
Compiler

The Abstract Syntax Tree (AST)

© Copyright 2005, Matthew B. Dwyer and Robby. The syllabus and lectures for this course are partly

copyrighted materials and may not be used in other course settings outside University of Nebraska-Lincoln

and Kansas State University in their current form or modified form without express written permission of one

of the copyright holders. During this course, students are prohibited from selling notes to or being paid for

taking notes by any person or commercial firm without the express written permission of one of the copyright

holders.

Abstract Syntax Trees 2Compiler

Abstract Syntax Trees

WEED

RESOURCE TYPE SYMBOL

CODE EMITOPTIMIZE

PARSESCAN

Abstract Syntax Trees 3Compiler

Phases and Passes

 A compiler phase is a cohesive functional
unit that processes a representation of the
source program

 A compiler pass is a traversal of the
source program representation

 Multiple phases can be integrated into a
single pass

 e.g., parser-driven scanning

Abstract Syntax Trees 4Compiler

Single Pass Compilation

 All processing must happen in a pipelined
fashion

 Restricts languages (forward declarations)

 Limits optimization

 Used to be popular:

 fast (if your machine is slow); and

space efficient (if you only have 4K RAM)

Abstract Syntax Trees 5Compiler

Multiple Pass Compilation

 Speed/memory is not a tight resource today

 A modern compiler uses 5-15 passes

 Advantage: Separation of concerns

Abstract Syntax Trees 6Compiler

Abstract Syntax Trees

 Common representation for programs

Represent all of the semantic entities in the
program

Eliminates irrelevant syntactic details

 Can be thought of as a compressed
parse tree

Need extra structure in the grammar during
parsing for precedence, etc.

Don’t need all of that structure subsequently

Abstract Syntax Trees 7Compiler

Parse Tree vs. AST

E

E T+

T

F

id

T F*

F

id

id

+

id *

id id

Abstract Syntax Trees 8Compiler

Intermediate Languages

 ASTs can be thought of as the
input or output language of a
phase
 e.g., parser outputs ASTs, code

generator takes AST as input

 Linear forms for ASTs allow
phases to be written as
separate programs
 With their own parsers, etc.

+

id *

id id

+(id,*(id,id))

Abstract Syntax Trees 9Compiler

Enriching ASTs

 ASTs can carry lots of information about a
program and its sub-parts

Phases/passes may add their own info

Scanner → line numbers

 Useful for error messages

Symbol processing → identifier meaning

Type checker → expression types

Code Generation → assembler code

Abstract Syntax Trees 10Compiler

AST Data Structure

 ANTLR provides a default AST structure
 Allows arbitrary children using left-most child/right-

sibling organization

 Enabled by parser option output=AST

 Will construct something like the parse tree by default

 Needs additional information
 which tokens to be ignored

 which tokens to be used as parent nodes

 auxiliary tokens can be declared

Abstract Syntax Trees 11Compiler

ANTLR Rule Directives

 The ^ in a rule indicates the token used to
determine the AST node that is built

 The ! in a rule indicates that the token
should be ignored for the purpose of ASTs

Abstract Syntax Trees 12Compiler

Parse Actions

expr: mexpr ((PLUS^|MINUS^) mexpr)*

;

mexpr

: atom (TIMES^ atom)*

;

atom: INT^

| LPAREN! expr RPAREN!

;

Abstract Syntax Trees 13Compiler

ANTLR Rule Rewriting

 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

compilationUnit :

packageDefinition? importDefinition* typeDefinition*

-> ^(UNIT packageDefinition? importDefinition* typeDefinition*)

;

Abstract Syntax Trees 14Compiler

Imaginary Token Declaration

tokens

{

UNIT; EXPR;

}

Abstract Syntax Trees 15Compiler

ANTLR Rule Rewriting
 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

 Allows decent restructuring

'if' '(' equalityExpression ')' s1=statement (

'else' s2=statement)?

-> ^('if' ^(EXPR equalityExpression) $s1 $s2)

| -> ^('if' ^(EXPR equalityExpression) $s1)

);

 Much more details:
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction

