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DNA (deoxyribonucleic acid)

Watson & Crick (1953): MNature 25: 737-738 Molecular
Structure of Nucleic Acids: a structure for
deoxyribose nucleic acid. Nobel Prize, 1962.




DNA structure (1)

DNA seguences consist of
»AC, G, T

Nucleotide:

» purine or pyrimidine base
» deoxyribose sugar

» phosphate group

Purine bases
» A(denine), G(uanine)

Pyrimidine bases
» C(ytosine), T(hymine)



Structure

base pairs

sugar-phosphate

backbone - (]
— i
® phosphate . nitrogen-
containing
() sugar B = bases

£ 2007 Encyclopaedia Britannica, Inc.



Abstract SS polynucleotide

57 GoT->A>A>A->GCH>T5CHCHCHEC T T>AGHC 37



Abstract DS polynucleotide

57 GoT->A>A>A->GCH>T5CHCHCHEC T T>AGHC 37

37 CAC T T T CAGE GG CACA—TCeG 57
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Lengthening DNA

» DNA  polymerase enzymes add
nucleotides to a DNA molecule

Requirements

» single-stranded template

» primer,

~bonded to the template

- 3’ -hydroxyl end available for
extension




DNA as a computing tool

PCR : Polymerase Chain Reaction

30 - 40 cycles of 3 steps ;
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DNA as a computing tool
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DNA Amplification Using Polymerase Chain Reaclion
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DNA as a computing tool
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Solving problems with hairpin (I1)

The CNF-SAT problem is to find Boolean value
assignments that satisfy the given formula in the

conjunctive normal form.
F=C, AC, A ...C,

b—ac,a—C,a—a-—b

A —f —d

—d C
b ¢ .
g d
a
d




Halrpm comp‘etlon “!

A CCTTGCAGAGT

T GG AACG TCG C

c T
TA

T

HCS, (w) ={wy |w=yafa,|a|=k af €V*,y eV}



Halrpm comp‘etlon !“!

ACCTTGCAGAGT

T GG AACG TCG C

c T
TA

T

HCP, (w) = {yw |w = afay, |a|=k af €V*,y eV}



Non-iterated hairpin completion (1)

K-hairpin completion
HC, (w) = HCS, (w) U HCP, (w)

hairpin completion

HC (w) =U HC, (w)
k>1

HC, (L) =U HC, (w) HC (L) =\U HC (w)

we L wWe L



Non-iterated hairpin completion (11)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006))
For any integer k 21, LIN =WCOD(HC, (REG))

.
NN N

Corollary. The hairpin completion of a regular

language Is not necessarily regular but always
linear.

L, ={a"bkcbX | n> 1}



Non-iterated hairpin completion (111)

Given L is it decidable whether or not HC, (L) is regular?

Theorem. (Diekert, Kopecki, Mitrana (2009))
It Is decidable whether or not the hairpin completion of
a regular language is still regular.

Remarks:

1. The problem concern subclasses of linear context-
free languages.

2. Quite technical proof (approx. 10 pages long)

3. A polynomial time algorithm.

4. Exponential gap between the size of a DFA for L and
a NFA for HC, (L)

L, ={bvakbak|v e {a,b}"}



Non-iterated hairpin completion (1V)

Theorem. (Diekert, Kopecki, Mitrana (2011))
Let L be a regular language accepted by a DFA with n
states. Then:

1. The regularity of HCP (L) is decidable in O(n?) time.
2. The regularity of HC, (L) is decidable in O(n®°) time.



Non-iterated hairpin completion (V)

A class of mildly context-sensitive of languages F:

(i) All regular/context-free languages belong to F.

(i1) Each language in F has a constant growth/is semilinear.
(ii1) Each language in F has the membership in P.

(ii1) F contains the following three non-context-free languages:
- multiple agreements: L, = {a"b"c" |n>1};

- crossed agreements: L, = {a"no™mc"d™ | n,m > 1}, and

- duplication: L; = {ww | w e{a,b}*}.

Linear indexed grammars, Tree adjoining grammars
Head grammars, Combinatory categorial grammars

Theorem. (Manea, Mitrana, Yokomori (2009))
For any integer k 21, WCOD(HC,(LIN)) is a family
of mildly context-sensitive languages.



Non-iterated hairpin completion (V1)

A language L over V is called k-locally testable in the
strict sense (k-LTSS for short) if there exists a triple
S,= (A;B;C) such that for any w e V* with |w|> £,

w e L iff

Proposition. (Manea, Mitrana, Yokomori (2008))
For any given k> 1, REG c WCOD(HC, (k-LTSS)).

Converse: L=fa"ck bckn>1/

HC (L) =7a"ck bckan|n>1/



Non-iterated hairpin completion (VII)

A k-LTSS language L is center-disjoint if there exists a
triple S, = (A;B;C) such that L = L(S,) and

(A*L)BY) n(AuUB) =&

Proposition. (Manea, Mitrana, Yokomori (2008)) For
any k > 1 and center-disjoint k-LTSS language L,
the morphic image of HC, (L) Is regular.

Theorem. For any k> 1, REG is exactly the class of
weak-code images of the k-hairpin completion of
center-disjoint k-LTSS languages.



Non-iterated hairpin completion (VII1)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006))
1. NSPACE(f(n)), where f(n) > log nis a
space-constructible function, is closed under
hairpin completion.

2. P 1s closed under hairpin completion.

If L is recognizable in O(f(n)) time, then HC, (L) Is
recognizable in O(nf(n)) time.



Non-iterated hairpin completion (1X)

Pre-processing in O(f(n))
O(1)

1:=1;
while i+k+1<n—i-k) }
if W[1..i+k]=w[n—-k—i+1.n]) & W[l.n—i]elL)
then Output : w e L ™ ; halt
elsei=i+1
endif
endwhile
Output : w ¢ HCS,(L)

Is the n factor needed?



Non-iterated hairpin completion (X)

Partial answer: (Manea, Martin-Vide, Mitrana (2006))
Hairpin completion of regular languages are recognizable

In linear time.

Input: A=(Q,V, 4, q,,F), @Q={0.1,...,p}

m[0]:=0;
fort=1ton
m[t]:=o (m[t-1],w[t]);
a[t]:= (m[t] eF);
endfor



Non-iterated hairpin completion (XI)

Compute afj]
O(1)
1:=1,
while i+k+1<n—-i—Kk) !
If (W[l.i+Kkl=wh—-k—-i+1.n]) & (a[n-I1])
then Output : w e L ™ ; halt
elsei=i+1
endif
endwhile

Output : w ¢ HCS,(L)



Non-iterated hairpin completion (XI1)

Partial answer: (Manea, Martin-Vide, Mitrana (2006))

Hairpin completion of context-free languages are
recognizable in cubic time.

Input: G=(N,T,S,P) in the Chomsky normal
form

Cocke-Younger-Kasami Algorithm

m[i[il:={AeN | A=* w[i..j]};
aft]:= (S em[1][t]);



Iterated hairpin completion (1)
HC, (w)= {w},
HC, " (w)= HC (HC,"(W))
HC," (W) =\, HC(w)

HC, "(L)=U__ HC"(w)

w el



Iterated hairpin completion (I1)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006)) For
any k =1, the iterated k-hairpin completion of a
regular language is not necessarily context-free.

L = {akbakc"ak | n 21}

HC, (L) N {akchakcmakbakcPak | n,m, p >1} =

{akchakchakbake"ak | n >1}.



Iterated hairpin completion (I11)

Theorem. (Cheptea, Martin-Vide, Mitrana (2006))
NSPACE(f(n)), where f(n) > log n is a space-constructible
function, iIs closed under iterated hairpin completion.

Function Membership(x, HC,"(L));
Membership:= false;

If X € L then Membership:= true; endif; halt;
If (|x| <2k) and (x ¢ L) then halt; endif;
choose nondeterministically a decomposition

X = yofalyR, with |fy|> 1 and |a| = k;

It (Membership(yafaR, HC, (L)) or Membership(afaRyR, HC, (L))
then Membership:= true; halt; endif;



e
Iterated hairpin completion (1V)

Theorem. (Manea, Martin-Vide, Mitrana (2006))
If L is recognizable in O(f(n)) time, then HC, (L) is
recognizable in O(n4f(n)) time.



Iterated halrpin completion (V)

If n<2k+2 then if we L then Output YES; else Output NO; endif; halt;
for 1=1to n-2k
for j=1+2kto n
if w[i,j] e L then m[i][j]:=1; endif;
endfor;
endfor;
for 1=2k+3ton
for i=1to n-1+1
J.=i1+l-1; p:=0;
for t=ito i+[(I-1)/2]-1

If w[t]=w[j-t+i] then p:=p+1 else exit; endif;
endfor;
If p>k+1 then for t=1to p-k
if (m[i][j-t]=1) or (m[i+t][j]=1) then m[i][j]:=1; endif;
endfor;
endif;
endfor;

endfor; if m[1][n]=1 then Output YES else Output NO; endif;



Iterated hairpin completion (V1)

Can we do it better? Yes
t
1. P[i][j]= max ({t | w[i..i+t-1]=w[j-t+1..j]}u {0}), j-i 22k e
for p=2to n-2k+1 I
1:=p-1; j:=p+2k-1;

while (i >1) & (j <n)

If wl[i]=w[j] then P[i][j]:=P[i+1][j-1]+1; endif;
1:=i-1; ji=)+1;

endwhile;

1:=p-1; j:=p+2k;

while (i >1) & (j <n)

It wl[i]=w[j] then P[i][j]:=P[i+1][}-1]+1; endif;
1:=i-1; ji=)+1;
endwhile;
endfor;




Iterated hairpin completion (VII)

2. right[i] := the greatest p, such that w[i..p] e (L—=,*),
left[j]:= the least p, such that w[p..J] € (L—=*).

Initially, left[j]=1 and right[i]=j, for all 1,j such that
wli..j] € L;

left[j]=0 and right[i]=n+1, otherwise.



Iterated hairpin completion (VI11)

If n<2k+2 then if we L then Output YES; else Output NO; endif; halt;
for 1=1to n-2k
for j=1+2kto n
if w[i,j] e L then m[i][j]:=1; endif;
endfor;
endfor;
for 1=2k+3ton
for i=1to n-1+1
J.=i1+l-1; p:=0;
for t=ito i+[(I-1)/2]-1

If w[t]=w[j-t+i] then p:=p+1 else exit; endif;
endfor;
If p>k+1 then for t=1to p-k
if (m[i][j-t]=1) or (m[i+t][j]=1) then m[i][j]:=1; endif;
endfor;
endif;
endfor;

endfor; if m[1][n]=1 then Output YES else Output NO; endif;
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Iterated hairpin completion (1X)

If n<2k+2 then if we L then Output YES; else Output NO; endif; halt;
for i=1 to n-2k
for j=1+2kto n
if w[i,j] e L then m[i][j]:=1; endif;
endfor,;
endfor;
Compute P;
for I=2k+3ton
for i=1to n-1+1
J:=i+l-1;

if (j=>right[i] > j - P[i][j] + 1 + k) then m[i][j]:=1; left[j]=i; right[i]=];
endif;

it (i<left[j] <1+ P[i][j] - 1 - k) then m[i][j]:=1; left[j]=i; right[i]=];
endif;

endfor;
endfor; if m[1][n]=1 then Output YES else Output NO; endif;



e
Iterated hairpin completion (X)

If n<2k+2 then if we L then Output YES; else Output NO; endif; halt;
O(n3) for context-free languages/ O(n?) for regular languages

Compute P;
for 1=2k+3ton
for i=1to n-1+1
J.=i+l-1;

if (j=>right[i] > j - P[i][j] + 1 + k) then m[i][j]:=1; left[j]=i; right[i]=];
endif;

it (i<left[j] <1+ P[i][j] - 1 - k) then m[i][j]:=1; left[j]=i; right[i]=];
endif;

endfor;
endfor; if m[1][n]=1 then Output YES else Output NO; endif;



Iterated hairpin completion (XI)

What kind of language is HC, “(w) ?

(1) Itisin NL

(1) It contains non-context-free languages [Kopecki, 2011]
w = akbakakakcak

Theorem. (Manea, Mitrana, Yokomori (2008))
Let k =21. The following problems are decidable
for this class:

1. The membership problem is decidable in quadratic
time.

2. The inclusion is decidable in quadratic time.

ne equivalence problem is decidable in linear time.
ne finiteness Is decidable in linear time.

3.
4. T



Iterated hairpin completion (XI1)

Is the regularity of HC, “(w) decidable?

Theorem. (Kari, Kopecki, Seki (2012))
For every non-crossing word w, it is algorithmically
decidable whether HC,“(w) is regular.

Theorem. (Shikishima-Tsuji (2015))
For every crossing (2,2)-word w, it is algorithmically
decidable whether HC,“(w) is regular.



Iterated hairpin completion:
Open problems

. Isthe n?2 factor needed ?

Other classes for which 1t i1s not needed ?

Is n? optimal for the regular case ?

Is It decidable whether or not the iterated k-
hairpin completion of a given regular language Is

still regular?
. Given two words x and y, can one decide whether

HC, (X) " HC,(y) # &7?
Is the regularity of HC, “(w) decidable for every
word w?



T
Hairpin completion distance

HD, (x,y)=minip [ye (x 5" )or xe(y =)}
HD,(Ly)=min{p |ye (L =)}

1. Given x,y,k compute HD,(X,y)
2. Given L,y,k compute HD,(L,y)

Solution: dynamic programming

1. O(max(n?log n), n = max(|x|,ly|)
2. O(lyl* f(Iyl))

Better ?



R,
Bounded hairpin completion

Ito, Leupold, Mitrana (2009),
Ito, Leupold, Manea, Mitrana (2011).

pHCS, (W) ={wy |w =yafa, |a| =k, a.f € V*, |y|< p}
pHCP, (W) = {yw | W = afay, |a| =k, a.f € V*, |[y|< p}

p-bounded k-hairpin completion
pHC, (w) = pHCS, (w) U pHCP, (w)



e EE——
Hairpin lengthening

Manea, Martin-Vide, Mitrana (2010, 2012)
Manea, Mercas, Mitrana (2012)

HLS, (w) ={wd |w=7yapa,|a| =k, apf eV, disa
suffix of y}

HLP, (W) ={ow |w=0apay,|a| =k, af eV, K disa
prefix of y}

K-hairpin lengthening
HL, (w) = HLS, (w) U HLP, (w)



Reductions

HRS, (W) = {yafa | W =yapay, la| =Kk apf e€V*,y eV}
HRP, (W) = {afay |w =7y afay,|la| =K ap eV, y eV}
HR, (w) = HRS, (w) U HRP,(w)

- formal operation on languages
- distances
- hairpin root of a word/language

M. Ito, P. Leupoldt, F. Manea, C. Martin-Vide, V.
Mitrana
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