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Abstract models 

2 

   Real world             Theoretical models         Implementation      
                                              

chemical reactions 

    DNA    

    cell     

Chemical paradigm 

    genetic alg. 

DNA computing      

membrane computing   

electroniic media         

 (in silico) 

      bio-media      

 (in vivo, in vitro) 



Last week - The chemical model 

 Symbolic chemical solution with abstract 

molecules, and rules describing reactions 

between them 

 Molecules represent data, reactions represent 

operations 

 Brownian motion, as execution model 

 

Multisets of symbols/objects + multiset rewriting  

    rules 
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The chemical model/paradigm 

 Multisets of symbols/objects + multiset rewriting 

rules 
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Gamma example – Primes 
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Properties of chemical programs 

 Multiset of abstract molecules in a  

 solution, with 

 reactions (operations):  
 reaction condition + reaction result. 

 Sub-solutions: „sub-regions” with their own reaction 
rules (priority, sequentiality). 

 Program execution ends, if there are no applicable 
reactions. 

 

Natural, free from the forced sequentiality of the 
physical computer architecture 
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   Real world             Theoretical models         Implementation      
                                              

chemical reactions 

    DNA    

    cell     

Chemical paradigm 

    genetic alg. 

DNA computing      

membrane computing   

electroniic media         

 (in silico) 

      bio-media      

 (in vivo, in vitro) 



Membrane systems – The 

biochemical motivation 

8 

Cells contain regions  

 Regions are enclosed by 

membranes 

 Different regions have 

different biochemical 

processes inside 

 Membranes also 

regulate traffic between 

the regions 

 



Membrane systems 
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Membrane systems, a membrane 

structure 

10 

A hierarchical arrangement of regions where multisets of objects evolve 

according to given evolutionary rules 



The membrane structure 

 

Can be described by 

 a tree, or a 

 string of parentheses 
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The membrane structure 

 membrane <-->  enclosed region 

 outer (skin) membrane, environment 

 “inside”, “outside” 
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The objects 

The regions (membranes) contain multisets  of 

objects 

 object: symbol from a finite alphabet  

 mutisets are represented be strings over the  object 

alphabet 

 

 

 

 



The rules 

Applying the multiset rewriting rule aafgh 

 

 



Maximal parallel rule 

application 

An example: 

 

5. 

There are two possibilities:                               

                                                                                     



Membrane systems, multiset 

rewriting rules 

The rules  
-  change the objects 

-  move the objects between neighboring regions 

 

The rules are applied  
- in maximal parallel way 

- In a synchronized manner 

P systems – [Paun 2000 (1998)]  
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Example 
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The computation 

 Start in an initial configuration 

 A computational step: Apply the rules in a 

maximal parallel way in all regions 

 Repeat the rule application step as long as 

possible (until a final configuration is reached) 

 The result of the computation is given by the 

multiplicities of certain objects in certain regions. 
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Example 
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Some very basic results about 

this very basic setup… 

 Having two membranes is sufficient 

 Systems with rules having one object on the left-

hand side are weak: they compute the length sets 

of context-free languages 

 Systems with rules having at least two objects on 

the left-hand side can compute any recursively 

enumerable set of numbers (compute “anything”) 

 

[Paun 2002] 
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There are many more features 

that can be added  

 For example: 

 

Computing/generating  

square numbers using  

membrane division 
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The computation 



There are many interesting results, for example: 

 Polynomial solutions to several NP complete 

problems 

 formula satisfiabilty 

 Hamiltonian path 

 discrete logarithm 

 … 
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Outline 

Our goal: Using P systems to describe string 

languages – construct automata-like membrane 

systems 

 

 Membrane systems (P systems) with 

communication rules only, accepting P systems 

 P automata 

 The computational power of P automata 

 P automata over infinite alphabets 

24 



Automata-like systems 

 

 

 

 

 

 

(What are counter automata and why are they 

interesting?) 
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(What are counter automata and 

why are they interesting?) 

 

1. Turing machines can compute “anything” with 

finite control, and a tape containing a string of 

symbols 

2. The tape can be simulated by two stacks 

3. A stack of symbols can be simulated by two 

counters storing numbers 

4. Four counters can be simulated by two counters 

 

 Anything can be computed by counter machines  

    (register machines) 
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(What are counter automata and 

why are they interesting?) 

A Turing machine tape can be simulated by two 

stacks: 

 
 rewrite 

 move the head 

 

 

 pop and push the new symbol 

 pop from one stack, push on 

the other 
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(What are counter automata and 

why are they interesting?) 

A stack can be simulated by two counters: 

 
 a1a2a2 in the stack 

 pop , push 

 

 

 

 122  in the counter 

 pop: divide by 10 

 push ax: multiply by 10 and  

add x 
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(What are counter automata and 

why are they interesting?) 

Any number of counters can be simulated by two 

counters: 
 

 increment ci  

 decrement ci 

 does ci contain 0? 

 

 

 

 multiply c1 with the ith prime 

 divide c1 by the ith prime 

 is c1 divisible by the ith prime? 
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Automata-like membrane 

systems 
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Membrane systems with 

communication only 

Symport/antiport systems 

31 



Example, in communication with the 

environment 
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Example, in communication with the 

environment 
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Symport/antiport systems –  

The rules 

 

34 



(Accepting) symport/antiport 

systems 

 

35 



The transitions 

 

36 



Symport/antiport systems and 

counter automata 
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Symport/antiport systems and 

counter automata 
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Symport/antiport systems and 

counter automata 

39 

• if ci is not empty: qq’’ 

; q1’, in) 

(q1’q3, out; q’’, in) 



Symport/antiport systems and 

counter automata 
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From multiplicities (numbers) to 

sequences (strings)… 

 

Consider the multiset sequences accepted by 

antiport P systems 
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Accepted multiset sequences - 

Example 

42 

 

 

initial                      rules: 

configuration: 

                                    (A, out; cD, in) 

    A  B                         (B, out; eD, in) 

                                    (D, out; F, in) 



Accepted multiset sequences - 

Example 

43 

 

 

configuration:        rules: 

 

                                    (A, out; cD, in) 

    c D e D                    (B, out; eD, in) 

                                    (D, out; F, in) 



Accepted multiset sequences - 

Example 

44 

 

 

configuration:        rules: 

 

                                    (A, out; cD, in) 

    c F e F                     (B, out; eD, in) 

                                    (D, out; F, in) 



Accepted multiset sequences - 

Example 

45 

 

 

configuration:        rules: 

 

                                    (A, out; cD, in) 

    c    e                        (B, out; eD, in) 

                                    (D, out; F, in) 

 

         F   F 



Accepted multiset sequences - 

Example 

46 

 

final           

configuration: 

 

                           The (set of) accepted multiset sequence(s): 

      c     e 

                                               {  {c,e,D,D}{F,F}  } 

 

        F     F 



Accepting P systems – What we 

have so far… 

 A P system in an environment  

 Given an initial configuration  

 A sequence of multisets is read from the environment 

during the computation 

 The multiset sequence is accepted if the computation ends 

in a halting configuration 
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Characterizing string languages/1 

How to map the accepted multiset sequences to 

accepted strings? 

 

1. Analyzing P systems, extended P automata 

 

 Terminals and nonterminals – only terminal symbols 

are taken into account 

 The input multisets are mapped to sets of strings 

which can be constructed from the terminals 
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Characterizing string languages/1 

 

 

 

 

 

 

 
[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of 

the EATCS, 78 (October 2002), 231–236.] 
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Analyzing P systems 

 

50 

V* 



The previous example: 

51 

      

    

 

 

                           The (set of) accepted multiset sequence(s): 

      c     e 

                                               {  {c,e,D,D}{F,F}  } 

 

                            If the set of terminal symbols is T={e,c}, then                                      

         F     F          the accepted strings are: 

 

                                                     { ce, ec } 



The power of analyzing P systems 

 

 

 

 

 

 
[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of 

the EATCS, 78 (October 2002), 231–236.] 
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The proof idea 
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The numerical encoding 
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The numerical encoding 
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The proof idea again 

 

56 
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Finite (extended) P automata 

 

 

 

 

 

 

 

 

 

 

 

[R. Freund, M. Oswald, L. Staiger: Omega-P automata with 
communication rules. Lecture Notes in Computer Sci., 2933 (2004), 
203–217] 
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Finite (extended) P automata 
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Exponential space 

symport/antiport acceptors 
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Exponential space 

symport/antiport acceptors 
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V* 



The power of exponential space 

symport/antiport acceptors 

 

 

 

 

 

 

 

 

 

 

[O.H. Ibarra, Gh. Paun: Characterization of context-sensitive languages    

 and other language classes in terms of symport/antiport P systems.  

 Theoretical Computer Sci., 358 (2006), 88–103] 
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Characterizing string languages/2 

How to map the accepted multiset sequences to 

accepted strings? 

 

2. P automata: 

 

 No distinction between terminals and nonterminals  

 The input multisets can be mapped to (sets of) strings 

using any (nonerasing) mapping. 

 

 (Sequential rule application is also considered.) 
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P automata 

 An antiport P system in an environment from where the 

input is read 

 Given an initial configuration and a set of final 

(accepting) configurations 

 A sequence of multisets is read from the environment 

during the computation 

 The multiset sequence is accepted if the computation ends 

in an accepting configuration 

 

[E. Csuhaj-Varju, Gy. Vaszil: P automata or purely communicating  

 accepting P systems. Lecture Notes in Computer Sci., 2597 (2003), 219– 

 233] 
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P automaton 

65 

A P automaton is 

 

with 

 

 object alphabet 

 membrane structure 

 rules corresponding to the regions 

 initial configuration                             ,  

 set of accepting configurations                                    with 

     being finite, or              .  

 



Examples… 

 Variants of P automata for regular languages – 

different ways of mapping multiset sequences to 

strngs 

66 



P automaton – An example 

67 

Given a regular grammar with: 

 

initial                      rules: 

configuration: 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

configuration:         rules: 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

configuration:         rules: 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

configuration:         rules: 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

configuration:         rules: 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

final                        rules: 

configuration: 

final configuration:     is in the region  



P automata – An example 

73 

Given a regular grammar with rules: 

 

final           

configuration: 

                          The set of accepted multiset sequences: 

 

                                     { {a, A}{b, S}…{a, A} {b, F} } 

 

                            or using the string notation for multisets: 

 

                                        { aA, bS,… ,aA, bF } 



P automaton – An example 

74 

Given a regular grammar with: 

 

initial                      rules: 

configuration: 

 

                                                                for all rules of the  

                                                                grammar 

final configuration:     is in the region  



P automaton – An example 
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Given a regular grammar with: 

 

final           

configuration: 

                            The set of accepted multiset sequences: 



P automaton – An other example 

A finite automaton                               ,                          . 

A simulating P automaton with 2 membranes: 
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P automaton – An other example 

The system simulates a finite automaton over  

with 2 membranes, and sequential rule application. 

 

In this case, it is done in such a way that the accepted 

multiset sequences are: 
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P automaton – A third example 

[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power of  

 P and dP automata. Annals of Bucharest University Mathematics-Informatics  

 Series, LVIII:5-22, 2009.] 
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P automaton – A third example 

79 

The set of accepted multiset sequences: 



P automata 

 An antiport P system in an environment from where the 

input is read 

 Given an initial configuration and a set of final 

(accepting) configurations 

 A sequence of multisets is read from the environment 

during the computation 

 The multiset sequence is accepted if the computation ends 

in an accepting configuration 

 

 The string interpretation of the accepted multiset 

sequence is provided by an input mapping 

80 



The input mapping 

81 

An input mapping maps the sequences of multisets 

over the object alphabet V to strings over an alphabet T: 

 

 

 
The language accepted by a P automaton     : 



The input mapping 

The first example:  

 the mapping:                                          where 

 

The second example: 

 the mapping:                                  

 

 

(The third example:                                                 )  

 

82 



An other example –  

Input mapping with permutation 

83 

                                                         (a out; aa in)|A , (a out; bb in)|B  

    A  a  

                          A                              

                          B                             (A out; A in), (B out; A in), (B in)  

 

 

A configuration sequence, maximal parallel rule application: 

 

(Aa, AB) == > (Aaa, AB)== > … == >(Aa…a,AB)== > (Ba2k,AA)== > (b2k+1,AAB) 

 

If (V*, AAB) is an accepting state, then 

 

                               a2,a4,a8,a24 …,a2k,b2k+1           is the accepted multiset sequence 

 

                                        a2k+1-2 

 

                              L={an-2 bn | n=2k, k>1}             could be the accepted language 



Input mapping with permutation 

 

 

                 if             and 

 

 
 

The previous example: 

 

                         a2,a4,a8,a24 …,a2k,b2k+1           is the accepted multiset sequence 

 

                                   a2k+1-2 

 

                          L={an-2 bn | n=2k, k>1}            is the accepted language 

 84 



 

What can a “reasonable” input mapping be? 

85 



A previous example –  

input mapping with erasing 

86 

    

    

 

 

                           The (set of) accepted multiset sequence(s): 

      c     e 

                                               {  {c,e,D,D}{F,F}  } 

 

                            If the set of terminal symbols is T={e,c}, then                                      

         F     F          the accepted strings are: 

 

                                                     { ce, ec } 



The desired properties of the  

input mapping: nonerasing 

 

If erasing is allowed, any language is easily obtained with 

simple systems having just one membrane (extended  

P automata, analyzing P systems).  

                             Recall the results of [Freund, Oswald 2002] 

 

Therefore, we study input mappings that are nonerasing. 
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The desired properties of the 

input mapping: simplicity 

 

 The power of the system should not come from the 

power of  a complex input mapping 

 

 

The input mapping should be simple from the point of  

view of computational complexity: 
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Different kinds of input mappings 

 

Permutation: 

                 if             and 

 

 

Remainder of division by k: 

  f=fk,rem if T={a1,a2,…} and 

f(v)={ai | |v| divided by k gives i as remainder}  

89 



Example, remainder 

90 

                                                        (S out; a in)|A , (S out; aa in)|A, (a out; a10 in)|A 

    S  A                                    (Sa out, Sb in)|B, (Saa out; Sbb in)|B, (a10 out; a in)|B 

                          A                              

                          B B F                      (A out; A in), (B out; A in), (B out; B in), (B in), 

                                                         (a in; F out), (b in) 

 

 

• The number of a-s entering the system while A is present in the outer region: 

 

(1 or 2),  (10 or 20) + (1 or 2),  (110 or 120 or 210 or 220) + (1 or 2), …      _____ 

 

     v1                     v2                                              v3                            …         vm   

 

• If the number of a-s in v5 is 11212, then f10,rem(v1)f10,rem(v2)…f10,rem(v5)=a1a1a2a1a2           

 

• The accepted language:       Lrev= {ww-1 | w is a string over {a1, a2} } 

 

 



A classification of  

(interesting) input mappings:  

                     if and only if            , and 

 

 

  (Examples 3, 4) 

 

                         if and only if, we have                     for some  

            which is obtained by applying a finite transducer to 

the string representation of the multiset    . 

 

  (Examples 1, 2, 5) 
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To determine the computation 

power of P automata… 

…consider the workspace they have available for 

their computation. 

 

 How does the power depend on the input 

mapping? 

 How does the power depend on sequential or 

maximal parallel rule application? 
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To determine the computation 

power of P automata… 

…consider the workspace they have available for 

their computation: 

 

1. In case of “erasing” input mappings, the number 

of objects inside the system does not depend 

on the length of the input. 
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To determine the computation 

power of P automata… 

…consider the workspace they have available for their 

computation: (d is the number of computational steps so far) 

2. In case of                      : 

 sequential rule application: configurations can be 

recorded by a Turing machine on                           tape 

cells 

 parallel rule application: configurations can be recorded 

by a Turing machine on                    tape cells 

 

This limited workspace becomes available step-by-step, it 

is bounded by    , the length of the already processed part 

of the input  restricted space bounded Turing machines. 
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A Turing machine with 

SPACEBOUND(n) 

The length of the available worktape is bounded by 

the length of the input: 

95 

n 



Turing machines with restricted 

space bound 

1. After reading d1 input cells: 
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Turing machines with restricted 

space bound 

2. After reading d2 input tape cells: 
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Turing machines with restricted 

space bound 

A nondetermininstic Turing machine with a one-way 

input tape is restricted         space bounded if the 

number of nonempty cells on the worktape(s) is 

bounded by         , where    is the distance of the 

reading head from the left-end of the one-way input 

tape. 

 

Notations for logarithmic space bound:  

 1LOGSPACE, r1LOGSPACE,  

 1LINSPACE, r1LINSPCAE 
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Restricted space complexity 

The restricted space complexity classes are not 

necessarily the same as the „usual” ones. 

 

 

 

                                   (11########### is in L, 3#### is not in L) 

 

L is in 1LOGSPACE, but it is not in r1LOGSPACE. 
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Restricted space complexity 

The restricted logarithmic space bound: 
   

 In the deterministic case, it is equal to the strong 
logarithmic space bound. 

   

The restricted linear space bound:  
   

 

[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity  
 of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77–90.] 

 

[M. Kutrib, J. Provillard, Gy. Vaszil, M. Wendtland: Deterministic One-Way 
Turing Machines with Sublinear Space. Fundam. Inform. 136(1-2): 139-
155 (2015)] 
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The power of systems with 

mappings by finite transducers 

1.   

 

For any kind of                    ,  as long as it is not 

more complex than linear space computable (by 

Turing machines),   

 

2.   

 

 
[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity  

 of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77–90.] 
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The characterization of CS in 

more detail 

 

102 



The characterization of CS in 

more detail 

 

103 



Mappings in TRANS and the 

mapping f
perm 

The language by Example 5 (with f from TRANS): 

 

            Lrev= {ww-1 | w is a string over {a, b} } 

 

This is interesting because Lrev cannot be 

characterized using permutations as shown in: 

 
[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power  

 of P and dP automata. Annals of Bucharest University Mathematics- 

 Informatics Series, LVIII:5-22, 2009.] 
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Systems with mappings from 

TRANS 

105 

initial                      rules: 

configuration: 

final configuration: A single   is in the region  

The accepted multiset sequences: 

Consider: 



There are simple linear languages which cannot be 

characterized with systems using         . 

 

 

 

On the other hand: 

 

 
[Paun, G., Perez-Jimenez, M.J.: Solving problems in a distributed way in  

 membrane computing: dP systems. International Journal of Computing,  

 Communication and Control V(2), 238–250 (2010)] 
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Systems with permutation 

mappings 

107 

REG 

LIN 
CF 

CS 

[R. Freund, M. Kogler, Gh. Paun, and M. J. Pérez-Jiménez. On the power  

 of P and dP automata. Annals of Bucharest University Mathematics- 

 Informatics Series, LVIII:5-22, 2009.] 



 

Let us investigate the power systems with 

permutation mappings. 
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The power of P automata with 

permutation mapping 

 

 

 

 
 The inclusion is shown by a counter machine model – RCMA 

 The strictness is shown using: 
 
 
and a lemma from [Freund, Kogler, Paun, Pérez-Jiménez 2010] 

                                                            
 [E. Csuhaj-Varjú, Gy. Vaszil: On counter machines vs. dP automata. LNCS  
  8340, 138-150, 2014] 
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The power of P automata, 

general formulation 
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The power of P automata, 

general formulation 
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P automata over infinite alphabets 

 

112 



An interesting restriction of  

P automata 

P finite automata: 
 

 

 

 

 

 

 

 

 

 

 

 

 

[J.Dassow, Gy. Vaszil: P finite automata and regular languages over  
 countably infinite alphabets. Lecture Notes in Computer Sci., 4361  
 (2006), 367–381.] 
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P finite automata 
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P finite automata 

 

115 



P automata over infinite 

alphabets 
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P finite automata over infinite 

alphabets 
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How to classify languages over 

infinite alphabets? 
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Finite memory automata 
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Regularity - 

finite memory automata 
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Regularity –  

Δ regular expressions 
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Regularity –  

Δ regular expressions 

 

122 



Finite memory automata and 

Δ regular expressions 

 

 

 

 

 

 

 
 

L1 is described by the expression a2,2 

L2 is also easily described by FMA 
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P finite automata for L
1 
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P finite automata for L
2 
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Using P finite automata, we might obtain a more 

appropriate definition of regular languages over 

infinite alphabets. 

 

This is an interesting research direction which is still 

open. 
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Thank you for your attention! 

 

 Membrane systems (P systems) with 

communication rules only, accepting P systems 

 P automata 

 The computational power of P automata 

 P automata over infinite alphabets 
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