Foundation of Computer Science — FM2

Assignment 2 on the video lectures of "Week 1"

In what follows, finite automata are given as tuples $A = (Q, \Sigma, \delta, q_0, F)$, where Q is the set of its states, Σ is the input alphabet, δ is the transition function, $q_0 \in Q$ is the start state, and $F \subseteq Q$ is the sets of accepting states. If δ is represented by a transition table, then the head row displays the states while the head column contains the input symbols.

1. Let

$$A = (\{z_0, z_1, z_2, z_3, z_4\}, \{a, b, c\}, \delta, z_0, \{z_0\})$$

be a DFA, where the transition relation is given by the following table:

δ	$ z_0 $	z_1	z_2	z_3	z_4
a	z_1	z_3	z_0	z_4	z_3
b	$ z_2 $	z_0	z_4	z_4	z_3
c	$ z_2 $	z_0	z_4	z_4	z_3

- a) Draw the transition diagram of A.
- b) Which of the words ε , abab, ababa, caaa are accepted by A, and which of them are not?
- c) What is the language L(A) that is accepted by A.
- 2. Give deterministic finite automata accepting the following languages over the alphabet $\{0,1\}$:
 - a) the set of all strings ending with 00,
 - b) the set of all strings containing three consecutive 0s,
 - c) the set of all strings in which the second symbol from the end is 1.

3. Let

$$A = (\{a, b\}, \{q_0, q_1, q_2, q_3\}, \delta, q_0, \{q_3\})$$

be a nondeterministic finite automaton with

δ	q_0	q_1	q_2	q_3
a	$\{q_0,q_1\}$	$\{q_2\}$	$\{q_3\}$	Ø
b	$\{q_0\}$	$\{q_2\}$	$\{q_3\}$	Ø

- a) Decide, for each of the strings $w_1 = \varepsilon$, $w_2 = ab$, $w_3 = aab$, $w_4 = baaab$ and $w_5 = abbba$, whether or not they are accepted by A.
- b) Give the language L(A) accepted by A.
- c) Construct a deterministic finite automaton A', with L(A') = L(A). Use the subset construction (also called power set construction).