Foundation of Computer Science - FM2

Assignment 6 on Turing machines and (un)decidability

Watch the video lectures $16,17,18$ and 19 of Week 5.

In what follows, Turing machines are given as tuples $A=\left(Q, \Sigma, \Gamma, \delta, q_{0}, B, F\right)$, where Q is the set of its states, Σ is the input alphabet, Γ is the tape alphabet $(\Sigma \subset \Gamma), \delta$ is the transition function, $q_{0} \in Q$ is the start state, $B \in \Gamma \backslash \Sigma$ is the blank symbol, and $F \subseteq Q$ is the sets of final states. If δ is represented by a transition table, then the head row displays the states while the head column contains the tape symbols.

1. Given the Turing machine

$$
M=\left(\left\{z_{0}, z_{0}^{\prime}, z_{1}, z_{1}^{\prime}, z_{2}, q\right\},\{a\},\{a, b, *\}, \delta, z_{0}, *,\{q\}\right)
$$

where δ is defined by

	z_{0}	z_{1}	z_{0}^{\prime}	z_{1}^{\prime}	z_{2}
$*$	$\left(z_{0}, *, R\right)$	$(q, *, R)$	$\left(z_{2}, *, L\right)$	$\left(z_{1}^{\prime}, *, R\right)$	$\left(z_{0}, *, R\right)$
a	$\left(z_{1}, a, R\right)$	$\left(z_{0}^{\prime}, b, R\right)$	$\left(z_{1}^{\prime}, a, R\right)$	$\left(z_{0}^{\prime}, b, R\right)$	$\left(z_{2}, a, L\right)$
b	$\left(z_{0}, b, R\right)$	$\left(z_{1}, b, R\right)$	$\left(z_{0}^{\prime}, b, R\right)$	$\left(z_{1}^{\prime}, b, R\right)$	$\left(z_{2}, b, L\right)$

Determine the language accepted by accepting state and by halting.
2. Give a deterministic Turing machine accepting the language

$$
\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

The choice of the acceptance mode is left to you.
3. Design a nondeterministic Turing machine deciding the language
$\left\{w_{1} \# w_{2} \# \ldots \# w_{n} \mid n \geq 2, w_{i} \in\{a, b\}^{+}, 1 \leq i \leq n\right.$, there is $k \geq 2$ such that $\left.w_{k}=w_{1}\right\}$.

