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Abstract

Scheduling and load balancing for parallel applications

can be done at application level, or at system level.

Application level scheduling is less transparent, be-

cause it has to be coded into each program, and can

lead to contradicting decisions, when the di�erent ap-

plications do not know about each other. Therefore, in

this paper we focus on system level load balancing. We

discuss the special properties of heterogeneous work-

station clusters for scheduling parallel applications.

A Shortest-Expected-Delay mapping is presented that

assigns the processes of a parallel application to \vir-

tually homogeneous" machines, based upon the cur-

rent load situation. We present simulation results that

show, how and when process migration is bene�cial in

heterogeneous systems.

Keywords: workstation clusters; heterogeneous sys-

tems; parallel applications; scheduling; mapping;

1 Introduction

A parallel application consists of a group of commu-

nicating processes which have to be assigned to the

processors of a parallel system.

Algorithms for scheduling and processor allocation

in multiprocessors for parallel processing are well stud-

ied. They can be classi�ed into space{sharing and

time{sharing disciplines [3]. Space{sharing disciplines

are non{preemptive disciplines which partition the

processors among the parallel jobs. Time{sharing dis-

ciplines use some form of round{robin{scheduling be-

tween the parallel jobs.

A workstation cluster may also be considered as

a parallel computer. A number of research activities

have tried to exploit the computing power of such en-

vironments [1, 4, 5, 7].

A popular tool to implement parallel applications

on workstation clusters is PVM (Parallel Virtual Ma-

chine). With PVM, each user maps her application

statically onto nodes which are speci�ed in a con�gu-

ration �le. But in most cases, workstation clusters are

not used exclusively by one user alone. This means

that a number of applications compete for the re-

sources. When scheduling is done on application level,

this may lead to overload situations, when two appli-

cations decide independently to make use of the same

host. Therefore, in this paper we focus on system level

load balancing.

In the next section, we discuss the special properties

of workstation clusters which have to be considered in

the design of scheduling disciplines. In section 3, we

present the Shortest Expected Delay mapping (SED)

which regards the heterogeneity of the machines and

also o�ers a simple computing model for the developer

of parallel applications on heterogeneous systems. Fi-

nally, we introduce mapping state diagrams to illus-

trate the behavior of SED and present simulation re-

sults which show the bene�ts of SED.

2 The Challenges of Workstation Clus-

ters

Scheduling on workstation clusters is quite di�erent

from scheduling on parallel computers. From the oper-

ating system view, each workstation is an autonomous

system. Each machine has its own scheduler, most

commonly a UNIX timesharing scheduler. The imple-

mentation of parallel job scheduling has to be in user
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Figure 1: System Model.

space on top of the kernel. This leads to the 2-level

system model shown in �gure 1.

The �rst level is the UNIX timesharing system.

Above this, there is a scheduling facility, which sched-

ules only the parallel applications which are submitted

to the system by a special user command. The global

run queue for arriving parallel jobs is managed by a

global scheduler, which is responsible for mapping the

parallel jobs onto the machines.

2.1 Heterogeneity

The most challenging property of workstation clusters

is their heterogeneity, since the speed characteristics

of the machines may be di�erent. If a parallel appli-

cation is mapped onto a subset of the machines which

consists of slower and faster machines, the slower ma-

chines may slow down the whole application, and the

overall performance of the system goes down.

2.2 Motivation for Migration

While it has been shown that migration is not bene�-

cial for load balancing in homogeneous systems [2], the

situation is di�erent in heterogeneous systems where

applications can pro�t from migration to faster hosts.

Further, migration can improve fault tolerance, by

evacuating hosts prior to regular shutdown, or through

checkpointing.

We conclude that the scheduler has to get active in

case of the following migration events:

� shutdown of a machine,

� interactive user arrivals,

� substantial load changes on a machine which

would slow down the parallel job,

� substantially faster machines get available.

3 SED Scheduling in Heterogeneous

Systems

The runtime of an application in a heterogeneous sys-

tem depends on the speed capacity of the machines

and their current load. First, we de�ne delay factors

to compare di�erent machines. Then we introduce

the concept of \virtually homogeneous" machines. Fi-

nally, the SED algorithm is de�ned.

3.1 De�nition of Delay Factors

In a homogeneous system it is su�cient to have a re-

liable measure for the current load on the machines.

In a heterogeneous system we wish to compare di�er-

ent architectures with di�erent processing capacities.

A load index suitable in a heterogeneous system is a

delay factor which gives the expected delay of an ap-

plication on a machine relative to, for example, the

fastest machine in the system.

We assume for every machineM

i

a given speed fac-

tor �

i

, de�ned as follows. A sequential process which

executes T time units on the fastest machine will need

�

i

� T time units on machine M

i

. We compare all ma-

chines relative to the fastest one. Hence, the speed

factor of the fastest machine architecture is one.

If there are already n processes running on ma-

chine M

i

and we assume a timesharing system with

neglectable overhead, the estimated delay will be ap-

proximately (1 + n) � �

i

. This motivates our de�ni-

tion of the delay factor of a machine M

i

at time t as

d

i

(t) := �

i

(1 + load

i

(t));

where load

i

(t) is the number of runnable processes on

machine i. For a discussion of this index see [6].

For example, a delay factor d

i

equal to two means

that the application will run two times slower on ma-

chine M

i

compared to the fastest machine. If the ma-

chine M

i

is idle, d

i

(t) = �

i

.

3.2 Workload Model

We suppose a strong synchronization model, i.e. ev-

ery process of a parallel job tends to synchronize with

other processes of the parallel application, so that the

slower machines will slow down the faster ones.

The speed-up of an application is limited by the

highest delay factor d

max

of all allocated machines.

Therefore, the applications run on virtually homoge-

neous nodes with delay d

max

. The delay of the ap-

plication on n machines with delay factor d

j

will be

approximately

d

max

n

, if we assume an optimal paral-

lelization.
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For an example, we use a workstation cluster which

consists of 5 faster machines (� = 1) and 25 slower

machines with � = 4. We suppose that all machines

are idle. If an application allocates only the 5 faster

machines, the resulting delay is 0.2. If it allocates the

25 slower machines, it will be

4

25

= 0:16. Alternatively,

the application can allocate all 30 machines. Because

of the strong synchronization model, the application is

mapped onto 30 \virtually homogeneous" nodes with

� = 4. The resulting delay is

4

30

= 0:133.

3.3 SED Scheduling Strategy

We present a mapping algorithm for heterogeneous

systems which is an adaption of the Shortest-Expec-

ted-Delay mapping (SED) proposed for sequential pro-

cesses. SED in homogeneous systems is known as \join

the shortest queue". This is the optimal strategy in

case of sequential processes in homogeneous systems

[8].

The proposed SED mapping for parallel appli-

cations searches for \virtually homogeneous" nodes.

Therefore, the heterogeneity of the system is trans-

parent. This makes the development of a parallel ap-

plication much easier.

The characteristics of SED are

� the global run queue is managed in FIFO order,

� processes of di�erent parallel jobs may be mapped

onto the same machine simultaneously, where

they are scheduled by the UNIX timesharing sys-

tem,

� migration, if faster machines get available,

� the user has to specify the maximum and min-

imum degree of parallelism (minsize and max-

size).

3.3.1 De�nition of Delay Classes

All machines are classi�ed according to their current

delay factors.

We claim that the highest delay of a process is lim-

ited by the �

max

value of the slowest architecture, i.e.,

SED maps at most one process onto a machine of the

slowest architecture.

The possible delay classes depend on the speed fac-

tors of the machines. Each multiple of a speed fac-

tor which is less than or equal to �

max

de�nes a

delay class. Let �

k

; k = 1; :::;K be the di�erent

speed factors. The speed factors are ordered (�

1

= 1,

�

K

= �

max

). We introduce a �-set, which consists of

the possible delay classes:

�-set :=

K

S

k=1

f�

k

� j j j 2N ^ �

k

� j � �

max

g

There are maxclass := j �-set j delay classes. The

order of the elements of the �-set induces an order on

the delay classes. The representative delay factor of

delay class i is denoted by �

i

. In our example, we have

�

1

= 1; �

max

= 4 and �-set = f1; 2; 3; 4g :

When the load index of a machine changes signi�-

cantly, the machine will also change its delay class.

3.3.2 The Availability Vector

The components a

i

of the availability vector

(a

1

; a

2

; : : : ; a

maxclass

) give the number of currently

available nodes in class i.

The expected delay D

k

of a parallel job P

k

which is

assigned to machinesM

j

; j = 1; 2; :::; n

k

; with current

delay factors d

j

is de�ned as

D

k

:= max fd

j

j j = 1; 2; :::; n

k

g : (1)

To determine the components of the availability vec-

tor, we have to consider the current delay factors

d

i

(t) of the machines and their slow{down thresh-

old s

i

(t) which is de�ned as follows. This thresh-

old gives the maximum delay which can be toler-

ated on a machine M

i

without slowing down one

of the assigned applications. We de�ne s

i

(t) :=

min fD

k

j for all applicationsP

k

which have been assigned toM

i

g :

When the system is idle, s

i

(t) = �

max

.

The availability vector is calculated as follows. The

components are initialized with zero. If d

i

� s

i

, then

a

k

:= a

k

+ 1 for all classes k � d

i

. This is checked for

every machine M

i

.

The values of d

i

; s

i

and (a

1

; a

2

; :::; a

max

) are up-

dated whenever a parallel job is assigned or termi-

nates.

In our example, when all machines are idle, the

availability vector is (5; 5; 5; 30).

3.3.3 The Mapping Algorithm

The SED mapping looks for the shortest expected de-

lay under the current load situation, or in other terms

it looks for the optimal speed up. SED maps an appli-

cation onto the machines which are currently in delay

class m, if

�

m

a

m

p

= min

n

�

i

a

i

p

�

�

�

i = 1; :::;maxclass

^ a

i

p

� minsize

	

;

where a

i

p

= min fa

i

;maxsizeg.

If there is more than one delay class which ful�lls

this equation, we choose the one which reduces proces-
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sor fragmentation, i.e., the fastest machine class which

minimizes a

i

� a

i

p

.

3.3.4 Assignment of a Parallel Job

When a parallel job is assigned to some machines at

time t+ 1, its expected delay D

k

is determined. This

may change the thresholds s

i

of the allocated ma-

chines. Further, the delay factors d

i

of these machines

and the availability vector have to be recalculated.

In our example, the �rst arriving application P

1

may have maxsize = 30. Hence, P

1

will allocate all 30

machines with an expected delay of 4. The availabil-

ity vector becomes (0; 5; 5; 5). The next arriving job

P

2

can still use the 5 faster machines without slowing

down the �rst application.

3.3.5 Termination of a Parallel Job

When a job terminates, �rst the delay factors d

i

of the

concerning machines have to be recalculated. This

may result in upgrading jobs which allocate some of

these machines. Hence, the expected delays D

k

of all

jobs have to be updated.

In our example, when P

1

terminates, P

2

runs alone

on the �ve fast machines, with a new expected delay

of 1. Only the 25 slower machines stay available for

the next arriving application.

Since the application is always running and con-

tained

in load

j

, we can not calculate D

k

as in (1), but use

D

k

= max f�

j

(1 + load

j

(t) � 1)j P

k

is ass. toM

j

g :

When a job is upgraded, the thresholds s

i

of all

machines have to be recalculated. This also e�ects

the availability vector.

In our example, the availability vector is (0; 0; 0; 25)

after P

1

has terminated due to upgrading of P

2

.

When the expected delays have been updated, the

scheduler checks whether jobs are waiting in the run

queue and may be mapped now. If the run queue is

empty, the scheduler checks whether a running job can

be migrated to machines of a faster delay class. This

means that SED uses migration to speed up applica-

tions in case of a low loaded system.

4 Evaluation of Simulation Results

A performance measure which is still suited in a het-

erogeneous system is the mean residence time of the

application, since it sums up the mean waiting time

and execution time.

To get a better understanding of the behavior of

the algorithms under di�erent hardware characteris-

tics, we use an arti�cial workload with constant ser-

vice demands (100 min), constant maxsize = 30 and

minsize = 10% �maxsize = 3. Since maxsize is equal

to the number of machines in the systems, the paral-

lel jobs will act greedy and allocate as much nodes as

possible.

4.1 Migration Costs

The approximation of the migration costs are moti-

vated by the measurements with our experimental mi-

gration facility [4]. The time for synchronization and

checkpointing before migrating a process is about 10

seconds. The checkpointing of several processes can be

done in parallel on the di�erent machines. After check-

pointing, the processes are migrated to their new loca-

tions. The transfer time via TCP for a process of x KB

can be approximated as y = 0:4[s]+0:0012[s=KB]�x.

This means about 12.7 seconds for the migration of a

process of 10MB size.

The time which is needed for migration is the sum

of checkpointing time and transfer time. If we migrate

n processes of size 10 MB, the costs of migration are

10 + n � 12:7 seconds.

4.2 Mapping State Diagrams

We introduce mapping state diagrams to characterize

the behavior of the SED algorithm. Mapping state

diagrams are distinct from state diagrams which de-

scribe the system behavior in terms of number of jobs

in the system.

A mapping state is a tuple (m

1

; m

2

; :::;m

maxclass

)

with one componentm

i

for each delay class. The com-

ponent m

i

gives the number of machines of delay class

i which are allocated by some application.

The mapping state of the system changes when a

job terminates or a job is assigned. A mapping state

diagram is a directed graph where the nodes are the

possible mapping states and the edges are the possible

state transitions.

4.3 System 1

System 1 consists of 5 faster and 25 slower machines

with � = 4.

4.3.1 Mapping State Analysis

The mapping state diagram of system 1 under the

given workload is shown in �gure 2. As long as no job

arrives, the system stays in the idle state (0; 0; 0; 0).
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Figure 2: Mapping State Diagram of System 1: SED

(left) and SED-NU (right).

When a job arrives, SED maps it onto all 30 machines

with delay 4 and the system is in state (0; 0; 0; 30).

The availability vector is now (0; 5; 5; 5).

When another job arrives, it will allocate 5 ma-

chines and the mapping state will be (0; 5; 0; 30).

When at least one of the two parallel jobs terminates

and the run queue is empty, the system will leave this

mapping state.

In case the job which allocates 30 machines ter-

minates, there will occur an upgrading, since the re-

maining job runs all alone on the fastest machines.

The system will change to state (5; 0; 0; 0). The avail-

ability vector is (0; 0; 0; 25). A new arriving job will

allocate the 25 slower machines.

The mapping diagram shows that system 1 has the

following characteristics under the given load situa-

tion.

� At most 2 jobs are running in parallel,

� jobs may run in timesharing mode (mapping state

(0,5,0,30)),

� upgrading may occur, and

� there will be no migration at all.

We compare SED with SED-NU that uses no up-

grading. The mapping state diagram of SED-NU is

also shown in �gure 2.

4.3.2 Simulation Results

The results of our simulations are shown in �gure 3.

The mean residence time, the mean waiting time, and

the mean computing time of the jobs are given as a

parameter of the job arrival rate. Further, the per-

centage of upgraded processes is shown.

For system 1, upgrading reduces both waiting and

computing time. The percentage of upgrades de-

creases with increasing system load. This occurs, since

upgrading is done only when the run queue is empty.

Nevertheless, upgrading leads to a better perfor-

mance even under high load (see �gure 6). The reason
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Figure 3: Simulation Results with System 1.

can be found by observing the corresponding mapping

state diagram.

In case of SED-NU the corresponding mapping

state for higher load is (0; 5; 0; 30). The asymptotic

computing time is

c

limes

=

�

x �

2

5

+ y �

4

30

�

� t;

where t is the mean service time demand of the jobs

(t = 100min), and the weights x and y are the solution

of the equations x �

2

5

= y �

4

30

and x + y = 1. In this

case there will run 3 jobs with delay

4

30

while one job

runs with delay

2

5

. This gives c

limes

=

2

10

� t = 1200s
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Figure 4: Mapping State Diagram of System 2: SED

(left) and SED-NM (right).

(see �g. 3).

In case of SED the system may change between

the states (5; 0; 0; 25) and (0; 5; 0; 30). The asymp-

totic computing time in state (5; 0; 0; 25) is c

limes

=

�

x �

1

5

+ y �

4

25

�

� t; with weights x =

4

9

and y =

5

9

. The

resulting asymptotic computing time is about 1060 s

which is the upper bound of the SED curve in �gure

3.

4.4 System 2

System 2 consists of 20 faster and 10 slower machine

with � = 4.

4.4.1 Mapping State Analysis

The mapping state diagram of system 2 is shown in

�gure 4.

Migration may occur when in state (20; 0; 0; 10)

the bigger application terminates and the run queue

is empty.

Another transition where migration may occur is

from state (10 + 10; 0; 0; 10) to (10 + 10; 0; 0; 0), when

one of the applications on the 10 fast machines termi-

nates and the run queue is empty.

The mapping diagram shows that system 2 has the

following characteristics.

� At most 3 jobs are running in parallel,

� all machines are used exclusively, i.e., jobs never

run in timesharing mode,

� there will be no upgrading at all, and

� migration may occur.

We compare SED with SED-NM that uses no migra-

tion.

4.4.2 Simulation Results

Our simulation shows the bene�ts of migration under

low and medium load. Under low load most jobs will

be mapped onto the 20 fast machines and migration

occurs rarely. The percentage of migrated processes

increases with increasing load. Under higher load the

run queue will seldom be empty and the probability

of migration decreases again.

Figure 5 shows that migration reduces the mean

waiting time. SED also reduces the computing time

up to an arrival rate of about 2.3 jobs per 1000 seconds.

Here, the jobs bene�t from the shorter runtime on the

faster machines after migration. But for higher load,

SED-NM leads to the smaller mean computing time.

The reason is that the two strategies result in di�erent

asymptotic computing times.

Without migration the system will be most of the

time in state (20; 0; 0; 10) under high load. The cor-

responding computing time is

1

9

�

8 �

1

20

+ 1 �

4

10

�

=

533;

�

3 seconds. When SED is used the system

may be in mapping state (20; 0; 0; 10) or (10 +

10; 0; 0; 10). The latter has a computing time of

1

9

�

4 �

1

10

+ 4 �

1

10

+ 1 �

4

10

�

= 800 seconds which in-

creases the mean computing time of SED compared

with SED-NM.

The di�erent behavior of upgrading and migration

is summarized in �gure 6 where the speed-up of SED

against SED-NU resp. SED-NM is shown. The speed-

up of SED against SED-NU is de�ned as

res. time of SED-NU�res. time of SED

residence time of SED

;

and similar for SED-NM. While the bene�ts of up-

grading increase under higher load, SED with migra-

tion shows substantial bene�ts under low and medium

load. It should be clear that the possible speed-up de-

pends on the hardware characteristics of the system.

5 Conclusions

We presented a SED mapping which makes use of the

heterogeneity of the system. SED is a non-preemptive

discipline. The presented simulation results show the

bene�ts of the upgrading and migration techniques

used by SED.

Simultaneously, we are implementing a global

Scheduler for PVM applications to verify our sim-

ulation results in a real environment. Here, the

load of interactive users is also considered by

the implemented SED algorithm. Further infor-

mations about our project are on our web side

http://www.cs.tu-bs.de/ibr/projects/

load/ .
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