Compiler und Programmtransformation

Übung 8

(Statische Analyse 2)

Henning Bordihn

Institut für Informatik und Computational Science Universität Potsdam

1. Distributive Analyseprobleme

Ein Analyseproblem heißt Bitvektorproblem genau dann, wenn

- 1) die abstrakten Daten die Elemente eines Verbandes (L, \sqsubseteq) mit
 - a) L = Pot(D) für eine endliche Menge D ist,
 - b) \sqsubseteq entweder \subseteq oder \supseteq ist und
- 2) alle Transferfunktionen von der Form $f: L \to L$ derart sind, dass es Mengen A, $B \subseteq D$ gibt, so dass $f(X) = (X \cap A) \cup B$ für jedes $X \subseteq D$ gilt.

Zeigen Sie, dass Bitvektorprobleme distributiv sind, d.h. dass $f(x \sqcup y) = f(x) \sqcup f(y)$ für alle $x, y \in L$ gilt.

2. Monotonie und Kettendistributivität

- 1. Betrachten Sie den Verband aller natürlichen Zahlen mit zwei zusätzlichen Elementen ∞_1 und ∞_2 . Es gelte die natürliche Ordnung der Zahlen und für alle Zahlen n gelte $n \sqsubseteq \infty_1 \sqsubseteq \infty_2$. Ist das ein vollständiger Verband? Sein nun eine Funktion f auf dem Verband wie folgt definiert:
 - f(n) = n+1 für alle Zahlen n und $f(\infty_1) = f(\infty_2) = \infty_2$.
 - a. Ist *f* monoton?
 - b. Ist *f* positiv kettendistributiv?
 - c. Gilt die Eigenschaft des Satzes von Knaster-Tarski?
 - d. Gilt die Eigenschaft des Satzes von Knaster-Tarski-Kleene?
- 2. Warum muss bei den Voraussetzungen des Satzes von Knaster, Tarski und Kleene gefordert werden, dass die Funktion f positiv kettendistributiv ist, also die Bedingung der Kettendistributivität nur für nichtleere Mengen $X \subseteq L$ gilt?
- 3. Zeigen Sie, dass jede Funktion, die positiv kettendistributiv ist, auch monoton ist.