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Code Generation

 Issues

generating an internal representation of 

machine codes for source code abstractions:

 statements and expressions

 scopes and types

 procedures, parameters, return values

 control flow constructs etc. 

 runtime-system 

optimizing the code (ignored for now); and

emitting the code to files in binary format.
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Code Generation

 Not addressed now .. 

 low level issues

 register allocation

 multicore architectures 

 ….. 

 functional / logic / domain-specific languages

 … 
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Runtime system
 Compiler builds 

 an environment and assumes the program 

be executed in this environment

 a set of procedures that are needed for 

program execution, e.g., for

 interaction with the OS

 data access and memory administration

 error handling

 …

 uses virtual memory addresses

5Code GenerationCompiler



Runtime system
 Managing data accesses

o Stack: Procedure (method) invocations

o Heap: Garbage collection

o File system / IO 

 Scheduling 

o Concurrency 

o Non-determinism 

 Monitoring 

o Exceptions 

o Debugging 
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Memory architecture

Code 

program

counter 

STATIC
global data

STACK
local data

HEAP
dynamic data

return address
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Stack

pointer 
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Control flows between procedure activations in LIFO 

(last-in-first-out ) discipline ( stack principle) 

procedure P(...) 

…

Q(…);

…

end;

procedure Q (… );

…

R(…);

…

S(…);

… 

end;  

P

Q

SR

Activation tree

processed by pre-order traversal

Activation records
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Stack-like storage allocation for activations:

P P

Q

P

Q

R

P

Q

P

Q

S

Activation records
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call p 

program

counter 

STATIC
global data

STACK
local data

HEAP
dynamic data

Activation records

code p 
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frame pointer: last frame  
stack pointer:  stack top  

Compiler



call p 

program

counter 

STATIC
global data

STACK
local data

HEAP
dynamic data

frame pointer: last frame  

Activation records

stack pointer:  stack top  

code p 

11Code GenerationCompiler



call p 

program

counter 

STATIC
global data

STACK
local data

HEAP
dynamic data

last frame  

Activation records

stack top  

code p 

return 
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call p 

program

counter 

STATIC
global data

STACK
local data

HEAP
dynamic data

last frame  

Activation records

stack top  

code p 
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Data  needed within a procedure invocation is collected in 

an activation record or  stack frame. 

Control/Dynamic link Reference to AR of caller 

Static link Ref. to AR of callee‘s static parent  

Saved state In particular return-address  

Formal parameters 

Function result 

Local variables 

Activation records (AR)

Temporary  storage 
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program M;

function P(...): integer; 

var x,y,z: integer;

function Q(…): integer;

function R(…): integer;

begin { R }

...; z := P(…); … 

end;  { R }

begin { Q }

…; y := R(…);…

end; { Q }

begin { P } 

…;   x := Q(… ); …

end; { P }

begin { M }

…; P(…); …

end. { M }  

Activation records
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access of variable y
defined in an outer block

Compiler



dynamic

links

M

Q

R

P

x,y,z

static

links

M

P

x,y,z

Q

R

P

x,y,z

M

P

x,y,z

Q

R

P

x,y,z

Q

Activation records

16Code GenerationCompiler



→ If m-n+1 = 0 use dynamic link;

otherwise follow static link chain 

of caller for m-n+1 levels

(performed at run time)  

m caller’s static level (known at compile time)

n   callee’s static level (known at compile time)

Determining static link for new 

activation record: 
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M

P

x,y,z

Q

R

P

x,y,z

Q
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Data  needed within a procedure invocation is collected in 

an activation record or  stack frame. 

Control/Dynamic link Reference to AR of caller 

Static link Ref. to AR of callee‘s static parent  

Saved state In particular return-address  

Formal parameters 

Function result 

Local variables 

Activation records (AR)

Temporary  storage 
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An important issue:

Memory space 

needed for data?!
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Memory layout: elementary data types

• Boolean (sometimes absent or identified with integers,  e.g. C, LISP) 

• Integer (sometimes divided into several types like in Java’s

integer-types  byte, short, integer, long, (BigInteger) ) 

• Real  (floating standard IEEE 745, sometimes divided into     

several types like Java’s float, double)

• Characters 

• Enumerations (e.g.: Pascal declaration 

type month = (jan, feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec);

with implicit order jan < feb <…<dec ;

booleans and characters can be seen as predefined enumerations )
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Memory layout: composite data types

• Arrays

• Records

• Sets

• Variant records

• Pointers
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Memory layout: arrays 

One-dimensional array: a: array[low..high] of T;                      

Layout in store

a[low]                      a[high]                      

base                      
size(T)                      

Addr(a[i])   = base + (i - low) * size(T)

= base – low * size(T) +  i * size(T)

= basered + i * size(T)

Compile-time known

(for static arrays)

low = 0 in C-oriented 

languages
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Memory layout: arrays 
Memory layout of arrays: 

Two-dimensional array: a: array[l1..h1,l2..h2] of T;

Layout in store

a[l1, l2]                      

base                      
size(T)                      

Row-major array layout 

a[l1,h2]                      a[l1+1, l2]                      
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Memory layout   

Addr(a[i, j])   = base +  ( (i-l1) * (h2-l2+1) + (j-l2) ) * size(T)

= base – (l1 * d2 + l2 ) * size(T) +  (i * d2 + j) * size(T)

=  basered + (i * d2 + j) * size(T)

d2
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Memory layout
n-dimensional array: a: array[l1..h1,…,ln..hn] of T;

Let di = hi-li+1 

Addr(a[i1,..,in])   = base +  (  (ij-lj) *  dk ) * size(T)
j = 1

n

k = j+1

n

= base – ( lj *  dk ) * size(T) + (  ij *  dk ) * size(T)

n

k = j+1

n

d(j)

= basered +  (  ij * d(j) ) * size(T)

n

j = 1

j = 1 k = j+1

n n

j = 1
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Memory layout: arrays
Taxonomy of arrays (wrt. to allocation time, place):

o Static arrays:  

- Allocated at compile time

(Example in  C:  static  int a[10] ;)          

- Not included in PASCAL

- Rapid address calculation  (→ previous slides)

o Arrays with static bounds: 

- Bounds known at compile-time

( Example in C: int a[10];

Example in PASCAL: a = array[0..10] of integer;)

- Stack-allocated at every procedure 

- base unknown at compile time 

- Fast address calculation  
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Memory layout: arrays

o Dynamic arrays:  

- Bounds known only at run-time

● Stack-allocated:  

- Size determined once for every procedure activation

( Example in ALGOL 60: ARRAY A[0:N,0:N];)

- Technical issue: Storage has to be allocated at the end of 

a stack frame    

- More flexible than arrays with static bounds, but address    

calculation gets slower

● Heap-allocated: 

- Size determined at any allocation point

(Example JAVA: int[] a;……; a = new int[10];)

- Very flexible but additional run-time overhead due to 

dereferencing
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Memory layout: records

r: record

a: Ta;

b: Tb;

c: Tc

end;

Ta Tb Tc

r.a r.b r.c

……..
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Memory layout: pointers

Tp

- Pointers are addresses in data memory (heap, stack)

- Only heap pointers in PASCAL, JAVA. 

Non-null pointers generated only via new-instructions. 

- In C, C++  stack as well as heap pointers

Explicit address-off operator &. 

Pointer arithmetics
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Memory layout: pointers
Problems with manual pointer deallocation: 

 Dangling pointers: Pointers to deallocated heap locations

 Memory  leaks: Unaccessible heap locations
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Memory layout: pointers
Problems with manual pointer deallocation: 

 Dangling pointers: Pointers to deallocated heap locations

p

q

 Memory  leaks: Unaccessible heap locations
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Memory layout: pointers
Problems with manual pointer deallocation: 

 Dangling pointers: Pointers to deallocated heap locations

p

q

…..   

p := q;                  

 Memory  leaks: Unaccessible heap locations
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Memory layout: pointers
Problems with manual pointer deallocation: 

 Dangling pointers: Pointers to deallocated heap locations

q

…..   

p := q;                  

 Memory  leaks: Unaccessible heap locations

32

dispose(p);

…… 

Code GenerationCompiler



Memory layout: pointers
• The dangling pointer problem is avoided by using automatic 

memory deallocation only (garbage collection) like in JAVA.

• Memory leaks can also be reliably avoided by advanced 

garbage collection methods (not reference counting).   

However, garbage collected programming languages are not 

well-suited for real-time sensitive applications.  
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Memory layout: pointers

C.A.R. Hoare (1973): “Their introduction into high-

level languages may be a step backward from 

which we may never recover.”
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Runtime system
 Managing data accesses

o Stack: Procedure (method) invocations

o Heap: Garbage collection

o File system / IO 

 Scheduling 

o Concurrency 

o Non-determinism 

 Monitoring 

o Exceptions 

o Debugging 
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 Nature of object oriented programming: Almost 

everything is an object (Smalltalk, Java) and thus 

heap-located.

 Heap management is a central issue

 Heap-allocated objects that are not reachable from      

stack-located program variables (possibly through 

chains of pointers)  are called garbage 

Garbage collection
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Reference counting

 Keep track on the number of references to a heap 

allocated record. Reference count stored within each record. 

 Garbage collector emits extra instructions. 

If pointer p  r1 is changed towards p  r2 perform:

1) Increment the reference count of  r2

2) Decrement the reference count of r1.

If reference count of r1 reaches zero, then  r1 is put on the freelist.   

 New heap allocated objects use locations from freelist.

Garbage collection

37Code GenerationCompiler



Reference counting

Pros: 

- Simple 

- Smooth. Suited for real-time sensitive applications

Cons

- Cycles of garbage cannot be reclaimed  memory leakage

(see example on the next slide) 

- Expensive!

Even increment/decrement-operations take several machine instructions.

Naive implementation has to perform updates on every assignment  

(some can be eliminated using static program analysis)

Garbage collection
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..
17

22

a

2

Heap37Stack

1

3

0

3

Reference counting

Garbage collection
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..
17

22

a

2

Heap37Stack

1

1

0

3

Garbage 
not reclaimed  

reclaimed  

Garbage collection
Reference counting
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Mark and sweep

 Program variables and heap-allocated records form a 

directed graph. 

 A graph-traversal algorithm like depth-first search (DFS) 

is used in order to mark all reachable nodes.

(  mark phase ) 

 Nodes that are not marked must be garbage and should

be  reclaimed (put on freelist).  (  sweep phase ) 

 New heap allocated objects use locations from freelist.

Garbage collection
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Mark and sweep

..

17

22

a

2

Heap37Stack

Garbage collection
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Mark and sweep

..

17

22

a

2

Heap37Stack

Garbage collection
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Mark and sweep

..

17

22

a

2

Heap37Stack

freelist
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Mark and sweep

Pros: 

- No memory leakage  

- Simple to implement

Cons

- Expensive!
Large portions of the heap have to be explored (Some improvements exist)    

- Not smooth  

- Overhead to manage freelist

Garbage collection
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Copying collection

Garbage collection

 Essentially: Mark & sweep + compaction 
 No freelist

 Two separate heaps (from-area, to-area) switching roles

 Reachable records of from-area are copied into  

consecutive front segment of to-area

 Triggered by heap-limits 
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Copying collection

Garbage collection

47

From-area To-area

Allocate
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Copying collection

Garbage collection

48

From-area To-area
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Copying collection

Garbage collection

49

From-area To-area

Mark & sweep 

applied
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Copying collection

Garbage collection

50

From-area To-area

Copying & compactification

completed
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Copying collection

Garbage collection

51

From-areaTo-area

Copying & compactification

completed
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Copying collection

Garbage collection

52

Allocate

Code GenerationCompiler

From-areaTo-area



Copying collection

Garbage collection
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Allocate

Code GenerationCompiler

From-areaTo-area



Copying collection

Garbage collection

54

… and so on
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Generational garbage collection

Garbage collection

 Basic observation (empirically justified): 
 Newly created objects are likely to die soon.

 Old objects will most likely survive many more collections. 

 Divide the heap into generations G0, G1, G2,…,Gk

 Often only 2 or 3 generations (nursery,…) 
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Garbage collection

Idea:

 Each generation is exponentially larger than the one 

before, e.g.: G0  ½  MB, G1  2 MB , G2  8 MB, …. 

 Objects are promoted to the next generation, if they 

survived two or three collections 

 G0 is collected most often, G0 together with G1 more rarely, 

G0 together with G1 and G2 even more rarely, etc. 

Generational garbage collection
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Code Generation
Idea:

 Use intermediate code

• Parse tree, AST, Symbol Table

• Three-Address-Code 

 Three-Address-Code 

• can be generated from AST

• turning the tree representation into a linear sequence 

of instructions

• use (at most) three symbolic addresses

 Symbolic addresses are mapped to memory addresses 

or registers later
57Code GenerationCompiler



Code Generation

a + a *(b-c)+ b * d 

Three-Address-Code (TAC): Expressions
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+

AST:

+

*a

a -

b c

*

b d

TAC:

t0 = b – c

t1 = a * t0
t2 = a + t1

t3 = b * d

t4 = t2 + t3

Compiler



Code Generation

a + a *(b-c)+ b * d 

Three-Address-Code (TAC): Expressions
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TAC: generated code, e.g.:

LD  R0 b

SUB R0 R0 c

LD  R1 a

MUL R1 R1 R0

LD  R2 a

ADD R2 R2 R1

LD  R3 b

MUL R3 R3 d

ADD R4 R2 R3

t0 = b – c

t1 = a * t0
t2 = a + t1

t3 = b * d

t4 = t2 + t3

Compiler

op    dest src [src2]



Full example: assignments

 Input stream: 

cost = (price + tax) * 6

 Token stream:

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 Symbol Table: 

Code Generation 60Compiler

1 cost

2 price

3 tax

4 6



Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 AST:
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=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

 Symbol Table:

1 cost local double

2 price local double

3 tax local double

4 6 constant int



Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 modified AST:
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 Symbol Table:

1 cost local double

2 price local double

3 tax local double

4 6 constant int

after type checking

=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

inttodouble



Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 modified AST:
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 TAC:

t1 = inttodouble(6)

t2 = id2 + id3
t3 = t2 * t1
id1= t3

 optimized TAC:

t1 = id2 + id3
id1= t1 * 6.0

=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

inttodouble



Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 optimized TAC
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t1 = id2 + id3
id1= t1 * 6.0

 generated code, e.g.:

LD  R0 ID2
ADD R0 R0 ID3
MUL R0 R0 #6.0

ST  ID1 R0



Code generation: conditionals

if (cond) Sthen else Selse

code(cond)        // result in r0

if r0=0 goto lelse

code(Sthen)

goto lexit

lelse:

code(Selse)

lexit:
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Code generation: loops

while (cond) Sbody

lloop:

code(cond)        // result in r0

if r0=0 goto lexit

code(Sbody)

goto lloop

lexit:
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Code generation: switch-case

switch (e)

case c1: S1;

:

case cn: Sn;

default: Sd;
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Code generation: switch-case
code(e)              // result in r0

goto lbase+r0 // computed jump 

lbase:

:

goto l1

:                  // Jumptable

goto ln

goto ldefault

l1: code(S1)

:

ln: code(Sn)

ldefault: code(Sd)
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Stack-based code generation: 

assignments

x = 2 * (x - y);

ICONST_2

ILOAD 1 // x

ILOAD 2 // y

ISUB

IMUL

ISTORE 1       // Assign 

Stack-based

(e.g. Java Byte-Code)

Register-based

(TAC)

t1 = 2          

t2 = x-y        

t1 = t1*t2       

x  = t1   
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Bootstrapping

 Modern compilers translate to target languages for  

which compilers or interpreters exist.

 Generation of machine code is unnecessary.

 Appropriate composition of existing compilers 

and/or interpreters with “simple-to-write translators”

(if necessary)
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T-diagrams

For compilers:

S T

I

Source language
Target language

Implementation language

To be read as: Compiler from S to T written in I
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T-diagrams

For interpreters:

S

I

Source (=interpreted)

language

Implementation language

To be read as: Interpreter for S written in I
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Bootstrapping
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Provided: P

P

VM

Goal: P

M

M

P

VM

VM VM

P

ETH Zürich Pascal portable compiler 

(P = Pascal, VM = Pascal P-code (virtual machine)) 

?



Bootstrapping
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Available: C

M

M

1. Rewrite:
VM

P

VM

C



Bootstrapping
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2. Compile interpreter:

C

M

M

VM

C

VM

M



Bootstrapping
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3. Yields (interpretive) compiler:

VM

M

P

VM

VM VM

M Goal: P

M

M

?

But recall our …



Bootstrapping
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4. Hand-written backend: VM

P

M

5. Bootstrap backend:

VM

P

M

P

VM

VM

VM

VM

M

VM

VM

M

VM

M

M

VM

M

VM

M



Bootstrapping
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6. Bootstrap compiler:

P

VM

VM

VM

M

M

P

M

VM VM

M

M

yields

P

M

M



Bootstrapping

C

CB

CB

CB Ass

M

hand-written

Given: Goal: C

M

MAss

M

M

defined before 

C

Ass

CB

Ass

M

M

C

M

CB CB Ass

M
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Bootstrapping

CB

CB Ass

M

hand-written

Given: Goal: C

M

MAss

M

M

defined before 

C

Ass

CB

Ass

M

M

C

M

CB CB Ass

M

Ass

M

M
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