
Compiler

The Abstract Syntax Tree (AST)

© Copyright 2005, Matthew B. Dwyer and Robby. The syllabus and lectures for this course are partly

copyrighted materials and may not be used in other course settings outside University of Nebraska-Lincoln

and Kansas State University in their current form or modified form without express written permission of one

of the copyright holders. During this course, students are prohibited from selling notes to or being paid for

taking notes by any person or commercial firm without the express written permission of one of the copyright

holders.

Abstract Syntax Trees 2Compiler

Abstract Syntax Trees

WEED

RESOURCE TYPE SYMBOL

CODE EMITOPTIMIZE

PARSESCAN

Abstract Syntax Trees 3Compiler

Phases and Passes

 A compiler phase is a cohesive functional
unit that processes a representation of the
source program

 A compiler pass is a traversal of the
source program representation

 Multiple phases can be integrated into a
single pass

 e.g., parser-driven scanning

Abstract Syntax Trees 4Compiler

Single Pass Compilation

 All processing must happen in a pipelined
fashion

 Restricts languages (forward declarations)

 Limits optimization

 Used to be popular:

 fast (if your machine is slow); and

space efficient (if you only have 4K RAM)

Abstract Syntax Trees 5Compiler

Multiple Pass Compilation

 Speed/memory is not a tight resource today

 A modern compiler uses 5-15 passes

 Advantage: Separation of concerns

Abstract Syntax Trees 6Compiler

Abstract Syntax Trees

 Common representation for programs

Represent all of the semantic entities in the
program

Eliminates irrelevant syntactic details

 Can be thought of as a compressed
parse tree

Need extra structure in the grammar during
parsing for precedence, etc.

Don’t need all of that structure subsequently

Abstract Syntax Trees 7Compiler

Parse Tree vs. AST

E

E T+

T

F

id

T F*

F

id

id

+

id *

id id

Abstract Syntax Trees 8Compiler

Intermediate Languages

 ASTs can be thought of as the
input or output language of a
phase
 e.g., parser outputs ASTs, code

generator takes AST as input

 Linear forms for ASTs allow
phases to be written as
separate programs
 With their own parsers, etc.

+

id *

id id

+(id,*(id,id))

Abstract Syntax Trees 9Compiler

Enriching ASTs

 ASTs can carry lots of information about a
program and its sub-parts

Phases/passes may add their own info

Scanner → line numbers

 Useful for error messages

Symbol processing → identifier meaning

Type checker → expression types

Code Generation → assembler code

Abstract Syntax Trees 10Compiler

AST Data Structure

 ANTLR provides a default AST structure
 Allows arbitrary children using left-most child/right-

sibling organization

 Enabled by parser option output=AST

 Will construct something like the parse tree by default

 Needs additional information
 which tokens to be ignored

 which tokens to be used as parent nodes

 auxiliary tokens can be declared

Abstract Syntax Trees 11Compiler

ANTLR Rule Directives

 The ^ in a rule indicates the token used to
determine the AST node that is built

 The ! in a rule indicates that the token
should be ignored for the purpose of ASTs

Abstract Syntax Trees 12Compiler

Parse Actions

expr: mexpr ((PLUS^|MINUS^) mexpr)*

;

mexpr

: atom (TIMES^ atom)*

;

atom: INT^

| LPAREN! expr RPAREN!

;

Abstract Syntax Trees 13Compiler

ANTLR Rule Rewriting

 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

compilationUnit :

packageDefinition? importDefinition* typeDefinition*

-> ^(UNIT packageDefinition? importDefinition* typeDefinition*)

;

Abstract Syntax Trees 14Compiler

Imaginary Token Declaration

tokens

{

UNIT; EXPR;

}

Abstract Syntax Trees 15Compiler

ANTLR Rule Rewriting
 More powerfull and flexible than directives

 Supports new node types (imaginary tokens)

 Allows decent restructuring

'if' '(' equalityExpression ')' s1=statement (

'else' s2=statement)?

-> ^('if' ^(EXPR equalityExpression) $s1 $s2)

| -> ^('if' ^(EXPR equalityExpression) $s1)

);

 Much more details:
http://www.antlr.org/wiki/display/ANTLR3/Tree+construction

