
Compiler

Code Generation

© Copyright 2005, Matthew B. Dwyer and Robby. The syllabus and lectures for this course are copyrighted

materials and may not be used in other course settings outside University of Nebraska-Lincoln and Kansas

State University in their current form or modified form without express written permission of one of the

copyright holders. During this course, students are prohibited from selling notes to or being paid for taking

notes by any person or commercial firm without the express written permission of one of the copyright holders.

Compiler Architecture

RESOURCE SYMBOL

SCAN

CODE EMITOPTIMIZE

WEEDPARSE

TYPE

2Code GenerationCompiler

Code Generation

 Issues

generating an internal representation of

machine codes for source code abstractions:

 statements and expressions

 scopes and types

 procedures, parameters, return values

 control flow constructs etc.

 runtime-system

optimizing the code (ignored for now); and

emitting the code to files in binary format.
3Code GenerationCompiler

Code Generation

 Not addressed now ..

 low level issues

 register allocation

 multicore architectures

 …..

 functional / logic / domain-specific languages

 …

4Code GenerationCompiler

Runtime system
 Compiler builds

 an environment and assumes the program

be executed in this environment

 a set of procedures that are needed for

program execution, e.g., for

 interaction with the OS

 data access and memory administration

 error handling

 …

 uses virtual memory addresses

5Code GenerationCompiler

Runtime system
 Managing data accesses

o Stack: Procedure (method) invocations

o Heap: Garbage collection

o File system / IO

 Scheduling

o Concurrency

o Non-determinism

 Monitoring

o Exceptions

o Debugging

6Code GenerationCompiler

Memory architecture

Code

program

counter

STATIC
global data

STACK
local data

HEAP
dynamic data

return address

7Code Generation

Stack

pointer

Compiler

Control flows between procedure activations in LIFO

(last-in-first-out) discipline ( stack principle)

procedure P(...)

…

Q(…);

…

end;

procedure Q (…);

…

R(…);

…

S(…);

…

end;

P

Q

SR

Activation tree

processed by pre-order traversal

Activation records

8Code GenerationCompiler

Stack-like storage allocation for activations:

P P

Q

P

Q

R

P

Q

P

Q

S

Activation records

9Code GenerationCompiler

call p

program

counter

STATIC
global data

STACK
local data

HEAP
dynamic data

Activation records

code p

10Code Generation

frame pointer: last frame
stack pointer: stack top

Compiler

call p

program

counter

STATIC
global data

STACK
local data

HEAP
dynamic data

frame pointer: last frame

Activation records

stack pointer: stack top

code p

11Code GenerationCompiler

call p

program

counter

STATIC
global data

STACK
local data

HEAP
dynamic data

last frame

Activation records

stack top

code p

return

12Code GenerationCompiler

call p

program

counter

STATIC
global data

STACK
local data

HEAP
dynamic data

last frame

Activation records

stack top

code p

13Code GenerationCompiler

Data needed within a procedure invocation is collected in

an activation record or stack frame.

Control/Dynamic link Reference to AR of caller

Static link Ref. to AR of callee‘s static parent

Saved state In particular return-address

Formal parameters

Function result

Local variables

Activation records (AR)

Temporary storage

14Code GenerationCompiler

program M;

function P(...): integer;

var x,y,z: integer;

function Q(…): integer;

function R(…): integer;

begin { R }

...; z := P(…); …

end; { R }

begin { Q }

…; y := R(…);…

end; { Q }

begin { P }

…; x := Q(…); …

end; { P }

begin { M }

…; P(…); …

end. { M }

Activation records

15Code Generation

access of variable y
defined in an outer block

Compiler

dynamic

links

M

Q

R

P

x,y,z

static

links

M

P

x,y,z

Q

R

P

x,y,z

M

P

x,y,z

Q

R

P

x,y,z

Q

Activation records

16Code GenerationCompiler

→ If m-n+1 = 0 use dynamic link;

otherwise follow static link chain

of caller for m-n+1 levels

(performed at run time)

m caller’s static level (known at compile time)

n callee’s static level (known at compile time)

Determining static link for new

activation record:

17Code Generation

M

P

x,y,z

Q

R

P

x,y,z

Q

Compiler

Data needed within a procedure invocation is collected in

an activation record or stack frame.

Control/Dynamic link Reference to AR of caller

Static link Ref. to AR of callee‘s static parent

Saved state In particular return-address

Formal parameters

Function result

Local variables

Activation records (AR)

Temporary storage

18Code Generation

An important issue:

Memory space

needed for data?!

Compiler

Memory layout: elementary data types

• Boolean (sometimes absent or identified with integers, e.g. C, LISP)

• Integer (sometimes divided into several types like in Java’s

integer-types byte, short, integer, long, (BigInteger))

• Real (floating standard IEEE 745, sometimes divided into

several types like Java’s float, double)

• Characters

• Enumerations (e.g.: Pascal declaration

type month = (jan, feb,mar,apr,may,jun,jul,aug,sep,oct,nov,dec);

with implicit order jan < feb <…<dec ;

booleans and characters can be seen as predefined enumerations)

19Code GenerationCompiler

Memory layout: composite data types

• Arrays

• Records

• Sets

• Variant records

• Pointers

20Code GenerationCompiler

Memory layout: arrays

One-dimensional array: a: array[low..high] of T;

Layout in store

a[low] a[high]

base
size(T)

Addr(a[i]) = base + (i - low) * size(T)

= base – low * size(T) + i * size(T)

= basered + i * size(T)

Compile-time known

(for static arrays)

low = 0 in C-oriented

languages

21Code GenerationCompiler

Memory layout: arrays
Memory layout of arrays:

Two-dimensional array: a: array[l1..h1,l2..h2] of T;

Layout in store

a[l1, l2]

base
size(T)

Row-major array layout

a[l1,h2] a[l1+1, l2]

22Code GenerationCompiler

Memory layout

Addr(a[i, j]) = base + ((i-l1) * (h2-l2+1) + (j-l2)) * size(T)

= base – (l1 * d2 + l2) * size(T) + (i * d2 + j) * size(T)

= basered + (i * d2 + j) * size(T)

d2

23Code GenerationCompiler

Memory layout
n-dimensional array: a: array[l1..h1,…,ln..hn] of T;

Let di = hi-li+1

Addr(a[i1,..,in]) = base + ( (ij-lj) *  dk) * size(T)
j = 1

n

k = j+1

n

= base – ( lj *  dk) * size(T) + ( ij *  dk) * size(T)

n

k = j+1

n

d(j)

= basered + ( ij * d(j)) * size(T)

n

j = 1

j = 1 k = j+1

n n

j = 1

24Code GenerationCompiler

Memory layout: arrays
Taxonomy of arrays (wrt. to allocation time, place):

o Static arrays:

- Allocated at compile time

(Example in C: static int a[10] ;)

- Not included in PASCAL

- Rapid address calculation (→ previous slides)

o Arrays with static bounds:

- Bounds known at compile-time

(Example in C: int a[10];

Example in PASCAL: a = array[0..10] of integer;)

- Stack-allocated at every procedure

- base unknown at compile time

- Fast address calculation

25Code GenerationCompiler

Memory layout: arrays

o Dynamic arrays:

- Bounds known only at run-time

● Stack-allocated:

- Size determined once for every procedure activation

(Example in ALGOL 60: ARRAY A[0:N,0:N];)

- Technical issue: Storage has to be allocated at the end of

a stack frame

- More flexible than arrays with static bounds, but address

calculation gets slower

● Heap-allocated:

- Size determined at any allocation point

(Example JAVA: int[] a;……; a = new int[10];)

- Very flexible but additional run-time overhead due to

dereferencing

26Code GenerationCompiler

Memory layout: records

r: record

a: Ta;

b: Tb;

c: Tc

end;

Ta Tb Tc

r.a r.b r.c

……..

27Code GenerationCompiler

Memory layout: pointers

Tp

- Pointers are addresses in data memory (heap, stack)

- Only heap pointers in PASCAL, JAVA.

Non-null pointers generated only via new-instructions.

- In C, C++ stack as well as heap pointers

Explicit address-off operator &.

Pointer arithmetics

28Code GenerationCompiler

Memory layout: pointers
Problems with manual pointer deallocation:

 Dangling pointers: Pointers to deallocated heap locations

 Memory leaks: Unaccessible heap locations

29Code GenerationCompiler

Memory layout: pointers
Problems with manual pointer deallocation:

 Dangling pointers: Pointers to deallocated heap locations

p

q

 Memory leaks: Unaccessible heap locations

30Code GenerationCompiler

Memory layout: pointers
Problems with manual pointer deallocation:

 Dangling pointers: Pointers to deallocated heap locations

p

q

…..

p := q;

 Memory leaks: Unaccessible heap locations

31Code GenerationCompiler

Memory layout: pointers
Problems with manual pointer deallocation:

 Dangling pointers: Pointers to deallocated heap locations

q

…..

p := q;

 Memory leaks: Unaccessible heap locations

32

dispose(p);

……

Code GenerationCompiler

Memory layout: pointers
• The dangling pointer problem is avoided by using automatic

memory deallocation only (garbage collection) like in JAVA.

• Memory leaks can also be reliably avoided by advanced

garbage collection methods (not reference counting).

However, garbage collected programming languages are not

well-suited for real-time sensitive applications.

33Code GenerationCompiler

Memory layout: pointers

C.A.R. Hoare (1973): “Their introduction into high-

level languages may be a step backward from

which we may never recover.”

34Code GenerationCompiler

Runtime system
 Managing data accesses

o Stack: Procedure (method) invocations

o Heap: Garbage collection

o File system / IO

 Scheduling

o Concurrency

o Non-determinism

 Monitoring

o Exceptions

o Debugging

35Code GenerationCompiler

 Nature of object oriented programming: Almost

everything is an object (Smalltalk, Java) and thus

heap-located.

 Heap management is a central issue

 Heap-allocated objects that are not reachable from

stack-located program variables (possibly through

chains of pointers) are called garbage

Garbage collection

36Code GenerationCompiler

Reference counting

 Keep track on the number of references to a heap

allocated record. Reference count stored within each record.

 Garbage collector emits extra instructions.

If pointer p  r1 is changed towards p  r2 perform:

1) Increment the reference count of r2

2) Decrement the reference count of r1.

If reference count of r1 reaches zero, then r1 is put on the freelist.

 New heap allocated objects use locations from freelist.

Garbage collection

37Code GenerationCompiler

Reference counting

Pros:

- Simple

- Smooth. Suited for real-time sensitive applications

Cons

- Cycles of garbage cannot be reclaimed  memory leakage

(see example on the next slide)

- Expensive!

Even increment/decrement-operations take several machine instructions.

Naive implementation has to perform updates on every assignment

(some can be eliminated using static program analysis)

Garbage collection

38Code GenerationCompiler

..
17

22

a

2

Heap37Stack

1

3

0

3

Reference counting

Garbage collection

39Code GenerationCompiler

..
17

22

a

2

Heap37Stack

1

1

0

3

Garbage
not reclaimed

reclaimed

Garbage collection
Reference counting

40Code GenerationCompiler

Mark and sweep

 Program variables and heap-allocated records form a

directed graph.

 A graph-traversal algorithm like depth-first search (DFS)

is used in order to mark all reachable nodes.

( mark phase)

 Nodes that are not marked must be garbage and should

be reclaimed (put on freelist). ( sweep phase)

 New heap allocated objects use locations from freelist.

Garbage collection

41Code GenerationCompiler

Mark and sweep

..

17

22

a

2

Heap37Stack

Garbage collection

42Code GenerationCompiler

Mark and sweep

..

17

22

a

2

Heap37Stack

Garbage collection

43Code GenerationCompiler

Mark and sweep

..

17

22

a

2

Heap37Stack

freelist

44Code GenerationCompiler

Mark and sweep

Pros:

- No memory leakage

- Simple to implement

Cons

- Expensive!
Large portions of the heap have to be explored (Some improvements exist)

- Not smooth

- Overhead to manage freelist

Garbage collection

45Code GenerationCompiler

Copying collection

Garbage collection

 Essentially: Mark & sweep + compaction
 No freelist

 Two separate heaps (from-area, to-area) switching roles

 Reachable records of from-area are copied into

consecutive front segment of to-area

 Triggered by heap-limits

46Code GenerationCompiler

Copying collection

Garbage collection

47

From-area To-area

Allocate

Code GenerationCompiler

Copying collection

Garbage collection

48

From-area To-area

Code GenerationCompiler

Copying collection

Garbage collection

49

From-area To-area

Mark & sweep

applied

Code GenerationCompiler

Copying collection

Garbage collection

50

From-area To-area

Copying & compactification

completed

Code GenerationCompiler

Copying collection

Garbage collection

51

From-areaTo-area

Copying & compactification

completed

Code GenerationCompiler

Copying collection

Garbage collection

52

Allocate

Code GenerationCompiler

From-areaTo-area

Copying collection

Garbage collection

53

Allocate

Code GenerationCompiler

From-areaTo-area

Copying collection

Garbage collection

54

… and so on

Code GenerationCompiler

Generational garbage collection

Garbage collection

 Basic observation (empirically justified):
 Newly created objects are likely to die soon.

 Old objects will most likely survive many more collections.

 Divide the heap into generations G0, G1, G2,…,Gk

 Often only 2 or 3 generations (nursery,…)

55Code GenerationCompiler

Garbage collection

Idea:

 Each generation is exponentially larger than the one

before, e.g.: G0  ½ MB, G1  2 MB , G2  8 MB, ….

 Objects are promoted to the next generation, if they

survived two or three collections

 G0 is collected most often, G0 together with G1 more rarely,

G0 together with G1 and G2 even more rarely, etc.

Generational garbage collection

56Code GenerationCompiler

Code Generation
Idea:

 Use intermediate code

• Parse tree, AST, Symbol Table

• Three-Address-Code

 Three-Address-Code

• can be generated from AST

• turning the tree representation into a linear sequence

of instructions

• use (at most) three symbolic addresses

 Symbolic addresses are mapped to memory addresses

or registers later
57Code GenerationCompiler

Code Generation

a + a *(b-c)+ b * d

Three-Address-Code (TAC): Expressions

58Code Generation

+

AST:

+

*a

a -

b c

*

b d

TAC:

t0 = b – c

t1 = a * t0
t2 = a + t1

t3 = b * d

t4 = t2 + t3

Compiler

Code Generation

a + a *(b-c)+ b * d

Three-Address-Code (TAC): Expressions

59Code Generation

TAC: generated code, e.g.:

LD R0 b

SUB R0 R0 c

LD R1 a

MUL R1 R1 R0

LD R2 a

ADD R2 R2 R1

LD R3 b

MUL R3 R3 d

ADD R4 R2 R3

t0 = b – c

t1 = a * t0
t2 = a + t1

t3 = b * d

t4 = t2 + t3

Compiler

op dest src [src2]

Full example: assignments

 Input stream:

cost = (price + tax) * 6

 Token stream:

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 Symbol Table:

Code Generation 60Compiler

1 cost

2 price

3 tax

4 6

Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 AST:

Code Generation 61Compiler

=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

 Symbol Table:

1 cost local double

2 price local double

3 tax local double

4 6 constant int

Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 modified AST:

Code Generation 62Compiler

 Symbol Table:

1 cost local double

2 price local double

3 tax local double

4 6 constant int

after type checking

=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

inttodouble

Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 modified AST:

Code Generation 63Compiler

 TAC:

t1 = inttodouble(6)

t2 = id2 + id3
t3 = t2 * t1
id1= t3

 optimized TAC:

t1 = id2 + id3
id1= t1 * 6.0

=

<ID,1>

<NUMBER,4>

*

+

<ID,2> <ID,3>

inttodouble

Full example: assignments

<ID,1> <=> <(> <ID,2> <+> <ID,3> <)> <*> <NUMBER,4>

 optimized TAC

Code Generation 64Compiler

t1 = id2 + id3
id1= t1 * 6.0

 generated code, e.g.:

LD R0 ID2
ADD R0 R0 ID3
MUL R0 R0 #6.0

ST ID1 R0

Code generation: conditionals

if (cond) Sthen else Selse

code(cond) // result in r0

if r0=0 goto lelse

code(Sthen)

goto lexit

lelse:

code(Selse)

lexit:

65Code GenerationCompiler

Code generation: loops

while (cond) Sbody

lloop:

code(cond) // result in r0

if r0=0 goto lexit

code(Sbody)

goto lloop

lexit:

66Code GenerationCompiler

Code generation: switch-case

switch (e)

case c1: S1;

:

case cn: Sn;

default: Sd;

67Code GenerationCompiler

Code generation: switch-case
code(e) // result in r0

goto lbase+r0 // computed jump

lbase:

:

goto l1

: // Jumptable

goto ln

goto ldefault

l1: code(S1)

:

ln: code(Sn)

ldefault: code(Sd)

68Code GenerationCompiler

Stack-based code generation:

assignments

x = 2 * (x - y);

ICONST_2

ILOAD 1 // x

ILOAD 2 // y

ISUB

IMUL

ISTORE 1 // Assign

Stack-based

(e.g. Java Byte-Code)

Register-based

(TAC)

t1 = 2

t2 = x-y

t1 = t1*t2

x = t1

69Code GenerationCompiler

Bootstrapping

 Modern compilers translate to target languages for

which compilers or interpreters exist.

 Generation of machine code is unnecessary.

 Appropriate composition of existing compilers

and/or interpreters with “simple-to-write translators”

(if necessary)

70Code GenerationCompiler

Compiler Code Generation 71

T-diagrams

For compilers:

S T

I

Source language
Target language

Implementation language

To be read as: Compiler from S to T written in I

Compiler Code Generation 72

T-diagrams

For interpreters:

S

I

Source (=interpreted)

language

Implementation language

To be read as: Interpreter for S written in I

Compiler Code Generation 73

Bootstrapping

74Code GenerationCompiler

Provided: P

P

VM

Goal: P

M

M

P

VM

VM VM

P

ETH Zürich Pascal portable compiler

(P = Pascal, VM = Pascal P-code (virtual machine))

?

Bootstrapping

75Code GenerationCompiler

Available: C

M

M

1. Rewrite:
VM

P

VM

C

Bootstrapping

76Code GenerationCompiler

2. Compile interpreter:

C

M

M

VM

C

VM

M

Bootstrapping

77Code GenerationCompiler

3. Yields (interpretive) compiler:

VM

M

P

VM

VM VM

M Goal: P

M

M

?

But recall our …

Bootstrapping

78Code GenerationCompiler

4. Hand-written backend: VM

P

M

5. Bootstrap backend:

VM

P

M

P

VM

VM

VM

VM

M

VM

VM

M

VM

M

M

VM

M

VM

M

Bootstrapping

79Code GenerationCompiler

6. Bootstrap compiler:

P

VM

VM

VM

M

M

P

M

VM VM

M

M

yields

P

M

M

Bootstrapping

C

CB

CB

CB Ass

M

hand-written

Given: Goal: C

M

MAss

M

M

defined before

C

Ass

CB

Ass

M

M

C

M

CB CB Ass

M

80Compiler Code Generation

Code GenerationCompiler

Bootstrapping

CB

CB Ass

M

hand-written

Given: Goal: C

M

MAss

M

M

defined before

C

Ass

CB

Ass

M

M

C

M

CB CB Ass

M

Ass

M

M

81

