, u), where q 2 Q and u 2 PC

(k). It causes M to
move its read/write window to the left end of the tape, so that the first symbol it contains
is the left border marker ¢, and to reenter the initial state q0.

(4) An accept step is of the form Accept 2 �(q, u), where q 2 Q and u 2 PC

(k). It causes M
to halt and accept.

If �(q, u) is undefined for some pair (q, u), then M necessarily halts in a corresponding situation,
and we say that M rejects. Finally, if each rewrite step is combined with a restart step into a
joint rewrite/restart operation, then M is called an RWW-automaton. An RRWW-automaton
is called an RRW-automaton if its tape alphabet � coincides with its input alphabet ⌃, that
is, if no auxiliary symbols are available. It is an RR-automaton if it is an RRW-automaton for
which the right-hand side v of each rewrite step (q0, v) 2 �(q, u) is a scattered subword of the
left-hand side u. Analogously, we obtain the RW-automaton and the R-automaton from the
RWW-automaton. In general, the automaton M is nondeterministic, that is, there can be two
or more instructions for the same pair (q, u), and thus, there can be more than one computation
for an input word. If this is not the case, the automaton is deterministic. We use the prefix det-

to denote deterministic classes of restarting automata. A non-forgetting restarting automaton
M has extended restart steps, which are combined with a change of state just like the move-right
and rewrite operations [5, 6]. The prefix nf- is used to denote types of non-forgetting restarting
automata. Further, a restarting automaton M = (Q,⌃,�, c, $, q0, k, �) is called stateless, if
Q = {q0} (see, e.g., [3, 4]). Thus, M can simply be written as M = (⌃,�, c, $, q0, k, �). We use
the prefix stl- to denote stateless types of restarting automata.

A configuration of M is a string ↵q�, where q 2 Q, and either ↵ = � and � 2 {c} · �⇤ · {$} or
↵ 2 {c} · �⇤ and � 2 �⇤ · {$}; here q is the current state, and ↵� is the current content of the
tape, where it is understood that the window contains the first k symbols of � or all of � when
|�|  k. A restarting configuration is of the form q0cw$. If w 2 ⌃⇤, then q0cw$ is an initial
configuration.

Any computation of M consists of certain phases. A phase, called a cycle, starts in a restarting
configuration, the head moves along the tape performing move-right operations and a single
rewrite operation until a restart operation is performed and thus a new restarting configuration
is reached. If no further restart operation is performed, the computation necessarily finishes in a
halting configuration – such a phase is called a tail. It is required that in each cycle M performs
exactly one rewrite step. A word w 2 ⌃⇤ is accepted by M , if there is an accepting computation
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which starts from the initial configuration q0cw$. By L(M) we denote the language consisting
of all input words that are accepted by M .

Next we come to the notion of monotonicity. Let C := ↵q� be a rewrite configuration of an
RRWW-automatonM , that is, a configuration in which a rewrite step is to be applied. Then |�|
is called the right distance of C, which is denoted byD

r

(C). A sequence of rewrite configurations
S = (C1, C2, . . . , Cn

) is called monotone if D
r

(C1) � D

r

(C2) � · · · � D

r

(C
n

), that is, if the
distance of the place of rewriting to the right end of the tape does not increase from one rewrite
step to the next. A computation of an RRWW-automaton M is called monotone if the sequence
of rewrite configurations that is obtained from the cycles of that computation is monotone.
Observe that here the rewrite configuration is not taken into account that corresponds to the
possible rewrite step that is executed in the tail of the computation considered. Finally, an
RRWW-automaton M is called monotone if all its computations that start with an initial
configuration are monotone. We use the prefix mon- to denote monotone types of restarting
automata.

For studying quantitative aspects of computations of restarting automata, the weighted restart-
ing automaton has been introduced in [8]. A weighted restarting automaton of type X, a wX-
automaton for short, is a pair (M,!), where M is a restarting automaton of type X, and ! is
a weight function from the transitions of M into a semiring S, that is, ! assigns an element
!(t) 2 S as a weight to each transition t of M . The product (in S) of the weights of all
transitions that are used in a computation then yields a weight for that computation, and the
sum over all weights of all accepting computations of M for a given input word w 2 ⌃⇤ yields
a value from S. In this way, a partial function f

M

!

: ⌃⇤ ! S is obtained. Here we use weighted
restarting automata to define sublanguages of the language that is accepted by the underlying
(unweighted) restarting automaton.

Definition 2.1 Let M = (Q,⌃,�, c, $, q0, k, �) be a restarting automaton, let ! be a weight
function from M into a semiring S, and let M = (M,!). For a subset T of S, L

T

(M) =
{w 2 L(M) | f

M

!

(w) 2 T } is the language accepted by M relative to T , that is, a word
w 2 ⌃⇤ belongs to the language L

T

(M) i↵ w 2 L(M) and f

M

!

(w) 2 T .

Definition 2.2 Let X be a type of restarting automaton, let S be a semiring, and let H be a
family of subsets of S. Then

L(X, S,H) = {L
T

(M) | M is a weighted restarting automaton of type X and T 2 H },

is the class of languages that are accepted by weighted restarting automata of type X relative
to H.

For the semirings of regular languages REG(�) and context-free languages CFL(�), the weight
of a transition of a restarting automaton M can be any regular or context-free language over �.
However, some more restricted types of weighted restarting automata were introduced in [9].
Here we only consider the so-called word-weighted restarting automata that are defined as
follows.
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Definition 2.3 A weighted restarting automaton M = (M,!) is called a word-weighted restart-
ing automaton of type X (a w

word

X-automaton for short), if M is a restarting automaton of type
X and ! is a weight function from M into a semiring of the form Pfin(�⇤) such that the weight
!(t) of each transition t of M is a singleton set, that is, it is of the form !(t) = {v} for some
v 2 �⇤.

We continue with an example that illustrates our definitions.

Example 2.4 Let M1 = (Q,⌃,�, c, $, q0, k, �) be the det-mon-R-automaton that is defined by
taking Q := {q0, qr}, � := ⌃ := {a, b, c}, and k := 3, where � is defined as follows:

t1 : (q0, caa) ! (q0,MVR), t7 : (q0, cab) ! (q0,MVR),

t2 : (q0, aaa) ! (q0,MVR), t8 : (q0, ccc) ! (q0,MVR),

t3 : (q0, aab) ! (q0,MVR), t9 : (q0, ccc) ! (q0,MVR),

t4 : (q0, abb) ! (q
r

, b), t10 : (q0, cc$) ! Accept,

t5 : (q0, abc) ! (q
r

, c), t11 : (q0, cc$) ! Accept,

t6 : (q0, ab$) ! (q
r

, $), t12 : (q0, c$) ! Accept,

t13,x : (q
r

, x) ! Restart for all admissible x.

It is easily seen that L(M1) = { ambmcn | m,n � 0 }. Let Z1 = (Z [ {1},min,+,1, 0) be
the tropical semiring, and let !1 be the weight function from M1 into the semiring Z1 that is
defined as follows

!1(ti) =

8
<

:

1, if i = {4, 5, 6},
�1, if i 2 {8, 9, 10, 11},
0, otherwise.

Let M1 = (M1,!1), and let T1 = {0}. Then f

M1
!1

(w) 2 T1 if and only if w 2 L(M1), and w

must be of the form a

n

b

n

c

n for n � 0, that is,

L

T1(M1) = { anbncn | n � 0 }.

Deterministic monotone R-automata can only recognize deterministic context-free languages,
while the language L

T1(M1) is not context-free, and it is not even accepted by any RRW-
automaton. Hence, we see that the notion of relative acceptance increases the expressive power
of a restarting automaton.

3. Results

It is well known that the class of languages accepted by (deterministic) RRWW- or RWW-
automata coincides with the class of (deterministic) context-free languages (see [2]). We have
seen that by using an acceptance condition relative to a subset of the semiring Z1, the weighted
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restarting automaton M1 given in Example 2.4 can accept a language that is not context-free.
Hence, the following proper inclusion results can be derived.

Corollary 3.1 For all X 2 {�,R} and H0 = {{0}},

(a) CFL ( L(mon-XRWW, Z1,H0).
(b) DCFL ( L(det-mon-XRWW, Z1,H0).

Now we compare the tropical semiring Z1 and its subsemiring N1 = (N [ {1},min,+,1, 0)
to the semirings of context-free languages CFL = (CFL(�),[, ·, ;, {�}) and regular languages
REG = (REG(�),[, ·, ;, {�}). Here we consider the following families of subsets of these semi-
rings. Let Hz

fin

be the family of finite sets of the semiring Z1, and let HN

fin

be the family of

finite sets of the semiring N1. Further, let Hcfl(�)
fin

be the family of sets of finite languages over a

finite alphabet �, and for each T 2 Hcfl(�)
fin

,
S

V 2T
V 2 CFL(�). In analogy to Hcfl(�)

fin

, let Hreg(�)
fin

be the family of sets of finite languages over a finite alphabet �, and for each T 2 Hreg(�)
fin

,S
V 2T

V 2 REG(�).

Theorem 3.2 For any type X of restarting automaton,

(a) L(X,N1, HN

fin

) ✓ L(X,REG(�), Hreg(�)
fin

).

(b) L(X,Z1, Hz

fin

) ✓ L(X,CFL(�), Hcfl(�)
fin

).

Because of the commutativity of the tropical semirings N1 and Z1, the above inclusions are
proper for some weak types of restarting automata.

Theorem 3.3

(a) L(stl-det-R(1),N1, HN

fin

) ( L(stl-det-R(1),REG(�), Hreg(�)
fin

).

(b) L(stl-det-R(1),Z1, Hz

fin

) ( L(stl-det-R(1),CFL(�), Hcfl(�)
fin

).

Further, for word-weighted restarting automata, we define the following weak acceptance.

Definition 3.4 Let M = (M,!) be a w

word

X-automaton with input alphabet ⌃, where ! maps
the transitions of M to singleton sets over �.

(a) For a set T 2 REG(�), L̂
T

(M) = {w 2 L(M) | fM

!

(w) \ T 6= ; } is the language weakly
accepted by M relative to the set T , that is, a word w 2 ⌃⇤ belongs to the language
L̂

T

(M) i↵ w 2 L(M) and f

M

!

(w) contains at least one element of T .

(b) Let H be a family of subsets of REG(�). Then

L̂(X,REG(�),H) = { L̂
T

(M) | M is a w

word

X-automaton and T 2 H}

is the class of languages that are accepted by w

word

X-automata relative to H.
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In [10] it is shown that weighted restarting automata with the weak acceptance relative to
REG(�) are equivalent to the non-forgetting restarting automata of corresponding type, i.e.,
L̂(X,REG(�),REG(�)) = L(nf-X) for each type X of restarting automaton. Based on this result
we give new characterizations of some well-known classes of formal languages.

Theorem 3.5 For all X 2 {�,R},

(a) REG = L(det-mon-R(1), N1,HN

fin

) = L̂((det-)mon-R(1), REG(�),REG(�)).

(b) CFL = L̂(mon-XRWW, REG(�),REG(�)).
(c) DCFL = L(det-mon-XRWW, N1,HN

fin

) = L̂(det-mon-XRWW, REG(�),REG(�)).

4. Conclusions

We have studied the expressive power of weighted restarting automata with various acceptance
conditions relative to a subset of di↵erent semirings and compared them. However, many
problems remain open. In particular, we do not yet have upper bounds of the expressive power
of word-weighted restarting automata of some strong types such as RWW and RRWW. Here we
have only considered the case of the tropical semirings Z1 and N1 and that of the semirings
of formal languages CFL(�) and REG(�) over a finite alphabet �. In future the acceptance
conditions relative to some other semirings will be studied.
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Advances in Formal Languages and Applications. 25, Springer, Heidelberg, 2006, 269–303.

[8] F. OTTO, Q. WANG, Weighted Restarting Automata. Soft Computing (2016). DOI:
10.1007/s00500-016-2164-4. The results of this paper have been announced at WATA 2014 in
Leipzig.

[9] Q. WANG, N. HUNDESHAGEN, F. OTTO, Weighted Restarting Automata and Pushdown
Relations. In: A. MALETTI (ed.), Algebraic Informatics - 6th International Conference, CAI

2015, Proceedings. Lecture Notes in Computer Science 9270, Springer, Switzerland, 2015, 196–
207.

[10] Q. WANG, F. OTTO, Weighted Restarting Automata as Language Acceptors. In: Y.-S. HAN,
K.SALOMAA (eds.), Implementation and Application of Automata - 21st International Confer-

ence, CIAA 2016, Proceedings. Lecture Notes in Computer Science 9705, Springer, Switzerland,
2016, 298–309.



Author Index

B
Bensch, Suna, 35

F
Fazekas, Szilárd Zsolt, 7
Fernau, Henning, 55

H
Hospodár, Michal, 15

K
Kutrib, Martin, 35
Kwee, Kent, 47

M
Madejski, Grzegorz, 25
Malcher, Andreas, 35

O
Otto, Friedrich, 47

P
Paramasivan, Meenakshi, 55

T
Thomas, D. Gnanaraj, 55

W
Wang, Qichao, 65

Y
Yamamura, Akihiro, 7




