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Phases and Passes

 A compiler phase is a cohesive functional 
unit that processes a representation of the 
source program

 A compiler pass is a traversal of the 
source program representation

 Multiple phases can be integrated into a 
single pass

 e.g., parser-driven scanning
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Single Pass Compilation

 All processing must happen in a pipelined 
fashion

 Restricts languages (forward declarations)

 Limits optimization

 Used to be popular:

 fast (if your machine is slow); and

space efficient (if you only have 4K RAM)
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Multiple Pass Compilation

 Speed/memory  is not a tight resource today

 A modern compiler uses 5-15 passes

 Advantage: Separation of concerns
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Abstract Syntax Trees

 Common representation for programs

Represent all of the semantic entities in the 
program

Eliminates irrelevant syntactic details

 Can be thought of as a compressed 
parse tree

Need extra structure in the grammar during 
parsing for precedence, etc.

Don’t need all of that structure subsequently
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Parse Tree vs. AST
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Intermediate Languages

 ASTs can be thought of as the 
input or output language of a 
phase
 e.g., parser outputs ASTs, code 

generator takes AST as input

 Linear forms for ASTs allow 
phases to be written as 
separate programs
 With their own parsers, etc.
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Enriching ASTs

 ASTs can carry lots of information about a 
program and its sub-parts

Phases/passes may add their own info

Scanner → line numbers

 Useful for error messages

Symbol processing → identifier meaning

Type checker → expression types

Code Generation → assembler code
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AST Data Structure

 ANTLR provides a default AST structure
 Allows arbitrary children using left-most child/right-

sibling organization

 Enabled by parser option output=AST

 Will construct something like the parse tree by default

 Needs additional information
 which tokens to be ignored

 which tokens to be used as parent nodes

 auxiliary tokens can be declared
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ANTLR Rule Directives

 The ^ in a rule indicates the token used to 
determine the AST node that is built

 The ! in a rule indicates that the token 
should be ignored for the purpose of ASTs
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Parse Actions

expr:   mexpr ((PLUS^|MINUS^) mexpr)*

;      

mexpr

:   atom (TIMES^ atom)*

;    

atom:   INT^

|   LPAREN! expr RPAREN! 

;
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ANTLR Rule Rewriting

 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

compilationUnit : 

packageDefinition? importDefinition* typeDefinition* 

-> ^(UNIT packageDefinition? importDefinition* typeDefinition*) 

; 
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Imaginary Token Declaration

tokens

{

UNIT; EXPR;

}
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ANTLR Rule Rewriting
 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

 Allows decent restructuring 

'if' '(' equalityExpression ')' s1=statement ( 

'else' s2=statement )?

-> ^('if' ^(EXPR equalityExpression) $s1 $s2)

| -> ^('if' ^(EXPR equalityExpression) $s1) 

);      

 Much more details:
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction


