
Compiler

Scanning

© Copyright 2005, Matthew B. Dwyer and Robby. The syllabus and lectures for this course are copyrighted

materials and may not be used in other course settings outside University of Nebraska-Lincoln and Kansas

State University in their current form or modified form without express written permission of one of the

copyright holders. During this course, students are prohibited from selling notes to or being paid for taking

notes by any person or commercial firm without the express written permission of one of the copyright holders.

Scanning 2
Compiler und

Programmtransformation

Compiler Architecture

SCAN

RESOURCE TYPE SYMBOL

CODE EMITOPTIMIZE

WEEDPARSE

Scanning 3
Compiler und

Programmtransformation

Compiler Architecture

SCAN PARSE

Source Code

Token streamCharacter stream

Scanning 4
Compiler und

Programmtransformation

Scanner: Overview

 A scanner transforms a string of characters into
a string of symbols/tokens:
 it corresponds to a finite-state machine (FSM);

 plus some code to make it work;

 FSM can be generated from specification.

 Symbols (a.k.a. tokens, lexemes) are the
indivisible units of a languages syntax
 key words, punctuation symbols, identifiers …

 A FSM recognizes the structure of a symbol
 that structure is specified as a regular expression

Scanning 5
Compiler und

Programmtransformation

Token Definitions

Described in language specification, e.g.:

“An identifier is an unlimited-length sequence of Java

letters and Java digits, the first of which must be a

Java letter.

An identifier cannot have the same spelling (Unicode

character sequence) as a keyword (§3.9), Boolean

literal (§3.10.3), or the null literal (§3.10.7).”

http://docs.oracle.com/javase/specs/

http://docs.oracle.com/javase/specs/

Scanning 6
Compiler und

Programmtransformation

Finite State Machine (FSM) or

Finite State Automaton (FSA)

 a quintuple (Σ, S, s0, δ, F), where

Σ, is a finite non-empty set of symbols (input

alphabets)

S, is a finite non-empty set of states

s0 2 S, is the initial state

δ: S £ Σ → S, is the state transition function

F µ S, is the (possibly empty) set of

accepting (final) states

Scanning 7
Compiler und

Programmtransformation

FSM Graphs

 A state

 The start state

 An accepting state

 A transition a a

Scanning 8
Compiler und

Programmtransformation

FSM Interpretation

 Transition: s1 → s2

 Is read: in state s1 on input a go to state s2

 At end of input

 if in accepting state => accept

otherwise => reject

 If no transition possible => reject

a

Scanning 9
Compiler und

Programmtransformation

Language defined by FSM

 The language defined by an FSM is the
set of strings accepted by the FSM.

 in the language of the FSM shown above:
 x, tmp2, XyZzy, position27.

 not in the language of the FSM shown above:
 123, a?, 13apples.

letter

letter | digit

s0 s1

Scanning 10
Compiler und

Programmtransformation

Example: Integer Literals

 FSM that accepts integer literals with an
optional + or - sign:

+

s0

s2

s1

-

digit

digit

digit

Scanning 11
Compiler und

Programmtransformation

Two kinds of FSM

Deterministic (DFA):
 No state has more than one outgoing edge with the

same label.

Non-Deterministic (NFA):
 States may have more than one outgoing edge with the

same label.

 Edges may be labeled with (epsilon), the empty

string.

 The automaton can take an transition without looking

at the current input character.

Scanning 12
Compiler und

Programmtransformation

Example of NFA

 integer-literal example:

+

s0

s2

s1

-

digit

digit

Scanning 13
Compiler und

Programmtransformation

NFA

 sometimes simpler than DFA

 can be in multiple states at the same time

 NFA accepts a string if
 there exists a sequence of moves

 starting in the start state,

 ending in an accepting state,

 that consumes the entire string.

 Example:
 the integer-literal NFA on input "+75"

+
s0

s2

s1
-

digit

digit

Scanning 14
Compiler und

Programmtransformation

Equivalence of DFA and NFA

 Theorem:
 For every non-deterministic finite-state machine M,

there exists a deterministic machine M' such that M
and M' accept the same language.

 DFA are easy to implement

 NFA are easy to generate from specifications

 Algorithms exist to convert NFA to DFA
(see assignments)

Scanning 15
Compiler und

Programmtransformation

Regular Expressions (RE)

 Automaton is a good “visual” aid
 but is not suitable as a specification

 Regular expressions are a suitable specification
 a compact way to define a language that can be

accepted by an automaton.

 used as the input to a scanner generator
 define each token, and also

 define white-space, comments, etc.
 these do not correspond to tokens,

but must be recognized and ignored.

Scanning 16
Compiler und

Programmtransformation

Example: Pascal Identifier

 Lexical specification (in English):
 a letter, followed by zero or more letters or digits.

 Lexical specification (as a regular expression):
 letter (letter | digit)*

| means "or"

means "followed by"

* means zero or more instances of

() are used for grouping

Scanning 17
Compiler und

Programmtransformation

Operands of RE Operators
 Operands are same as labels on the edges of an

FSM

 single characters or

 letter is a shorthand for

 a | b | c | ... | z | A | ... | Z

 digit is a shorthand for

 0 | 1 | … | 9

 sometimes we put the characters in quotes

 necessary when denoting | *

Scanning 18
Compiler und

Programmtransformation

Operator Precedence

Consider regular expressions:
letter letter | digit*

letter (letter | digit)*

Regular

Expression

Operator

Analogous

Arithmetic

Operator

Precedence

| plus lowest

times middle

* exponentiation highest

Scanning 19
Compiler und

Programmtransformation

For You To Do

 Describe (in English) the language defined

by each of the following regular expressions:

letter (letter | digit*)

digit digit* "." digit digit*

Scanning 20
Compiler und

Programmtransformation

Example: Integer Literals

 An integer literal with an optional sign can
be defined in English as:
“(nothing or + or -) followed by one or more digits”

 The corresponding regular expression is:
(+|-|) (digit digit*)

 Convenience operators
a+ is the same as a (a)*

a? is the same as (a |)

("+"|-)? digit+

Scanning 21
Compiler und

Programmtransformation

Language Defined by RE

 Recall: language = set of strings

 Language defined by an automaton

 the set of strings accepted by the automaton

 Language defined by a regular expression

 the set of strings that match the expression.

Regular Exp. r Corresponding Set of Strings L(r)

 {""}

a {"a"}

r s a b c L(r) L(s) {"abc"}

r | s a|b|c L(r) L(s) {"a", "b", "c"}

r* (a|b)* L(r)* {"", "a", "b", "aa", "ab", ..., "bbab“, ...}

Scanning 22
Compiler und

Programmtransformation

The Role of Regular

Expressions

 Theorem:

 For every regular expression, there exists a

nondeterministic finite-state machine that defines the

same language, and vice versa.

 Q: Why is the theorem important for scanner

generation?

 Q: Theorem is not enough: what do we need for

automatic scanner generation?

Scanning 23
Compiler und

Programmtransformation

Regular Expressions to NFA (1)

 For each kind of RE, define an NFA

 Notation: NFA for RE M

M

a

a

Scanning 24
Compiler und

Programmtransformation

Regular Expressions to NFA (2)

A B

A | B

A

B

A B

Scanning 25
Compiler und

Programmtransformation

Regular Expressions to NFA (3)

A*

A

Scanning 26
Compiler und

Programmtransformation

Example : RE to NFA

 Consider the regular expression

(1|0)*1

 The NFA is

1

0
1

s0 s1

s2

s4

s3

s5

s6 s7 s8 s9

Scanning 27
Compiler und

Programmtransformation

Putting It All Together

 Specify regular expression for each token

 Generate NFA and convert to DFA

 Define appropriate action for each token

 ignore comments and whitespace

 return string for identifier or numeric constant

 indicate keyword, operator, punctuations, …

 Associate patterns and actions

 Integrate matching of all possible patterns

Scanning 28
Compiler und

Programmtransformation

Example : Expressions

operators: "*", "/", "+", "-"

parentheses: "(", ")"

integer constants: 0|([1-9] [0-9]*)

identifiers: [a-zA-Z_][a-zA-Z0-9_]*

white space: [\t\n]+

where: [abc] = (a|b|c)

Scanning 29
Compiler und

Programmtransformation

Symbol DFAs

* / +

- ()

a-zA-Z_

‘ ‘\t\n

a-zA-Z0-9_

‘ ‘\t\n

1-9

0

0-9

Scanning 30
Compiler und

Programmtransformation

Scanner Algorithm
Given DFA D1, …,Dn

while input is not empty do

foreach i {1,..,n} do

si := the longest prefix that Di accepts;

k := max{|si| | i {1,..,n} };

if k > 0 then

remove k characters from input;

j := min{i | |si| = k };

perform the jth action

else

move one character from input to output

// alternatively produce scan error

Scanning 31
Compiler und

Programmtransformation

For You To Do

 What if more than one prefix matches a
pattern?

 Which prefix is used?

 What if a prefix matches more than one
pattern?

 Which pattern is used?

 What happens if a string matches no
patterns?

