

Rudolf Freund, Michal Hospodár, Galina Jirásková,
and Giovanni Pighizzini (eds.)

Tenth Workshop on
Non-Classical Models of

Automata and Applications
(NCMA 2018)

Short Papers

© Authors

Druck: Druckerei Riegelnik
1080 Wien, Piaristengasse 19

Preface

This volume contains the five short contributions of the Tenth Workshop on Non-Classical

Models of Automata and Applications (NCMA 2018) held in Košice, Slovakia, on August 21st

and 22nd, 2018. The NCMA workshop series was established in 2009 as an annual forum
for researchers working on di↵erent aspects of non-classical and classical models of automata
and grammars. The purpose of the NCMA workshop series is to provide an opportunity to
exchange and develop novel ideas, and to stimulate research on non-classical and classical
models of automata and grammar-like structures. Many models of automata and grammars
are studied from di↵erent points of view in various areas, both as theoretical concepts and as
formal models for applications. The goal of the NCMA workshop series is to motivate a deeper
coverage of this particular area and in this way to foster new insights and substantial progress
in computer science as a whole.

The previous workshops took place in the following places:

2009 Wroc law, Poland,
2010 Jena, Germany,
2011 Milano, Italy,
2012 Fribourg, Switzerland,
2013 Ume̊a, Sweden,
2014 Kassel, Germany,
2015 Porto, Portugal,
2016 Debrecen, Hungary, and
2017 Praha, Czech Republic.

The Tenth Workshop on Non-Classical Models of Automata and Applications (NCMA 2018)
was organized by the Košice branch of the Mathematical Institute of the Slovak Academy of
Sciences. Its scientific program consisted of invited lectures, regular contributions, and short
presentations.

In addition to the two invited talks and the 11 regular contributions, NCMA 2018 also features
five short presentations to emphasize its workshop character, each of them also having been
evaluated by at least two members of the program committee. The extended abstracts of these
short presentations are contained in this volume.

4 Preface

We are grateful to the Košice branch of the Mathematical Institute of the Slovak Academy of
Sciences for the local organization and for the financial support of NCMA 2018.

August 2018

Rudolf Freund, Wien

Michal Hospodár, Košice

Galina Jirásková, Košice

Giovanni Pighizzini, Milano

Table of Contents

Short Papers

RECOGNITION OF UNCOUNTABLY MANY LANGUAGES WITH ONE
COUNTER . 7

Maksims Dimitrijevs and Abuzer Yakaryılmaz

PARSING LANGUAGES OF P COLONY AUTOMATA . 15

Erzsébet Csuhaj-Varjú, Kristóf Kántor, and György Vaszil

THE COMPLEXITY OF LANGUAGES RESULTING FROM THE CUT
OPERATION IN THE UNARY CASE . 25

Markus Holzer and Michal Hospodár

NONDETERMINISTIC COMPLEXITY OF POWER AND POSITIVE CLOSURE
ON SUBCLASSES OF CONVEX LANGUAGES . 35

Michal Hospodár and Matúš Palmovský

EXTENDED FINITE AUTOMATA AND DECISION PROBLEMS FOR MATRIX
SEMIGROUPS . 45

Özlem Salehi and Ahmet Celal Cem Say

Author Index . 53

RECOGNITION OF UNCOUNTABLY
MANY LANGUAGES WITH ONE

COUNTER

Maksims Dimitrijevs(A,B) Abuzer Yakaryılmaz(A,B)

(A)University of Latvia, Faculty of Computing
Raiņa bulvāris 19, R̄ıga, LV-1586, Latvia

(B)University of Latvia, Center for Quantum Computer Science
Raiņa bulvāris 19, R̄ıga, LV-1586, Latvia

md09032@lu.lv abuzer@lu.lv

Abstract

Recently, we investigated the minimal cases for realtime probabilistic machines that can define

uncountably many languages with bounded error, and, we left open whether one-counter is suf-

ficient. In this short paper, we answer this question by providing a positive answer.

Keywords: Probabilistic automata, realtime computation, counter automata, bounded error.

1. Introduction

Probabilistic and quantum machines can recognize uncountably many languages with bounded
error when using real number transitions [1, 2, 3, 9]. We have been systematically investi-
gating di↵erent bounded-error probabilistic models with various restrictions on computational
resources that can recognize uncountably many languages [2, 3]. Regarding the realtime read-
ing mode, we have shown that the following probabilistic realtime machines can recognize
uncountably many languages with bounded error [3, 5]:

• Unary logarithmic-space probabilistic Turing machines (PTMs).

• Unary probabilistic automata with two counters (P2CAs).

• Unary probabilistic automata with k counters (PkCAs) in O(k�1
p
n) space, where k > 2.

• Binary double-logarithmic-space PTMs.

• Binary probabilistic automata with many counters in O(k
p
log n) space for any k � 1,

where the required number of counters depends on k.

• Binary P2CAs in O(k
p
n) space for any integer k > 1.

8 Maksims Dimitrijevs, Abuzer Yakaryılmaz

We have also shown that most of the presented bounds are tight. Uncountably many unary
languages cannot be recognized with one stack in realtime [8], and so, using two counters is the
minimal requirement. Realtime o(log log n)-space PTMs can recognize only regular languages
[7]. Realtime counter automata with o(k

p
log n) space for some k � 1 also can recognize only

regular languages [5].

It is a known fact that probabilistic automata can recognize only regular languages in polyno-
mial time [6]. On the other hand, we have proved possible sublinear space bound for realtime
P2CAs that recognize uncountably many languages with bounded error. The case of realtime
probabilistic automata with one counter was left open. In this paper we show that in non-
unary case for realtime probabilistic automata it is su�cient to have one counter to recognize
uncountably many languages with bounded error.

In the next section, we present the notations and definitions to follow the rest of the paper.
Then, we present our results in Section 3.

2. Background

We assume that the reader is familiar with the basics of complexity theory and automata theory.
We denote the left and the right end-markers as ¢ and $, and the blank symbol as #. ⌃ not
containing symbols ¢ and $ denotes the input alphabet, ⌃̃ is the set ⌃ [{¢, $}. ⌃⇤ is set of all
strings (including the empty string (")) defined over ⌃. For any natural number i > 0, bin(i)
denotes the unique binary representation that always starts with digit 1.

Our realtime models operate in strict mode: any given input, say w 2 ⌃⇤, is read as w̃ = ¢w$
from the left to the right and symbol by symbol without any pause on any symbol.

Formally, a realtime probabilistic counter automaton with k counters (PkCA) P is a 6-tuple

P = (S,⌃, �, s1, sa, sr),

where S is the set of finite internal states, s1 2 S is the initial state, sa 2 S and sr 2 S (sa 6= sr)
are the accepting and rejecting states, respectively, and � is the transition function

� : S ⇥ ⌃̃⇥ {0, 1}k ⇥ S ⇥ {�1, 0, 1}k ! [0, 1]

that governs the behavior of P as follows: When P is in state s 2 S, reads symbol � 2 ⌃̃ on
the input tape, and checks the status of each of k counters ck = {0, 1}k, whether the value of
the counter is zero (c = 0) or not (c = 1), it enters state s0 2 S and updates the value of each
counter with value from dk = {�1, 0, 1}k with probability

�(s, �, ck, s0, dk),

where d = �1 (d = 0 and d = 1) means the value of the counter is decreased by one (the value
of the counter remains unchanged and the value of the counter is increased by one).

POSTSELECTING PROBABILISTIC FS RECOGNIZERS AND VERIFIERS 9

To be a well-formed PkCA, the following condition must be satisfied: for each triple (s, �, ck) 2
S ⇥ ⌃̃⇥ {0, 1}k, X

s02S,dk2{�1,0,1}k
�(s, �, ck, s0, dk) = 1.

The computation starts in state s1, and any given input, say w 2 ⌃⇤, is read as ¢w$ symbol
by symbol from the left to the right, and the computation is terminated and the given input is
accepted (rejected) if P enters sa (sr). It must be guaranteed that the machine enters a halting
state after reading $.

Language L ✓ ⌃⇤ is said to be recognized by a PkCA P with error bound ✏ if

• each member is accepted by P with probability at least 1� ✏, and,

• each non-member is rejected by P with probability at least 1� ✏.

We can also say that L is recognized by P with bounded error or recognized by bounded-error
PkCA P .

A PkCA with a working tape instead of counters is called probabilistic Turing machine (PTM).
The working tape contains only blank symbols at the beginning of the computation and it has
a two-way read/write head. On the work tape, a PTM reads the symbol under the head as a
part of a transition, and then, it overwrites the symbol under the head and updates the position
of head by at most one square after the transition.

A language L is recognized by a bounded-error PkCA in space s(n), if the maximum absolute
value of any of the counters is not more than s(n) for any input with length n. In case of PTM,
s(n) is the maximum space used by PTM on a given input - the number of all cells visited on
the work tape during the computation with some non-zero probability.

We denote the set of integers Z and the set of positive integers Z+. The set I = {I | I ✓ Z+}
is the set of all subsets of positive integers and so it is an uncountable set (the cardinality is
@1) like the set of real numbers (R). The cardinality of Z or Z+ is @0 (countably many).

For I 2 I, the membership of each positive integer is represented as a binary probability value:

pI = 0.x101x201x301 · · · xi01 · · · , xi = 1 $ i 2 I.

The coin landing on head with probability pI is named coinI .

3. Realtime Automata with One Counter

We use a fact presented in our previous paper [2].

Fact 1 [2] Let x = x1x2x3 · · · be an infinite binary sequence. If a biased coin lands on head with
probability p = 0.x101x201x301 · · · , then the value xk is determined correctly with probability

10 Maksims Dimitrijevs, Abuzer Yakaryılmaz

at least 3
4 after 64k coin tosses, where xk is guessed as the (3k+3)-th digit of the binary number

representing the total number of heads after 64k coin tosses.

We proceed with the possibility to improve the error bound when compute the bit xk. We
present the explicit proof, which is similar to the proof of Fact 1.

Lemma 3.1 Let x = x1x2x3 · · · be an infinite binary sequence. If a biased coin lands on head

with probability p = 0.x101x201x301 · · · , then the value xk can be determined with probability at

least 1� 1
4·2l after 64k · 2l coin tosses, where l > 0.

Proof. Let X be the random variable denoting the number of heads after 64k · 2l coin tosses.
The expected value of X is E[X] = p · 64k · 2l. The value of xk is equal to (3 · k + l + 3)-th bit
in E[X].

If |X �E[X]|  8k · 2l we still have the correct xk since in E[X] (= x101x201x301 · · · xk01 · · ·)
xk01 is followed by 3k + l bits and if we add a number in the interval [�8k · 2l, 8k · 2l] to E[X],
we can get a number between

x101x201x301 · · · xk00 · · · and x101x201x301 · · · xk10 · · · .

By using this fact with Chebyshev’s inequality, we can follow that

Pr[|X � E[X]| � 8k · 2l]  p · (1� p) · 64k · 2l

(8k · 2l)2 =
p · (1� p) · 64k · 2l

64k · 22l =
p · (1� p)

2l
,

where the function p · (1� p) is parabolic and its global maximum is 1
4 , i.e. p · (1� p)  1

4 for
any chosen probability p.

Therefore, by returning the (3k + l+ 3)-th digit of the counter value that keeps the number of
heads after 64k · 2l coin tosses, we can correctly guess xk with the probability at least 1� 1

4·2l .
2

We use the following nonregular binary language, a modified version of DIMA [2]:

DIMA3l = {020102110221 · · · 1026k+l�2
1102

6k+l�1
112

6k+l
(02

3k+l�11)2
3k | k > 0},

where l > 0 is a even constant that influences the error bound.

Theorem 3.2 Realtime probabilistic automata with one counter can recognize uncountably

many languages with bounded error.

Proof. Let wk be the k-th shortest member of DIMA3l for k > 0. For any I 2 I, we define the
following language:

DIMA3l(I) = {wk | k > 0 and k 2 I}.

Now we proceed with the recognition of DIMA3l(I) for any I 2 I. Let P be the P1CA and w
be the given input of the form

w = 0t110t21 · · · 10tm�1110tm11t
0
00t

0
110t

0
21 · · · 10t0n1,

POSTSELECTING PROBABILISTIC FS RECOGNIZERS AND VERIFIERS 11

where t1 = 1, m and n are positive integers, m� l is divisible by 6, and ti, t0j > 0 for 1  i  m
and 0  j  n. (Otherwise, the input is rejected deterministically.)

P splits computation into five paths with equal probabilities. In the first path, with the help
of the counter, P makes the following comparisons:

• for each i 2 {1, . . . , m2 }, whether 2t2i�1 = t2i,

• for each j 2 {1, . . . , n2}, whether t
0
2j�1 = t02j.

In the second path, with the help of the counter, P makes the following comparisons:

• for each i 2 {1, . . . , m2 � 1}, whether 2t2i = t2i+1,

• whether 2tm = t00 (this also helps to set the counter to 0 for the upcoming comparisons),

• for each j 2 {1, . . . , n2 � 1}, whether t02j = t02j+1.

In the third path, P checks whether 1 +
Pm

i=1 ti = n +
Pn

j=1 t
0
j. In the fourth path P checks,

whether t01+1
2l = n.

It is easy to see that all comparisons are successful if and only if w 2 DIMA3l. If check in the
path is not successful, the input is rejected. Otherwise, P finishes to read the input and accepts
it with probability 5

9 , and rejects it with the remaining probability 4
9 .

In the fifth path, P tosses coinI T = 1 +
Pm

i=1 ti times by reading the part of the input
0t110t21 · · · 10tm�1110tm1. Remark that if w 2 DIMA3l, T is 64k · 2l for some k > 0. After each
coin toss, if the result is a head, P increases the value of the counter by one. Let H be the
total number of heads, therefore, the value of the counter is H. Then P reads H symbols from
the part w0

k = (02
3k+l�11)2

3k
with the help of the counter. During attempt to read H symbols,

if the input is finished, then P rejects the input in this path. Otherwise, P guesses the value
xk with probability at least 1� 1

4·2l . If the guess is 1, P accepts the input with probability 5
9 ,

and rejects the input with probability 4
9 . If the guess is 0, P rejects the input.

When P reads H symbols from the part w0
k = (02

3k+l�11)2
3k
, it guesses the value xk. Here we

use the analysis similar to one presented in [4]. We can write H as

H = i · 8k+1 · 2l + j · 8k · 2l + q = (8i+ j)8k · 2l + q,

where i � 0, j 2 {0, . . . , 7}, and q < 8k · 2l.

Due to Lemma 3.1, xk is the (3k + l + 3)-th digit of bin(H) with probability 1� 1
4·2l . In other

words, xk is guessed as 1 if j 2 {4, . . . , 7}, and as 0, otherwise. P sets j = 0 at the beginning.
We can say that for each head, it consumes a symbol from w0

k. After reading 8k · 2l symbols,
it updates j as (j + 1) mod 8. When the value of the counter reaches zero, P guesses xk by
checking the value of j.

If w 2 DIMA3l(I), then the input accepted with probability at least 4 · 1
5 ·

5
9 +

1
5 ·

5
9 · (1�

1
4·2l) =

5
9 �

1
36·2l .

If w /2 DIMA3l, the input is rejected with probability at least 1
5 + 4 · 1

5 ·
4
9 = 5

9 .

12 Maksims Dimitrijevs, Abuzer Yakaryılmaz

If w 2 DIMA3l and w /2 DIMA3l(I), the input is rejected with probability at least 4 · 1
5 ·

4
9 +

1
5 ·

(1� 1
4·2l) =

5
9 �

1
20·2l .

Therefore, the input is recognized with error bound ✏ = 4
9 +

1
20·2l , where ✏ < 1

2 for any l � 0,
and ✏ can be arbitrarily close to 4

9 for su�ciently large l. Since the cardinality of set {I | I 2 I}
is uncountable, there are uncountably many languages in {DIMA3l(I) | I 2 I}, each of which is
recognized by a bounded-error realtime P1CA. 2

We conclude that our bounds for the number of counters are tight, i.e., one counter in the
case of binary alphabets and two counters in the case of unary alphabets, since binary real-
time probabilistic automata and unary realtime probabilistic automata with one counter can
recognize only regular languages with bounded error [6, 8].

Acknowledgements

Dimitrijevs is partially supported by University of Latvia projects AAP2016/B032 “Innovative
information technologies” and ZD2018/20546 “For development of scientific activity of Faculty
of Computing”. Yakaryılmaz is partially supported by ERC Advanced Grant MQC.

References

[1] L. M. ADLEMAN, J. DEMARRAIS, M.-D. A. HUANG, Quantum computability. SIAM Journal
on Computing 26 (1997) 5, 1524–1540.

[2] M. DIMITRIJEVS, A. YAKARYILMAZ, Uncountable classical and quantum complexity classes.
In: H. BORDIHN, R. FREUND, B. NAGY, GY. VASZIL (eds.), Eighth Workshop on Non-
Classical Models for Automata and Applications (NCMA 2016). books@ocg.at 321, Österreichische
Computer Gesellschaft, Wien, 2016, 131–146. (Also see: arXiv:1608.00417).

[3] M. DIMITRIJEVS, A. YAKARYILMAZ, Uncountable realtime probabilistic classes. In:
G. PIGHIZZINI, C. CÂMPEANU (eds.), Descriptional Complexity of Formal Systems - 19th
IFIP WG 1.02 International Conference, DCFS 2017, Milano, Italy, July 3-5, 2017, Proceedings.
Lecture Notes in Computer Science 10316, Springer, 2017, 102–113. (Also see: arXiv: 1705.01773).

[4] M. DIMITRIJEVS, A. YAKARYILMAZ, Probabilistic verification of all languages. 2018. Techni-
cal report, arXiv:1807.04735.

[5] M. DIMITRIJEVS, A. YAKARYILMAZ, Uncountable realtime probabilistic classes. 2018. (Ex-
tended version, submitted to International Journal of Foundations of Computer Science).

[6] C. DWORK, L. STOCKMEYER, A time complexity gap for two-way probabilistic finite-state
automata. SIAM Journal on Computing 19 (1990) 6, 1011–1123.

[7] R. FREIVALDS, Space and reversal complexity of probabilistic one-way Turing Machines. In:
M. KARPINSKI (ed.), Fundamentals of Computation Theory, Proceedings of the 1983 Interna-
tional FCT-Conference, Borgholm, Sweden, August 21-27, 1983 . Lecture Notes in Computer Sci-
ence 158, Springer, 1983, 159–170.

POSTSELECTING PROBABILISTIC FS RECOGNIZERS AND VERIFIERS 13

[8] J. KAŅEPS, D. GEIDMANIS, R. FREIVALDS, Tally languages accepted by Monte Carlo push-
down automata. In: J. D. P. ROLIM (ed.), Randomization and Approximation Techniques in
Computer Science, International Workshop, RANDOM’97, Bologna, Italy, July 11–12. 1997, Pro-
ceedings. Lecture Notes in Computer Science 1269, Springer, 1997, 187–195.

[9] A. C. C. SAY, A. YAKARYILMAZ, Magic coins are useful for small-space quantum machines.
Quantum Information & Computation 17 (2017) 11&12, 1027–1043.

PARSING LANGUAGES OF P COLONY
AUTOMATA

Erzsébet Csuhaj-Varjú

(A)
Kristóf Kántor

(B)

György Vaszil

(B)

(A)Department of Algorithms and Their Applications
Faculty of Informatics, ELTE Eötvös Loránd University,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

csuhaj@inf.elte.hu

(B)Department of Computer Science, Faculty of Informatics
University of Debrecen

Kassai út 26, 4028 Debrecen, Hungary
{kantor.kristof, vaszil.gyorgy}@inf.unideb.hu

Abstract
In this paper a subclass of generalized P colony automata is defined that satisfies a property

which resembles the LL(k) property of context-free grammars The possibility of parsing the

characterized languages using a k symbol lookahead, as in the LL(k) parsing method for context-

free languages, is examined.

1. Introduction

The computational model called P colony is similar to tissue-like membrane systems. In
P colonies, multisets of objects are used to describe the contents of cells and the environ-
ment. These multisets are processed by the cells in the corresponding colony using rules which
enable the evolution of the objects present in the cells or the exchange of objects between the
environment and the cells. These cells or computing agents have a very restricted functionality:
they can store a limited amount of objects at a given time (the capacity of the cell) and thus
they can process a limited amount of information. For more information on P colonies, consult
summaries [12, 3].

P colony automata were introduced in [2]. They are called automata, since these variants of
P colonies accept string languages by assuming an initial input tape with an input string in
the environment. The available types of rules are extended by so-called tape rules. These
types of rules in addition to processing the objects as their non-tape counterparts, also read
the processed objects from the input tape.

Generalized P colony automata were introduced in [9] to overcome the di�culty that di↵erent

16 Erzsébet Csuhaj-Varjú, Kristóf Kántor, György Vaszil

tape rules can read di↵erent symbols in the same computational step. The main idea of this
computational model was to get the process of input reading closer to other kinds of membrane
systems, in particular to antiport P systems and P automata. The latter, introduced in [6] (see
also [5]) are P systems using symport and antiport rules (see [13]), describing string languages.
Generalized P colony automata were studied further in [11, 10].

A computation in this model defines accepted multiset sequences that are transformed into
accepted symbol sequences/ strings. Generalized P colony automata have no input string, but
there are tape rules and non-tape rules equally for evolution and communication rules. In a
single computational step, this system is able to read more than one symbol, thus reading a
multiset. This way generalized P colony automata are able to avoid the conflicts present in P
colony automata, where simultaneous usage of tape rules in a single computational step can
arise problems. After getting the result of a computation, that is, the accepted sequence of
multisets, the sequence is mapped to a string in a similar way as shown in P automata.

In [9], some basic variants of the model were introduced and studied from the point of view
of their computational power. In [11, 10] the investigations were continued by structuring the
previous results around the capacity of the systems, and di↵erent types of restrictions imposed
on the use of tape rules in the programs.

Since P colony automata variants accept languages, di↵erent types of descriptions of their
language classes are of interest. One possible research direction is to investigate their parsing
properties in terms of programs and rules of the (generalized) P colony automata. In this
paper, we study the possibility of deterministically parsing the languages characterized by
these devices. We define the so-called LL(k) condition for these types of automata, which
enables deterministic parsing with a k symbol lookahead as in the case of context-free LL(k)
languages. As an initial result, we show that using generalized P colony automata we can
deterministically parse context-free languages that are not LL(k) in the “original” sense.

An extended version of this short paper has been submitted for publication, see [4].

2. Preliminaries and Definitions

Let V be a finite alphabet, let the set of all words over V be denoted by V

⇤, and let " be the
empty word. We denote the cardinality of a finite set S by |S|, and the number of occurrences
of a symbol a 2 V in w by |w|a.

A multiset over a set V is a mapping M : V ! N where N denotes the set of non-negative
integers. This mapping assigns to each object a 2 V its multiplicity M(a) in M . The set
supp(M) = {a | M(a) � 1} is the support of M . If V is a finite set, then M is called a
finite multiset. A multiset M is empty if its support is empty, supp(M) = ;. The set of finite
multisets over the alphabet V is denoted by M(V). A finite multiset M over V will also be
represented by a string w over the alphabet V with |w|a = M(a), a 2 V , the empty multiset
will be denoted by ;.

PARSING LANGUAGES OF P COLONY AUTOMATA 17

A genPCol automaton of capacity k and with n cells, k, n � 1, is a construct

⇧ = (V, e, wE, (w1, P1), . . . , (wn, Pn), F)

where

• V is an alphabet, the alphabet of the automaton, its elements are called objects;

• e 2 V is the environmental object of the automaton, the only object which is assumed to
be available in an arbitrary, unbounded number of copies in the environment;

• wE 2 (V � {e})⇤ is a string representing a multiset from M(V � {e}), the multiset of
objects di↵erent from e which is found in the environment initially;

• (wi, Pi), 1  i  n, specifies the i-th cell where wi is (the representation of) a multiset over
V , it determines the initial contents of the cell, and its cardinality |wi| = k is called the
capacity of the system. Pi is a set of programs, each program is formed from k rules of the
following types (where a, b 2 V):

– tape rules of the form a

T! b, or a
T$ b, called rewriting tape rules and communication

tape rules, respectively; or

– nontape rules of the form a ! b, or a $ b, called rewriting (nontape) rules and
communication (nontape) rules, respectively.

A program is called a tape program if it contains at least one tape rule.

• F is a set of accepting configurations of the automaton which we will specify in more detail
below.

A genPCol automaton reads an input word during a computation. A part of the input (possibly
consisting of more than one symbol) is read during each configuration change: the processed
part of the input corresponds to the multiset of symbols introduced by the tape rules of the
system.

A configuration of a genPCol automaton is an (n+1)-tuple (uE, u1, . . . , un), where uE 2 M(V �
{e}) is the multiset of objects di↵erent from e in the environment, and ui 2 M(V), 1  i  n,
are the contents of the i-th cell. The initial configuration is given by (wE, w1, . . . , wn), the initial
contents of the environment and the cells. The elements of the set F of accepting configurations
are given as configurations of the form (vE, v1, . . . , vn), where vE 2 M(V � {e}) denotes a
multiset of objects di↵erent from e being in the environment, and vi 2 M(V), 1  i  n, is
the contents of the i-th cell.

Let c = (uE, u1, . . . , un) be a configuration of a genPCol automaton ⇧, and let UE = uE [
{e, e, . . .}, thus, the multiset of objects found in the environment (together with the infinite
number of copies of e, denoted as {e, e, . . .}, which are always present). The sequence of

programs

(p1, . . . , pn) 2 (P1 [{#})⇥ . . .⇥ (Pn [{#})

is applicable in configuration c, if the following conditions hold:

• The selected programs are applicable in the cells,

18 Erzsébet Csuhaj-Varjú, Kristóf Kántor, György Vaszil

• the symbols to be brought inside the cells by the programs are present in the environment,

• the set of selected programs is maximal.

Let us denote the applicable sequences of programs in the configuration c = (uE, u1, . . . , un) by
Appc, that is,

Appc = {Pc = (p1, . . . , pn) 2 (P1 [{#})⇥ . . .⇥ (Pn [{#}) | where Pc

is a sequence of applicable programs in the configuration c}.

A configuration c is called a halting configuration if the set of applicable sequences of programs
is the singleton set Appc = {(p1, . . . , pn) | pi = # for all 1  i  n}.

Let c = (uE, u1, . . . , un) be a configuration of the genPCol automaton. By applying a se-
quence of applicable programs Pc 2 Appc, the configuration c is changed to a configuration

c

0 = (u0
E, u

0
1, . . . , u

0
n), denoted by c

Pc=) c

0, if the following properties hold. (For a program
p, we denote by create(p), import(p), and export(p) the multisets of objects created by the
program through rewriting, brought inside the cell from the environment, and sent out to the
environment, respectively.)

• If (p1, . . . , pn) = Pc 2 Appc and pi 2 Pi, then u

0
i = create(pi) [import(pi), otherwise, if

pi = #, then u

0
i = ui, 1  i  n. Moreover,

• U

0
E = UE �

S
pi 6=#,1in import(pi)[

S
pi 6=#,1in export(pi) (where U

0
E again denotes u0

E [
{e, e, . . .} with an infinite number of copies of e).

Thus, in genPCol automata, we apply the programs in the maximally parallel way, that is, in
each computational step, every component cell nondeterministically applies one of its applicable
programs. Then we collect all the symbols that the tape rules “read”: this is the multiset read
by the system in the given computational step.

For any Pc sequence of applicable programs in a configuration c, let us denote the multiset of
objects read by the tape rules of the programs of Pc by read(Pc). Then we can also define the
set of multisets which can be read in any configuration of the genPCol automaton ⇧ as

inc(⇧) = {read(Pc) | Pc 2 Appc}.

Remark 2.1 Although the set of configurations of a genPCol automaton ⇧ can be infinite
(because the multiset corresponding to the contents of the environment is not necessarily finite),
the set inc(⇧) is always finite.

A successful computation defines this way an accepted sequence of multisets: u1u2 . . . us, ui 2
inci�1(⇧), for 1  i  s, that is, the sequence of multisets entering the system during the steps
of the computation.

Let ⇧ = (V, e, wE, (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton. The set of input se-

PARSING LANGUAGES OF P COLONY AUTOMATA 19

quences accepted by ⇧ is defined as

A(⇧) = {u1u2 . . . us | ui 2 inci�1(⇧), 1  i  s, and there is a configuration

sequence c0, . . . , cs, with c0 = (wE, w1, . . . , wn), cs 2 F, cs halting,

and ci
Pci=) ci+1 with ui+1 = read(Pci) for all 0  i  s� 1}.

Let ⇧ be a genPCol automaton, and let f : M(V) ! 2⌃
⇤
be a mapping, such that f(u) = {"}

if and only if u is the empty multiset.

The language accepted by ⇧ with respect to f is defined as

L(⇧, f) = {f(u1)f(u2) . . . f(us) 2 ⌃⇤ | u1u2 . . . us 2 A(⇧)}.

Let V and ⌃ be two alphabets, and let MFIN(V) ✓ M(V) denote the set of finite subsets
of the set of finite multisets over an alphabet V . Consider a mapping f : D ! 2⌃

⇤
for some

D ✓ MFIN(V). We say that f 2 FTRANS, if for any v 2 D, we have |f(v)| = 1, and we
can obtain f(v) = {w}, w 2 ⌃⇤ by applying a deterministic finite transducer to any string
representation of the multiset v (as w is unique, the transducer must be constructed in such
a way that all string representations of the multiset v as input result in the same w 2 ⌃⇤ as
output, and moreover, as f should be nonerasing, the transducer produces a result with w 6= "

for any nonempty input).

Besides the above defined class of mappings, we also use the so-called permutation mapping.
Let fperm : M(V) ! 2⌃

⇤
where V = ⌃ be defined as follows. For all v 2 M(V), we have

fperm(v) = {a�(1)a�(2) . . . a�(s) | v = a1a2 . . . as for some permutation �}.

3. P Colony Automata and the LL(k) Condition

Let U ⇢ ⌃⇤ be a finite set of strings over some alphabet ⌃. Let us denote for some k � 1, the
set of length k prefixes of the elements of U by FIRSTk(U), that is, let

FIRSTk(U) = {prefk(u) 2 ⌃⇤ | u 2 U}

where prefk(u) denotes the string of the first k symbols of u if |u| � k, or prefk(u) = u

otherwise.

Definition 3.1 Let ⇧ = (V, e, wE, (w1, P1), . . . , (wn, Pn), F) be a genPCol automaton, let f :
M(V) ! 2⌃

⇤
be a mapping as above, and let c0, c1, . . . , cs be a sequence of configurations with

ci =) ci+1 for all 0  i  s� 1.

We say that the P colony ⇧ is LL(k) for some k � 1 with respect to the mapping f , if for any
two distinct sets of programs applicable in configuration cs, Pcs , P

0
cs 2 Acccs with Pcs 6= P

0
cs , the

20 Erzsébet Csuhaj-Varjú, Kristóf Kántor, György Vaszil

next k symbols of the input string that is being read determines which of the two sequences
are to be applied in the next computational step, that is, the following holds.

Consider two computations

cs
Pcs=) cs+1

Pcs+1
=) . . .

Pcs+m
=) cs+m+1, and cs

P 0
cs=) c

0
s+1

P 0
cs+1
=) . . .

P 0
cs+m0
=) c

0
s+m0+1

where ucs = read(Pcs) and ucs+i = read(Pcs+i) for 1  i  m, and similarly u

0
cs = read(P 0

cs)
and u

0
cs+i = read(Pcs+i0) for 1  i  m

0, thus, the two sequences of input multisets are

ucsucs+1 . . . ucs+m and u

0
csu

0
cs+1 . . . u

0
cs+m0 .

Assume that these sequences are long enough to “consume” the next k symbols of the input
string, that is, for w and w

0 with

w 2 f(ucs)f(ucs+1) . . . f(ucs+m) and w

0 2 f(u0
cs)f(u

0
cs+1) . . . f(u

0
cs+m0),

either |w| � k and |w0| � k, or if |w| < k (or |w0| < k), then cs+m+1 (or cs+m0+1) is a halting
configuration.

The P colony ⇧ is LL(k), if for any two computations as above,

FIRSTk(w) \ FIRSTk(w
0) = ;.

Let us illustrate the above definition with an example.

Example 3.2 Let ⇧ = ({a, b, c, d, f, g, e}, e, ;, (ea, P1), F) where

P1 = {he ! b, a

T$ ei, he ! e, b

T$ ai, he ! c, a

T$ ei, he ! f, a

T$ ei,
he ! d, c

T$ bi, hb ! c, d

T$ ei, he ! g, f

T$ bi, hb ! f, g

T$ ei} and

F = {(v, ce), (v, fe) | v 2 V

⇤
, b 62 v}.

The language characterized by ⇧ is

L(⇧, fperm) = {a} [{(ab)na(cd)n | n � 1} [{(ab)na(fg)n | n � 1}.

To see this, consider the possible computations of ⇧. The initial configuration is (;, ea) and
there are three possible configurations that can be reached. Two of these are non-accepting
states, but the derivations cannot be continued, so let us consider the third one (we denote by
)u a configuration change during which the multiset of symbols u was read by the automaton).

(a, be))b (b, ea))a (ba, be))b (bb, ea))a . . .)b (b
i
, ea).

At this point, the computation can follow two di↵erent paths again, either

(bi, ae))a (b
i
a, ec))c (b

i�1
ac, db))d (b

i�1
acd, ce))c . . .)d (ac

i
d

i
, ce),

PARSING LANGUAGES OF P COLONY AUTOMATA 21

or

(bi, ae))a (b
i
a, ef))f (bi�1

af, gb))g (b
i�1

afg, fe))f . . .)g (af
i
g

i
, fe).

In the first phase of the computation, the system produces copies of b and sends them to the
environment, then in the second phase these copies of b are exchanged to copies of cd or copies
of fg. The system can reach an accepting state when all the copies of b are used, that is, when
an equal number of copies of ab and either of cd or of fg were produced.

Note that the system satisfies the LL(1) property, the symbol that has to be read, in order to
accept a desired input word, determines the set of programs that has to be used in the next
computational step.

Let us denote the class of context-free LL(k) languages by L(CF,LL(k)) (see for example
the monograph [1] for more details) and the languages characterized by genPCol automata
satisfying the above defined condition with input mapping of type fperm or f 2 TRANS, as
LX(genPCol,LL(k)), X 2 {perm, TRANS}.

The following statement can be presented.

Theorem 3.3 There are context-free languages in LX(genPCol,LL(1)), X 2 {perm, TRANS},
which are not in L(CF,LL(k)) for any k � 1.

Proof. The language L(⇧, fperm) 2 Lperm(genPCol,LL(1)) from Example 3.2 is not in
L(CF,LL(k)) for any k � 1. If we consider the mapping f1 2 TRANS, f1 : {a, b, c, d, f, g} !
{a, b, c, d, f, g} with f1(x) = x for all x 2 {a, b, c, d, f, g}, then L(⇧, f1) = L(⇧, fperm), thus,
LTRANS(genPCol,LL(1)) also contains the non-LL(k) context-free language. 2

4. Conclusions

P systems and their variants are able to describe powerful language classes, thus their applica-
bility in the theory of parsing or analyzing syntactic structures are of particular interest, see,
for example [7, 8]. In [7], so-called active P automata (P automata with dynamically chang-
ing membrane structure) were used for parsing, utilizing the dynamically changing membrane
structure of the P automaton for analyzing the string.

In this paper we studied the possibility of deterministically parsing languages characterized by
P colony automata. We provided the definition of an LL(k)-like property for (generalized) P
colony automata, and showed that languages which are not LL(k) in the “original” context-free
sense for any k � 1 can be characterized by LL(1) P colony automata with di↵erent types of
input mappings. The properties of these language classes for di↵erent values of k and di↵erent
types of input mappings are open to further investigations.

22 Erzsébet Csuhaj-Varjú, Kristóf Kántor, György Vaszil

Acknowledgments

The work of E. Csuhaj-Varjú was supported in part by the National Research, Development
and Innovation O�ce of Hungary, NKFIH, grant no. K 120558. The work of K. Kántor and
Gy. Vaszil was supported in part by the National Research, Development and Innovation O�ce
of Hungary, NKFIH, grant no. K 120558 and also by the construction EFOP-3.6.3-VEKOP-
16-2017-00002, a project financed by the European Union, co-financed by the European Social
Fund.

References

[1] A. V. AHO, J. D. ULMANN, The Theory of Parsing, Translation, and Compiling . Prentice-Hall,
Englewood Cli↵s, N.J., 1973.

[2] L. CIENCIALA, L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, GY. VASZIL, PCol automata:
Recognizing strings with P colonies. In: M. A. MARTÍNEZ DEL AMOR, GH. PĂUN, I. PÉREZ
HURTADO, A. RISCOS NUÑEZ (eds.), Eighth Brainstorming Week on Membrane Computing,
Sevilla, February 1–5, 2010 . Fénix Editora, 2010, 65–76.

[3] L. CIENCIALA, L. CIENCIALOVÁ, E. CSUHAJ-VARJÚ, P. SOSÍK, P colonies. Bulletin of
the International Membrane Computing Society 1 (2016) 2, 119–156.

[4] E. CSUHAJ-VARJÚ, K. KÁNTOR, GY. VASZIL, Deterministic parsing with P colony au-
tomata. Submitted.

[5] E. CSUHAJ-VARJÚ, M. OSWALD, GY. VASZIL, P automata. In: GH. PĂUN, G. ROZEN-
BERG, A. SALOMAA (eds.), The Oxford Handbook of Membrane Computing . Oxford University
Press, Inc., 2010, 144–167.

[6] E. CSUHAJ-VARJÚ, GY. VASZIL, P automata or purely communicating accepting P systems.
In: GH. PĂUN, G. ROZENBERG, A. SALOMAA, C. ZANDRON (eds.), Membrane Com-
puting, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Romania, August 19–23,
2002, Revised Papers . Lecture Notes in Computer Science 2597, Springer, 2003, 219–233.

[7] G. B. ENGUIX, R. GRAMATOVICI, Parsing with active P automata. In: C. MARTÍN-VIDE,
G. MAURI, GH. PĂUN, G. ROZENBERG, A. SALOMAA (eds.), Membrane Computing, In-
ternational Workshop, WMC 2003, Tarragona, Spain, July 17–22, 2003, Revised Papers. Lecture
Notes in Computer Science 2933, Springer, 2004, 31–42.

[8] G. B. ENGUIX, B. NAGY, Modeling syntactic complexity with P systems: A preview. In:
Unconventional Computation and Natural Computation – 13th International Conference, UCNC
2014, London, ON, Canada, July 14-18, 2014, Proceedings . Lecture Notes in Computer Science
8553, Springer, 2014, 54–66.

[9] K. KÁNTOR, GY. VASZIL, Generalized P colony automata. Journal of Automata, Languages
and Combinatorics (JALC) 19 (2014) 1–4, 145–156.

[10] K. KÁNTOR, GY. VASZIL, Generalized P colony automata and their relation to P automata.
In: M. GHEORGHE, G. ROZENBERG, A. SALOMAA, C. ZANDRON (eds.), Membrane

PARSING LANGUAGES OF P COLONY AUTOMATA 23

Computing - 18th International Conference, CMC 2017, Bradford, UK, July 25-28, 2017, Revised
Selected Papers . Lecture Notes in Computer Science 10725, Springer, 2018, 167–182.

[11] K. KÁNTOR, GY. VASZIL, On the classes of languages characterized by generalized P colony
automata. Theoretical Computer Science 724 (2018), 35–44.

[12] A. KELEMENOVÁ, P colonies. In: GH. PĂUN, G. ROZENBERG, A. SALOMAA (eds.), The
Oxford Handbook of Membrane Computing . Oxford University Press, Inc., 2010, 584–593.

[13] A. PĂUN, GH. PĂUN, The power of communication: P systems with symport/antiport. New
Generation Computing 20 (2002) 3, 295–306.

THE COMPLEXITY OF LANGUAGES
RESULTING FROM THE CUT OPERATION

IN THE UNARY CASE

Markus Holzer(B) Michal Hospodár(A)

(B) Institut für Informatik, Universität Giessen,
Arndtstr. 2, 35392 Giessen, Germany
holzer@informatik.uni-giessen.de

(A) Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com

Abstract
We investigate the state complexity of languages resulting from the cut operation of two unary

regular languages represented by minimal deterministic finite automata with m and n states.

We show that only complexities up to 2m � 1 and between n and m + n � 2 can be attained,

while if 2m  n� 1, then the complexities from 2m up to n� 1 cannot be attained.

1. Introduction

It is well known that for every n-state nondeterministic finite automaton (NFA), there exists
a language equivalent deterministic finite automaton (DFA) with at most 2n states [23]. This
bound is tight in the sense that for an arbitrary integer n there is always some n-state NFA
which cannot be simulated by any DFA with less than 2n states [19, 20, 21, 26].

Nearly two decades ago a very fundamental question on determinization was raised by Iwama,
Kambayashi, and Takaki [10]: does there always exist a minimal n-state NFA whose equivalent
minimal DFA has ↵ states for all n and ↵ with n  ↵  2n? Iwama, Matsuura, and Paterson [11]
called a number ↵ in the range from n to 2n magic if no minimal n-state NFA has an equivalent
minimal ↵-state DFA. The simple question whether for every n no number is magic turned out to
be harder than expected. In a series of papers, non-magic (attainable) numbers were identified
[6, 12, 13] until the problem was solved in [15] showing that for ternary languages no magic
numbers exist. On the contrary, magic numbers do exist for unary languages [5]. For binary
languages, the original problem from [10] is still open.

(A)Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091. This work was conducted during
a research visit at the Institut für Informatik, Universität Giessen, Germany, funded by the DAAD short-term
grant ID 57314022.

26 Markus Holzer, Michal Hospodár

The idea behind the magic number problem is not limited to the determinization of NFAs.
In fact every (regularity preserving) formal language operation can be used to define a magic
number problem for the operation in question. For instance, consider the intersection operation
on languages. Let A and B be minimal finite automata with m and n states, respectively. Then
the size of the minimal automaton for the intersection of L(A) and L(B) is between 1 and mn.
The value one is induced by the intersection of disjoint languages and the value mn by the
standard cross-product construction for the intersection operation. Thus, in a similar way as
for the determinization, one may now ask, whether every ↵ within the range between 1 and mn
can be attained by the size of minimal automaton for intersection of languages given by two
minimal automata with m and n states, respectively? In other words, is the outcome of the
intersection operation in terms of the number of states contiguous or are there any gaps, hence
magic numbers? In [9] it was shown that for the intersection on DFAs no number from 1 up to
mn is magic—this already holds for binary automata. Besides intersection, also other formal
language operations, for example, union [9], concatenation [14, 17], square [3], star [2, 16], and
reversal [24] were investigated from the “magic number” perspective. It turned out that magic
numbers are quite rare, and most of them occur in the unary case.

Ge↵ert [5] investigated the state complexity of languages accepted by n-state unary NFAs. He
proved that most of the numbers in the range from n up to F (n) + n2, where F (n) is the
Landau function, is not attainable as the state complexity of a language accepted by a minimal
unary n-state NFA. However, his proof is existential, and no specific value is known to be
unattainable.

Van Zijl [25] examined the magic number problem for symmetric di↵erence NFAs. She proved
that in the range from 2n�1 up to 2n, no value except for values lcm(2n1 �1, 2n2 �1, . . . , 2nk �1)
where n = n1 + n2 + · · ·+ nk, can be attained by the state complexity of a language accepted
by a minimal unary n-state symmetric di↵erence NFA.

Čevorová [2] studied the complexity of languages resulting from the Kleene star operation in
the unary case. In such a case, the known upper bound is (n � 1)2 + 1 [27]. She proved that
the values from 1 to n, as well as the values n2 � 2n+ 2 and n2 � 3n+ 3, are attainable, while
the value n2 � 3n + 2 is attainable if n is odd and it is not attainable otherwise. Moreover,
she showed that all the values from n2 � 3n + 4 up to n2 � 2n + 1 and from n2 � 4n + 7 up
to n2 � 3n + 1 cannot be attained by the state complexity of the Kleene star of any language
accepted by minimal unary DFA with n states.

We contribute to the list of magic number problems for formal language operations by studying
the cut operation in the unary case. The cut operation was introduced in [1] as a machine
implementation of “concatenation” on Unix text processors which behaves greedy like in its
left term of concatenation. Tight upper bounds for the state complexity of the cut and iterated
cut operations on DFAs were obtained in [4]. While the state complexity of concatenation is
growing linearly with the number of states of the first automaton and exponentially with the
number of states of the second automaton, the state complexity of the cut operation is only
linearly growing with both parameters. In the unary case, the known tight upper bound is
given by the function f(m,n) such that f(1, n) = 1, f(m, 1) = m, f(m,n) = 2m�1 if m,n � 2
and m � n, and f(m,n) = m+ n� 2 if m,n � 2 and m < n [4].

THE COMPLEXITY OF LANGUAGES RESULTING FROM THE CUT OPERATION 27

In this paper, we show for every value from 1 up to f(m,n) whether or not it can be attained
by the state complexity of the cut of two languages accepted by minimal unary DFAs with m
and n states. We show that only complexities up to 2m� 1 and between n and m+ n� 2 can
be attained, while complexities from 2m up to n�1 turn out to be magic. To get these results,
the tail-loop structure of minimal unary DFAs is very valuable in the proofs. To the best of
our knowledge, this is the first operation where for unary alphabet, every value in the range of
possible complexities is known to be either attainable or not, and not all values are attainable.

2. Preliminaries

We recall some definitions on finite automata as contained in [7]. Let ⌃⇤ denote the set of all
words over a finite alphabet ⌃. The empty word is denoted by ". If u, v, w are words over ⌃
such that w = uv, then u is a prefix of w. Further, we denote the set {i, i+ 1, . . . , j} by [i, j].

A deterministic finite automaton (DFA) is a quintuple A = (Q,⌃, �, s, F) where Q is a finite
nonempty set of states, ⌃ is a finite nonempty set of input symbols, s 2 Q is the initial state,
F ✓ Q is the set of final (or accepting) states, and � : Q⇥ ⌃ ! Q is the transition function

which can be extended to the domain Q ⇥ ⌃⇤ in the natural way. The language accepted (or
recognized) by the DFA A is defined as L(A) = {w 2 ⌃⇤ | �(s, w) 2 F }.

Two DFAs A and B are equivalent if they accept the same language, that is, if L(A) = L(B). An
automaton is minimal if it admits no smaller equivalent automaton with respect to the number
of states. For DFAs this property can be verified by showing that all states are reachable from
the initial state and all states are pairwise distinguishable. It is well known that every regular
language has a unique, up to isomorphism, minimal DFA. The state complexity of a regular
language is the number of states in the minimal DFA accepting this language.

In [1] the cut operation on languages K and L, denoted by K !L, is defined as

K !L = {uv | u 2 K, v 2 L, and uv0 62 K for every nonempty prefix v0 of v }.
The above defined cut operation preserves regularity as shown in [1]. Since we are interested
in the descriptional complexity of this operation we briefly recall the construction of a DFA for
the cut operation; we slightly deviate from the presentation of the construction given in [4].

Let A = (QA,⌃, �A, sA, FA) and B = (QB,⌃, �B, sB, FB) be two DFAs. Let ? /2 QB. Define the
cut automaton A !B = (Q,⌃, �, s, F) with the state set Q = (QA⇥{?})[(QA⇥QB), the initial
state s = (sA,?) if " /2 L(A) and s = (sA, sB) otherwise, the set of final states F = QA ⇥ FB,
and for each state (p, q) in Q and each input a in ⌃ we have

�((p,?), a) =

(
(�A(p, a),?), if �A(p, a) /2 FA;

(�A(p, a), sB), otherwise;

�((p, q), a) =

(
(�A(p, a), �B(q, a)), if �A(p, a) /2 FA;

(�A(p, a), sB), otherwise.

Then L(A !B) = L(A) !L(B).

28 Markus Holzer, Michal Hospodár

Consider the function f from N⇥ N to N defined by

f(m,n) =

8
>>><

>>>:

1, if m = 1;

m, if m � 2 and n = 1;

2m� 1, if m,n � 2 and m � n;

m+ n� 2, if m,n � 2 and m < n.

(1)

It was proven in [4, Theorem 3.2] that if A and B are unary DFAs with m and n states,
respectively, then f(m,n) states are su�cient and necessary in the worst case for any DFA
accepting the language L(A) !L(B).

3. The Descriptional Complexity of the Cut Operation

In this section we investigate the range of attainable complexities for the cut operation on unary
languages. We show that depending on m and n some values may be unattainable.

When working with unary DFAs, we use the notational convention proposed by Nicaud in [22].
Every unary DFA consists of a tail path, which starts from the initial state, followed by a loop
of one or more states. Let A = (Q, {a}, �, q0, F) be a unary DFA with |Q| = n. We can identify
the states of A with integers from [0, n � 1] via q 7! min{ i | �(q0, ai) = q }. In particular the
initial state q0 is mapped to 0. Let ` = �(q0, an). Then the unary DFA A with n states, loop
number ` (0  `  n�1), and set of final states F (F ✓ [0, n�1]) is referred to as A = (n, `, F).

The following characterization of minimal unary DFAs is known.

Lemma 3.1 [22, Lemma 1] A unary DFA A = (n, `, F) is minimal if and only if

(1) its loop is minimal, and

(2) if ` 6= 0, then states n� 1 and `� 1 do not have the same finality, that is, exactly one

of them is final.

Now we are ready for our results on the cut operation of unary regular languages represented
by DFAs. In a series of lemmata we consider the state complexity ↵ of the resulting language
in increasing order of ↵. The first interval we are going to discuss is [1,m].

Lemma 3.2 Let m,n � 1 and 1  ↵  m. There exist minimal unary DFAs A and B with m
and n states, respectively, such that the minimal DFA for L(A) !L(B) has ↵ states.

Proof. The proof has five cases: (1) Let m = 1, so we must have ↵ = 1. Let A be the one-

state DFA accepting the empty language and B be the minimal n-state DFA for an�1a⇤.nThen
L(A) !L(B) = ; which is accepted by a minimal one-state DFA.

THE COMPLEXITY OF LANGUAGES RESULTING FROM THE CUT OPERATION 29

(2) Let m � 2 and n = 1. Let A be the minimal m-state DFA for a↵�1(am)⇤ and B be one-
state DFA for a⇤. The reachable part of the cut automaton A !B consists of the tail of non-final
states (i,?) with 0  i  ↵� 2 and the loop of final states (i, 0) with 0  i  m� 1. Since all
the final states are equivalent, the minimal DFA for L(A) !L(B) has ↵ states.

(3) Let m,n � 2 and ↵ = 1. Consider the unary languages am�1a⇤ and an�1a⇤ accepted by
minimal DFAs A and B of m and n states, respectively. Then the reachable part of the cut
automaton A !B consists of the tail of non-final states (i,?) with 1  i  m � 2, and the
loop consisting of a single non-final state (m � 1, 0); notice that 0 is a non-final state in B.
Hence L(A) !L(B) is the empty language accepted by a one-state DFA.

(4) Let m � 2, n = 2, and 2  ↵  m. Consider the unary languages K and L defined as
follows. Ifm�↵ is even, thenK = { a↵�2, am�2 } and L = a(aa)⇤, otherwise, K = { a↵�1, am�2 }
and L = (aa)⇤. The minimal DFAs for K and L have m and 2 states, respectively. We have
K !L = a↵�1(aa)⇤, which is accepted by a minimal ↵-state DFA.

(5) Let m � 2, n � 3, and 2  ↵  m. Consider the unary deterministic finite automata
A = (m,↵�2, [↵� 1,m� 1]) and B = (n, n� 1, [0, n� 2]). By Lemma 3.1, the DFAs A and B
are minimal. The reachable part of the cut automaton consists of the tail of ↵ � 1 non-final
states and of the loop of m � ↵ + 2 final states. Hence the minimal DFA for L(A) !L(B) has
↵ states. 2

Our next interval is [m+ 1, 2m� 1]; cf. f(m,n) defined by (1) on page 28.

Lemma 3.3 Let m,n � 2 and m+1  ↵  2m�1. There exist minimal unary DFAs A and B
with m and n states, respectively, such that the minimal DFA for L(A) !L(B) has ↵ states.

Proof. We have ↵ = m + � for some integer � with 1  �  m � 1. Consider the unary
DFA A = (m, 0, {�}). Define the unary DFA B as follows:

B =

(
(n, 0, {m� 1}), if m < n;

(n, n� 1, {n� 1}), otherwise.

By Lemma 3.1, the DFAs A and B are minimal. If m < n, then L(A) !L(B) is accepted by the
DFA (↵, �, {↵� 1}), otherwise, it is accepted by the DFA (↵, �, { i | n+ � � 1  i  ↵� 1 }).
The resulting DFA is minimal by Lemma 3.1. 2

The last interval we are considering in this series of lemmata is [n,m+ n� 2].

Lemma 3.4 Let m,n � 2, ↵ � m, and n  ↵  m + n � 2. There exist minimal unary

DFAs A and B with m and n states, respectively, such that the minimal DFA for L(A) !L(B)
has ↵ states.

Proof. Consider the DFAs A = (m,m � 1, {m � 2}) and B = (n, 0, {↵ �m + 1}) which are
minimal by Lemma 3.1; notice that 1  ↵ �m + 1  n � 1. In the cut automaton A !B, the
states (m�2, 0) and (m�1, 0) are non-final and both of them are sent to (m�1, 1) on a, hence
they are equivalent. Next, for each i with 1  i  n � ↵ + m � 2, the states (m � 2 � i,?)

30 Markus Holzer, Michal Hospodár

and (m�1, n� i) are equivalent as well; notice that n�↵+m�2 � 0 since ↵  m+n�2. To
get the minimal DFA for the cut, we redirect the out-transition from the state (m�1,↵�m+1)
to the state (↵ � n,?) if ↵  m + n � 3 and to the state (↵ � n, 0) if ↵ = m + n � 2. Since
m� 1 + (↵�m+ 1) = ↵, the resulting minimal DFA for L(A) !L(B) has ↵ states. 2

For certain values of m and n the intervals stated in the previous lemmata may not be con-
tiguous. For instance, if we choose m = 2 and n = 5, then the intervals from Lemmata 3.2,
3.3, and 3.4 cover {1, 2, 3, 5}. Hence the value 4, which comes from the interval [2m,n � 1],
is missing. In fact, we show that whenever this interval is nonempty, these values cannot be
obtained by an application of the cut operation on minimal DFAs with an appropriate number
of states.

Lemma 3.5 Let m,n � 2 and 2m  ↵  n�1. There exist no minimal unary m-state DFA A
and minimal unary n-state DFA B such that the minimal DFA for L(A) !L(B) has ↵ states.

Proof. We discuss two cases depending on whether the language L(A) is infinite or finite.

If L(A) is infinite, then A must have a final state in its loop. Denote the size of loop in A by
` and the smallest final state in the loop of A by j. Consider the cut automaton A !B. Notice
that its initial state is sent to the state (j, 0) by the word aj. Next, the state (j, 0) is sent to
itself by the word a`. It follows that A !B is equivalent to a DFA (j + `, j, F) for some set
F ✓ [0, j + l � 1]. Since j  m� 1 and `  m, the minimal DFA for L(A) !L(B) has at most
2m� 1 states.

If L(A) is finite, then A has a loop in the non-final state m� 1and the state m� 2 is final. Let
A = (m,m � 1, F) and B = (n, k, F 0) be minimal unary DFAs for some sets F ✓ [0,m � 1]
and F 0 ✓ [0, n � 1]. It follows that in the cut automaton A !B, the state (m � 2, 0) and the
states (m�1, j) with 1  j  n�1 are reachable. Two distinct states (m�1, j) and (m�1, j0)
are distinguishable by the same word as the states j and j0 in B, and the state (m� 2, 0) and
a state (m � 1, j) are distinguishable by the same word as 0 and j are distinguishable in B.
It follows that the cut automaton has at least n reachable and pairwise distinguishable states,
and the theorem follows. 2

Now let us summarize our results; recall that the state complexity of the cut operation on unary
languages is given by the function f(m,n) defined by (1) on page 28 such that f(1, n) = 1,
f(m, 1) = m, f(m,n) = 2m � 1 if m,n � 2 and m � n and f(m,n) = m + n � 2 if m,n � 2
and m < n.

Theorem 3.6 For every m,n,↵ � 1 such that ↵ = 1 if m = 1, 1  ↵  m if m � 2 and

n = 1, or 1  ↵  2m � 1 or n  ↵  m + n � 2 if m,n � 2, there exist minimal unary

DFAs A and B with m and n states, respectively, such that the minimal DFA for L(A) !L(B)
has ↵ states. In the case of m,n � 2 and 2m  ↵  n � 1, there do not exist minimal unary

m-state and n-state DFAs A and B such that the minimal DFA for L(A) !L(B) has ↵ states.

Proof. The cases of m = 1 and m � 2, n = 1 are given by Lemma 3.2 (1) and Lemma 3.2 (2),
respectively. Let m,n � 2. The case of 1  ↵  m is given by Lemma 3.2 (3)-(5). The case
of m + 1  ↵  2m � 1 is covered by Lemma 3.3, and the case of n  ↵  m + n � 2 by
Lemma 3.4. We proved that no value from 2m to n� 1 is attainable in Lemma 3.5. 2

THE COMPLEXITY OF LANGUAGES RESULTING FROM THE CUT OPERATION 31

4. Conclusions

We examined the state complexity of languages resulting from the cut operation on minimal

unary deterministic finite automata with m and n states. We proved that no value from 2m
up to n� 1 is attainable by the state complexity of the cut of two unary languages represented

by minimal deterministic finite automata with m and n states. All the remaining values up to

the known upper bound are attainable. This means that the problem of finding all attainable

complexities for the cut operation is completely solved for unary alphabet. To the best of our

knowledge, the cut operation is the first operation where the problem of finding all possible

complexities in the unary case is completely solved.

Acknowledgements

We thank Juraj

ˇ

Sebej and Jozef Jirásek Jr. for their help on border values in our theorems.

Moreover, also thanks to Galina Jirásková for her support and to all who helped us to improve

the presentation of the paper.

References

[1] M. BERGLUND, H. BJÖRKLUND, F. DREWES, B. VAN DER MERWE, B. WATSON,
Cuts in regular expressions. In: M. BÉAL, O. CARTON (eds.), Developments in Language
Theory - 17th International Conference, DLT, 2013, Marne-la-Vallée, France, June 18-21, 2013.
Proceedings . Lecture Notes in Computer Science 7907, Springer, 2013, 70–81.

[2] K. ČEVOROVÁ, Kleene star on unary regular languages. In: JÜRGENSEN and REIS [18],
2013, 277–288.

[3] K. ČEVOROVÁ, G. JIRÁSKOVÁ, I. KRAJŇÁKOVÁ, On the square of regular languages. In:
HOLZER and KUTRIB [8], 2014, 136–147.

[4] F. DREWES, M. HOLZER, S. JAKOBI, B. VAN DER MERWE, Tight bounds for cut-
operations on deterministic finite automata. Fundamenta Informaticae 155 (2017) 1-2, 89–110.

[5] V. GEFFERT, Magic numbers in the state hierarchy of finite automata. Information and Com-
putation 205 (2007) 11, 1652–1670.

[6] V. GEFFERT, State hierarchy for one-way finite automata. Journal of Automata, Languages and
Combinatorics (JALC) 12 (2007) 1-2, 139–145.

[7] M. A. HARRISON, Introduction to Formal Language Theory . Addison-Wesley, 1978.

[8] M. HOLZER, M. KUTRIB (eds.), Implementation and Application of Automata - 19th Inter-
national Conference, CIAA 2014, Giessen, Germany, July 30 - August 2, 2014. Proceedings.
Lecture Notes in Computer Science 8587, Springer, 2014.

32 Markus Holzer, Michal Hospodár

[9] M. HRICKO, G. JIRÁSKOVÁ, A. SZABARI, Union and intersection of regular languages
and descriptional complexity. In: C. MEREGHETTI, B. PALANO, G. PIGHIZZINI,
D. WOTSCHKE (eds.), 7th International Workshop on Descriptional Complexity of Formal Sys-
tems – DCFS 2005, Como, Italy, June 30 - July 2, 2005. Proceedings. Università degli Studi di
Milano, 2005, 170–181.

[10] K. IWAMA, Y. KAMBAYASHI, K. TAKAKI, Tight bounds on the number of states of DFAs
that are equivalent to n-state NFAs. Theoretical Computer Science 237 (2000) 1–2, 485–494.

[11] K. IWAMA, A. MATSUURA, M. PATERSON, A family of NFA’s which need 2n�↵ deterministic
states. In: M. NIELSEN, B. ROVAN (eds.), Mathematical Foundations of Computer Science
2000, 25th International Symposium, MFCS 2000, Bratislava, Slovakia, August 28 - September
1, 2000, Proceedings. Lecture Notes in Computer Science 1893, Springer, 2000, 436–445.

[12] J. JIRÁSEK, G. JIRÁSKOVÁ, A. SZABARI, Deterministic blow-ups of minimal nondetermin-
istic finite automata over a fixed alphabet. International Journal of Foundations of Computer
Science 19 (2008) 3, 617–631.

[13] G. JIRÁSKOVÁ, Deterministic blow-ups of minimal NFA’s. RAIRO – Theoretical Informatics
and Applications (RAIRO: ITA) 40 (2006) 3, 485–499.

[14] G. JIRÁSKOVÁ, Concatenation of regular languages and descriptional complexity. Theory of
Computing Systems 49 (2011) 2, 306–318.

[15] G. JIRÁSKOVÁ, Magic numbers and ternary alphabet. International Journal of Foundations of
Computer Science 22 (2011) 2, 331–344.

[16] G. JIRÁSKOVÁ, M. PALMOVSKÝ, J. ŠEBEJ, Kleene closure on regular and prefix-free lan-
guages. In: HOLZER and KUTRIB [8], 2014, 226–237.

[17] G. JIRÁSKOVÁ, A. SZABARI, J. ŠEBEJ, The complexity of languages resulting from the con-
catenation operation. In: C. CÂMPEANU, F. MANEA, J. SHALLIT (eds.), Descriptional Com-
plexity of Formal Systems - 18th IFIP WG 1.2 International Conference, DCFS 2016, Bucharest,
Romania, July 5-8, 2016. Proceedings. Lecture Notes in Computer Science 9777, Springer, 2016,
153–167.

[18] H. JÜRGENSEN, R. REIS (eds.), Descriptional Complexity of Formal Systems - 15th Inter-
national Workshop, DCFS 2013, London, ON, Canada, July 22-25, 2013. Proceedings. Lecture
Notes in Computer Science 8031, Springer, 2013.

[19] O. B. LUPANOV, A comparison of two types of finite automata. Problemy Kibernetiki 9 (1963),
321–326. (in Russian) German translation: Über den Vergleich zweier Typen endlicher Quellen.
Probleme der Kybernetik 6, 328–335 (1966).

[20] A. R. MEYER, M. J. FISCHER, Economy of description by automata, grammars, and formal
systems. In: Proceedings of the 12th Annual Symposium on Switching and Automata Theory
(SWAT 1971). IEEE Computer Society, 1971, 188–191.

[21] F. R. MOORE, On the bounds for state-set size in the proofs of equivalence between deterministic,
nondeterministic, and two-way finite automata. IEEE Transaction on Computing C–20 (1971),
1211–1219.

THE COMPLEXITY OF LANGUAGES RESULTING FROM THE CUT OPERATION 33

[22] C. NICAUD, Average state complexity of operations on unary automata. In: M. KUTY LOWSKI,
L. PACHOLSKI, T. WIERZBICKI (eds.), Mathematical Foundations of Computer Science 1999,
24th International Symposium, MFCS’99, Szklarska Porȩba, Poland, September 6-10, 1999, Pro-
ceedings. Lecture Notes in Computer Science 1672, Springer, 1999, 231–240.

[23] M. O. RABIN, D. SCOTT, Finite automata and their decision problems. IBM Journal of Research
and Development 3 (1959), 114–125.

[24] J. ŠEBEJ, Reversal on regular languages and descriptional complexity. In: JÜRGENSEN and
REIS [18], 2013, 265–276.

[25] L. VAN ZIJL, Magic numbers for symmetric di↵erence NFAs. International Journal of Founda-
tions of Computer Science 16 (2005) 5, 1027–1038.

[26] YU. L. YERSHOV, On a conjecture of V. A. Uspenskii. Algebra i Logika 1 (1962), 45–48. (in
Russian).

[27] S. YU, Q. ZHUANG, K. SALOMAA, The state complexities of some basic operations on regular
languages. Theoretical Computer Science 125 (1994) 2, 315–328.

NONDETERMINISTIC COMPLEXITY OF
POWER AND POSITIVE CLOSURE ON

SUBCLASSES OF CONVEX LANGUAGES

Michal Hospodár Matúš Palmovský

Mathematical Institute, Slovak Academy of Sciences,
Grešákova 6, 040 01 Košice, Slovakia

hosmich@gmail.com matp93@gmail.com

Abstract
We study the nondeterministic state complexity of the k-th power and positive closure opera-

tions on the classes of prefix-, su�x-, factor-, and subword-free, -closed, and -convex regular

languages, and on the classes of right, left, two-sided, and all-sided ideal languages. We show

that the upper bound kn on the complexity of the k-th power in the class of regular languages

is tight for closed and convex classes, while in the remaining classes, the tight upper bound is

k(n � 1) + 1. Next we show that the upper bound n on the complexity of the positive closure

operation in the class of regular languages is tight in all considered classes except for classes

of factor-closed and subword-closed languages, where the complexity is one. All our worst-case

examples are described over a unary or binary alphabet, except for witnesses for the k-th power

on subword-closed and subword-convex languages which are described over a ternary alphabet.

Moreover, whenever a binary alphabet is used for describing a worst-case example, it is optimal

in the sense that the corresponding upper bounds cannot be met by a language over a unary

alphabet. The most interesting result is the description of a binary factor-closed language meet-

ing the upper bound kn for the k-th power. To get this result, we use a method which enables

us to avoid tedious descriptions of fooling sets.

1. Introduction

The nondeterministic state complexity of a regular language is the smallest number of states in
any nondeterministic finite automaton (with a unique initial state) recognizing this language.
The nondeterministic state complexity of a regular operation is the number of states that are
su�cient and necessary in the worst case to accept the language resulting from this operation,
considered as a function of the nondeterministic state complexities of the operands.

The nondeterministic state complexity of basic regular operations such as union, intersection,
concatenation, and positive closure, has been investigated by Holzer and Kutrib [8].

Research supported by VEGA grant 2/0084/15 and grant APVV-15-0091.

36 Michal Hospodár, Matúš Palmovský

The binary witnesses for complementation and reversal were described by Jirásková [12]. The k-
th power operation on nondeterministic automata was studied by Domaratzki and Okhotin [5].
The nondeterministic state complexity of operations on prefix-free and su�x-free languages
was examined by Han et al. [6, 7] and by Jirásková et al. [13, 15]. The results of these
papers were improved and new results on nondeterministic complexity were obtained in a series
of papers by Mlynárčik et al. In [14], complementation on prefix-free, su�x-free, and non-
returning languages was investigated. Complementation on factor-free, subword-free, and ideal
languages was considered in [17], basic operations (intersection, union, concatenation, Kleene
star, reversal, complementation) on closed and ideal languages in [10], and basic operations on
free and convex languages in [11]. Let us mention that the (deterministic) state complexity of
basic operations on all above mentioned classes were considered by Brzozowski et al. [2, 3, 4].

In this paper, we investigate the nondeterministic state complexity of the k-th power and
positive closure operations on subclasses of convex languages. For both operations and all
considered subclasses, we provide a tight upper bound on its nondeterministic state complexity.
Except for two cases in which our witnesses are ternary, all the witnesses are described over a
binary or unary alphabet. Moreover, whenever a binary alphabet is used, it is always optimal
in the sense that the corresponding upper bound cannot be met by any unary language.

2. Preliminaries

We assume that the reader is familiar with basic notions in formal languages and automata
theory. For details and all the unexplained notions, the reader may refer to [9, 19, 20]. Let
⌃ be a finite non-empty alphabet of symbols. Then ⌃⇤ denotes the set of strings over the
alphabet ⌃ including the empty string ". A language is any subset of ⌃⇤. The concatenation

of two languages K and L is the language KL = {uv | u 2 K and v 2 L}. The k-th power of
a language L is the language L

k = LL

k�1 where L

0 = {"}. The Kleene star of a language L is
the language L⇤ =

S
i�0 L

i. The positive closure of a language L is the language L+ =
S

i�1 L
i.

A nondeterministic finite automaton (NFA) is a quintuple A = (Q,⌃, ·, s, F) where Q is a finite
non-empty set of states, ⌃ is a finite non-empty input alphabet, s 2 Q is the initial state, F ✓ Q

is the set of final (or accepting) states, and · : Q⇥ ⌃ ! 2Q is the transition function which can
be extended to the domain 2Q ⇥ ⌃⇤ in the natural way.

The language accepted (or recognized) by the NFA A is defined as L(A) = {w 2 ⌃⇤ | s ·w\F 6=
;}. An NFA is a (partial) deterministic finite automaton (DFA) if |q · a|  1 for each q in Q

and each a in ⌃.

We say that (p, a, q) is a transition in NFA A if q 2 p · a. We also say that the state q has
an in-transition on symbol a, and the state p has an out-transition on symbol a. An NFA is
non-returning if its initial state does not have any in-transitions, and it is non-exiting if each
its final state does not have any out-transitions. To omit a state in an NFA means to remove it
from the set of states and to remove all its in-transitions and out-transitions from the transition
function. To merge two states means to replace them by a single state with all in-transitions

NONDETERMINISTIC COMPLEXITY OF L

k AND L

+ ON SUBCLASSES 37

and out-transitions of the original states.

The reverse of a string w in ⌃⇤ is defined by "

R = " and (wa)R = aw

R for each a in ⌃ and
each w in ⌃⇤. The reverse of a language L is the language L

R = {wR | w 2 L}. The reverse

of an NFA A = (Q,⌃, ·, s, F) is the NFA A

R = (Q,⌃, ·R, F, {s}) with possibly multiple initial
states where q ·R a = {p 2 Q | q 2 p · a}; notice that AR is obtained from A by reversing all the
transitions, and by swapping the roles of the initial and final states. Let A = (Q,⌃, ·, s, F) be
an NFA and X, Y ✓ Q. We say that X is reachable in A if there is a string w in ⌃⇤ such that
X = s · w. Next, we say that Y is co-reachable in A if Y is reachable in A

R.

The nondeterministic state complexity of a regular language L, denoted nsc(L), is the small-
est number of states in any NFA for L. To provide lower bounds on nondeterministic state
complexity, we use the fooling set method described below.

Definition 2.1 A set of pairs of strings {(xi, yi) | i = 1, 2, . . . , n} is called a fooling set for
a language L if for each i, j in {1, 2, . . . , n}, xiyi 2 L, and if i 6= j, then xiyj /2 L or xjyi /2 L.

Lemma 2.2 (cf. [1, Lemma 1]) Let F be a fooling set for a regular language L. Then every

NFA for L has at least |F| states.

The next lemma provides a useful way to prove the minimality of a given NFA.

Lemma 2.3 Let n � 2. Let A be an NFA with the state set Q = {1, 2, . . . , n} and let

{(Xi, Yi) | i 2 Q} be a set of pairs of subsets of Q such that for each i in Q

(1) Xi is reachable and Yi is co-reachable in A,

(2) i 2 Xi \ Yi, and

(3) Xi ✓ {i, i+ 1, . . . , n} and Yi ✓ {1, 2, . . . , i}.
Then every NFA for L(A) has at least n states.

Proof. Since Xi is reachable, there is a string xi which sends the initial state of A to the
set Xi. Since Yi is co-reachable, there is a string yi which is accepted by A from every state
in Yi and rejected from every other state. Since Xi \ Yi = {i}, the string xiyi is in L(A). Let
i 6= j. Without loss of generality, we have i > j. Then Xi \ Yj = ;, so xiyj is not in L(A). It
follows by Definition 2.1 that the set {(xi, yi) | i 2 Q} is a fooling set for L(A), so every NFA
for L(A) has at least n states by Lemma 2.2. 2

If u, v, w, x 2 ⌃⇤ and w = uxv, then u is a prefix of w, x is a factor of w, and v is a su�x

of w. If w = u0v1u1 · · · vnun, where ui, vi 2 ⌃⇤, then v1v2 · · · vn is a subword of w. A prefix v

(su�x, factor, subword) of w is proper if v 6= w. A language L is prefix-free if w 2 L implies
that no proper prefix of w is in L; it is prefix-closed if w 2 L implies that each prefix of w is in
L; and it is prefix-convex if u, w 2 L and u is a prefix of w imply that each string v such that
u is a prefix of v and v is a prefix of w is in L. Su�x-, factor-, and subword-free, -closed, and
-convex languages are defined analogously. A language is a right (respectively, left, two-sided,
all sided) ideal if L = L⌃⇤ (respectively, L = ⌃⇤

L,L = ⌃⇤
L⌃⇤

, L = L ⌃⇤ where L ⌃⇤ is
the language obtained from L by inserting any number of symbols to any string in L). Notice
that the classes of free, closed, and ideal languages are subclasses of convex languages.

38 Michal Hospodár, Matúš Palmovský

It is known that if a language is prefix-free, then every minimal NFA for it is non-exiting [18,
Proposition 4.2], and if a language is su�x-free, then every minimal NFA for it is non-returning
[18, Proposition 4.3]. Next, if a language is a right (left) ideal, then it is accepted by a minimal
NFA such that its unique final (initial) state has a loop on each symbol and no other out-
transitions (in-transitions) [10, Proposition 12], [18, Proposition 6.1]. Finally, an NFA with all
states final accepts a prefix-closed language [18, Proposition 5.1], an NFA with all states initial
accepts a su�x-closed language, and if a language is prefix-closed and su�x-closed, then it is
factor-closed [18, Proposition 5.3].

3. Results

In this section, we examine the nondeterministic state complexity of the k-th power and positive
closure on subclasses of convex languages. To get upper bounds, we use automata characteri-
zations of languages in considered classes. To get lower bounds, we use the fooling set method
given by Lemma 2.2 or, in the case of binary factor-closed languages, its simplification given
by Lemma 2.3.

The nondeterministic state complexity of the k-th power on regular languages is kn if k � 2
and n � 2 [5, Theorem 3]. The next theorem shows that the complexity of the k-th power
on all the classes of free, ideal, and unary convex languages is k(n � 1) + 1, while in all the
remaining classes, it is kn. To describe a subword-closed witness, we use a ternary alphabet.
All the remaining witnesses are described over binary or unary alphabets, and moreover, the
binary alphabet is always optimal.

Theorem 3.1 (k-th Power) Let k � 2 and n � 2. Let L be a language with nsc(L)  n.

(1) If L is prefix- or su�x-free, then nsc(Lk)  k(n� 1) + 1, and this upper bound is met by a

unary subword-free language.

(2) If L is right or left ideal, then nsc(Lk)  k(n � 1) + 1, and this upper bound is met by a

unary all-sided ideal language.

(3) If L is a unary convex language, then nsc(Lk)  k(n� 1) + 1, and this upper bound is met

by a unary subword-closed language.

(4) If L is prefix- or su�x-closed, then nsc(Lk)  kn, and this upper bound is met by a binary

factor-closed language and by a ternary subword-closed language.

Proof. (1) We may assume that a minimal NFA N for a prefix-free language L is non-exiting
and has a unique final state. To get an NFA for Lk, we take k copies of N and we merge the
final state in the j-th copy with the initial state in the (j + 1)-th copy if 1  j  k � 1. The
initial state of the resulting NFA is the initial state in the first copy, and its final state is the
final state in the k-th copy. If L is su�x-free, then we may assume that a minimal NFA N

for L is non-returning. To get an NFA for Lk, we take k copies of N . For every symbol a and
every final state p in the j-th copy with 1  j  k � 1, we make the state p non-final and add
the transitions (p, a, q) whenever there is a transition on a to q from the initial state in the
(j + 1)-th copy. Next, we omit the unreachable initial state in the (j + 1)-th copy.

NONDETERMINISTIC COMPLEXITY OF L

k AND L

+ ON SUBCLASSES 39

For tightness, let L = {an�1}. Then L is subword-free and it is accepted by an n-state NFA.
We have L

k = {ak(n�1)} and the set {(ai, ak(n�1)�i) | 0  i  k(n � 1)} is a fooling set for Lk

of size k(n� 1) + 1. By Lemma 2.2, every NFA for Lk has at least k(n� 1) + 1 states. Hence
nsc(Lk) = k(n� 1) + 1.

(2) We may assume that a minimal NFA for a right ideal language L has a loop on every input
symbol in its unique final state which has no other out-transitions. The construction of an NFA
for Lk is the same as for prefix-free languages in case (1). Next, we may assume that a minimal
NFA for a left ideal language L has a loop on every input symbol in its initial state which
has no other in-transitions. The construction of an NFA for L

k is the same as for su�x-free
languages in case (1), except that we add a loop on every symbol on p.

For tightness, let L = {ai | i � n� 1}. Then L is an all-sided ideal language and L is accepted
by an n-state NFA. We have Lk = {ai | i � k(n� 1)} and the same fooling set as in case (1) is
a fooling set for Lk.

(3) Let L be a unary convex language accepted by a minimal n-state NFA. If L is infinite,
then L = {ai | i � n� 1}, so L

k = {ai | i � k(n� 1)} and nsc(Lk) = k(n� 1)+1. If L is finite,
then the length of the longest string in L is n � 1, so the length of the longest string in L

k

is k(n� 1) and nsc(Lk) = k(n� 1) + 1. This upper bound is met by the unary subword-closed
language {ai | 0  i  n� 1}.

(4) The upper bound is the same as in the general case of regular languages. Let us describe
binary factor-closed and ternary subword-closed witnesses.

Let L be the language accepted by the NFA A shown in Figure 1. Since A has all states final

1
A

2 . . .
n� 1 n

a a a a

b

b

b

b

Figure 1: A binary factor-closed witness language meeting the upper bound kn for the k-th power.

and L = L

R, the language L is prefix-closed and su�x-closed, and therefore also factor-closed.
The reader can verify that the language Lk is accepted by the kn-state partial DFA D consisting
of k copies of A connected through the transitions on a going from the last state of the j-th
copy to the second state of the (j + 1)-th copy if 1  j  k � 1.

For i = 1, 2, . . . , kn, let Xi = {i} and Yi = {1, 2, . . . , i}. Notice that

• each set Xi with i /2 {jn+ 1 | 1  j  k � 1} is reachable in D by a word in a

⇤;

• each set Xi with i 2 {jn+ 1 | 1  j  k � 1} is reachable in D by a word in a

⇤
b;

• each set Yi with i /2 {jn | 1  j  k � 1} is co-reachable in D since it is reachable in D

R

by a word in a

⇤;

• each set Yi with i 2 {jn | 1  j  k � 1} is co-reachable in D since it is reachable in D

R

by a word in a

⇤
b.

40 Michal Hospodár, Matúš Palmovský

Moreover, i 2 Xi \ Yi, Xi ✓ {i, i + 1, . . . , kn}, and Yi ✓ {1, 2, . . . , i}, so the sets Xi and Yi

satisfy the conditions of Lemma 2.3. Hence every NFA for L

k has at least kn states, which
together with the upper bound gives nsc(Lk) = kn.

Next, let L = {b⇤aic⇤ | 0  i  n � 1}, which is accepted by an n-state NFA. Since every
subword of a string b

`
a

i
c

m in L is of the form b

`0
a

i0
c

m0
where i

0  i  n� 1, the language L is
subword-closed. For each j with 1  j  k, consider the set of pairs of strings

Fj = {((ban�1
c)j�1

ba

i
, a

n�1�i
c(ban�1

c)k�j) | 0  i  n� 1}.

We have (ban�1
c)k 2 L

k. Next, we have L

k ✓ (b⇤a⇤c⇤)k, and moreover, no string with more
than k(n � 1) occurrences of a is in L

k. It follows that the set
Sk

j=1 Fj is a fooling set for Lk

of size kn, so every NFA for Lk has at least kn states by Lemma 2.2. 2

Notice that in the theorem above, we must have n � 2 since for every positive integer k, the k-th
power of a language accepted by a 1-state NFA is the same language. The theorem also shows
that two symbols are necessary to meet the bound kn for the k-th power on closed languages.

Now we consider the operation of positive closure. The upper bound on nondeterministic state
complexity of positive closure on regular languages is n [8, Theorem 9] since we can get an
NFA for L+ from an NFA for L by adding the transition (q, a, s) whenever there is a transition
(q, a, f) for a final state f . The next theorem showsthat this upper bound is tight in all the
classes of free and ideal, so also convex languages, and on the classes of prefix-closed and su�x-
closed languages. It also proves that the positive closure of every factor-closed language is of
complexity one.

Theorem 3.2 (Positive Closure) Let n be a positive integer.

(1) There exists a unary subword-free language L with nsc(L)  n and nsc(L+) = n.

(2) There exists a unary all-sided ideal language L with nsc(L)  n and nsc(L+) = n.

(3) There exists a binary prefix-closed language L with nsc(L)  n and nsc(L+) = n.

(4) There exists a binary su�x-closed language L with nsc(L)  n and nsc(L+) = n.

(5) If L is factor-closed, then nsc(L+) = 1.

Proof. (1) Let L = {an�1}, which is accepted by an n-state NFA. Then L

+ = {ak(n�1) | k � 1}
and the set {(ai, an�1�i) | 0  i  n� 1} is a fooling set for L+ of size n. By Lemma 2.2, every
NFA for L+ has at least n states. Hence nsc(L+) = n.

(2) Let L = {ai | i � n � 1}, which is accepted by an n-state NFA. We have L

+ = L and the
same set as above is a fooling set for L+ of size n.

(3) Let L be the language accepted by the NFA shown in Figure 2. Notice that each state of
this NFA is final, hence L is prefix-closed. Consider the set F = {(ai, an�1�i

b) | 0  i  n� 1}.
We have a

i
a

n�1�i
b = a

n�1
b, which is in L

+. Let 0  i < j  n � 1. Then a

i
a

n�1�j
b is not

in L

+. Hence the set F is a fooling set for L+ of size n.

(4) Let L be the language accepted by the NFA shown in Figure 3. Notice that if we make all
states of this NFA initial, then we get an equivalent finite automaton. Hence L is su�x-closed.

NONDETERMINISTIC COMPLEXITY OF L

k AND L

+ ON SUBCLASSES 41

1 2 . . .
n

a a a

b

Figure 2: A binary prefix-closed witness language meeting the upper bound n for positive closure.

Moreover, L+ = L since the initial state is the unique final state. Consider the set of pairs of
strings F = {(bai, an�1�i) | 0  i  n� 1}. Since ban�1 2 L, while bak with k  n� 2 is not in
L, the set F is a fooling set for L, so also for L+, of size n.

1 2 3 . . .
n

a

a a a

a

b

Figure 3: A binary su�x-closed witness language meeting the upper bound n for positive closure.

(5) Let � be the set of symbols present in at least one string of L. Then L ✓ �⇤, and since L is
factor-closed, � [{"} ✓ L. It follows that L+ = �⇤, which is accepted by a one-state NFA. 2

Notice that two symbols are necessary to meet the bound n for positive closure on prefix- and
su�x-closed languages since every unary prefix- or su�x-closed language is also factor-closed.

4. Conclusions

We investigated the nondeterministic state complexity of the k-th power and positive closure
in the subclasses of convex languages. We considered the classes of prefix-, su�x-, factor-,
and subword-free, -closed, and -convex languages, and the classes of right, left, two-sided, and
all-sided ideals. We found the exact complexities of both operations in each of the above
mentioned classes. For describing witness languages for the k-th power on subword-closed and
subword-convex languages, we used a ternary alphabet. All the remaining witness languages
are described over a binary or unary alphabet. Moreover, if a binary alphabet is used, it is
optimal in the sense that the corresponding upper bound cannot be met by any unary language.

References

[1] J. BIRGET, Intersection and union of regular languages and state complexity. Information Pro-
cessing Letters 43 (1992) 4, 185–190.

[2] J. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LI, J. SMITH, Quotient complexity of bifix, factor,
and subword-free regular languages. Acta Cybernetica 21 (2014) 4, 507–527.

[3] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, B. LI, Quotient complexity of ideal languages. Theo-
retical Computer Science 470 (2013), 36–52.

42 Michal Hospodár, Matúš Palmovský

[4] J. A. BRZOZOWSKI, G. JIRÁSKOVÁ, C. ZOU, Quotient complexity of closed languages.
Theory of Computing Systems 54 (2014) 2, 277–292.

[5] M. DOMARATZKI, A. OKHOTIN, State complexity of power. Theoretical Computer Science
410 (2009) 24-25, 2377–2392.

[6] Y. HAN, K. SALOMAA, Nondeterministic state complexity for su�x-free regular languages. In:
MCQUILLAN and PIGHIZZINI [16], 2010, 189–196.

[7] Y. HAN, K. SALOMAA, D. WOOD, Nondeterministic state complexity of basic operations for
prefix-free regular languages. Fundamenta Informaticae 90 (2009) 1–2, 93–106.

[8] M. HOLZER, M. KUTRIB, Nondeterministic descriptional complexity of regular languages.
International Journal of Foundations of Computer Science 14 (2003) 6, 1087–1102.

[9] J. E. HOPCROFT, J. D. ULLMAN, Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[10] M. HOSPODÁR, G. JIRÁSKOVÁ, P. MLYNÁRČIK, Nondeterministic complexity of opera-
tions on closed and ideal languages. In: Y. HAN, K. SALOMAA (eds.), Implementation and
Application of Automata - 21st International Conference, CIAA 2016, Seoul, South Korea, July
19-22, 2016, Proceedings. Lecture Notes in Computer Science 9705, Springer, 2016, 125–137.

[11] M. HOSPODÁR, G. JIRÁSKOVÁ, P. MLYNÁRČIK, Nondeterministic complexity of operations
on free and convex languages. In: A. CARAYOL, C. NICAUD (eds.), Implementation and
Application of Automata - 22nd International Conference, CIAA 2017, Marne-la-Vallée, France,
June 27-30, 2017, Proceedings . Lecture Notes in Computer Science 10329, Springer, 2017, 138–
150.

[12] G. JIRÁSKOVÁ, State complexity of some operations on binary regular languages. Theoretical
Computer Science 330 (2005) 2, 287–298.

[13] G. JIRÁSKOVÁ, M. KRAUSOVÁ, Complexity in prefix-free regular languages. In: MCQUIL-
LAN and PIGHIZZINI [16], 2010, 197–204.

[14] G. JIRÁSKOVÁ, P. MLYNÁRČIK, Complement on prefix-free, su�x-free, and non-returning
NFA languages. In: H. JÜRGENSEN, J. KARHUMÄKI, A. OKHOTIN (eds.), Descriptional
Complexity of Formal Systems - 16th International Workshop, DCFS 2014, Turku, Finland,
August 5-8, 2014. Proceedings. Lecture Notes in Computer Science 8614, Springer, 2014, 222–
233.

[15] G. JIRÁSKOVÁ, P. OLEJÁR, State complexity of intersection and union of su�x-free languages
and descriptional complexity. In: H. BORDIHN, R. FREUND, M. HOLZER, M. KUTRIB,
F. OTTO (eds.), Workshop on Non-Classical Models for Automata and Applications (NCMA
2009). books@ocg.at 256, Österreichische Computer Gesellschaft, 2009, 151–166.

[16] I. MCQUILLAN, G. PIGHIZZINI (eds.), Proceedings Twelfth Annual Workshop on Descriptional
Complexity of Formal Systems, DCFS 2010, Saskatoon, Canada, 8-10th August 2010 . EPTCS 31,
2010.

[17] P. MLYNÁRČIK, Complement on free and ideal languages. In: J. SHALLIT, A. OKHOTIN
(eds.), Descriptional Complexity of Formal Systems – 17th International Workshop, DCFS 2015,
Waterloo, ON, Canada, June 25–27, 2015. Proceedings . Lecture Notes in Computer Science 9118,
Springer, 2015, 185–196.

NONDETERMINISTIC COMPLEXITY OF L

k AND L

+ ON SUBCLASSES 43

[18] P. MLYNÁRČIK, Nondeterministic state complexity in subregular classes. Dissertation thesis.
Faculty of Mathematics, Physics and Informatics of the Comenius University, Bratislava (2017).
http://im.saske.sk/%7Ejiraskov/students/phd_thesis_mlynarcik.pdf

[19] M. SIPSER, Introduction to the Theory of Computation. Cengage Learning, Boston, 2012.

[20] S. YU, Chapter 2: Regular Languages. In: G. ROZENBERG, A. SALOMAA (eds.), Handbook
of Formal Languages. Vol. 1, Springer, Heidelberg, 1997, 41–110.

http://im.saske.sk/%7Ejiraskov/students/phd_thesis_mlynarcik.pdf

EXTENDED FINITE AUTOMATA AND
DECISION PROBLEMS FOR MATRIX

SEMIGROUPS

Özlem Salehi Ahmet Celal Cem Say

Boǧaziçi University, Department of Computer Engineering,
Bebek 34342 İstanbul, Turkey

{ozlem.salehi,say}@boun.edu.tr

Abstract
We make a connection between the subgroup membership and identity problems for matrix

groups and extended finite automata. We provide an alternative proof for the decidability of the

subgroup membership problem for 2⇥ 2 integer matrices. We show that the emptiness problem

for extended finite automata over 4⇥4 integer matrix semigroups is undecidable. We prove that

the decidability of the universe problem for extended finite automata is a su�cient condition

for the decidability of the subgroup membership and identity problems.

1. Introduction

Among the various extensions of classical finite state automata, extended finite automata over
a monoid M or M -automata have been investigated both implicitly and explicitly by many
researchers [2, 5, 9]. An M -automaton is a nondeterministic finite automaton equipped with
a register that is multiplied by an element of the monoid M at each step. The register is
initialized with the identity element of the monoid and a successful computation is the one
which ends in an accept state with the register being equal to the identity element. In this
paper, our aim is to make a connection between the theory of extended finite automata and
the subgroup membership and identity problems for matrix semigroups. Matrices play an
important role in various areas of computation, which makes it interesting to study decision
problems on matrices. Even for integer matrices of low dimension, many decision problems
become non-trivial for finitely generated infinite semigroups.

Let S be a matrix semigroup finitely generated by a generating set of square matrices F .
The membership problem is to decide whether or not a given matrix Y belongs to the matrix
semigroup S [7]. Equivalently, given a finite set of matrices F = {Y1, Y2, . . . , Yn} and a matrix
Y , the problem is to determine if there exists an integer k � 1 and i1, i2, . . . , ik 2 {1, . . . , n}
such that Yi1Yi2 · · ·Yik = Y . The identity problem is a special case of the membership problem

Özlem Salehi is partially supported by TÜBİTAK (Scientific and Technological Research Council of Turkey).

46 Özlem Salehi, Ahmet Celal Cem Say

where Y is restricted to be the identity matrix. Introduced by Mihailova [8], the subgroup
membership problem is one of the classical decision problems in group theory. Given elements
h1, h2, . . . , hn and g of a group G, the subgroup membership problem for H in G asks whether
g belongs to the subgroup H generated by h1, h2, . . . , hn. Note that the subgroup membership
problem for matrix groups is a special case of the membership problem. For 2 ⇥ 2 integer
matrices, the decidability of the membership problem is proved in [10]. For 3 ⇥ 3 matrices,
both the identity and membership problems are still open. Undecidability of the membership
problem for 4 ⇥ 4 integer matrices is known for a long time due to a result by Mihailova [8]
whereas the undecidability of the identity problem has been proved recently in [1, 6].

For our purposes, we define S-automata or extended finite automata over semigroups, gen-
eralizing the notion of M -automata from monoids to semigroups. The emptiness problem is
defined as the problem of deciding whether a given machine accepts any string. For 2⇥ 2 inte-
ger matrices, by using the decidability of the emptiness problem of the corresponding extended
finite automata, we provide an alternative proof for the decidability of subgroup membership
problem. We show that the undecidability of the identity problem for 4 ⇥ 4 integer matrices
yields the undecidability of the emptiness problem for extended finite automata over semigroups
of 4 ⇥ 4 integer matrices. We also prove some results on the the decidability of the universe
problem for extended finite automata, the problem of deciding whether a given machine accepts
every string.

2. Background

2.1. Preliminaries

We denote by Zn⇥n the set of n⇥n matrices with integer entries. GL(n,Z) denotes the general
linear group of degree n over the ring of integers, equivalently the group of n ⇥ n invertible
matrices with integer entries. Note that these matrices have determinant ±1. Restricting the
matrices in GL(n,Z) to those that have determinant 1, we obtain the special linear group of
degree n over the ring of integers, SL(n,Z). We denote the free group over r generators by Fr.

Word problem for G is the subgroup membership problem for the trivial group generated by
1. In other words, given an element g 2 G, the problem is to decide whether g represents the
identity element. The word problem language of G is the language W (G,X) over A = X[X�1

and consists of all words that represent the identity element of G. Most of the time, the
statements about word problem are independent of the generating set and in these cases the
word problem language is denoted by W (G).

2.2. S-Automaton

Let S be a semigroup. Let Q be the set of states, where q0 2 Q denotes the initial state, Qa ✓ Q
denotes the set of accepting states, and let ⌃ be the input alphabet where ⌃" = ⌃ [{"}.

DECISION PROBLEMS FOR MATRIX SEMIGROUPS 47

An S-automaton (extended finite automaton over S) is a 6-tuple V = (Q,⌃, S, �, q0, Qa) where
the transition function � is defined as � : Q⇥⌃" ! P(Q⇥S). �(q, �) 3 (q0,m) means that when
V reads the symbol (or empty string) � 2 ⌃" in state q, it will move to state q0, and write xm
in the register, where x is the old content of the register.

An S-automaton is in fact an extended finite automaton or a group/monoid automaton [3, 5]
where the group/monoid condition is loosened to a semigroup. In order to define the initial-
ization and acceptance steps, we need an identity element. If S is a monoid or a group, then
an identity element already exists and belongs to S. Otherwise, we define 1 to be the identity
element of S. The register of V is initialized with the identity element 1 and an input string
is accepted if, after completely reading the string, V enters an accept state with the content of
the register being equal to the identity element. Note that when S is not a monoid nor a group,
then V can accept only the empty string. Nevertheless, we define the concept of S-automaton
so that the machines in the proofs of Theorem 4.1 and 5.2 are constructed properly.

We denote by L(V) the set of accepted strings by V . L(S) denotes the class of languages
recognized by S-automata.

Alternatively, monoid automata can be defined through rational subsets as in [4, 5] which we
discuss next.

A finite automaton F over a monoid M is a finite directed graph whose edges are labeled by
elements from M . F consists of a vertex labeled as the initial vertex and a set of vertices
labeled as the terminal vertices such that an element of M is accepted by F if it is the product
of the labels on a path from the initial vertex to a terminal vertex. A subset of M is called
rational if its elements are accepted by some finite automaton over M .

When M is a free monoid (such as ⌃⇤), then the accepted elements are words over ⌃ and the
set of accepted words is a language over ⌃. Rational subsets of a free monoid are called rational
(regular) languages. Note that when M = ⌃⇤, then the definition coincides with the definition
of a finite state automaton.

An M -automaton V recognizing a language over alphabet ⌃ is a finite automaton F over the
monoid ⌃⇤ ⇥ M such that the accepted elements are (w, 1) where w 2 ⌃⇤. This is stated
explicitly in the following proposition by Corson ([2], Proposition 2.2). The proof involves
constructing an M -automaton from a finite automaton over ⌃⇤ ⇥M and vice versa.

Fact 2.1 [2] Let L be a language over an alphabet ⌃. Then L 2 L(M) if and only if there
exists a rational subset R ✓ ⌃⇤ ⇥M such that L = {w 2 ⌃|wR1}.

3. Decidability of the Subgroup Membership Problem

for Z2⇥2

It is proved that the membership problem for subsemigroups of Z2⇥2 is decidable in [10]. In this
section, we provide an alternative automata theoretic proof for the decidability of the subgroup

48 Özlem Salehi, Ahmet Celal Cem Say

membership problem for Z2⇥2.

For a finite index subgroupH of some finitely generated group G, it is known that L(H) = L(G)
[2]. We will go over the proof details and use Fact 2.1 to show that given a G-automaton, one
can construct an H-automaton recognizing the same language.

Lemma 3.1 Let G be a finitely generated group and let H be a subgroup of finite index. Any

G-automaton can be converted into an H-automaton recognizing the same language.

Proof. Let X be the generator set for G and let A = X [X�1. Let V be a G-automaton
recognizing language L over alphabet ⌃. Then there exists a rational subset R ✓ ⌃⇤ ⇥G such
that L = {w 2 ⌃⇤|wR1}. One can define the elements of G in terms of A to obtain a rational
subset R0 ✓ ⌃⇤ ⇥ A⇤.

Since H has finite index in G, W (G) 2 L(H) ([2] Lemma 2.4). It follows that there exists a
rational subset S ✓ A⇤ ⇥H such that W (G) = {w 2 A⇤|wS1}.

Then the composition R0 � S is a rational subset of ⌃⇤ ⇥ H and it follows that L = {w 2
⌃⇤|w(R0�S)1} ([2], Theorem 3.1). The detailed construction of the finite automaton recognizing
the composition is given in ([4], Theorem 5.3). Hence a finite automaton F over ⌃⇤ ⇥ H
recognizing L exists, from which an H-automaton V 0 recognizing L can be constructed. 2

The following construction of a pushdown automaton simulating an F2-automaton is left as an
exercise in [5]. We present here some details of the construction.

Lemma 3.2 Any F2-automaton can be converted into a pushdown automaton recognizing the

same language.

Proof. Let V be an F2-automaton recognizing language L over ⌃ with the state set Q and let
X = {a, b} be the generator set for F2. Let us construct a pushdown automaton V 0 recognizing
the same language with the stack alphabet X. Let (q0, f) 2 �(q, �) be a transition of V where
q, q0 2 Q, � 2 ⌃" and f 2 F2 such that f = f1f2 . . . fn where fi 2 A = X [X�1 for i = 1 . . . n.
In V 0, we need an extra n states q1 . . . qn /2 Q to mimic each given transition of V . If fi = a or
fi = b, then this corresponds to pushing a or b to the stack, respectively. Similarly, if fi = a�1 or
fi = b�1, then V 0 pops a or b from the stack. Each single transition of V is accomplished by the
pushdown automaton V 0 by going through the extra states and pushing and popping symbols.
Initially, the register of V is initialized with the identity element of F2, which corresponds to
the stack of V 0 being empty. The acceptance condition of V , which is ending in an accept state
with the register being equal to the identity element is realized in V 0 by starting with an empty
stack and accepting with an empty stack in an accept state. We conclude that V 0 recognizes
language L. 2

Theorem 3.3 Let H be a finitely generated subgroup of G. If the emptiness problem for G-

automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof. The subgroup membership problem for H in G is the problem of deciding whether a
given element g 2 G belongs to H. We are going to construct a G-automaton V1 and show
that g 2 H i↵ L(V1) is nonempty. V1 has two states: the initial state q1 and the accept state

DECISION PROBLEMS FOR MATRIX SEMIGROUPS 49

q2. The transition function of V1 is defined as �(q1, a) = (q2, g) and �(q2, a) = (q2, hi) for each
i = 1 . . . n where the set {h1, . . . , hn} generates H.

q1 q2
a, g

a, hi

Figure 1: State transition diagram of V1

If g 2 H, then it is also true that g�1 2 H since H is a group. There exists an integer k � 1
and i1, i2, . . . , ik 2 {1, . . . , n} such that hi1hi2 · · ·hik = g�1. The string ak is accepted by V1 as
the register is initially multiplied by g and there exists a product of elements yielding g�1, from
which we can conclude that the identity element can be obtained through a series of transitions
of the machine V1. Hence, we can conclude that L(V1) is nonempty.

For the other direction, assume that L(V1) is nonempty, which means that some input string
is accepted by V1. Since the acceptance condition requires that the product of the elements
multiplied by the register of V1 is equal to the identity element and the register is initially
multiplied by g, we can conclude that H contains g�1. Since H is a group, g 2 H as well.

Now suppose that the emptiness problem for G-automaton is decidable. Then one can check if
g is an element of H by constructing V1 and checking if L(V1) is nonempty. Hence, the subgroup
membership problem for H is also decidable. 2

Theorem 3.4 Given a matrix Y from Z2⇥2
and a subgroup H of Z2⇥2

, it is decidable whether

Y belongs to H.

Proof. We are going to show that the emptiness problem for Z2⇥2-automaton is decidable and
use Theorem 3.3 to conclude the result.

Suppose that a Z2⇥2-automaton V is given. When V processes an input string, its register
is initialized by the identity matrix and multiplied by matrices from Z2⇥2. Suppose that in a
successful computation leading to acceptance, the register is multiplied by some non-invertible
matrix Y . Since Y is non-invertible, the register can not be equal to the identity matrix again
and such a computation can not be successful. Any such edges labeled by a non-invertible
matrix can be removed from V , without changing the accepted language. We can conclude
that the matrices multiplied by the register are invertible and belong to GL(2,Z) and V is in
fact a GL(2,Z)-automaton.

Since F2 has finite index in GL(2,Z), one can construct an F2-automaton recognizing L(V) by
Lemma 3.1. The F2-automaton can be converted to a pushdown automaton V 0 using the pro-
cedure described in Lemma 3.2. Since the emptiness problem for pushdown automata is known
to be decidable, we conclude that the emptiness problem for Z2⇥2-automata is also decidable
since a Z2⇥2-automaton can be converted to a pushdown automaton. Then by Theorem 3.3,
the result follows. 2

50 Özlem Salehi, Ahmet Celal Cem Say

4. Undecidability of the Emptiness Problem for

Z4⇥4-Automata

In [6], it is shown that the identity problem is undecidable for a semigroup generated by eight
4⇥ 4 integer matrices. Using this fact, we prove that the emptiness problem is undecidable for
the corresponding semigroup automaton.

Theorem 4.1 Let S be a finitely generated semigroup. If the emptiness problem for S-automata

is decidable, then the identity problem for S is decidable.

Proof. We are going to construct an S-automaton V2 and show that S contains the identity
element i↵ L(V2) is nonempty. V2 has two states: the initial state q1 and the accept state q2.
The transition function of V2 is defined as �(q1, a) = (q2, si) and �(q2, a) = (q2, si) for each
i = 1 . . . n where {s1, s2, . . . sn} is the generator set for S.

q1 q2
a, si

a, si

Figure 2: State transition diagram of V2

If S contains the identity element, then there exists an integer k � 1 and i1, i2, . . . , ik 2
{1, . . . , n} such that si1si2 · · · sik = 1. Then the string ak is accepted by V2 as there exists a
product of elements yielding the identity element and this product can be obtained by a series
of transitions. Hence, we can conclude that L(V2) is nonempty. For the converse, suppose that
L(V2) is nonempty, which means that some input string is accepted by V2. Since the acceptance
condition requires that the product of the elements multiplied by the register of V2 is equal to
the identity element, we can conclude that S contains the identity element.

Now suppose that the emptiness problem for S-automaton is decidable. Then one can check if
S contains the identity element by constructing V2 and checking if L(V2) is nonempty. Hence,
the identity problem for S is also decidable. 2 The identity problem for Z4⇥4 is shown to

be undecidable for a semigroup of 48 matrices in [1]. Later on, the result is improved to eight
matrices in [6].

Fact 4.2 [6] Given a semigroup S generated by eight 4 ⇥ 4 integer matrices, determining
whether the identity matrix belongs to S is undecidable.

Using this result, we obtain the following corollary about the emptiness problem for extended
finite automata over semigroups of Z4⇥4.

Corollary 4.3 Let S be a subsemigroup of Z4⇥4
generated by eight matrices. The emptiness

problem for S-automaton is undecidable.

DECISION PROBLEMS FOR MATRIX SEMIGROUPS 51

Proof. By Fact 4.2 we know that the identity problem for S is undecidable. By Theorem 4.1,
the result follows. 2

5. Universe Problem for S-Automata

In this section we prove some results connecting the universe problem for S-automata and the
subgroup membership and identity problems for S.

Theorem 5.1 Let H be a finitely generated subgroup of G. If the universe problem for G-

automata is decidable, then the subgroup membership problem for H in G is decidable.

Proof. We are going to construct a G-automaton V2 and such that g 2 H i↵ L(V3) = ⌃⇤ where
⌃ = {a}. {h1, h2, . . . hn} is the generator set for H.

q1 q2
a, g

a, hi
", hi

Figure 3: State transition diagram of V3

The rest of the proof is similar to the proof of Theorem 3.3 and omitted here. 2

Theorem 5.2 Let S be a finitely generated semigroup. If the universe problem for S-automata

is decidable, then the identity problem for S is decidable.

Proof. We are going to construct an S-automaton V4 such that S contains the identity element
i↵ L(V4) = ⌃⇤ where ⌃ = {a}. {s1, s2, . . . sn} is the generator set for S. The rest of the proof

q1

a, si
", si

Figure 4: State transition diagram of V4

is similar to the proof of Theorem 4.1 and omitted here. 2

Let us note that the converses of Theorem 5.1 and 5.2 are not true. For a given pushdown
automaton, an F2-automaton recognizing the same language can be constructed [5]. It is a well
known fact that the universe problem for pushdown automata is undecidable from which we
can conclude that the universe problem for F2-automaton is undecidable. On the other hand,
F2 is a subgroup of SL(2,Z) and the membership problem for SL(2,Z) and thus the identity
problem are known to be decidable [6].

52 Özlem Salehi, Ahmet Celal Cem Say

6. Future Work

It is still not known whether the membership and identity problems are decidable for semigroups
of 3 ⇥ 3 integer matrices. Recent results from [6] suggest that these problems are more likely
to be decidable. We propose that investigating the decidability of the emptiness and universe
problems for extended finite automata defined over 3 ⇥ 3 integer matrices is one possible way
for obtaining results about the decision problems on these matrix semigroups.

References

[1] P. C. BELL, I. POTAPOV, On the undecidability of the identity correspondence problem and its
applications for word and matrix semigroups. International Journal of Foundations of Computer
Science 21 (2010) 06, 963–978.

[2] J. M. CORSON, Extended finite automata and word problems. International Journal of Algebra
and Computation 15 (2005) 03, 455–466.

[3] J. DASSOW, V. MITRANA, Finite automata over free groups. International Journal of Algebra
and Computation 10 (2000) 06, 725–737.

[4] R. H. GILMAN, Formal languages and infinite groups. Geometric and computational perspectives
on infinite groups (1996), 27–51.

[5] M. KAMBITES, Word problems recognisable by deterministic blind monoid automata. Theoret-
ical Computer Science 362 (2006) 1, 232–237.

[6] S.-K. KO, R. NISKANEN, I. POTAPOV, On the identity problem for the special linear group
and the Heisenberg group. In: I. CHATZIGIANNAKIS, C. KAKLAMANIS, D. MARX,
D. SANNELLA (eds.), 45th International Colloquium on Automata, Languages, and Program-
ming (ICALP 2018), July 9–13, 2018, Prague, Czech Republic. Leibniz International Proceedings
in Informatics (LIPIcs) 107, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, 132:1–15.

[7] A. MARKOV, On certain insoluble problems concerning matrices. In: Doklady Akad. Nauk SSSR.
57, 1947, 539–542.

[8] K. A. MIHAILOVA, The occurrence problem for free products of groups. Mathematics of the
USSR-Sbornik 4 (1968) 2, 181.

[9] V. MITRANA, R. STIEBE, The accepting power of finite automata over groups. In: GH.
PĂUN, A. SALOMAA (eds.), New Trends in Formal Languages. Lecture Notes in Computer
Science 1218, Springer, 1997, 39–48.

[10] I. POTAPOV, P. SEMUKHIN, Decidability of the membership problem for 2⇥ 2 integer matrices.
In: P. N. KLEIN (ed.), Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, January 16–19, 2017, Barcelona, Spain. SIAM, 2017, 170–186.

Author Index

Csuhaj-Varjú, Erzsébet, 15

Dimitrijevs, Maksims, 7

Holzer, Markus, 25
Hospodár, Michal, 25, 35

Kántor, Kristóf, 15

Palmovský, Matúš, 35

Salehi, Özlem, 45
Say, Ahmet Celal Cem, 45

Vaszil, György, 15

Yakaryılmaz, Abuzer, 7

