

Nature Motivated Approaches to

Computer Science – II.

György Vaszil

University of Debrecen, Faculty of Informatics

Department of Computer Science

Potsdam, July 2017

1

Abstract models

2

 Real world Theoretical models Implementation

chemical reactions

 DNA

 cell

Chemical paradigm

 genetic alg.

DNA computing

membrane computing

electroniic media

 (in silico)

 bio-media

 (in vivo, in vitro)

Last week - The chemical model

 Symbolic chemical solution with abstract

molecules, and rules describing reactions

between them

 Molecules represent data, reactions represent

operations

 Brownian motion, as execution model

Multisets of symbols/objects + multiset rewriting

 rules

3

The chemical model/paradigm

 Multisets of symbols/objects + multiset rewriting

rules

4

Gamma example – Primes

5

Properties of chemical programs

 Multiset of abstract molecules in a

 solution, with

 reactions (operations):
 reaction condition + reaction result.

 Sub-solutions: „sub-regions” with their own reaction
rules (priority, sequentiality).

 Program execution ends, if there are no applicable
reactions.

Natural, free from the forced sequentiality of the
physical computer architecture

 6

7

 Real world Theoretical models Implementation

chemical reactions

 DNA

 cell

Chemical paradigm

 genetic alg.

DNA computing

membrane computing

electroniic media

 (in silico)

 bio-media

 (in vivo, in vitro)

Membrane systems – The

biochemical motivation

8

Cells contain regions

 Regions are enclosed by

membranes

 Different regions have

different biochemical

processes inside

 Membranes also

regulate traffic between

the regions

Membrane systems

9

Membrane systems, a membrane

structure

10

A hierarchical arrangement of regions where multisets of objects evolve

according to given evolutionary rules

The membrane structure

Can be described by

 a tree, or a

 string of parentheses

11

The membrane structure

 membrane <--> enclosed region

 outer (skin) membrane, environment

 “inside”, “outside”

12

The objects

The regions (membranes) contain multisets of

objects

 object: symbol from a finite alphabet

 mutisets are represented be strings over the object

alphabet

The rules

Applying the multiset rewriting rule aafgh

Maximal parallel rule

application

An example:

5.

There are two possibilities:

Membrane systems, multiset

rewriting rules

The rules
- change the objects

- move the objects between neighboring regions

The rules are applied
- in maximal parallel way

- In a synchronized manner

P systems – [Paun 2000 (1998)]

16

Example

17

The computation

 Start in an initial configuration

 A computational step: Apply the rules in a

maximal parallel way in all regions

 Repeat the rule application step as long as

possible (until a final configuration is reached)

 The result of the computation is given by the

multiplicities of certain objects in certain regions.

18

Example

19

Some very basic results about

this very basic setup…

 Having two membranes is sufficient

 Systems with rules having one object on the left-

hand side are weak: they compute the length sets

of context-free languages

 Systems with rules having at least two objects on

the left-hand side can compute any recursively

enumerable set of numbers (compute “anything”)

[Paun 2002]

20

There are many more features

that can be added

 For example:

Computing/generating

square numbers using

membrane division

21

22

The computation

There are many interesting results, for example:

 Polynomial solutions to several NP complete

problems

 formula satisfiabilty

 Hamiltonian path

 discrete logarithm

 …

23

Outline

Our goal: Using P systems to describe string

languages – construct automata-like membrane

systems

 Membrane systems (P systems) with

communication rules only, accepting P systems

 P automata

 The computational power of P automata

 P automata over infinite alphabets

24

Automata-like systems

(What are counter automata and why are they

interesting?)

25

(What are counter automata and

why are they interesting?)

1. Turing machines can compute “anything” with

finite control, and a tape containing a string of

symbols

2. The tape can be simulated by two stacks

3. A stack of symbols can be simulated by two

counters storing numbers

4. Four counters can be simulated by two counters

 Anything can be computed by counter machines

 (register machines)

26

(What are counter automata and

why are they interesting?)

A Turing machine tape can be simulated by two

stacks:

 rewrite

 move the head

 pop and push the new symbol

 pop from one stack, push on

the other

27

(What are counter automata and

why are they interesting?)

A stack can be simulated by two counters:

 a1a2a2 in the stack

 pop , push

 122 in the counter

 pop: divide by 10

 push ax: multiply by 10 and

add x

28

(What are counter automata and

why are they interesting?)

Any number of counters can be simulated by two

counters:

 increment ci

 decrement ci

 does ci contain 0?

 multiply c1 with the ith prime

 divide c1 by the ith prime

 is c1 divisible by the ith prime?

29

Automata-like membrane

systems

30

Membrane systems with

communication only

Symport/antiport systems

31

Example, in communication with the

environment

32

Example, in communication with the

environment

33

+1 +1

Symport/antiport systems –

The rules

34

(Accepting) symport/antiport

systems

35

The transitions

36

Symport/antiport systems and

counter automata

37

Symport/antiport systems and

counter automata

38

Symport/antiport systems and

counter automata

39

• if ci is not empty: qq’’

; q1’, in)

(q1’q3, out; q’’, in)

Symport/antiport systems and

counter automata

40

From multiplicities (numbers) to

sequences (strings)…

Consider the multiset sequences accepted by

antiport P systems

41

Accepted multiset sequences -

Example

42

initial rules:

configuration:

 (A, out; cD, in)

 A B (B, out; eD, in)

 (D, out; F, in)

Accepted multiset sequences -

Example

43

configuration: rules:

 (A, out; cD, in)

 c D e D (B, out; eD, in)

 (D, out; F, in)

Accepted multiset sequences -

Example

44

configuration: rules:

 (A, out; cD, in)

 c F e F (B, out; eD, in)

 (D, out; F, in)

Accepted multiset sequences -

Example

45

configuration: rules:

 (A, out; cD, in)

 c e (B, out; eD, in)

 (D, out; F, in)

 F F

Accepted multiset sequences -

Example

46

final

configuration:

 The (set of) accepted multiset sequence(s):

 c e

 { {c,e,D,D}{F,F} }

 F F

Accepting P systems – What we

have so far…

 A P system in an environment

 Given an initial configuration

 A sequence of multisets is read from the environment

during the computation

 The multiset sequence is accepted if the computation ends

in a halting configuration

47

Characterizing string languages/1

How to map the accepted multiset sequences to

accepted strings?

1. Analyzing P systems, extended P automata

 Terminals and nonterminals – only terminal symbols

are taken into account

 The input multisets are mapped to sets of strings

which can be constructed from the terminals

48

Characterizing string languages/1

[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of

the EATCS, 78 (October 2002), 231–236.]

49

Analyzing P systems

50

V*

The previous example:

51

 The (set of) accepted multiset sequence(s):

 c e

 { {c,e,D,D}{F,F} }

 If the set of terminal symbols is T={e,c}, then

 F F the accepted strings are:

 { ce, ec }

The power of analyzing P systems

[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of

the EATCS, 78 (October 2002), 231–236.]

52

The proof idea

53

The numerical encoding

54

The numerical encoding

55

The proof idea again

56

57

Finite (extended) P automata

[R. Freund, M. Oswald, L. Staiger: Omega-P automata with
communication rules. Lecture Notes in Computer Sci., 2933 (2004),
203–217]

58

Finite (extended) P automata

59

Exponential space

symport/antiport acceptors

60

Exponential space

symport/antiport acceptors

61

V*

The power of exponential space

symport/antiport acceptors

[O.H. Ibarra, Gh. Paun: Characterization of context-sensitive languages

 and other language classes in terms of symport/antiport P systems.

 Theoretical Computer Sci., 358 (2006), 88–103]

62

Characterizing string languages/2

How to map the accepted multiset sequences to

accepted strings?

2. P automata:

 No distinction between terminals and nonterminals

 The input multisets can be mapped to (sets of) strings

using any (nonerasing) mapping.

 (Sequential rule application is also considered.)

63

P automata

 An antiport P system in an environment from where the

input is read

 Given an initial configuration and a set of final

(accepting) configurations

 A sequence of multisets is read from the environment

during the computation

 The multiset sequence is accepted if the computation ends

in an accepting configuration

[E. Csuhaj-Varju, Gy. Vaszil: P automata or purely communicating

 accepting P systems. Lecture Notes in Computer Sci., 2597 (2003), 219–

 233]

64

P automaton

65

A P automaton is

with

 object alphabet

 membrane structure

 rules corresponding to the regions

 initial configuration ,

 set of accepting configurations with

 being finite, or .

Examples…

 Variants of P automata for regular languages –

different ways of mapping multiset sequences to

strngs

66

P automaton – An example

67

Given a regular grammar with:

initial rules:

configuration:

final configuration: is in the region

P automaton – An example

68

Given a regular grammar with:

configuration: rules:

final configuration: is in the region

P automaton – An example

69

Given a regular grammar with:

configuration: rules:

final configuration: is in the region

P automaton – An example

70

Given a regular grammar with:

configuration: rules:

final configuration: is in the region

P automaton – An example

71

Given a regular grammar with:

configuration: rules:

final configuration: is in the region

P automaton – An example

72

Given a regular grammar with:

final rules:

configuration:

final configuration: is in the region

P automata – An example

73

Given a regular grammar with rules:

final

configuration:

 The set of accepted multiset sequences:

 { {a, A}{b, S}…{a, A} {b, F} }

 or using the string notation for multisets:

 { aA, bS,… ,aA, bF }

P automaton – An example

74

Given a regular grammar with:

initial rules:

configuration:

 for all rules of the

 grammar

final configuration: is in the region

P automaton – An example

75

Given a regular grammar with:

final

configuration:

 The set of accepted multiset sequences:

P automaton – An other example

A finite automaton , .

A simulating P automaton with 2 membranes:

76

P automaton – An other example

The system simulates a finite automaton over

with 2 membranes, and sequential rule application.

In this case, it is done in such a way that the accepted

multiset sequences are:

77

P automaton – A third example

[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power of

 P and dP automata. Annals of Bucharest University Mathematics-Informatics

 Series, LVIII:5-22, 2009.]

78

P automaton – A third example

79

The set of accepted multiset sequences:

P automata

 An antiport P system in an environment from where the

input is read

 Given an initial configuration and a set of final

(accepting) configurations

 A sequence of multisets is read from the environment

during the computation

 The multiset sequence is accepted if the computation ends

in an accepting configuration

 The string interpretation of the accepted multiset

sequence is provided by an input mapping

80

The input mapping

81

An input mapping maps the sequences of multisets

over the object alphabet V to strings over an alphabet T:

The language accepted by a P automaton :

The input mapping

The first example:

 the mapping: where

The second example:

 the mapping:

(The third example:)

82

An other example –

Input mapping with permutation

83

 (a out; aa in)|A , (a out; bb in)|B

 A a

 A

 B (A out; A in), (B out; A in), (B in)

A configuration sequence, maximal parallel rule application:

(Aa, AB) == > (Aaa, AB)== > … == >(Aa…a,AB)== > (Ba2k,AA)== > (b2k+1,AAB)

If (V*, AAB) is an accepting state, then

 a2,a4,a8,a24 …,a2k,b2k+1 is the accepted multiset sequence

 a2k+1-2

 L={an-2 bn | n=2k, k>1} could be the accepted language

Input mapping with permutation

 if and

The previous example:

 a2,a4,a8,a24 …,a2k,b2k+1 is the accepted multiset sequence

 a2k+1-2

 L={an-2 bn | n=2k, k>1} is the accepted language

 84

What can a “reasonable” input mapping be?

85

A previous example –

input mapping with erasing

86

 The (set of) accepted multiset sequence(s):

 c e

 { {c,e,D,D}{F,F} }

 If the set of terminal symbols is T={e,c}, then

 F F the accepted strings are:

 { ce, ec }

The desired properties of the

input mapping: nonerasing

If erasing is allowed, any language is easily obtained with

simple systems having just one membrane (extended

P automata, analyzing P systems).

 Recall the results of [Freund, Oswald 2002]

Therefore, we study input mappings that are nonerasing.

87

The desired properties of the

input mapping: simplicity

 The power of the system should not come from the

power of a complex input mapping

The input mapping should be simple from the point of

view of computational complexity:

88

Different kinds of input mappings

Permutation:

 if and

Remainder of division by k:

 f=fk,rem if T={a1,a2,…} and

f(v)={ai | |v| divided by k gives i as remainder}

89

Example, remainder

90

 (S out; a in)|A , (S out; aa in)|A, (a out; a10 in)|A

 S A (Sa out, Sb in)|B, (Saa out; Sbb in)|B, (a10 out; a in)|B

 A

 B B F (A out; A in), (B out; A in), (B out; B in), (B in),

 (a in; F out), (b in)

• The number of a-s entering the system while A is present in the outer region:

(1 or 2), (10 or 20) + (1 or 2), (110 or 120 or 210 or 220) + (1 or 2), … _____

 v1 v2 v3 … vm

• If the number of a-s in v5 is 11212, then f10,rem(v1)f10,rem(v2)…f10,rem(v5)=a1a1a2a1a2

• The accepted language: Lrev= {ww-1 | w is a string over {a1, a2} }

A classification of

(interesting) input mappings:

 if and only if , and

 (Examples 3, 4)

 if and only if, we have for some

 which is obtained by applying a finite transducer to

the string representation of the multiset .

 (Examples 1, 2, 5)

91

To determine the computation

power of P automata…

…consider the workspace they have available for

their computation.

 How does the power depend on the input

mapping?

 How does the power depend on sequential or

maximal parallel rule application?

92

To determine the computation

power of P automata…

…consider the workspace they have available for

their computation:

1. In case of “erasing” input mappings, the number

of objects inside the system does not depend

on the length of the input.

93

To determine the computation

power of P automata…

…consider the workspace they have available for their

computation: (d is the number of computational steps so far)

2. In case of :

 sequential rule application: configurations can be

recorded by a Turing machine on tape

cells

 parallel rule application: configurations can be recorded

by a Turing machine on tape cells

This limited workspace becomes available step-by-step, it

is bounded by , the length of the already processed part

of the input  restricted space bounded Turing machines.

 94

A Turing machine with

SPACEBOUND(n)

The length of the available worktape is bounded by

the length of the input:

95

n

Turing machines with restricted

space bound

1. After reading d1 input cells:

96

Turing machines with restricted

space bound

2. After reading d2 input tape cells:

97

Turing machines with restricted

space bound

A nondetermininstic Turing machine with a one-way

input tape is restricted space bounded if the

number of nonempty cells on the worktape(s) is

bounded by , where is the distance of the

reading head from the left-end of the one-way input

tape.

Notations for logarithmic space bound:

 1LOGSPACE, r1LOGSPACE,

 1LINSPACE, r1LINSPCAE

98

Restricted space complexity

The restricted space complexity classes are not

necessarily the same as the „usual” ones.

 (11########### is in L, 3#### is not in L)

L is in 1LOGSPACE, but it is not in r1LOGSPACE.

99

Restricted space complexity

The restricted logarithmic space bound:


 In the deterministic case, it is equal to the strong
logarithmic space bound.

The restricted linear space bound:


[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity
 of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77–90.]

[M. Kutrib, J. Provillard, Gy. Vaszil, M. Wendtland: Deterministic One-Way
Turing Machines with Sublinear Space. Fundam. Inform. 136(1-2): 139-
155 (2015)]

100

The power of systems with

mappings by finite transducers

1.

For any kind of , as long as it is not

more complex than linear space computable (by

Turing machines),

2.

[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity

 of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77–90.]

101

The characterization of CS in

more detail

102

The characterization of CS in

more detail

103

Mappings in TRANS and the

mapping f
perm

The language by Example 5 (with f from TRANS):

 Lrev= {ww-1 | w is a string over {a, b} }

This is interesting because Lrev cannot be

characterized using permutations as shown in:

[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power

 of P and dP automata. Annals of Bucharest University Mathematics-

 Informatics Series, LVIII:5-22, 2009.]

104

Systems with mappings from

TRANS

105

initial rules:

configuration:

final configuration: A single is in the region

The accepted multiset sequences:

Consider:

There are simple linear languages which cannot be

characterized with systems using .

On the other hand:

[Paun, G., Perez-Jimenez, M.J.: Solving problems in a distributed way in

 membrane computing: dP systems. International Journal of Computing,

 Communication and Control V(2), 238–250 (2010)]
106

Systems with permutation

mappings

107

REG

LIN
CF

CS

[R. Freund, M. Kogler, Gh. Paun, and M. J. Pérez-Jiménez. On the power

 of P and dP automata. Annals of Bucharest University Mathematics-

 Informatics Series, LVIII:5-22, 2009.]

Let us investigate the power systems with

permutation mappings.

108

The power of P automata with

permutation mapping

 The inclusion is shown by a counter machine model – RCMA

 The strictness is shown using:

and a lemma from [Freund, Kogler, Paun, Pérez-Jiménez 2010]

 [E. Csuhaj-Varjú, Gy. Vaszil: On counter machines vs. dP automata. LNCS
 8340, 138-150, 2014]

109

The power of P automata,

general formulation

110

The power of P automata,

general formulation

111

P automata over infinite alphabets

112

An interesting restriction of

P automata

P finite automata:

[J.Dassow, Gy. Vaszil: P finite automata and regular languages over
 countably infinite alphabets. Lecture Notes in Computer Sci., 4361
 (2006), 367–381.]

113

P finite automata

114

P finite automata

115

P automata over infinite

alphabets

116

P finite automata over infinite

alphabets

117

How to classify languages over

infinite alphabets?

118

Finite memory automata

119

Regularity -

finite memory automata

120

Regularity –

Δ regular expressions

121

Regularity –

Δ regular expressions

122

Finite memory automata and

Δ regular expressions

L1 is described by the expression a2,2

L2 is also easily described by FMA

123

P finite automata for L
1

124

P finite automata for L
2

125

Using P finite automata, we might obtain a more

appropriate definition of regular languages over

infinite alphabets.

This is an interesting research direction which is still

open.

126

Thank you for your attention!

 Membrane systems (P systems) with

communication rules only, accepting P systems

 P automata

 The computational power of P automata

 P automata over infinite alphabets

127

