Foundation of Computer Science - FM2

Assignment 1

1. Which of the following choices is the tightest upper bound for the functions
(a) $f(n)=\frac{1}{2} n(n+1)$,
(b) $f(n)=\frac{1}{2^{n}}$,
(c) $f(n)=\frac{n^{2}}{1+n}$,
$O(n), O\left(n^{3}\right), O(1)$ or $O\left(n^{2}\right)$?
2. Is $f(n)=n \log n$ of order $O\left(n^{2}\right)$? Is $f(n)$ also $\Omega\left(n^{2}\right)$?
3. Illustrate the Mergesort algorithm by sorting the list

$$
(3,9,6,10,4,1,2,8) .
$$

Why does Mergesort follow the devide-and-conquer paradigm?
4. Consider the following problem Sum of Subset (SOS):

Given: non-negative integers $m, a_{1}, a_{2}, \ldots, a_{m}, b$
Question: Is there is set $J \subseteq\{1,2, \ldots, m\}$ such that $\sum_{i \in J} a_{i}=b$?
(a) Solve the SOS problem with dynamic programming.

Hint: Use a table $\operatorname{SUM}(i, j)$ storing the maximal values that can be obtained as a sum of numbers from $a_{1}, a_{2}, \ldots, a_{i}$ such that this sum does not exceed the number j.
(b) Find out what the knapsack problem is.

How can you modify your algorithm solving SOS in order to solve the knapsack problem?

