Foundation of Computer Science — FM2

Assignment 6 on Turing machines and (un)decidability

Watch the video lectures 16, 17, 18 and 19 of Week 5.

In what follows, Turing machines are given as tuples $A = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$, where Q is the set of its states, Σ is the input alphabet, Γ is the tape alphabet $(\Sigma \subset \Gamma)$, δ is the transition function, $q_0 \in Q$ is the start state, $B \in \Gamma \setminus \Sigma$ is the blank symbol, and $F \subseteq Q$ is the sets of final states. If δ is represented by a transition table, then the head row displays the states while the head column contains the tape symbols.

1. Given the Turing machine

$$M = (\{z_0, z'_0, z_1, z'_1, z_2, q\}, \{a\}, \{a, b, *\}, \delta, z_0, *, \{q\}),$$

where δ is defined by

	z_0	z_1	z'_0	z'_1	z_2
*	$(z_0, *, R)$	(q, *, R)	$(z_2, *, L)$	$(z'_1, *, R)$	$(z_0, *, R)$
a	(z_1, a, R)	(z'_0, b, R)	(z_1', a, R)	(z_0', b, R)	(z_2, a, L)
b	(z_0, b, R)	(z_1, b, R)	(z_0^\prime, b, R)	(z_1^\prime, b, R)	(z_2, b, L)

Determine the language accepted by accepting state and by halting.

2. Give a deterministic Turing machine accepting the language

$$\{a^n b^n c^n \mid n \ge 0\}.$$

The choice of the acceptance mode is left to you.

3. Design a nondeterministic Turing machine *deciding* the language

 $\{w_1 \# w_2 \# \dots \# w_n \mid n \ge 2, w_i \in \{a, b\}^+, 1 \le i \le n, \text{ there is } k \ge 2 \text{ such that } w_k = w_1 \}.$