

Rudolf Freund, František Mráz, and Daniel Průša (eds.)

Ninth Workshop on
Non-Classical Models of

Automata and Applications
(NCMA 2017)

Short Papers

© Institut für Computersprachen
TU Wien
1040 Wien, Favoritenstraße 9-11

Druck: Druckerei Riegelnik
1080 Wien, Piaristengasse 19

Preface

This volume contains the five short contributions of the Ninth Workshop on Non-Classical

Models of Automata and Applications (NCMA 2017) held in Prague, Czech Republic, on August
17th and 18th, 2017.

The NCMA workshop series was established in 2009 as an annual forum for researchers work-
ing on di↵erent aspects of non-classical and classical models of automata and grammars. The
purpose of the NCMA workshop series is to provide an opportunity to exchange and develop
novel ideas as well as to stimulate research on non-classical and classical models of automata
and grammar-like structures. Many models of automata and grammars are studied from dif-
ferent points of view in various areas, both as theoretical concepts and as formal models for
applications. The goal of the NCMA workshop series is to motivate a deeper coverage of this
particular area and in this way to foster new insights and substantial progress in computer
science as a whole.

The previous workshops took place in the following places:

2009 Wroclaw, Poland,
2010 Jena, Germany,
2011 Milan, Italy,
2012 Fribourg, Switzerland,
2013 Ume̊a, Sweden,
2014 Kassel, Germany,
2015 Porto, Portugal, and
2016 Debrecen, Hungary.

Since 2014, in addition to the invited talks and regular contributions, the NCMA workshops
have also included short presentations reporting on recent results or ongoing work. Nevertheless,
each short presentation has been evaluated by at least two members of the Program Committee.
This volume contains extended abstracts of the five short papers selected for presentation at
the Ninth Workshop on Non-Classical Models of Automata and Applications in Prague.

4 Preface

We thank the Department of Software and Computer Science Education of the Faculty of
Mathematics and Physics of Charles University in Prague and the Czech Science Foundation
(grant projects PRVOUK P46 and 15-04960S) for their support. We also thank the Institute
of Computer Languages of the TU Wien for covering the production costs of the proceedings
and this collection of short papers. Moreover, we sincerely thank Anna Kotěšovcová (Conforg)
for local arrangements and the organization of NCMA 2017.

August 2017

Rudolf Freund, Wien

Frantǐsek Mráz, Prague

Daniel Pr̊uša, Prague

Table of Contents

Short Papers

P SYSTEMS WITH COSTS AND THEIR RELATION TO PRICED TIME
AUTOMATA AND PRICED TIME PETRI NETS (ABSTRACT) 7

Bogdan Aman, Péter Battyányi, Gabriel Ciobanu, and György Vaszil

A NOVEL STREAM CIPHER BASED ON DETERMINISTIC FINITE AUTOMATON 11

Pál Dömösi and Géza Horváth

VARIANTS OF P COLONY AUTOMATA . 17

Kristóf Kántor and György Vaszil

QUANTUM AUTOMATA FOR ONLINE MINIMIZATION PROBLEMS 25

Kamil Khadiev and Aliya Khadieva

MEMBERSHIP PROBLEM FOR TWO-DIMENSIONAL JUMPING FINITE
AUTOMATA . 33

Grzegorz Madejski and Andrzej Szepietowski

Author Index . 41

P SYSTEMS WITH COSTS AND THEIR
RELATION TO PRICED TIME AUTOMATA

AND PRICED TIME PETRI NETS
(ABSTRACT)

Bogdan Aman

(A)
Péter Battyányi

(B)

Gabriel Ciobanu

(A)
György Vaszil

(B,C)

(A)Romanian Academy, Institute of Computer Science, Iasi, Romania
bogdan.aman@gmail.com, gabriel@info.uaic.ro

(B) Department of Computer Science, Faculty of Informatics,
University of Debrecen, Kassai út 26, 4028 Debrecen, Hungary

{battyanyi.peter,vaszil.gyorgy}@inf.unideb.hu

Membrane systems of P systems is a natural computational model capturing some of the fea-
tures of living cells organized in tissues and higher ordered structures [5]. The model describes
a distributed, parallel, synchronious computational model, where the objects are contained in
compartments which are organized in an embedded, tree-like structure. The objects in each
compartment evolve in a nondeterministic, highly parallel manner: the rules enable commu-
nication of membranes and membrane dissolution as well. At a computational step in each
compartment the rules applied to the objects of the compartment are chosen nondeterminis-
tically and in a maximally parallel manner, so that no new rule can be applied to remaining
object in that compartment. The rules involve communication of membranes by messages:
which means that certain labels direct the movement of objects – they can either ooze into
the parent membrane, permeate into one of the children membranes or stay in their places. A
special message conveys the dissolution of the present membrane.

Here, in addition to the usual definition of rules, we add a function defining costs for the
execution of rules or for the preservation of the content of a compartment. We consider the
cost only as an external/observer variable, and thus whether a rule is applicable only depends
on available resources (not cost value). In our first model, the costs assigned to the rules of
the di↵erent compartments are kept constant in the membrane system. Additionally, storage
costs for all the elements can be given in the compartments (with multiplicities), which are also
fixed for a given P system. In the basic interpretation this storage cost is zero. In this talk we

(C)The work of Gy. Vaszil was supported in part by grant no. MAT120558 of the National Research,
Development and Innovation O�ce, Hungary.

8 Bogdan Aman, Péter Battyányi, Gabriel Ciobanu, György Vaszil

present an abstract syntax of the membrane systems with costs, and then define a structural
operational semantics of P systems with costs.

Next we consider the model of linearly priced time automata with costs with both transitions
and locations in the spirit of the work by Abdulla and Mayr [4] and Alur et al [1]. Timed
automata are tools for modelling real-time processes: a discrete transition graph is equipped
with a finite set of non-negative real valued variables, the clock variables. The semantics is
given by an infinite transition system: the locations are designated by vertices of the transition
graph, while the edges represent the di↵erent transitions which can be of two kinds: a change
of location (discrete transition) or a time consumption (time transition). An edge is annotated
with a guard, an action and a reset set. A transition is enabled only if the guard fulfills by the
actual valuation. The actions are taken immediately by the transition, and the reset set resets
the clock variables forming the set to zero. Additionally, costs are associated to each location
and transition, hence costs can be calculated both for discrete and time transition steps.

Finally, we consider priced timed Petri nets [4]. As usual, the Petri net is constituted by places
and transitions with the exception that tokens now denote pairs of places and nonnegative real
numbers called the age of a place. A marking is a finite multiset of tokens. We distinguish timed
and discrete transition relations: a timed transition relation increases the time components of
the tokens in the initial marking by a certain positive real value, while the discrete transition
relation alters the initial marking itself. Moreover, a cost is calculated by a cost-function for
each type of transitions.

We continue the investigations started by Aman and Ciobanu in this area ([2, 3]). Namely,
we target the question of relating the P systems with costs to priced timed automata and
priced timed Petri nets. In the latter two computational models with costs mainly two kinds
of cost problems are considered: the Cost-Threshold Problem, where an evolution cost under
a certain threshold value is intended, and the Cost-Optimality Problem, where the minimal
evolution cost is computed. In accordance with this, we examine P systems with costs with
respect to the Cost-Threshold Problem and the Cost-Optimality Problem. We also intend to
investigate networks of P systems with costs (tissues with costs), as well as networks of priced
timed automata. It is also an interesting question how di↵erent evolution strategies influence
the computed cost of reaching a desired configuration.

References

[1] R. ALUR, S. L. TORRE, G. J. PAPPAS, Optimal paths in weighted timed automata. In:
M. D. D. BENEDETTO, A. SANGIOVANNI-VINCENTELLI (eds.), Hybrid Systems: Compu-
tation and Control, 4th International Workshop, HSCC 2001 Rome, Italy, March 28-30, 2001
Proceedings . LNCS 2034, Springer, Berlin, Heidelberg, 2001, 49–62.

[2] B. AMAN, G. CIOBANU, Time Delays in Membrane Systems and Petri Nets. In: M. MASSINK,
G. NORMAN (eds.), Proceedings Ninth Workshop on Quantitative Aspects of Programming Lan-
guages, QAPL 2011, Saarbrücken, Germany, April 1–3, 2011.. Electronic Proceedings in Theoret-
ical Computer Science 57, 2011, 47–60.

P SYSTEMS WITH COSTS 9

[3] B. AMAN, G. CIOBANU, Verifying P Systems with Costs by Using Priced-Timed Maude.
In: C. GRACIANI, D. ORELLANA-MARTÍN, A. RISCOS-NÚEZ, Á. ROMERO-JIMÉNEZ,
L. VALENCIA-CABRERA (eds.), Proceedings of the Fourteenth Brainstorming Week on Mem-
brane Computing, 14th BWMC, Sevilla, Spain, February 1–5, 2016 . LNCS 2034, Springer, Berlin,
Heidelberg, 2016, 85–96.

[4] R. M. MAYR, P. A. ABDULLA, Priced Timed Petri Nets. Logical Methods in Computer Science
9 (2013) 4, 1–51.

[5] GH. PĂUN, Computing with membranes. Journal of Computer and System Sciences 61 (2000) 1,
108–143.

A NOVEL STREAM CIPHER BASED ON
DETERMINISTIC FINITE AUTOMATON

Pál Dömösi(A) Géza Horváth(A)

(A)Faculty of Informatics, University of Debrecen, H-4028 Debrecen Kassai u. 26. Hungary
domosi@unideb.hu horvath.geza@inf.unideb.hu

Abstract
In this paper we describe a novel symmetric stream cipher based on finite automaton without

outputs such that its transition table forms a Latin square. The state and input sets of the key-

automaton coincide with the plaintext and also the ciphertext alphabet. During the encryption

the plaintext is read in sequentially character by character. After getting the next (initially the

first) plaintext character, the system gets simultaneously the next (initially the first) pseudoran-

dom string which is also an input string of the key-automaton. The corresponding ciphertext

character will coincide with the state of the key-automaton into which this pseudorandom in-

put string takes the automaton from the state which coincides with the corresponding plaintext

character. The decryption works similarly, using a so-called inverse key-automaton instead of

the key automaton such that the input strings will be the mirror images of the corresponding

pseudorandom strings.

1. Introduction

In this paper we are going to introduce a novel stream cipher based on deterministic finite
automaton without outputs which is more simple and more e↵ective than the previously intro-
duced cryptosystems based on automata theory.

1.1. Preliminaries

Automata theory provides a natural basis for designing cryptosystems and several such systems
have been designed. Some of them are based on Mealy automata or their generalization, some
of them are based on cellular automata, while others are based on compositions of automata.

Almost all cryptosystems can be modelled with Mealy machines (as sequential machines) or
generalized sequential machines. During encryption the system first receives a preliminary in-
put, which contains the encryption key automaton (and sometimes a secondary encryption key
as well). Following this key the input contains the plaintext stream, as a string of input signals
for the automaton, and starting the automaton from a given state, the encrypted message can

12 Pál Dömösi, Géza Horváth

indeed be generated as an output signal string initiated by the input signal string. Decryption
is performed in a likewise manner: the encryption key is substituted by the decryption key so
that plaintext and ciphertext messages change roles. This method has several variants. Many
famous mechanical cryptographic machines are concrete examples of this interpretation. Some
of these machines are still used as software versions. A further generation of the cryptosystems
based on Mealy machines is the family of public key FAPKC systems. They use the mathemat-
ical conjecture that it is di�cult to find the reverse automaton for delayed, weakly invertible
automata. Unfortunately these systems can be defeated. So as to prevent attacks there was
developed a refinement of this system, called FAPKC-3. There are two methods to break this
cryptographic system.

Besides the vulnerability of FAPKC and FAPKC-3, the main problem of the most cryptosys-
tems based on Mealy machines is that they su↵er from the lack of systematic and massive
cryptanalytic research.1 These facts are serious drawbacks in their practical applications.

Almost from the very beginning of research into cellular automata, there have been serious
attempts at cryptographic applications. Cryptosystems of this kind usually use the plaintext
as the initial state of the cellular automaton, and the encryption key is the transition rules for
the cells. The state reached after a given number of steps provides the encrypted message.

The best-known cellular automaton based cryptosystems all share the common problem of
serious realization di�culties: some systems are easy to defeat, the technical realization of
others result in slow performance, and still others exhibit di�culties in the choice of the key-
automaton. A further common drawback of cellular automaton based cryptosystems is that
their micro sized technical realization poses serious di�culties and they are not always econom-
ical either.

To overcome the discussed problems, a symmetric cryptosystem is described in [1]. It has a
Rabin-Scott automaton as key for encryption and decryption. The applied key automaton per-
forms encryption of the plaintext character by character assigning an encrypted counterpart of
variable length to each character, the encryption performs a ciphertext with a length substan-
tially exceeding the length of the plaintext. This system has a serious disadvantage that the
ciphertext is significantly longer than the plaintext, with the ciphertext even being multiple
times longer than the plaintext.

In [2, 3] new block ciphers based on compositions of automata are introduced. Both systems
use the following simple idea: Consider a giant-size permutation automaton such that the set
of states and the set of inputs consist of all given length of strings over a non-trivial alphabet
as all possible plaintext/ciphertext blocks. Moreover consider a cryptographically secure pseu-
dorandom number generator with large periodicity having the property that, getting its really
random kernel, it serves a sequence of pseudorandom strings as inputs for the automaton. For
each plaintext block the system calculates the new state into which the recent pseudorandom
string takes the automaton from the state which is identified as the recent plaintext block.

1Among others, the vulnerability of these systems may be due to the well-known fact that automaton
mappings are length and prefix preserving, and that gsm mappings are prefix preserving. Therefore, they seem
to be vulnerable to adaptive chosen-ciphertext attacks.

A NOVEL STREAM CIPHER BASED ON DETERMINISTIC FINITE AUTOMATON 13

The string, identified as the new state, will be the ciphertext block ordered to the considered
plaintext block. Of course, the ciphertext will be the catenation of the generated ciphertext
blocks. The giant size of the automaton makes it infeasible to break the system by brute-force
method.

The problem of this idea is that to store the transition matrix having 2128 states and 2128 input
letters is impossible. The basic idea of this cipher is to operate on a giant secret transition
matrix which is compressed into the memory using automata-theoretic methods. This problem
can be overcome considering automata which consists of composition of automata. In this
case, we should store only the component-automata and the structure of the composition.
Moreover, if the component automata are isomorphic to each others then it is enough to store
the transition matrix of one component automaton and the structure of the isomorphisms.
By this recognition, the storage of automata having 2128 states and 2128 input letters can be
easily solved. Because of the giant size of the matrix, there is no hope to attack the system by
brute-force method. On the other hand, this giant matrix can be generated unambiguously by
a bitstring of 782 bytes length. Note that this less than 1 kilobyte long string can be generated
by an appropriate hash function using a secret password of any length. This cipher overcomes
all of the discussed disadvantages, however our new cryptosystem uses more simple operations,
because it does not work with automata compositions, the only operator we use is the direct
access to an element in the transition matrix.

1.2. Basic Terms and Notations

We start with some standard concepts and notations. By an alphabet we mean a finite nonempty
set. The elements of an alphabet are called letters. A word over an alphabet ⌃ is a finite string
consisting of letters of ⌃. A word over a binary alphabet is called a bit string. The string
consisting of zero letters is called the empty word, written by �. The length of a word w, in
symbols |w|, means the number of letters in w when each letter is counted as many times as it
occurs. By definition, |�| = 0. At the same time, for any set H, |H| denotes the cardinality of

H. In addition, for every nonempty word w, denote by �!w the last letter of w. (
�!
� is not defined.)

If u = x1 · · · xk and v = xk+1 · · · x` are words over an alphabet ⌃ (with x1, . . . , xk, xk+1, . . . , x` 2
⌃), then their catenation uv = x1 · · · xkxk+1 · · · x` is also a word over ⌃. In this case we also
say that u is a prefix of uv and v is a su�x of uv. Catenation is an associative operation and,
by definition, the empty word � is the identity with respect to catenation: w� = �w = w
for any word w. For every word w 2 ⌃⇤, put w0 = �, moreover, wn = wwn�1, n � 1. Let ⌃⇤

be the set of all words over ⌃, moreover, let ⌃+ = ⌃⇤ \ {�}. ⌃⇤ and ⌃+ are the free monoid

and the free semigroup, respectively, generated by ⌃ under catenation. In particular, we put
⌃0 = {�},⌃n = {w : |w| = n}, n � 1, and ⌃(0) = ⌃0,⌃(n) = {w : |w|  n}, n � 1. In addition,
for every string x1 · · · xk with x1, . . . , xk 2 ⌃, the string xk · · · x1 is called a mirror image of
x1 · · · xk. We will use the notation pR as the mirror image of p for every p 2 ⌃+. Moreover, by
definition, let �R = �.

By an automaton we mean a deterministic finite automaton without outputs. In more details,
an automaton is an algebraic structure A = (A,⌃, �) consisting of the nonempty and finite

14 Pál Dömösi, Géza Horváth

state set A, the nonempty and finite input set ⌃, and a transition function � : A ⇥ ⌃ ! A .
The elements of the state set are the states, and the elements of the input set are the input

signals. An element of A+ is called a state word

2 and an element of ⌃⇤ is called an input
word. State and input words are also called state strings and input strings, respectively. If a
state string a1a2 · · · as (a1, . . . , as 2 A) has at least three elements, the states a2, a3, . . . , as�1

are also called intermediate states. It is understood that � is extended to �⇤ : A ⇥ ⌃⇤ ! A+

with �⇤(a,�) = a, �⇤(a, xq) = �(a, x)�⇤(�(a, x), q), a 2 A, x 2 ⌃, q 2 ⌃⇤. In other words,
�⇤(a,�) = a and for every nonempty input word x1x2 · · · xs 2 ⌃+ (where x1, x2, . . . , xs 2 ⌃)
there are a1, . . . , as 2 A with �(a, x1) = a1, �(a1, x2) = a2, . . . , �(as�1, xs) = as such that
�⇤(a, x1 · · · xs) = a1 · · · as.

In the sequel, we will consider the transition of an automaton in this extended form and thus

we will denote it by the same Greek letter �. If
����!
�(a, w) = b holds for some a, b 2 A,w 2 ⌃⇤ then

we say that w takes the automaton from its state a into the state b, and we also say that the
automaton goes from the state a into the state b under the e↵ect of w.

The transition function can be written in a matrix form, and we call this transition matrix a
Latin square if each row and column is a permutation of states.

2. Results

The working of the considered system mainly di↵ers from the most of the stream ciphers: it
does not generate the ciphertexts in such a way that the plaintext bit stream is combined
with a cipher bit stream by an exclusive-or operation (XOR). On the other hand, it has the
main property of the stream ciphers: the plaintext digits are encrypted one at a time, and the
transformation of successive digits varies during the encryption.

The subject matter of the presented work is a symmetric stream cipher based on finite automa-
ton without outputs. For encryption the system uses the transition matrix of a key-automaton
without outputs as the secret key. This transition matrix forms a Latin square. For decryp-
tion the system also has a so-called inverse key-automaton which moves from a given state b
under a given input sign xR into the state a if and only if the original key-automaton moves
from the state a into the state b under the e↵ect of x. The input alphabet, the state set,
the plaintext alphabet and the ciphertext alphabet coincide. A further element of the system
is a pseudorandom generator which generates pseudorandom character strings with a given
length. During encryption the plaintext is read in sequentially character by character and the
key automaton assigns to each plaintext character the corresponding state which is the same
as the read plaintext character. The corresponding ciphertext character will be the state into
which the key-automaton moves from the assigned state under the e↵ect of the next (initially
the first) pseudorandom string (with a given length). The apparatus creates the ciphertext
by linking these character strings together. During decryption the ciphertext is read in se-
quentially character by character and the inverse key automaton assigns to each ciphertext

2The empty word is not considered as a state word.

A NOVEL STREAM CIPHER BASED ON DETERMINISTIC FINITE AUTOMATON 15

character the corresponding state which is the same as the original plaintext character. The
corresponding plaintext character will be the state into which the inverse key-automaton moves
from the assigned state under the e↵ect of the mirror image of the next pseudorandom string.
The apparatus recreates the plaintext by linking these character strings together.

Next we give a formal description of this system.

2.1. Key Automaton

Consider an automaton A = (A,⌃, �) with A = ⌃, where for every a, b 2 A (a 6= b) and
x, y 2 ⌃ (x 6= y), �(a, x) 6= �(b, x) and �(a, x) 6= �(a, y). Thus, A is a permutation automaton,
i.e., each row of the transition matrix forms a permutation of the state set. This is an essential
property to ensure the unambiguity of the ciphertext for any plaintext.

For the security, we also assume that all columns of the transition table also form a permutation
of the state set.

Let A�1 = (A,⌃, ��1) be the automaton for which ��1(b, x) = a with a, b 2 A, x 2 ⌃ if and
only if �(a, x) = b.

In what follows A will be called the key-automaton and A�1 will be called the inverse key

automaton.

2.2. Encryption

Let p1, . . . , pk 2 A be a plaintext and let r1, . . . , rk 2 ⌃+ be random strings generated by the
pseudorandom number generator starting by a seed r0. We note that |r0|, . . . , |rk| = n holds
for a fixed positive integer n.

The ciphertext will be c1 · · · ck with c1 =
�����!
�(p1, r1), . . . , ck =

�����!
�(pk, rk).

2.3. Decryption

Let c1, . . . , ck 2 A be a ciphertext and let r1, . . . , rk 2 ⌃+ be the same random strings generated
by the pseudorandom number generator starting by a seed r0.

The decrypted plaintext will be p1 · · · pk with p1 =
���������!
��1(c1, (r1)R), . . . pk =

���������!
��1(ck, (rk)R).

16 Pál Dömösi, Géza Horváth

2.4. Example

In the following very simple example we are going to use a key automaton A = (A,⌃, �), where
A = ⌃ = {0, 1, 2, 3}. We use the A�1 = (A,⌃, ��1) automaton for decryption.

Az }| {
� 0 1 2 3
0 1 2 3 0
1 2 0 1 3
2 3 1 0 2
3 0 3 2 1

Az }| {
��1 0 1 2 3
0 3 0 1 2
1 1 2 0 3
2 2 1 3 0
3 0 3 2 1

plaintext: 0123

pseudorandom strings: 11, 21, 30, 31

ciphertext: 1030

3. Conclusions

In this paper we introduced a novel stream cipher based on deterministic finite automaton
without outputs. This is just a principle of our novel cryptosystem, we can increase the security
of the stream cipher by using di↵erent core for the pseudorandom number generator during each
encryption and we can also create a block cipher based on this stream cipher which can be a
true alternative of the recently used complex block ciphers.

References

[1] P. DÖMÖSI, A Novel Cryptosystem Based on Finite Automata without Outputs. In: M. ITO,
Y. KOBAYASHI, K. SHOJI (eds.), Automata, Formal Languages, and Algebraic Systems. World
Scientific, 2010, 23–32.

[2] P. DÖMÖSI, G. HORVÁTH, A novel cryptosystem based on abstract automata and Latin cubes.
Studia Scientiarum Mathematicarum Hungarica 52 (2015) 2, 221–232.

[3] P. DÖMÖSI, G. HORVÁTH, A novel cryptosystem based on Gluškov product of automata. Acta
Cybernetica 22 (2015), 359–371.

VARIANTS OF P COLONY AUTOMATA

Kristóf Kántor György Vaszil

Department of Computer Science, Faculty of Informatics
University of Debrecen

Kassai út 26, 4028 Debrecen, Hungary
{kantor.kristof, vaszil.gyorgy}@inf.unideb.hu

Abstract
We give an overview of P colony automata presenting recent results and research directions of

the area.

1. Introduction

P colonies are tissue-like membrane systems modeling a community of very simple computing
agents (cells), living together and interacting in a shared environment, see [17, 18]. The name
colony comes from the theory of grammar systems (see [7]), from one of the grammatical models
studied in the field called a colony of grammars. Such a colony (see also [16]), is a collection
of very simple generative grammars (generating finite languages each), but by behaving as a
cooperating system, they are able to generate fairly complicated languages, thus, the computing
power of the system as a whole increases considerably when compared to the power of the
individual components.

P colonies represent this approach in the framework of membrane computing. The model is
similar to tissue-like membrane systems, the environment and the computing agents are both
described by multisets of objects which are processed by the colony member cells using rules
which enable the transformation of the objects and the exchange of objects between the cells
and the environment. The capabilities of the computing agents are very restricted, both from
the points of view of information storage and information processing possibilities. First, only
a limited number of objects are allowed to be present inside the cells simultaneously (this is
called the capacity of the system), and second, the rules are very simple, they are either of the
form a ! b (for changing an object a into an object b inside the cell), or a $ b (for exchanging
an object a inside a cell with an object b in the environment). The rules are grouped into
programs. If the capacity of the colony is k, then each program consists of k rules which
(when the program is applied) are applied to the k objects simultaneously. A computation
of the colony consists of a sequence of computational steps during which the colony member
cells execute their programs in parallel, until the system reaches one of the final configurations
(usually given as the set of halting configurations, that is, those situations when no programs
can be applied by any of the cells).

18 Kristóf Kántor, György Vaszil

P colonies have been extensively studied, it has been shown, for example, that although they
are extremely simple, they are computationally complete computing devices even with very
restricted size parameters and other syntactic or functioning restrictions. For these, and more
topics, results, see [5, 6, 4, 3, 8, 9, 12, 13].

As P colonies work with multisets of objects, it is natural to look at the result of the compu-
tations as sets of numbers (sets of vectors) represented by the multiplicities of certain objects
present in the final configurations. On the other hand, being able to describe sets of strings
instead of numbers, is also of interest. P colony automata were introduced in [2] for this pur-
pose: to be able to accept with P colonies strings and string languages (instead of multiset
collections). The idea of P colony automata is to assume the presence of an input tape with
an input string, and designate certain rules as tape rules. When such a tape rule is applied,
the symbol which is processed by the rule should also be read from the input tape. The dif-
ficulty of this idea comes from the possibility of applying several programs, and thus, several
tape rules simultaneously, which gives rise to possible conflicts between tape rules which would
need to read di↵erent symbols from the same input. Nevertheless, several variants of P colony
automata turned out to be computationally complete, as shown in [2] and later in [1].

Here we consider a di↵erent way of dealing with strings in P colonies. The model was introduced
in [15] under the name of generalized P colony automata, and studied further in [14]. The idea
is to define the reading of input symbols in a way that is more close to the nature of other kinds
of membrane computing systems, especially antiport P systems and P automata in particular.
P automata, introduced in [11] (see also [10]), are P systems using symport and antiport rules
(see [19]), characterizing string languages in a di↵erent way than “ordinary” P colony automata.
They do not have input tapes with predefined input strings. Instead of reading input tapes,
they associate strings to their computations by keeping track of the communication with the
environment. They are not forced to a certain behavior through the given input, but operate and
communicate freely with the environment, where each object which can be requested for input
by the communication rules of the P system is assumed to be available in an unbounded supply.
The accepted strings (the strings which are said to be read by the system) are determined by the
sequences of those multisets which enter the system from the environment during computations.
Such a sequence of multisets is mapped to a string, a sequence of symbols which constitute the
string accepted by a particular computation.

A similar idea is employed in generalized P colony automata, the idea of characterizing strings
through the sequences of multisets processed during computations. The computations of the
colony define accepted multiset sequences, which are turned into accepted strings by mapping
the multiset sequences to symbol sequences (strings) over some previously given alphabet. They
also have rules distinguished as tape rules, and the application of such a tape rule also implies
the reading of the processed symbol from the input (as in “ordinary” P colony automata), but
unlike in the original model, the automaton is allowed to read more than one such symbol in
a single computational step. This way generalized P colony automata avoid the conflicts that
would arise by the simultaneous use of tape rules processing (and therefore reading) di↵erent
symbols, but they may read several symbols (a multiset of symbols) in one computational
step. This means that during a computation consisting of a sequence of computational steps,
a sequence of multisets is read from the input. This sequence of multisets then can be mapped

VARIANTS OF P COLONY AUTOMATA 19

into a string (a sequence of symbols) in a similar way as in P automata.

In [15], some basic variants of the model were introduced and studied from the point of view
of their computational power. In [14] we continued the investigations structuring our results
around the capacity of the systems, and di↵erent types of restrictions imposed on the use of
tape rules in the programs of the systems. We considered three possible ways of dealing with
tape rules in the programs: (1) the unrestricted case, (2) the case when all programs must
contain at least one tape rule (all-tape programs), and (3) the case when all communication
rules are tape rules (com-tape programs).

2. P Automata and Generalized P Colony Automata

A genPCol automaton of capacity k and with n cells, k, n � 1, is a construct

⇧ = (V, e, wE, (w1, P1), . . . , (wn, Pn), F)

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;

• e 2 V is the environmental object of the automaton, the only object which is assumed to
be available in an arbitrary, unbounded number of copies in the environment;

• wE 2 (V � {e})⇤ is a string representing the multiset of objects di↵erent from e which is
found in the environment initially;

• (wi, Pi), 1  i  n, specifies the i-th cell where wi is a multiset over V , it determines the
initial contents of the cell, and its cardinality |wi| = k is called the capacity of the system.
Pi is a set of programs, each program is formed from k rules of the following types (where
a, b 2 V):

– tape rules of the form a
T! b, or a

T$ b, called rewriting tape rules and communication
tape rules, respectively; or

– nontape rules of the form a ! b, or a $ b, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.

• F is a set of accepting configurations of the automaton which we will specify in more detail
below.

A genPCol automaton reads an input word during a computation. A part of the input (possibly
consisting of more than one symbols) is read during each configuration change: the processed
part of the input corresponds to the multiset of symbols introduced by the tape rules of the
system.

A configuration of a genPCol automaton is an (n + 1)-tuple (uE, u1, . . . , un), where uE 2
(V � {e})⇤ represents the multiset of objects di↵erent from e in the environment, and ui 2
V ⇤, 1  i  n, represent the contents of the i-th cell. The initial configuration is given by

20 Kristóf Kántor, György Vaszil

(wE, w1, . . . , wn), the initial contents of the environment and the cells. The elements of the set
F of accepting configurations are given as configurations of the form (vE, v1, . . . , vn), where

• vE ✓ (V �{e})⇤ represents a multiset of objects di↵erent from e being in the environment,
and each

• vi 2 V ⇤, 1  i  n, is the contents of the i-th cell.

Instead of the di↵erent computational modes used in [2], in genPCol automata, we apply the
programs in the maximally parallel way, that is, in each computational step, every component
cell non-determinically applies one of its applicable programs. Then we collect all the symbols
that the tape rules “read” (these multisets are denoted by read(p) for a program p in the
definition below), this is the multiset read by the system in the given computational step. A
successful computation defines this way an accepted sequence of multisets: the sequence of
multisets entering the system during the steps of the computation.

Let ⇧ = (V, e, wE, (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The set of input se-

quences accepted by ⇧ is defined as

A(⇧) = {u1u2 . . . us | ui 2 (V � {e})⇤, 1  i  s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE, w1, . . . , wn), cs 2 F, and

ci =) ci+1 with
[

p2Pci

read(p) = ui+1 for all 0  i  s� 1}.

Let ⇧ be a genPCol automaton, and let f : (V �{e})⇤ ! 2⌃
⇤
be a mapping, such that f(u) = "

if and only if u is the empty multiset.

The language accepted by ⇧ with respect to f is defined as

L(⇧, f) = {f(u1)f(u2) . . . f(us) 2 ⌃⇤ | u1u2 . . . us 2 A(⇧)}.

We define the following language classes.

• L(genPCol,F , com-tape(k)) is the class of languages accepted by generalized PCol au-
tomata with capacity k and with mappings from the class F where all the communication
rules are tape rules,

• L(genPCol,F , all-tape(k)) is the class of languages accepted by generalized PCol automata
with capacity k and with mappings from the class F where all the programs must have at
least one tape rule,

• L(genPCol,F , ⇤(k)) is the class of languages accepted by generalized PCol automata with
capacity k and with mappings from the class F where programs with any kinds of rules
are allowed.

Let the mapping fperm and the class of mappings TRANS be defined as follows:

• fperm : V ⇤ ! 2⌃
⇤
where V = ⌃ and for all v 2 V ⇤, we have f(v) = {a1a2 . . . as | |v| = s,

and a1a2 . . . as is a permutation of the elements of v};

VARIANTS OF P COLONY AUTOMATA 21

• for some f : V ⇤ ! 2⌃
⇤
, we say that f 2 TRANS if for any v 2 V ⇤, we have f(v) = {w} for

some w 2 ⌃⇤ which is obtained by applying a finite transducer to the string representation
of the multiset v, (as w is unique, the transducer must be constructed in such a way that
all string representations of the multiset v as input result in the same w 2 ⌃⇤ as output,
and moreover, as f should be nonerasing, the transducer produces a result with w 6= " for
any nonempty input).

We denote these language classes as LX(genPCol, Y (k)), where X 2 {fperm,TRANS}, Y 2
{com-tape, all-tape, ⇤}.

Now we present an example to demonstrate the above defined notions.

Example 2.1 Let ⇧ = ({a, b, c}, e, ;, (ea, P), F) be a genPCol automaton where

P = {he ! a, a
T$ ei, he ! b, a

T$ ei, he ! b, b
T$ ai, he ! c, b

T$ ai,
ha ! b, b

T$ ai, ha ! c, b
T$ ai}

with all the communication rules being tape rules. Let also F = {("; v, ca) | a 62 v} be the set
of final configurations. A possible computation of this system is the following:

(;, ea)) (a, ea)) (aa, ea)) (aaa, eb)) (aab, ba)) (bba, ba)) (bbb, ac)

where the first three computational steps read the multiset containing an a, the last three
steps read a multiset containing a b, thus the accepted multiset sequence of this computation
is (a)(a)(a)(b)(b)(b).

It is not di�cult to see that similarly to the one above, the computations which end in a final
configuration (a configuration which does not containg the object a in the environment) accept
the set of multiset sequences A(⇧) = {(a)n(b)n | n � 1}.

If we consider fperm as the input mapping, we have L(⇧, fperm) = {anbn | n � 1}. On the
other hand, if we consider a mapping f1 2 TRANS with f1 : {a, b}⇤ ! {c, d, e, f}⇤ and
f1(a) = {cd}, f1(b) = {ef} (and f1 undefined in all other cases), we get the language L(⇧, f1) =
{(cd)n(ef)n | n � 1}.

3. Recent Results on Systems with Input Mappings from

TRANS

For any class of mappings F , we have (see [14])

1. L(genPCol,F , com-tape(k)) ✓ L(genPCol,F , ⇤(k)) and
L(genPCol,F , all-tape(k)) ✓ L(genPCol,F , ⇤(k) for k � 1; and

2. L(genPCol,F , X(k)) ✓ L(genPCol,F , X(k + 1)) for k � 1, X 2 {com-tape, all-tape, ⇤}.

22 Kristóf Kántor, György Vaszil

The computational capacity of genPCol automata with input mappimg fperm was investigated
in [15] and [14]. It was shown that Lperm(genPCol, ⇤(1)) = L(RE), thus, it is not surprising,
but the same holds also for the class of mappings TRANS.

Proposition 3.1
LTRANS(genPCol, ⇤(1)) = L(RE).

A similar result holds for all-tape systems with capacity at least two. From [14] we have that
Lperm(genPCol, all-tape(k)) = L(RE) for k � 2, and we can show the same for systems with
input mappings from TRANS.

Proposition 3.2

LTRANS(genPCol, all-tape(k)) = L(RE) for k � 2.

For systems with capacity one, it is not di�cult to see that all regular langugaes can be
characterized, but a more precise characterization of the corresponding langugae classes are
still missing.

Proposition 3.3

REG ✓ LTRANS(genPCol,X(1)), for X 2 {all-tape, com-tape}.

The characterization of langugaes of com-tape systems is an interesting research direction.
Similarly to systems with input mapping fperm, we have the following, where r-1LOGSPACE
denotes the class of languages characterized by so-called restricted one-way logarithmic space

bounded Turing machines, see [10] for more on this complexity class.

Proposition 3.4

LTRANS(genPCol, com-tape(2)) ✓ r-1LOGSPACE.

4. Conclusions

As the class of languages characterized by P automata is strictly included in r-1LOGSPACE,
the above theorem does not give any information on the relationship of the power of P automata
and genPCol automata. We know, however, that genPCol automata with fperm and com-tape
programs are more powerful than P automata using the mapping fperm.

As P automata with sequential rule application and input mappings from TRANS characterize
exactly the language class r-1LOGSPACE, the relationship of this language class and genPCol
automata with input mappings from TRANS seems to be an especially interesting research
direction.

Further, the e↵ect of using checking rules, as defined in [17] for P colonies, is also an interesting
topic for further investigations, just as the investigation of systems with other classes of input
mappings besides fperm.

VARIANTS OF P COLONY AUTOMATA 23

Acknowledgements

This research was supported in part by grant no. MAT120558 of the National Research, De-
velopment and Innovation O�ce, Hungary.

References

[1] L. CIENCIALA, L. CIENCIALOVÁ, P Colonies and Their Extensions. In: J. KELEMEN,
A. KELEMENOVÁ (eds.), Computation, Cooperation, and Life – Essays Dedicated to Gheorghe
Paun on the Occasion of His 60th Birthday . Lecture Notes in Computer Science 6610, Springer,
2011, 158–169.

[2] L. CIENCIALA, L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, G. VASZIL, PCol automata: Rec-
ognizing strings with P colonies. In: M. A. MARTÍNEZ DEL AMOR, G. PĂUN, I. PÉREZ
HURTADO, A. RISCOS NUÑEZ (eds.), Eighth Brainstorming Week on Membrane Computing,
Sevilla, February 1–5, 2010 . Fénix Editora, 2010, 65–76.

[3] L. CIENCIALA, L. CIENCIALOVÁ, A. KELEMENOVÁ, On the Number of Agents in P
Colonies. In: G. ELEFTHERAKIS, P. KEFALAS, G. PAUN, G. ROZENBERG, A. SA-
LOMAA (eds.), Membrane Computing, 8th International Workshop, WMC 2007, Thessaloniki,
Greece, June 25–28, 2007 Revised Selected and Invited Papers . Lecture Notes in Computer Science
4860, Springer, 2007, 193–208.

[4] L. CIENCIALA, L. CIENCIALOVÁ, A. KELEMENOVÁ, Homogeneous P Colonies. Computing
and Informatics 27 (2008) 3+, 481–496.

[5] L. CIENCIALOVÁ, L. CIENCIALA, Variation on the theme: P colonies. In: D. KOLĂR,
A. MEDUNA (eds.), Proc. 1st Intern. Workshop on Formal Models . Ostrava, 2006, 27–34.

[6] L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, A. KELEMENOVÁ, G. VASZIL, Variants of P
colonies with very simple cell structure. International Journal of Computers, Communication
and Control 4 (2009) 3, 224–233.

[7] E. CSUHAJ-VARJÚ, J. DASSOW, J. KELEMEN, G. PĂUN, Grammar Systems – A Gram-
matical Approach to Distribution and Cooperation. Gordon and Breach, London, 1994.

[8] E. CSUHAJ-VARJÚ, J. KELEMEN, A. KELEMENOVÁ, Computing with Cells in Environ-
ment: P Colonies. Multiple-Valued Logic and Soft Computing 12 (2006) 3–4, 201–215.

[9] E. CSUHAJ-VARJÚ, M. MARGENSTERN, G. VASZIL, P Colonies with a Bounded Number of
Cells and Programs. In: H. J. HOOGEBOOM, G. PAUN, G. ROZENBERG, A. SALOMAA
(eds.), Membrane Computing, 7th International Workshop, WMC 2006, Leiden, The Netherlands,
July 17–21, 2006, Revised, Selected, and Invited Papers. Lecture Notes in Computer Science 4361,
Springer, 2006, 352–366.

[10] E. CSUHAJ-VARJÚ, M. OSWALD, G. VASZIL, P automata. In: G. PAUN, G. ROZENBERG,
A. SALOMAA (eds.), The Oxford Handbook of Membrane Computing . Oxford University Press,
Inc., 2010.

24 Kristóf Kántor, György Vaszil

[11] E. CSUHAJ-VARJÚ, G. VASZIL, P Automata or Purely Communicating Accepting P Systems.
In: G. PAUN, G. ROZENBERG, A. SALOMAA, C. ZANDRON (eds.), Membrane Computing,
International Workshop, WMC-CdeA 2002, Curtea de Arges, Romania, August 19–23, 2002,
Revised Papers . Lecture Notes in Computer Science 2597, Springer, 2002, 219–233.

[12] R. FREUND, M. OSWALD, P Colonies Working in the Maximally Parallel and in the Sequen-
tial Mode. In: D. ZAHARIE, D. PETCU, V. NEGRU, T. JEBELEAN, G. CIOBANU,
A. CICORTAS, A. ABRAHAM, M. PAPRZYCKI (eds.), Seventh International Symposium on
Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), 25–29 September
2005, Timisoara, Romania. IEEE Computer Society, 2005, 419–426.

[13] R. FREUND, M. OSWALD, P colonies and prescribed teams. Int. J. Comput. Math. 83 (2006)
7, 569–592.

[14] K. KÁNTOR, G. VASZIL, On the Class of Languages Characterized by Generalized P Colony
Automata. Theoretical Computer Science to appear.

[15] K. KÁNTOR, G. VASZIL, Generalized P Colony Automata. Journal of Automata, Languages
and Combinatorics 19 (2014) 1–4, 145–156.

[16] J. KELEMEN, A. KELEMENOVÁ, A grammar-theoretic treatment of multiagent systems. Cy-
bernetics and Systems 23 (1992), 621–633.

[17] J. KELEMEN, A. KELEMENOVA, G. PAUN, Preview of P colonies: A biochemically inspired
computing model. In: Workshop and Tutorial Proceedings, Ninth International Conference on the
Simulation and Synthesis of Living Systems, ALIFE IX, Boston, Mass. 2004, 82–86.

[18] A. KELEMENOVÁ, P colonies. In: G. PAUN, G. ROZENBERG, A. SALOMAA (eds.), The
Oxford Handbook of Membrane Computing . Oxford University Press, Inc., 2010, 584–593.

[19] A. PAUN, G. PĂUN, The Power of Communication: P Systems with Symport/Antiport. New
Generation Comput. 20 (2002) 3, 295–306.

QUANTUM AUTOMATA FOR ONLINE
MINIMIZATION PROBLEMS

Kamil Khadiev(A) Aliya Khadieva(B)

(A)University of Latvia, Riga, Latvia
and Kazan Federal University, Kazan, Russia

kamilhadi@gmail.com

(B)Kazan Federal University, Kazan, Russia
aliya.khadi@gmail.com

Abstract
Online minimization problems is a well-known problems in the online algorithms complexity.
We explore a model with restricted memory and use automata as algorithms for solving prob-
lems. We allow to use a non-constant number of states for automata and consider quantum
and classical automata. We show that quantum automata can be better than classical ones (de-
terministic or probabilistic) for a subpolynomial number of states. Additionally, we consider a
polynomial number of states. And we show that in this case, quantum automata can be better
than deterministic ones as well.

1. Introduction

Online algorithms are well-known computational model for solving optimization problems. The
peculiarity is that algorithm reads an input piece by piece and should return an answer piece
by piece immediately, even if an answer can depend on future pieces of the input. An online
algorithm should return an output for minimizing an objective function. There are di↵erent
methods to define the e↵ectiveness of the algorithms [13, 14, 16]. But a most standard is the
competitive ratio [19, 22]. It is a ratio between output’s price for an online algorithm and
optimal o✏ine algorithms.

We suggest a new model for online algorithms, quantum online algorithms that use a power of
quantum computing for solving online minimization problem. We discuss the online algorithms
with restricted memory. For this kind of algorithms, we allow to use only s bits of memory, for
given integer s. In fact, we consider automaton with non-constant number of states [10, 11] or
streaming algorithm [21, 17] as an online algorithm. Classical streaming algorithms for online
minimization problems were considered in [12, 18, 15]. In this case, we show that quantum
automata with single qubit can be better than any classical (deterministic or probabilistic)
automata with a subpolynomial number of states. It is also interesting to investigate the model
with a polynomial number of states. Here the automaton can use nO(1) states. We show that

26 Kamil Khadiev, Aliya Khadieva

for (n, k, r, w)-Parity for Number of Equality Hats problem a quantum automaton can be better
than any deterministic one.

The paper is organized in the following way. We present definitions in Section 2. In Section 3
we explore automata for online minimization problems.

2. Preliminaries

Firstly, let us define an online optimization problem. All following definitions we give with
respect to [20].

Definition 2.1 (Online Minimization Problem) An online minimization problem consists
of a set I of inputs and a cost function. Every input I 2 I is a sequence of requests I =
(x

1

, . . . , xn). Furthermore, a set of feasible outputs (or solutions) is associated with every I;
every output is a sequence of answers O = (y

1

, . . . , yn). The cost function assigns a positive
real value cost(I, O) to every input I and any feasible output O. For every input I, we call
any feasible output O for I that has the smallest possible cost (i. e., that minimizes the cost
function) an optimal solution for I.

Let us define an online algorithm for this problem as an algorithm which gets requests I one
by one and should return answers O immediately, even if an optimal solution can depend on
future requests.

Definition 2.2 (Deterministic Online Algorithm) Consider an input I of an online min-
imization problem. An online algorithm A computes the output sequence A(I) = (y

1

, . . . , yn)
such that yi is computed from x

1

, . . . , xi, y1, . . . , yi�1

. We denote the cost of the computed output
by cost(A(I)) = cost(I, A(I)).

This setting can also be regarded as a request-answer game: an adversary generates requests,
and an algorithm has to serve them one at a time [6].

As the main measure of quality of an online algorithm, we use a competitive ratio. It is the ratio
of two costs: cost for an online algorithm’s solution; and cost for an optimal o✏ine algorithm
solution. We consider the worst case.

Definition 2.3 (Competitive Ratio) An online algorithm A is c-competitive if there exists a
non-negative constant ↵ such that, for every input I, we have: cost(A(I))  c·cost(Opt(I))+↵,
where Opt is an optimal o✏ine algorithm for the problem. We also call c the competitive ratio
of A. If ↵ = 0, then A is called strictly c-competitive; A is optimal if it is strictly 1-competitive.

Next, let us define a randomized online algorithm.

Definition 2.4 (Randomized Online Algorithm) Consider an input I of an online min-
imization problem. A randomized online algorithm R computes the output sequence R :=

QUANTUM AUTOMATA FOR ONLINE MINIMIZATION PROBLEMS 27

R (I) = (y
1

, · · · , yn) such that yi is computed from , x
1

, · · · , xi, where is the content of a
random tape, i. e., an infinite binary sequence, where every bit is chosen uniformly at random
and independently of all the others. By cost(R (I)) we denote the random variable expressing
the cost of the solution computed by R on I. R is c-competitive in expectation if there exists
a non-negative constant ↵ such that, for every I, E[cost(R (I))]  c · cost(Opt(I)) + ↵, where
Opt is an optimal o✏ine algorithm for the problem.

Now we are ready to define a quantum online algorithm. You can read more about quantum
computation in [11]

Definition 2.5 (Quantum Online Algorithm) Consider an input I of an online minimiza-
tion problem. A quantum online algorithm Q computes the output sequence Q(I) = (y

1

, · · · , yn)
such that yi is computed from x

1

, · · · , xi. Q can have only quantum part. The algorithm can
measure qubits several times during computation. By cost(Q(I)) we denote the cost of the
solution computed by Q on I. Note that quantum computation is probabilistic process. Q is
c-competitive in expectation if there exists a non-negative constant ↵ such that, for every I,
E[cost(Q(I))]  c · cost(Opt(I))+↵, where Opt is an optimal o✏ine algorithm for the problem.

As algorithms, we will consider automata or online algorithms with restricted memory. Let
deterministic online algorithm As be an algorithm which uses at most s bits of memory on
processing any input I. Or As is automata which use 2s states. We can define similar restrictions
for randomized algorithms and algorithms with advice.

3. Main Results

Let us focus on space complexity of online algorithms. It is interesting to analyze size of memory
that is required by the algorithm. In a case of the restricted memory, a quantum algorithm
can be better than classical ones (deterministic or probabilistic). We present this result in
Theorems 3.1, 3.4 and 3.5.

Let us consider the special problem which allows us to show the separation: (n, k, r, w)-Parity
for Number of Hats ((n, k, r, w)-PNH).

Definition of (n, k, r, w)-PNH problem is based on definition of PartialMODk
n function from

[10, 1, 2]. Feasible inputs for the problem are X = (x
1

, . . . , xn), for x
1

, . . . , xn 2 {0, 1} such
that #

1

(X) = v · 2k, where #
1

(X) is the number of 1s and v � 2 is a positive integer.
PartialMODk

n(X) = v mod 2.

Firstly, let us describe (n, k, r, w)-PNH problem informally. There are 3 guardians and 3 prison-
ers. They stay one by one in a line “G

1

P
1

G
2

P
2

G
3

P
3

, Gi is guardian and Pi is prisoner. Prisoner
Pi has an input Xi of length mi and computes function PartialMODk

mi
(Xi) for i 2 {1, 2, 3}. If

the result is 1 then he paints his hat in black. Otherwise, he paints it in white. Each guardian
wants to know if the number of following black hats is odd or even. The cost of right guardian’s

28 Kamil Khadiev, Aliya Khadieva

answer is r, and the cost of the wrong answer is w. We want to minimize the cost of output,
and assume that r < w.

Formal definition of (n, k, r, w)-PNH is following: Feasible inputs for the problem are I =
(x

1

, . . . , xn) of length n such that n = m
1

+m
2

+m
3

+ 3, for some integer m
1

,m
2

,m
3

� 2k+1.
It is guarantied that I is always such that I = 2, X

1

, 2, X
2

, 2, X
3

, where Xi 2 {0, 1}mi , for
i 2 {1, 2, 3}. Additionally, #

1

(Xi) = vi · 2k, where vi is some integer, i 2 {1, 2, 3}. Let
O be output of (n, k, r, w)-PNH and O0 = y

1

, y
3

, y
3

be output bits corresponding to input
variables with value 2 (in other words, variables of guardians). Output y

1

corresponds to x
1

, y
2

corresponds to x
2+m1 and , y

3

corresponds to x
3+m1+m2 . Let zj(I) =

L
3

i=j PartialMODk
mi
(Xi).

The cost cost(I, O) = r, if yj = zj for all j 2 {1, 2, 3}, and cost(I, O) = w otherwise. We
consider numbers r and w such that r < w.

Let us present a quantum online algorithm which uses single qubit of memory for this problem.
It uses ideas from quantum automata [10] and branching programs theories [1, 2].

Algorithm 1. (Quantum Online Algorithm for (n, k, r, w)-PNH) The quantum algo-
rithm Q

1

uses single qubit.

Step 1. The algorithm emulates guessing for z
1

(I). Q
1

starts on a state 1p
2

|0i+ 1p
2

|1i. And it

measures the qubit before reading any input variables. It gets |0i or |1i with equal probability.
The result of measurement is y

1

.

Step 2. The algorithm reads X
1

. Let angle ↵ = ⇡/2k+1. Q
1

rotates the qubit by an angle ↵ if
the algorithm meets 1. And it does not do anything otherwise.

Step 3. If Q
1

meets 2 then it measures the qubit | i = a|0i+ b|1i. If PartialMODk
m1

(X
1

) = 1
then the qubit is rotated by an angle ⇡/2 + v · ⇡, for some integer v, else the qubit is rotated
by an angle w · ⇡, for some integer w. If y

1

= 1, then a 2 {1,�1} and b = 0. And if y
1

= 0,
then a = 0 and b 2 {1,�1}. The result of measurement is y

2

.

Step 4. The step is similar to Step 2, but algorithm reads X
2

.

Step 5. The step is similar to Step 3, but algorithm outputs y
3

.

Step 6. The algorithm reads and skips the last part of the input. Q
1

does not need these
variables, because it guesses y

1

and using this value we already can obtain y
2

and y
3

without
X

3

.

Assume, that algorithm did right guess that z
1

= y
1

. So, if the parity of the passing part is the
same as the parity of the future part of the input, then the algorithm returns the right answer
with probability 1. And if the guess is not correct and z

1

6= y
1

, then the algorithm returns a
wrong answer with probability 1.

With equal probabilities 0.5 we have z
1

= y
1

or z
1

6= y
1

. Thus competitive ratio is (0.5 · r +
0.5 · w)/r = (r + w)/(2r).

As a result we have the following theorem:

QUANTUM AUTOMATA FOR ONLINE MINIMIZATION PROBLEMS 29

Theorem 3.1 There is (r+w)/(2r)-competitive in expectation quantum algorithms for (n, k, r,
w)-PNH Problem Q

1

with a single qubit of memory.

At the same time, if a deterministic online algorithm for (n, k, r, w)-PNH Problem uses less
than k bits; then it is (w/r)-competitive. To show this claim, let us discuss properties of
PartialMODk

n function, based on results for automata and branching programs[10, 1, 2].

Lemma 3.2 Let integer s, k be such that s < k = o(log(n)), where n is the length of input.
Then there is no deterministic algorithm that reads an input variable by variable, uses s bits of
memory and computes PartialMODk

n(X).

Lemma 3.3 Let integer s, k be such that s < k = o(log(n)), where n is the length of input.
Then there is no randomized algorithm that reads an input variable by variable, uses s bits of
memory and computes PartialMODk

n(X) with probability of error less than 0.5.

Now we can discuss deterministic online algorithms for (n, k, r, w)-PNH Problem.

Theorem 3.4 Let integer s, k be such that s < k = o(log(n)), where n is the length of
input. Any deterministic online algorithm As computing (n, k, w, r)-PNH Problem is (w/r)-
competitive.

Proof. Let us assume that we have such an algorithm As. Then we suggest the input I =
(x

1

, . . . , xn) such that As returns the wrong answer on all requests of guardians. Let m
1

=
m

2

= m
3

= m = 3 · 2k.

The first guardian answers yi. Due to Lemma 3.2 we can choose input X
1

2 {0, 1}m such
that As cannot compute PartialMODk

m(X1

). It means that we can choose X1 such that
y
2

= v
1

� y
1

, for v
1

= (#
1

(X
1

)/2k)) mod 2. By the same reason we can pick X2 such that
y
3

= v
2

�y
2

, for v
2

= (#
1

(X
2

)/2k)) mod 2. Let us choose the input X3 such that v
3

�y
3

= 1, for
v
3

= (#
1

(X
3

)/2k))mod 2. Note that we guarantee that #
1

(Xi)/2k is an integer, for i 2 {1, 2, 3}.

Therefore, we have: z
3

= (#
1

(X3)/2k) mod 2 6= y
3

, z
2

= (#
1

(X
2

, X
3

)/2k) mod 2 = v
2

�v
3

6= y
2

,
z
1

= (#
1

(X
1

, X
2

, X
3

)/2k) mod 2 = v
1

� v
2

� v
3

6= y
1

. We got a contradiction for input
(2, X1, 2, X2, 2, X3). Hence the cost of output is w and the competitive ration is w/r. 2

Theorem 3.5 Let integer s, k be such that s < k = o(log(n)), where n is the length of in-
put. Any randomize online algorithm Rs computing (n, k, w, r)-PNH Problem is (r+7w)/(8r)-
competitive.

Proof. By the same way as in the previous Theorem we can show that for any algorithm Rs

we can suggest the input such that it cannot say anything better than just guessing answers
with probabilities 0.5. Therefore expected cost is (r+ 7w)/8 and expected competitive ratio is
(r + 7w)/(8r). 2

30 Kamil Khadiev, Aliya Khadieva

It is easy to see that (r + 7w)/(8r) > (w + r)/(2r) and w/r > (w + r)/(2r) due to r < w.
Therefore the quantum algorithm is better than any deterministic or randomize online algorithm
that uses less than k bits of memory.

3.1. Polylogarithmic Space Complexity Separation between Quan-
tum and Deterministic Online Algorithms with Polylogarithmic
Memory

Let us consider polylogarithmic memory case. We present separation between quantum and
deterministic models in Theorems 3.6 and 3.8

Let us consider modification of (n, k, r, w)-PNH problem called (n, r, w)-Parity Number of
Equality Hats or (n, r, w)-PNEH. It is the same problem, but we use EQm(X) function instead
of PartialMODk

m. Boolean function EQm : {0, 1}n ! {0, 1} is such that EQ(x
1

, . . . xbm/2c,
xbm/2c+1

, . . . xm) = 1, if (x
1

, . . . xbm/2c) = (xbm/2c+1

, . . . xm), and 0 otherwise. So zj(I) =L
3

i=j EQmi(Xi). We suppose that m > 1, r < w.

Let us construct a quantum online algorithm that uses O(log n) and solves (n,r,w)�PNEH.

Algorithm 2. (Quantum Algorithm for (n, r, w)-PNEH) The quantum algorithm Q =
QO(logn) uses O(log n) qubits.

Step 1. The algorithm emulates guessing for z
1

(I). Q initializes the qubit | i = | 1p
2

|0i+ 1p
2

|1i.
And it measures the qubit before reading any input variables. It gets |0i or |1i with equal
probability. The result of measurement is y

1

.

Step 2. The algorithm takes X
1

and obtains a value of the function v
1

= EQ(X
1

) using
quantum fingerprinting method presented in [5, 4, 3], [8, 9, 7]. This method allows to compute
the function EQm1 with probability of error by any fixed constant " > 0. The method uses
O(logm

1

) qubits. For 0-instances, probability of error is ". And for 1-instances probability of
error is 0.

Step 3. If Q meets 2 then it takes a value v
1

. Let the value be in qubit |�i. Then the algorithm
applies CNOT gate for |�i| i. After that | i = |y

1

� v
1

i. Then Q measure | i and returns y
2

.

Step 4. The step is similar to Step 2, but algorithm reads X
2

.

Step 5. The step is similar to Step 3, but algorithm outputs y
3

.

Step 6. The algorithm reads and skips the last part of the input. Q does not need these
variables, because it guesses y

1

and using this value we already can obtain y
2

and y
3

without
X

3

.

Let us compute an expected cost of pairs (I,Q(I)). cost(Q(I
000

)) = cost(Q(I
001

)) = r(1 �
")2/2 + w(1�"

2

2

+ ") cost(Q(I
010

)) = cost(Q(I
011

)) = cost(Q(I
100

)) = cost(Q(I
101

)) = r(1 �
")/2 + w(1 + ")/2 cost(Q(I

110

)) = cost(Q(I
111

)) = r/2 + w/2

QUANTUM AUTOMATA FOR ONLINE MINIMIZATION PROBLEMS 31

So, expected ratio is (r(1� ")2/2 +w(1�"
2

2

+ "))/r. As a result we have the following theorem:

Theorem 3.6 There is (r(1 � ")2/2 + w(1�"
2

2

+ "))/r-competitive in expectation quantum al-
gorithms for (n, r, w)-PNEH Problem QO(logn) with O(log n) qubits of memory.

At the same time, if a deterministic online algorithm for (n, k, r, w)-PNH Problem use poly-
logarithmic number of bits; then it is (w/r)-competitive. To show this claim, let us discuss a
required property of EQm function.

Lemma 3.7 There is no deterministic algorithm that reads an input variable by variable, uses
s = o(m) bits of memory and computes EQm(X).

Now we can discuss deterministic online algorithms for (n, r, w)-PNEH Problem.

Theorem 3.8 Let integer s be such that s = o(n), where n is the length of input. Any deter-
ministic online algorithm As computing (n,w, r)-PNEH Problem is (w/r)-competitive.

Using Lemma 3.7, we can prove the theorem by the same way as in proof of Theorem 3.4.

It is easy to see that (r(1 � ")2/2 + w(1�"
2

2

+ "))/r < w/r due to r < w. Therefore, quantum
algorithm is better than any deterministic online algorithm without memory restriction.

Acknowledgements. Partially supported by ERC Advanced Grant MQC. The work is per-
formed according to the Russian Government Program of Competitive Growth of Kazan Federal
University. We thank Abuzer Yakaryılmaz from University of Latvia for helpful comments and
discussions.

References

[1] F. ABLAYEV, A. GAINUTDINOVA, K. KHADIEV, A. YAKARYILMAZ, Very Narrow Quan-
tum OBDDs and Width Hierarchies for Classical OBDDs. In: Descriptional Complexity of Formal
Systems. Lecture Notes in Computer Science 8614, Springer, 2014, 53–64.

[2] F. ABLAYEV, A. GAINUTDINOVA, K. KHADIEV, A. YAKARYILMAZ, Very Narrow Quan-
tum OBDDs and Width Hierarchies for Classical OBDDs. Lobachevskii Journal of Mathematics
37 (2016) 6, 670–682.

[3] F. ABLAYEV, A. KHASIANOV, A. VASILIEV, On Complexity of Quantum Branching Pro-
grams Computing Equality-like Boolean Functions. Technical Report TR08-085, ECCC, 2010.

[4] F. ABLAYEV, A. VASILIEV, On the Computation of Boolean Functions by Quantum Branching
Programs via Fingerprinting . Technical Report TR08-059, ECCC, 2008.

[5] F. ABLAYEV, A. VASILIEV, On Quantum Realisation of Boolean Functions by the Finger-
printing Technique. Discrete Mathematics and Applications 19 (2009) 6, 555–572.

[6] S. ALBERS, BRICS, Mini-Course on Competitive Online Algorithms. Aarhus University, 1996.

32 Kamil Khadiev, Aliya Khadieva

[7] A. AMBAINIS, R. FREIVALDS, 1-way Quantum Finite Automata: Strengths, Weaknesses and
Generalizations. In: FOCS’98: Proceedings of the 39th Annual Symposium on Foundations of
Computer Science. 1998, 332–341. (http://arxiv.org/abs/quant-ph/9802062).

[8] A. AMBAINIS, N. NAHIMOVS, Improved Constructions of Quantum Automata. In: TQC .
Springer, 2008, 47–56.

[9] A. AMBAINIS, N. NAHIMOVS, Improved Constructions of Quantum Automata. Theoretical
Computer Science 410 (2009) 20, 1916–1922.

[10] A. AMBAINIS, A. YAKARYILMAZ, Superiority of Exact Quantum Automata for Promise
Problems. Information Processing Letters 112 (2012) 7, 289–291.

[11] A. AMBAINIS, A. YAKARYILMAZ, Automata and Quantum Computing . Technical Report
1507.01988, arXiv, 2015.

[12] L. BECCHETTI, E. KOUTSOUPIAS, Competitive Analysis of Aggregate Max in Windowed
Streaming. In: Automata, Languages and Programming: 36th International Colloquium, ICALP
2009, Proceedings, Part I . Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, 156–170.

[13] J. BOYAR, S. IRANI, K. S. LARSEN, A Comparison of Performance Measures for Online
Algorithms. In: Workshop on Algorithms and Data Structures. Springer, 2009, 119–130.

[14] J. BOYAR, S. IRANI, K. S. LARSEN, A Comparison of Performance Measures for Online
Algorithms. Algorithmica 72 (2015) 4, 969–994.

[15] J. BOYAR, K. S. LARSEN, A. MAITI, The Frequent Items Problem in Online Streaming under
Various Performance Measures. International Journal of Foundations of Computer Science 26
(2015) 4, 413–439.

[16] R. DORRIGIV, A. LÓPEZ-ORTIZ, A Survey of Performance Measures for On-line Algorithms.
SIGACT News 36 (2005) 3, 67–81.

[17] D. GAVINSKY, J. KEMPE, I. KERENIDIS, R. RAZ, R. DE WOLF, Exponential Separa-
tions for One-way Quantum Communication Complexity, with Applications to Cryptography. In:
Proceedings of the thirty-ninth annual ACM symposium on Theory of computing . ACM, 2007,
516–525.

[18] Y. GIANNAKOPOULOS, E. KOUTSOUPIAS, Competitive Analysis of Maintaining Frequent
Items of a Stream. Theoretical Computer Science 562 (2015), 23–32.

[19] A. R. KARLIN, M. S. MANASSE, L. RUDOLPH, D. D. SLEATOR, Competitive Snoopy
Caching. In: Foundations of Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986,
244–254.

[20] D. KOMM, An Introduction to Online Computation: Determinism, Randomization, Advice.
Springer, 2016.

[21] F. LE GALL, Exponential Separation of Quantum and Classical Online Space Complexity. In:
Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architec-
tures. ACM, 2006, 67–73.

[22] D. D. SLEATOR, R. E. TARJAN, Amortized E�ciency of List Update and Paging Rules.
Communications of the ACM 28 (1985) 2, 202–208.

MEMBERSHIP PROBLEM FOR
TWO-DIMENSIONAL JUMPING FINITE

AUTOMATA

Grzegorz Madejski

(A)
Andrzej Szepietowski

(A)

(A)Institute of Informatics, Faculty of Mathematics, Physics and Informatics,
University of Gdańsk, 80-308 Gdańsk, Poland

{gmadejsk,Andrzej.Szepietowski}@inf.ug.edu.pl

Abstract
Two-dimensional row jumping finite automata were recently introduced as an interesting compu-

tational model for accepting two-dimensional languages. These automata are nondeterministic.

They guess the order in which rows of the input array are read and they jump to the next row

only after reading all symbols in the previous row. In each row, they choose, also nondetermin-

istcally, the order in which symbols are read. In this paper, we prove that uniform membership

problem for these automata is NP-complete, even if we restrict the number of rows or the length

of the automaton’s rules.

1. Introduction

A two-dimensional language, or a picture language, is a set of rectangular arrays over a finite
alphabet. The study of such languages is motivated by their importance in many areas, e.g.
pattern recognition, image processing or cellular automata. Many models were introduced to
recognize 2D languages, such as array grammars [6] or picture-walking automata [4].

Most of the models in formal language theory process the input in a continuous manner e.g.
finite automata read the word from left to right. In the modern era, there are types of data
that need to be parsed discontinuously, i.e. the pointer of the parser can jump to any place
of the input in search of a specific piece of data. Recently, jumping finite automata were
presented in [5] as an attractive model to handle such type of information. They caught a lot
of attention and were studied in numerous papers, with the lastest results presented in [1]. In
one computation step, jumping finite automata (JFA for short) read a letter from the input
word, the letter is removed and the head of the automaton jumps to an arbitrary position in
the word. The generalisation of JFA are general jumping finite automata (GJFA) which can in
one step read and remove a whole subword of the input, not only single letter.

The jumping mode was used for picture languages in [3], where two-dimensional row jumping
finite automata, or 2-RJFA for short, were presented. These automata read the input array row

34 Grzegorz Madejski, Andrzej Szepietowski

by row, but the order in which the rows are read is guessed nondeterministcally. Each row is
processed using a jumping mode and the automaton erases the letters it reads. More precisely,
after reading the subword y, it is replaced by ⇥|y|. Only after a successful computation on a
row, the automaton checks if all letters were erased and moves to the next row. If more than
one letter can be removed in a computational step, then we call such automaton general, or
2-GRJFA for short.

It is important to note that 2-GRJFA use a di↵erent jumping mode than GJFA considered in
[1]. GJFA delete the read symbols from the input word and shorten the word, while 2-GRJFA
put a special erase symbol ⇥ for each read letter. We illustrate this with a short example:
using a rule qab ! q, we can read a word aaabbb using the deleting mode aaqabbb) aqabb)
qab) q, but not the erasing mode in which only words of the form (ab)⇤ can be processed:
abqabab) qab ⇥ ⇥ab) ⇥ ⇥ ⇥ ⇥ qab) q ⇥ ⇥ ⇥ ⇥ ⇥ ⇥. The erasing mode is well suited for
2D arrays, since it does not break the shape of the input. In this paper, we deal only with this
mode.

One of the important aspects of studying a model is establishing time complexity for the
membership problem. To be of practical use, it is desirable that this problem is solvable in
polynomial time. It is important to note that there are two types of membership problems.
For the fixed membership problem the automaton and the alphabet is set and only the word is
given as input. For example, let A be a 2-GRJFA with alphabet ⌃, then:

Fixed m.p. for 2-grjfa A
Input: X 2 ⌃⇤⇤

Question: X 2 L(A)?

A more general case, and computationally harder one, is the uniform membership problem.
Here, the automaton and the alphabet is given as input together with the array:

Uniform m.p. for 2-grjfa

Input: a 2-GRJFA A and an array X 2 ⌃⇤⇤

Question: X 2 L(A)?

The complexity of these problems was studied for JFA and GJFA in [1]:

JFA GJFA
Fixed M.P. P NPC2

Uniform M.P. NPC / P1 NPC2

1 under the restriction that |⌃| = k, for some constant k
2 even under the restriction that |⌃| = 2

In this paper, we deal with the uniform membership problem for 2-RJFA and 2-GRJFA. We
show that in both cases the problem is NP-complete, even under some restrictions.

2-RJFA 2-GRJFA
Uniform M.P. NPC1 NPC2

1 even under the restriction that |⌃| = 2
2 even under the restriction that |⌃| = 2 and the input arrays have one row

MEMBERSHIP PROBLEM FOR 2D JUMPING FINITE AUTOMATA 35

2. Preliminaries

We assume the reader is familiar with the basics of formal language and automata theory. An
alphabet ⌃ is a finite set of letters and ⌃⇤ is a set of all words over the alphabet. An empty
word is denoted by �. A language over alphabet ⌃ is a set L ✓ ⌃⇤.

In the two-dimensional case, the definitions are similar. Instead of words, we consider rectangu-
lar arrays, or pictures, consisting of symbols in ⌃. A set of all such arrays is denoted by ⌃⇤⇤. If

X hasm rows and n columns, then the array can be written in the formX =

a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n

where ai,j 2 ⌃ for all 1  i  m, 1  j  n or in short form X = [ai,j]m⇥n. An array with no
rows and columns is an empty array ⇤. A (picture) language over alphabet ⌃ is a set L ✓ ⌃⇤⇤.

For the purpose of reading arrays by the 2D row jumping automata, we need to mark the
beginning and end of each row with special guard symbols. For an array X 2 ⌃⇤⇤ with m rows
and n columns, we define an array bX of size (m,n + 2), whose every row is guarded by the
symbol $ /2 ⌃ from the left and by the symbol # /2 ⌃ from the right.

We are ready to give the definition of 2D row jumping automata, as in [3].

Definition 2.1 A two-dimensional general row jumping finite automaton (2-GRJFA) is an

octuple A = (Q,Q0,⌃, R1, R2, R3, s, F), where

• Q is a finite set of states;

• Q0 ⇢ Q is a set of check and row jump states;

• ⌃ is an input alphabet;

• R1 ✓ Q⇥ ⌃⇤ ⇥Q is a set of jumping rules;

• R2 ✓ (Q⇥$⇥Q0)[{r⇥⇥⇥r : r 2 Q0}, where $,⇥ /2 ⌃, is a set of (standard, non-jumping)

row checking rules;

• R3 ✓ Q0 ⇥#⇥Q, where # /2 ⌃, is a set of row jump rules;

• s 2 Q is the initial state;

• F ✓ Q is the set of accepting states.

If for every rule (p, y, q) 2 R1, we have |y|  1, then we call the automaton a two-dimensional

row jumping finite automaton (2-RJFA).

Instead of writing (p, y, q), we shall denote rules in R1 by py y q, rules in R2 by py ! q, and
rules in R3 by py

y

q.

The automaton A works with bX on its input tape. In general, a 2-GRJFA guesses the order in
which rows of the input array are read. It jumps to the next row using a rule in R3 only after
reading all symbols in the previous row. In each row, it reads symbols using rules in R1. The

36 Grzegorz Madejski, Andrzej Szepietowski

order in which symbols are read is chosen nondeterministically. Next, it checks if the whole
row was read using rules in R2. We see that 2-GRJFA rely heavily on nondeterminism, as both
jumping and row jump are nondeterministic actions.

To illustrate in detail how the automaton processes the input, we first consider only one row
from an array. First the automaton chooses nondeterministcally the place where it starts. For

example, let us consider the row $ 0 0 p0 0 # , where the automaton starts observing the third

0 in a state p. Next, it chooses a rule py y q 2 R1 to use, removes a word y from the row,
puts ⇥|y| in its place, jumps to a di↵erent position in the row, and changes its state to q. For
example, if p00 y q 2 R1 and the automaton chooses to jump to the first letter, we have the
following step:

$ 0 0 p0 0 # y $ q0 0 ⇥ ⇥ # .

After reading all letters in the row, the automaton goes to the second phase of the computation,
where it checks if all letters were read and replaced by ⇥. This is done in a non-jumping way,
from left to right, using rules in R2. To be more precise, after reading the last input letters using
a rule in R1 and erasing them, the automaton should jump to $, otherwise the computation
cannot be continued. It reads this symbol and moves right in state r 2 Q0. In this state, it
moves right and checks if all symbols are ⇥. Example:

p$ ⇥ ⇥ ⇥ ⇥ # ! $ r⇥ ⇥ ⇥ ⇥ # ! $ ⇥ r⇥ ⇥ ⇥ # ! ... ! $ ⇥ ⇥ ⇥ ⇥ r# .

If the automaton successfully reaches #, it proceeds to the final step. It uses a rule in R3 to
jump to another row. The row which was just read is removed from the array. The automaton
continues to do so until all rows are removed.

We say that A accepts X, if there is a computation of A that starts in the state s, reads all
rows of an array bX, and finishes with the empty array ⇤ in an accepting state qf 2 F . The
language accepted by the automaton A is a set

L(A) = {X : A accepts X}.
A class of all languages accepted by 2-GRJFA will be denoted as L(2-GRJFA), and for the
2-RJFA as L(2-RJFA).

Example 2.2 Let us consider the automaton A = ({s, p, q1, q2, r}, {p, r}, {0, 1}, {s01 y s, q10
y q2, q21 y q1, }, {s$! p, p⇥ ! p, q1$! r, r⇥ ! r}, {p#

y

q1, r#

y

s}, s, {s}), see a
graphic form below. The row checking states {p, r} are coloured in gray. The jumping rules
are represented by single-head arrows, row checking rules by double-head arrows and row jump
rules by triple-head arrows.

sstart p q1 q2 r

01

0

1

$

$

⇥ ⇥

#

#

MEMBERSHIP PROBLEM FOR 2D JUMPING FINITE AUTOMATA 37

An example computation on an array:

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
$ 0 1 s0 1 #

y

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
$ s0 1 ⇥ ⇥ #

y

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
s$ ⇥ ⇥ ⇥ ⇥ #

!

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
$ p⇥ ⇥ ⇥ ⇥ #

!

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
$ ⇥ p⇥ ⇥ ⇥ #

! · · · !

$ 0 1 0 1 #
$ 0 1 1 0 #
$ 1 1 0 0 #
$ ⇥ ⇥ ⇥ ⇥ p#

y $ 0 1 0 1 #
$ 0 1 1 q10 #
$ 1 1 0 0 #

y
$ 0 1 0 1 #
$ 0 q21 1 ⇥ #
$ 1 1 0 0 #

y · · · y
$ 0 1 0 1 #
q1$ ⇥ ⇥ ⇥ ⇥ #
$ 1 1 0 0 #

!
$ 0 1 0 1 #
$ r⇥ ⇥ ⇥ ⇥ #
$ 1 1 0 0 #

! · · · !
$ 0 1 0 1 #
$ ⇥ ⇥ ⇥ ⇥ r#
$ 1 1 0 0 #

y $ s0 1 0 1 #
$ 1 1 0 0 #

y · · ·

y

$ 1 1 q10 0 # y · · ·

y

s.

It is easy to see, that L(A) = {X 2 {0, 1}⇤⇤ : X has n rows of the form (01)⇤ and n rows
containing the same number of 0’s and 1’s, where n � 0}. Obviously, L(A) 2 L(2-GRJFA).
However, L(A) /2 L(2-RJFA), as it was shown in [3] using a similar example.

3. Results

First, we consider the following problem:

Uniform m.p. for 2-rjfa

Input: a 2-RJFA A and an array X 2 ⌃⇤⇤

Question: X 2 L(A)?

To prove NP-hardness, we show a reduction from the 3-partition problem, which is know to be
strongly NP-complete [2]. Therefore, the input numbers can be given in unary.

3-Partition

Input: a sequence of natural numbers S = (n1, n2, ..., n3m) given in unary, where m � 0,
Question: can S be partitioned into triplets (ni1 , nj1 , nk1),(ni2 , nj2 , nk2), ..., (nim , njm , nkm),
such that

S
1rm{ir, jr, kr} = {1, 2, ..., 3m} and for each r, nir + njr + nkr = B (each triplet

sums to the same number)?

Theorem 3.1 Uniform m.p. for 2-rjfa is NP-complete, even under the restriction that

|⌃| = 2.

Proof. It is easy to see that Uniform m.p. for 2-rjfa 2 NP. To prove NP-hardness, we
show that there exists a deterministic polynomially time bounded Turing machine M which
reduces 3-Partition to Uniform m.p. for 2-rjfa. For a sequence S = (n1, n2, ..., n3m), the
machine M computes a pair (A,X), where A is a 2-RJFA and X 2 ⌃⇤⇤, such that A accepts
X if and only if S has a 3-partition.

38 Grzegorz Madejski, Andrzej Szepietowski

s0start s1 s2 · · · sB

p0 p1 p2 · · · pB

s00 s01 s02 · · · s0B

p00 p01 p02 · · · p0B

s000 s001 s002 · · · s00B

p00B

0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

1 1 1 1

1 1 1 1

$ $ $ $

$ $ $ $

⇥ ⇥ ⇥ ⇥

⇥ ⇥ ⇥ ⇥

⇥

$

#

#

#

Figure 1: 2-RJFA constructed based on 3-partition instance.

Machine M works as follows. First, it computes N =
P3m

i=1 ni and B = N
m . Then it constructs

the automaton A presented in Fig. 1 and the array X =

0n11B�n1

0n21B�n2

· · ·
0n3m1B�n3m

. We may assume that

each ni  B.

Suppose that there is a 3-partition (ni1 , nj1 , nk1),(ni2 , nj2 , nk2), ..., (nim , njm , nkm) of S, then
there is an accepting computation of A on X. The computation starts in i1-th row of X. After
reading the whole row it reaches the state sni1

, jumps in the state pni1
into $, checks if all letters

are read and jumps in the state s0ni1
to the row j1. After reading and checking the j1-th row it

jumps in the state s00ni1+nj1
to the k1-th row. The automaton can read and check the k1-th row

only if ni1 + nj1 + nk1 = B. After that, the automaton takes the next triplet and jumps in the
state s0 to i2-th row, and so on.

On the other hand, if there is an accepting computation of the automaton A on the array X,

MEMBERSHIP PROBLEM FOR 2D JUMPING FINITE AUTOMATA 39

then the order in which the rows of X are visited gives the 3-partition of S. 2

Corollary 3.2 Uniform m.p. for 2-grjfa is NP-complete, even under the restriction that

|⌃| = 2.

Proof. NP-hardness follows from Theorem 3.1. It is obvious thatUniform m.p. for 2-grjfa

2 NP. 2

We can give a stronger result as the one above by restricting the number of rows in an input
array to one.

Theorem 3.3 The uniform membership problem for single-row 2-GRJFA is NP-complete, even

under the restriction that |⌃| = 2.

Proof. We reduce the 3-partition problem with S = {n1, n2, ..., n3m} to the uniform member-
ship problem for single-row 2-GRJFA. First we compute B, then we construct an automaton
with the set of states Q = {p, q, r, s}[{si,j,k, s0i,j,k : i+ j+ k = B} and Q0 = {r}. The rules are
presented below.

sstart sB,0,0

si,j,k

s0,0,B

· · · · · ·

· · · · · ·

s0B,0,0

s0i,j,k

s00,0,B

p r

q

0B1

0i1

1

1

0j1

1

1

0k1

0B1

$
⇥

#

The 3-partition problem has a solution if and only if 0n110n21 · · · 0n3m1 2 L(A). We see that
the automaton reads three numbers from the input that sum up to B (a cycle from state s to
p and p to s). This corresponds to a triplet from the 3-partition of S. It repeats the cycle until
all triplets are read. The problem is in NP which is easy to show. 2

4. Conclusions

We analysed the time complexity of the uniform membership problem for 2-GRJA and 2-RJFA.
In both cases, we obtained NP-completeness results, even if we restricted the alphabet to having
only two symbols. For 2-GRJFA, this problem is NP-complete even in the single-row case. For

40 Grzegorz Madejski, Andrzej Szepietowski

2-RJFA it is crucial that we have an arbitrary number of rows, otherwise the problem would
collapse to the uniform membership problem for JFA, which is in P if the size of the alphabet
is set [1].

References

[1] H. FERNAU, M. PARAMASIVAN, M. L. SCHMID, V. VOREL, Characterization and complex-
ity results on jumping finite automata. Theor. Comput. Sci. 679 (2017), 31–52.
https://doi.org/10.1016/j.tcs.2016.07.006

[2] M. R. GAREY, D. S. JOHNSON, Computers and Intractability: A Guide to the Theory of NP-

Completeness. W. H. Freeman & Co., New York, NY, USA, 1979.

[3] S. J. IMMANUEL, D. G. THOMAS, Two-Dimensional Jumping Finite Automata. Math. Appl. 5
(2016), 105–122.
https://doi.org/10.13164/ma.2016.08

[4] J. KARI, V. SALO, Algebraic Foundations in Computer Science. chapter A Survey on Picture-
walking Automata, Springer-Verlag, Berlin, Heidelberg, 2011, 183–213.
http://dl.acm.org/citation.cfm?id=2172429.2172438

[5] A. MEDUNA, P. ZEMEK, Jumping Finite Automata. Int. J. Found. Comput. Sci. 23 (2012) 7,
1555–1578.
https://doi.org/10.1142/S0129054112500244

[6] P. S. P. WANG (ed.), Array Grammars, Patterns and Recognizers. World Scientific Series in
Computer Science 18, World Scientific, 1989.
https://doi.org/10.1142/0996

https://doi.org/10.1016/j.tcs.2016.07.006
https://doi.org/10.13164/ma.2016.08
http://dl.acm.org/citation.cfm?id=2172429.2172438
https://doi.org/10.1142/S0129054112500244
https://doi.org/10.1142/0996

Author Index

Aman, Bogdan, 7

Battyányi, Péter, 7

Ciobanu, Gabriel, 7

Dömösi, Pál, 11

Horváth, Géza, 11

Kántor, Kristóf, 17
Khadiev, Kamil, 25
Khadieva, Aliya, 25

Madejski, Grzegorz, 33

Szepietowski, Andrzej, 33

Vaszil, György, 7, 17

