Nature Motivated Approaches to
Computer Science — |l.

Gyorgy Vaszil
University of Debrecen, Faculty of Informatics
Department of Computer Science

Potsdam, July 2017

Abstract models

Real world Theoretical models Implementation

chemical reactions — | Chemical paradigm

electroniic media

\
/ (in silico)

genetic alg.

DNA

\ DNA computing

bio-media
(in vivo, in vitro)

cell — | membrane computing

Last week - The chemical model

e Symbolic chemical solution with abstract
molecules, and rules describing reactions
between them

e Molecules represent data, reactions represent
operations

e Brownian motion, as execution model

->Multisets of symbols/objects + multiset rewriting
rules

The chemical model/paradigm

e Multisets of symbols/objects + multiset rewriting
rules

Abstract machine Chemistry
Data Molecule
Multiset Solution

Parallelisin /nondeterminism | Brownian motion

Computation Reaction

Gamma example - Primes

primes(N)=1'((R,A))({2...N}) where
R(x,y) = multiple(x.y)

A(z,y) = {y}

Properties of chemical programs

e Multiset of abstract molecules in a
e solution, with

e reactions (operations):
reaction condition + reaction result.

e Sub-solutions: ,sub-regions” with their own reaction
rules (priority, sequentiality).

e Program execution ends, if there are no applicable
reactions.

—>Natural, free from the forced sequentiality of the
physical computer architecture

Real world Theoretical models Implementation

chemical reactions — | Chemical paradigm

electroniic media

\
/ (in silico)

genetic alg.

DNA

\ DNA computing

bio-media
(in vivo, in vitro)

cell — »| membrane computing

Membrane systems - The

biochemical motivation

Cells contain regions

gﬁdwc?pﬁgzlsﬁggkusretikulum sejtmag ¢ Reglons are enCIOsed by
membranes

e Different regions have
— 5" different biochemical
5 S processes inside

-]
D it
' sejfmaghartya

caimagpés e Membranes also

'x/gmafem’“ﬁ - regulate traffic between

endoplazmatikus retikulum

szekrécios vezikulumok the reglons

' lizoszéma
\;J_sejthértya

Golgi-készllék

Membrane systems

peripheral plasma membrane
Protein ol
ipi cEntrioles eptidoglycan
phospholipids Golgi cytoskeletal p Pla?egr:
apparatus elements outer
membrane/ plasma
\i, membrane (
a /.)) flagella

nucleoid

mitochondrion Box 2

integral endoplasmic
protein reticulum nucleus

lysosome

Membrane systems, a membrane

structure

A hierarchical arrangement of regions where multisets of objects evolve
according to given evolutionary rules

skin elementary membrane

N\
1
2 ﬁ’ r’ﬁ:\rrﬂnjmbranes
O FH%
] 4
\ b .
i [7
environment 3 @ environment /
/ / 8

O

i

regio%

O
e

10

The membrane structure

Can be described by f@
N
e atree, or a \

e string of parentheses

Lo Iols Tslals Tslels Tslo Jalelz 1214l

The membrane structure

membrane skin elementary membrane

179 . \ membrane
=)

region

A 9
N
\ 8
3 ™A
environment @ environment
S \7 //

e membrane <--> enclosed region
e outer (skin) membrane, environment

L 11

¢ “inside”, “outside”

12

The objects

The regions (membranes) contain multisets of
objects
e oObject: symbol from a finite alphabet

e mutisets are represented be strings over the object
alphabet

90‘ o <> aaabbecc A
£ b / (a"’bZCzd.)

S /

Applying the multiset rewriting rule aa 2fgh

C\}Coﬁ.cyg ccd

Maximal parallel rule

application
An example:
\S(/C % Ao- 0\(9(9
Qc X 0.4—:766, atﬂ = dd
T rg t(‘;__

There are two possibilities:

1. C\q_o_‘_(_':"b = L& d£ 2

Z, waa b —> adddd
=)

Membrane systems, multiset

rewriting rules

a’*bc® — ba’c(da, out)(ca, in)

The rules
- change the objects
- move the objects between neighboring regions

The rules are applied
- In maximal parallel way

- In a synchronized manner
P systems — [Paun 2000 (1998)]

16

O =3 & (b,du;}(cf‘*Z)C"t‘:*z)
aa %(Q‘M)(Q,M>

WC O(Oé"’““:\ :

§§ (0)"’)‘0) C)"'Cg\
“— b v
2 e

17

The computation

e Start in an initial configuration

e A computational step: Apply the rules in a
maximal parallel way in all regions

e Repeat the rule application step as long as
possible (until a final configuration is reached)

e The result of the computation is given by the
multiplicities of certain objects in certain regions.

18

[a,a []p |1 207ebin2)(ein2)(ein2) [g a [b,e e, bye,e]a]y

—a—a(bing)(cing)(ciing) _a—a(bing)(eing)(c,ing)

[aya[b....be....clp]y moe=@oudaout) [[p. . be....cl]y

2n an 2n an

A language of multisets - the contents of a specified region:

L={ {{b,....b,e,....c}} | n>0}

2n 4dn

19

Some very basic results about

this very basic setup...

e Having two membranes is sufficient

e Systems with rules having one object on the left-
hand side are weak: they compute the length sets
of context-free languages

e Systems with rules having at least two objects on
the left-hand side can compute any recursively
enumerable set of numbers (compute “anything”)

[Paun 2002]

20

There are many more features

that can be added

e For example: y

Computing/generating ©

sguare numbers using a—>ab

membrane division a7
p—

b—>d
d—> de
(ff —>H>(f—>9)

e € out

21

The computation

[]

3 " ™
a f
a——>ab
a— bd
f——>ff

\. J
b—>d

(rf

d—> de
> f)>(f—> d)

e € out

=, 1
r ™
2
3
a f
e
. /

Initial configuration

1

First iteration, n=1

1

Second iteration, n=2

Third iteration, n=3

zf
4
d
8
f
N
.

2 ~
4 4
d e
4
f
-
A >y

Fourth iteration, n=4,

1

1

Replace b with d in
dissolve membrane 3 parallel, halve copies of f

1

Produce copies of ¢

I ™y g
J 2 00
4 12 4 16 4
d e d e d
f
- J

A

Increase e, halve f fdissolves membrane 2

Send out copies of e,

Increase e, halve f

22

There are many interesting results, for example:

e Polynomial solutions to several NP complete
problems
e formula satisfiabilty
e Hamiltonian path
e discrete logarithm

23

Our goal: Using P systems to describe string
languages — construct automata-like membrane
systems

e Membrane systems (P systems) with
communication rules only, accepting P systems
e P automata

e The computational power of P automata
e P automata over infinite alphabets

24

Automata-like systems

e state transitions
e reading an input

e working with tapes/counters

(What are counter automata and why are they
Interesting?)

25

(What are counter automata and

why are they interesting?)

1. Turing machines can compute “anything” with
finite control, and a tape containing a string of
symbols

2. The tape can be simulated by two stacks

3. Astack of symbols can be simulated by two
counters storing numbers

4. Four counters can be simulated by two counters

- Anything can be computed by counter machines
(register machines)

26

27

T

o B . N I S <

X { t=~1"1 S e Ll .
‘ll.ln'n.la\ \l.ll_" o Illla.llﬁ S v a I/

.
(4

A A,. —~— ll.ul, i v'.,ll.. — - .Iln.
S ﬁw 5 B R

N LT el N
T K< i = T e .

-
=
-
a.

o)
® £
E v

S0
S o
1
» &

S5
me
0
o9
s

o2

g3

A Turing machine tape can be simulated by two
the other

stacks:
e pop and push the new symbol

e pop from one stack, push on

e rewrite
e move the head

(What are counter automata and

why are they interesting?)

A stack can be simulated by two ¢

!i"l

|
e ala2a2 in the stack

. ’ i
| [e IS R O T a Y -
AN N B B
e pop, push pr: EENED a4 111
;) i "'-—'a/’ 7Y 033
| l | =1 N

AN E AN
[L ‘!,'J S P
L] i)

e 122 inthe counter SR E AN A
e pop: divide by 10 { i’ «['l e 1 .('Cszt
e push ax: multiply by 10 and - 1l : Ho]
add x 1 1 ; :‘ | L
, r ! e ; Ei i 3 W { & _'"\
Lg%=9)9) %)

28

(What are counter automata and

why are they interesting?)

Any number of counters can be simulated by two
counters:

e increment ci NN , G
e decrement ci i |

e does ci contain 0?

T
s

| 1 . =
. . . __—‘ == Ty ey
e multiply c1 with the ith prime |~ 1| | | | | |
o divide c1 by the ith prime AN =
e is c1 divisible by the ith prime? | [—— [| 5T
i EEd BRNN o |

29

Automata-like membrane

systems

e state transitions

e reading an input
—— operating in an “environment”

e working with tapes/counters
—— using resources represented by multisets

30

Membrane systems with

communication only

Symport/antiport systems

0O 0 phospolipid

" o ® A p %gg ;," Eé— head
!
| 4
1| V1
1L D] e
v A
. i

uniporter antiporter ATPase ion channel

31

Example, in communication with the
environment

32

Example, in communication with the

environment

(ot & bec i)
ﬂ’aa?bacaﬂ’ab:bacacﬁ-ca*" [ﬂr?{l[]2]1:‘;"
a,a, . aa’:-b: s s G [a?bﬂc?cﬂ ﬂ,b,C,C[]2]1::}
[{I,b}C,C’ ﬂ'!bﬂ'c!c [b,C,C} b,C,C]Q]1

| aa (oA)
[{Iabﬁcacaﬂabvcﬁc[pa“*a'!zaga“*:{j]Q]l:} [[Pa 1'!3:-,?5 "5(—3]2]1
2n 4n 2n+1 4n+]

L={ {{b.....b,c,...,c}} |n >0}
2n 4n

33

Symport/antiport systems -

The rules

Symport/antiport rules, possibly with promoters:

(z,out;y,in)|z, with Z € {z,-z}, z,y,z € V*

e Maximal parallel rule application
e out - leave to the upper, parent region,
INn - enter from the parent region
e [he parent of the skin region is the environ-

ment

34

(Accepting) symport/antiport

systems

|_| = (Kﬁ?E’W]_?..-’WH?ngr--:Rﬂijiiﬂ)

a finite alphabet of objects
a membrane structure

a set of objects, the ones which can be found in the
environment

the Initial contents of region 1
sets of symport/antiport rules associated to region 1
a set of final configurations

the label of the input membrane, if : = 0 the input is
read from the environment

35

The transitions

N = (L};P‘*?Enwlﬂ'“awﬂ?ﬂlw'*?RﬂaFniiﬂ)

A configuration:

(ug,uq....,un), u; € V*, the contents of the environment and the n
regions of Il

The transition mapping:
§: V*Ex (VHntl 4 (v

/ / /
5(“? (uﬂaula SRR uﬂ—)) > (u{}: CEERERE u"n,)
T T 0
the multiset en-
tering the skin the configuration the new configuration

membrane

36

Symport/antiport systems and

counter automata

the multiplicity of the

: —— the value of counter i
object a;

the presence of the being in the internal
—
object g state ¢

37

Symport/antiport systems and

counter automata

(q.0ut; ¢'a;,in)

—

—

change the state ¢ — ¢
INnCrease the value of
counter i

change the state ¢ — ¢’
decrease the value of
counter i

38

Symport/antiport systems and

counter automata

(q,out; q19o,in)
(qra;,out ; q1’, in)
(g2, 0out; q3,in)
(193, out; q”, in)

e change the state ¢ — ¢’
— e check the emptiness of

counter i
« if ciis not empty: =9~

e (qr,out; f,in)

—— gy is a final state
e NO rule for f

39

Symport/antiport systems and

counter automata

N(I_l) — {k c N ‘ co = (U“TD?wI? e ?wﬂ): with |w'i-ﬂ‘ﬂ'i — kn
and there is ¢4 € F' and a sequence ¢; with
5(“3‘4—1?‘31') — Ci41 forall 0 <i <t — 1}
e co is the Initial configuration

e a, « V is the object corresponding to
the input counter

e F'is the set of halting configurations

40

From multiplicities (numbers) to

sequences (strings)...

Consider the multiset sequences accepted by
antiport P systems

41

Accepted multiset sequences -

Example

Initial rules:
configuration: —
a N\ (A, out; cD, in)
A B (B, out; eD, Iin)
(D, out; F, in)
4) .
- J/ ‘

42

Accepted multiset sequences -

Example

configuration: rules:
J—
a N\ (A, out; cD, in)
cDeD (B, out; eD, In)
(D, out; F, in)
4) .
- J ‘

43

Accepted multiset sequences -

Example

configuration: rules:
J—
a N\ (A, out; cD, in)
ckFeF (B, out; eD, in)
(D, out; F, in)
4) —
- J ‘

44

Accepted multiset sequences -

Example

configuration: rules:
J—
a N\ (A, out; cD, in)
cC e (B, out; eD, in)
(D, out; F, in)
4)
F F E—
- J ‘

45

Accepted multiset sequences -

Example

final
configuration:
e "\ The (set of) accepted multiset sequence(s):
cC e
{ {c.e,D.DHFF} }
~)
F F
_ /

46

Accepting P systems - What we

have so far...

e AP system in an environment
e Given an initial configuration

e Asequence of multisets is read from the environment
during the computation

e The multiset sequence is accepted if the computation ends
In a halting configuration

a7

Characterizing string languages/1

How to map the accepted multiset sequences to
accepted strings?

1. Analyzing P systems, extended P automata

e Terminals and nonterminals — only terminal symbols
are taken into account

e The input multisets are mapped to sets of strings
which can be constructed from the terminals

48

Characterizing string languages/1

Analyzing P systems:

e a set of terminal objects T"C V
e i;, = 0, the input is read from the environment

e [Is the set of halting configurations

[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of
the EATCS, 78 (October 2002), 231-236.]

49

Analyzing P systems

N = (KP‘*?anla'“awﬂ?RI?"'?RﬂaFniiﬂ)
L(N) = |Jstrp(uq) - strp(ug) - ... - strp(ug)
for all ¢, € F' and sequence ¢; with 6(u;41,¢;) = ¢4 0 <i <t —1,
e cg is the initial configuration

e strp(u) C T* is the set of terminal strings corre-
sponding to the multiset v € V*

e [is the set of halting configurations

50

The previous example:

a "\ The (set of) accepted multiset sequence(s):
cC e
{ {c,e,D,DKFF} }
4)
If the set of terminal symbols is T={e,c}, then
F F the accepted strings are:
_ J {ce,ec}

51

The power of analyzing P systems

Any recursively enumerable language can be accepted
by an analyzing P system having one membrane.

[R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of
the EATCS, 78 (October 2002), 231-236.]

52

The proof idea

1. Read the input object sequence

2. Create a numerical encoding of the object se-
quence in the “input counter”

3. Simulate the computation of a counter machine

T he terminal-nonterminal distinction is essential: nonterminals pro-
vide the "workspace” for the computation.

53

The numerical encoding

> ={ay,....a, 1}

symbols z — ary digits
aq 3 (1)
o 3 (2)

a,_1 +— (z—1)

54

The numerical encoding

w=a;...a;, €X* +— code(w)= (iy)...(ig) €N

The encoding of an input word is created step by step, with each new
symbol a;:

code(wa;) = code(w) -z 4+ i

Simple arithmetic operations, they can be done by the counter ma-
chine.

55

The proof idea again

1. Read the input object sequence

2. Create a numerical encoding of the object se-
quence in the “input counter”

3. Simulate the computation of a counter machine

T he terminal-nonterminal distinction is essential: nonterminals pro-
vide the "workspace” for the computation.

56

What is the role of the different features?” \What
are those which are necessary for reaching universal

power? Is it possible to restrict the power of the sys-
tem in any “interesting” way?

57

Finite (extended) P automata

M= (V;[]:'wlaRlaF)

e a set of terminal objects I'C V

e rules of two types:
1. (g,out;pa,in) with g.pe V—-T, aeT
2. (pa,out;r,in) with p,reV-T, aeT
For any rule of type 1. with p e V —1T', there is only one
rule of type 2. with the samepe V —T

e I contains halting configurations with a ‘“final” nonter-
minal inside the system

[R. Freund, M. Oswald, L. Staiger: Omega-P automata with
communi]cation rules. Lecture Notes in Computer Sci., 2933 (2004),
203-217]

58

Finite (extended) P automata

M= (V;[],’EL?l,Rl,F)

L) = Jstrp(uy) - strp(ug) - ... - strp(ug)

for all ¢; € F' and sequence ¢; with 6(u;4q.¢;) = ¢4 0<i <t —1,

L is regular if and only if it is accepted by
a finite P automaton with antiport rules.

59

Exponential space

symport/antiport acceptors
M=V, p,wy.....wp, Rq.....Rn, F)

4

e a set of terminal objects /' C V containing a distinguished
symbol $

e the input is read from the environment

e rules of four types in the skin membrane:
1. (u,out;v,in) with u,v € (V =T)*, |u| > |v]
2. (u,out;va,in) with u,v € (V =T)*, |u| > |v|, a €T
3. (u,out;v,in)|q with u,v € (V =T)*
4. for every a €T, (a,out;v,in)

e rules of the form (u,out;v,in) with u,v € (V —T)* in the
other regions

60

Exponential space

symport/antiport acceptors

M= V,p,wy,...,wn,Rq,...,Rp, F)

L) = U strp(uq) - strp(uy) - ...« strp(ig) € T
for all ¢; € FF and sequence ¢; with 6(u;41,¢i) = c¢j4q1, 0 <i <
t—1, $cu, ug =up — 9
e o Is the initial configuration

e strp(u) € T* is the set of terminal strings corre-
sponding to the multiset « € \V*

e I is the set of halting configurations

61

The power of exponential space

symport/antiport acceptors

A language L is accepted by an exponential-space sym-
port/antiport acceptor if and only if L is context-
sensitive.

A language L is regular if and only if it can be accepted
by an exponential-space symport/antiport acceptor us-
ing only rules of type 1. and 2.

1. (u,out;v,in) with u,v € (V =T)*, |u| > |v|
2. (u,out;va,in) with u,v € (V =T)*, |u| > |v|, a €T

[O.H. Ibarra, Gh. Paun: Characterization of context-sensitive languages
and other language classes in terms of symport/antiport P systems.
Theoretical Computer Sci., 358 (2006), 88—103]

62

Characterizing string languages/2

How to map the accepted multiset sequences to
accepted strings?

2. P automata:

e NO distinction between terminals and nonterminals

e The input multisets can be mapped to (sets of) strings
using any (nonerasing) mapping.

e (Sequential rule application is also considered.)

63

P automata

e An antiport P system in an environment from where the
Input is read

e Given an initial configuration and a set of final
(accepting) configurations

e Asequence of multisets is read from the environment
during the computation

e The multiset sequence is accepted if the computation ends
In an accepting configuration

[E. Csuhaj-Varju, Gy. Vaszil: P automata or purely communicating
accepting P systems. Lecture Notes in Computer Sci., 2597 (2003), 219—-
233]

64

P automaton

A P automaton is
with

e object alphabet
e membrane structure
e rules corresponding to the regions

e set of accepting configuratior £y x ... x E,. E; CV* with
E; being finite,or E;, =V*

65

e Variants of P automata for regular languages —
different ways of mapping multiset sequences to
strngs

66

P automaton - An example

Given a regular grammar with: S —aAA—bS S — ¢
Initial rules:
configuration: N
/S) (S,out:aA,in)
(A.out:bS,in)
e ~ (A, out: bF.in)
\
(F,in)
_) | final configuration: F is in the region

67

P automaton - An example

Given a regular grammar with: S —aA A—0DS.S — ¢
configuration: rules:
J—
>) (S,out:aA,in)
A (A, out: bS,in)
- ~ (A, out; bF.in)
\
_ Y, | final configuration: F is in the region

68

P automaton - An example

Given a regular grammar with: S —aA A—0DS.S — ¢
configuration: rules:
J—
Ca b) (S,out:aA,in)
S (A, out: bS,in)
- ~ (A, out; bF.in)
\
_ Y, | final configuration: F is in the region

69

P automaton - An example

Given a regular grammar with: S —aA A—0DS.S — ¢
configuration: rules:
J—
gb a\ (S,out:aA,in)
A (A, out: bS,in)
- ~ (A, out; bF.in)
\
_ Y, | final configuration: F is in the region

70

P automaton - An example

Given a regular grammar with: S —aA A—0DS.S — ¢
configuration: rules:
J—
gl) a\b (S, out;aA,in)
F (A, out;bS,in)
- ~ (A, out; bF.in)
\
_ Y, | final configuration: F is in the region

71

P automaton - An example

Given a regular grammar with: S —aAA—bS S — ¢
final rules:
configuration: N
g b a\b (S,out:aA,in)
(A.out:bS,in)
e ~ (A, out: bF.in)
\
F
(F,in)
_) | final configuration: F is in the region

72

P automata - An example

Given aregular grammar with rules: S — q¢A. A — bS. S — =

final
configuration:
a \The set of accepted multiset sequences:
a b ... ab
{{a, A}b, S}...{a, A}{b, F}}
4 N
F or using the string notation for multisets:
{aA, bS,... ,aA, bF}
- J

73

P automaton - An example

Given a regular grammar with: A—aB A—aeP
Initial rules:
configuration:
4 N (A outaB.s
S L (4, out; aB, m for all rules of the
— — (A, out:aF.in) grammar
- p I
(F,in)
N Y, | final configuration: F is in the region

74

P automaton - An example

Given a regular grammar with: A—aB,A—a€eP
final
configuration:
4 ~\ The set of accepted multiset sequences:
ay a2 ... (g

{alBh asBs. agF’ ‘ aijao ...ag € L}

rl rl

75

P automaton - An other example

Afinite automaton M = (X1.Q.0.q0.F) X ={a;i....,a;}
A simulating P automaton with 2 membranes:
wy = a#,
Py = {(a*,in;a,out)|¢, (a1 out)|y | t = [qj, ai, qx], i > 1} U
{(a.in:a.out)|; | t = [g;.ar. qx]}.

tf

wy = {{t,t' |t € TR}},
Py = {(#,in:to, out) | to = [qo, as, q|} U
{(t,in;t", out), (t',in; s,out) | t € TR, s € next(t')},
Fy = { {{t.t' |t € TRY} — {{'}} | for
all s € TR’ such that s" = [q, a4.qr]". qr € F}.

76

P automaton - An other example

The system simulates a finite automaton over Xy = {ay,...,ax}
with 2 membranes, and sequential rule application.

In this case, it is done in such a way that the accepted
multiset sequences are:

{a..

N N N’

a,a...a,...,a...ala;a;,...a; €L}

11 19 ia

e

P automaton - A third example

a) N

/ qgh \
3/_\ (ga,in), a €V
((s0,a),out:h,in).a € V

(gat,out), a € V)

ftr ((s',b) at, out; (s, a)a,in), (d, out; a,in),
(g, out: gt,in)

my sa — s P aecV

mp(Kr) | ((s,a),out;{(s,a),in), {(s,a) € B(K)
(a, out; b, in)

(7#.in) a.beV
(#, out)

(f.out; (s.a)a,in),
sa — spe P

L/ E;fﬁlt;a, in), a eV
= J

9 (#.out:g,in)
\ (#.out:t,in) /
[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power of

P and dP automata. Annals of Bucharest University Mathematics-Informatics
Series, LVIII:5-22, 2009.]

THB/(K)

78

P automaton - A third example

1/ d \
/ gh \
h (ga.in), a eV

({s0.a).out:h.in).a € V. (gat,out), a € V)

Tt# (", b)'at, out: (s, a)a,in), (d, out;a,in),
(g, out: gt,in)

my sa —s' € P aeV
mp(K) | ({s.a).out; (s,a)’',in), (s,a) € B(K)

(f.out: (s.a)a.in),
sa — spe P

(t.in)
_/ (#.}uuf:u.in)A aecV
\ J

4 (g. out)
g# (#.,0ut;g.in)

\ (#,out:t.in) /

(a. out: b.in)
(#.in) abeV
(#. out)

MK

The set of accepted multiset sequences:

{ay,as9,...,a¢ | ajas...as € L}

79

P automata

e An antiport P system in an environment from where the
Input is read

e Given an initial configuration and a set of final
(accepting) configurations

e Asequence of multisets is read from the environment
during the computation

e The multiset sequence is accepted if the computation ends
In an accepting configuration

e The string interpretation of the accepted multiset
sequence is provided by an input mapping

80

The input mapping

An input mapping maps the sequences of multisets
over the object alphabet V to strings over an alphabet T-:

fove =2l

The language accepted by a P automaton IT :

LI, f)={f(v1)... f(vs) | v1,....,vs is an accepted

multiset sequence of IT}

81

The input mapping

The first example: {a1B1.a2D5s, ..., asF | ajas...as € L}

4 4

e the mapping: V = NUT, f(aA) ={a} whereAe N, acT

is

The second example: {a",a”....,a" | a; a4, ...a;, € L}

e the mapping: V = {a}. f(d') = {a;}, a; €T = {ay.....a;}

(The third example: {a;.as, ... a5 | ayas...as € L})

82

An other example -

Input mapping with permutation

4 (a out; aa in)|]A, (a out; bb in)|B

>
Q
)
o >

J (A out; Ain), (B out; Ain), (B in)
- /

A configuration sequence, maximal parallel rule application:
(Aa, AB) == > (Aaa, AB)==> ... == >(Aa...a,AB)== > (BaZ* AA)== > (b2“*1 AAB)
If (V*, AAB) is an accepting state, then

|a2,a4,a8,a2* ... a2f,b2*! is the accepted multiset sequence

a2k+1.2

L={a"2 b" | n=2k, k>1} could be the accepted language

83

Input mapping with permutation

frvr—2T

Qf:fpe*rm |f V:Tand
f(v) ={aras...as | |v| = s, and ajas...ag is a permutation
of the elements of v}

The previous example:

|a%,a%,a8,a* ...,a%,b?! is the accepted multiset sequence

|

a2k+1.2

L={a"2 b" | n=2k, k>1} Is the accepted language

84

What can a “reasonable” input mapping be?

85

A previous example -

input mapping with erasing

a "\ The (set of) accepted multiset sequence(s):
cC e
{ {c,e,D,DKFF} }
4)
If the set of terminal symbols is T={e,c}, then
F F the accepted strings are:
_ J {ce,ec}

86

The desired properties of the

input mapping: nhonerasing

If erasing is allowed, any language is easily obtained with
simple systems having just one membrane (extended

P automata, analyzing P systems).
Recall the results of [Freund, Oswald 2002]

Therefore, we study input mappings that are nonerasing.

87

The desired properties of the

input mapping: simplicity

e The power of the system should not come from the
power of a complex input mapping

The input mapping should be simple from the point of
view of computational complexity:

88

Different kinds of input mappings

frve—2T
Permutation:
o /= Jperm if V =T and
f(v) ={atas...as | |[v] = s, and ajas...as is a permutation

of the elements of v}

Remainder of division by k:

o f=f em If T={a;,2,,...} and
f(v)={a; | |v| divided by k gives | as remainder}

89

Example, remainder

4 (S out; ain)|A, (S out; aa in)|A, (a out; atf in)|A
S A (Sa out, Sb in)|B, (Saa out; Sbb in)|B, (al° out; a in)|B
e o
[BBF 7 (A out; Ain), (B out; Ain), (B out; B in), (B in),

- / (ain; F out), (b in)

« The number of a-s entering the system while A is present in the outer region:

\(1 or 2),“(10 or20) + (1 or 2)}, {110 or 120 or 210 or 220) + (1 or 2),} S

| | | |
Vv, Vs A s Vi,

* If the number of a-s in vy is 11212, then f,5 o (VOf10 rem(V2)- - -f10 rem(Vs)=a1212,8, 8,

» The accepted language: L,.,= {ww! | wis astring over {a,, a,} }

90

A classification of

(interesting) input mappings:

o /= fperm ifandonlyif V =7 and

f(v) = {ayas...as | |v| = s, and ajas...as is a permutation
of the elements of

(Examples 3, 4)

e f € TRANS ifand only if, we have f(v) = {w}for some
w € T™which is obtained by applying a finite transducer to
the string representation of the multiset

(Examples 1, 2, 5)

91

To determine the computation

power of P automata...

...consider the workspace they have available for
their computation.

e How does the power depend on the input
mapping?

e How does the power depend on sequential or
maximal parallel rule application?

92

To determine the computation

power of P automata...

...consider the workspace they have available for
their computation:

1. In case of “erasing” input mappings, the number
of objects inside the system does not depend
on the length of the input.

93

To determine the computation

power of P automata...

...consider the workspace they have available for their
computation: (d is the number of computational steps so far)

2. Incaseof f € TRANS:

e sequential rule application: configurations can be
recorded by a Turing machine on logc - d ~ log d tape
cells

e parallel rule application: configurations can be recorded
by a Turing machine on log ¢ ~ d tape cells

This limited workspace becomes available step-by-step, it
is bounded by d, the length of the already processed part
of the input - restricted space bounded Turing machines.

94

A Turing machine with

SPACEBOUND(n)

The length of the available worktape is bounded by
the length of the input:

+- R

Uk W BRI P T T 111

C werklene D TRV

- S PALERO UND(w)

95

Turing machines with resftricted

space bound

1. After reading d, input cells:

- (W] =u EEN
Lwhow‘r \X/V/ //r//f’/—/VV?F// £l N
L dcskmce . N |
Ay - g e
o cauho
¢ ‘
- wontlape P AT IR] TTT 1T] ny

\/’\(—'—“"//
serce BouND (A)

96

Turing machines with resfricted

space bound

2. After reading d, input tape cells:

A W AT T[T -

| | t 3
H i 4 N H

T L””L w ///_,,_;J;_.-...i

SPACLEOUND (a\‘ﬂ

97

Turing machines with restricted

space bound

A nondetermininstic Turing machine with a one-way
iInput tape is restricted S(n)space bounded if the
number of nonempty cells on the worktape(s) is
bounded by S(d), where d is the distance of the
reading head from the left-end of the one-way input
tape.

Notations for logarithmic space bound:
1LOGSPACE, r1LOGSPACE,
1LINSPACE, rl1LINSPCAE

98

Restricted space complexity

The restricted space complexity classes are not
necessarily the same as the ,usual” ones.

Consider for example:

L={zy|ze{1,2,...,9{0,1,...,9}",y € {#}"', val(xz) = |y|}.

(L1## A 1S In L, 3###F IS notin L)

Lisin 1LOGSPACE, butitis not in r1LOGSPACE.

99

Restricted space complexity

The restricted logarithmic space bound:
e r1LOGSPACE C 1LOGSPACE

e In the deterministic case, it is equal to the strong
logarithmic space bound.

The restricted linear space bound:
 r1LINSPACE = LINSPACFE

[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity
of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77-90.]

[M. Kutrib, J. Provillard, Gy. Vaszil, M. Wendtland: Deterministic One-Way
Turing Machines with Sublinear Space. Fundam. Inform. 136(1-2): 139-
155 (2015)]

100

The power of systems with

mappings by finite transducers

1. L, (PA, TRANS) =r1LINSPACE = CS
For any kind of f:V*— 2T aslong as itis not

more complex than linear space computable (by
Turing machines), L(II. f) € CS.

2. L...(PA TRANS)=r1LOGSPACE C 1LOGSPACE

[E. Csuhaj-Varju, O.H. Ibarra, Gy. Vaszil: On the computational complexity
of P automata. Lecture Notes in Computer Sci., 3384 (2005), 77-90.]

101

The characterization of CS in

more detail

For any context-sensitive language L, a P automa-
ton I can be constructed, such that L = L(I1, f1) for a
mapping f; where

fi(z) = a for z = a*, and f1(z) = {e} if = is the empty
multiset.

102

The characterization of CS in

more detail

For any P automaton 1 with object alphabet V' and
mapping f: V* — 2T for some alphabet T', such that f
is linear-space computable, the language L(IN, f) CT*
Is context-sensitive.

103

Mappings in TRANS and the

mapping f,

The language by Example 5 (with f from TRANS):
L= {ww?|wis a string over {a, b} }

This is interesting because L,,, cannot be
characterized using permutations as shown In:

[R. Freund, M. Kogler, Gh. Paun, and M. J. Perez-Jimenez. On the power
of P and dP automata. Annals of Bucharest University Mathematics-
Informatics Series, LVIII:5-22, 2009.]

104

Systems with mappings from

TRANS
initial rules:
configuration:
e
/C-' A (C, out; AC,in)

(AC. out: BD.in)

_J (AD.out;BD.in)
Y
(B, out)
_) final configuration: A singleDis in the region
¥

The accepted multiset seauences; {(AC)"(BD)"™ | n > 1}
Consider: f,(AC) = {ab}. f1(BD) = {ac}

f2(AC) = {aac}, fo(BD) = {bbd}

105

There are simple linear languages which cannot be
characterized with systems using f,erm -

L ={(ab)™(ac)" | n 21} & Lrprm (PA)

On the other hand:

{(aac)™(bbd)"™ | n > 1} € Lpprym (PA)

[Paun, G., Perez-Jimenez, M.J.: Solving problems in a distributed way in
membrane computing: dP systems. International Journal of Computing,
Communication and Control V(2), 238-250 (2010)]

106

Systems with permutation
mappings

[R. Freund, M. Kogler, Gh. Paun, and M. J. Pérez-Jiménez. On the power
of P and dP automata. Annals of Bucharest University Mathematics-
Informatics Series, LVIII:5-22, 2009.]

107

Let us investigate the power systems with
permutation mappings.

108

The power of P automata with

permutation mapping

Ly (PA. fperm) C rILOGSPACE = L., (PA. TRANS)
where X € {seq, par}.

e The inclusion is shown by a counter machine model - RCMA
e The strictness is shown using:

Ly = {(ab)"#w | w € {1}{0.,1}* wval(w) =n > 1}
and a lemma from [Freund, Kogler, Paun, Péerez-Jiménez 2010]

[E. Csuhaj-Varju, Gy. Vaszil: On counter machines vs. dP automata. LNCS
8340, 138-150, 2014]

109

The power of P automata,

general formulation

Notation: for S : N — N,

L € NSPACE(S)— as usual

L e rINSPACE(S)— there is a Turing machine with a one-way read-
only input tape accepting L using a workspace of at most S(d) in
each step of an accepting computation where d is the number of cells

read on the input tape

110

The power of P automata,

general formulation

Let I be a P automaton, and let S : N — N, such that S(d) bounds the
number of objects inside the system in the i-th step of functioning,
d < i being the number of transitions in which a nonempty multiset

was imported into the system from the environment.

If f is non-erasing and f NSPACE(SJ;), then L(IT, f) €
rINSPACE((log(S) + Sf).

111

P automata over infinite alphabets

112

An interesting restriction of

P automata

P finite automata:

e the object alphabet Viu{a} contains a distinguished
symbol a

e the sKin region contains rules of the form
(z,in;y,out)|z with =z € {a}*, yv € (VU {a})*, Z €
{z,—-z}, z€V*

e the other membranes contain rules of the form
(z,in;y,out)|z with Z € {z, -z}, z,y,z € V*

[J.Dassow, Gy. Vaszil: P finite automata and regular languages over
countably infinite alphabets. Lecture Notes in Computer Sci., 4361
(2006), 367-381.]

113

P finite automata

As the input multisets can only contain the symbol a, it is
appropriate to have

fo i {a}* = 2" with fo(a,...,a) = {a;}

]

114

P finite automata

A language L iIs regular if and only if there is a P finite
automaton I with object alphabet V u{a}, such that
L = L(n: fg)

115

P automata over infinite

alphabets

Because of the maximal parallel rule application, the
number of possible inputs is Infinite, thus, we might map
the input multisets to an infinite alphabet.

— an automata-like device over infinite alphabets

— P finite automaton - regular languages over infi-
nite alphabets

116

P finite automata over infinite

alphabets

[

117

How to classify languages over

infinite alphabets?

Two “"natural”™ analogues of regular languages:

e [M. Kaminski, N. Francez 1994] - languages accepted by finite-
memory automata

e [F. Otto 1985] - languages characterized by A-regular expres-
sions

118

Finite memory automata

inenadizarion

An accepted string: ajasaiazaragazay

119

Regularity -

finite memory automata

“L is regular if accepted by a finite memory automaton”

Checking equality of symbols is
“easy’, but;:

{ag; | i > 1}

cannot be characterized this way

120

Regularity -

A regular expressions

Let A be an infinite alphabet.

e) and = denote the empty set and {c}, respectively,

e a; € A denotes {aq;},

o for a; € A, j =1, expression a;; denotes {a;4; | k > 0},

e if r,s are A-regular expressions denoting R, S, then r + s,
rs, and r* denote RUS, RS, and R*, respectively.

121

Regularity -

A regular expressions

“I, is regular if described by a A-regular expression”

Checking relationships between
symbols is possible, but:

{aa; | i > 1}

cannot be characterized this way

122

Finite memory automata and

A regular expressions

Li={ap |i>1}¢& L(FMA) but Ly € L(A — RegExp),

and

Lo =Haa; |i>1} € L(FMA) but Ly & L(A — RegExp),

thus LIFMA) and L € L(A — RegFExp) are incomparable.

L, Is described by the expression a, ,
L, is also easily described by FMA

123

P finite automata for L,

P finite automata for L,

(pru\ 19:»«»‘() CB v\) g g

L L(T) g#(@ TP) [240= faca | L>ﬂ)

Q//-'—A A ct.'c\ B &.-c\

| T | |

| | L.

125

Using P finite automata, we might obtain a more
appropriate definition of regular languages over
infinite alphabets.

This Is an interesting research direction which is still
open.

126

Thank you for your attention!

e Membrane systems (P systems) with
communication rules only, accepting P systems
e P automata

e The computational power of P automata
e P automata over infinite alphabets

127

