Scheduling and Migration Strategies for Parallel
Applications on Distributed Systems

Von dem Fachbereictuf Mathematik und Informatik
der Technischen Univer&it Carolo-Wilhelmina
zu Braunschweig

von
Bettina Schnor
aus Braunschweig

angenommene Habilitationsschrift
zur Erlangung der Venia legendi
fur das Lehrgebiet
Informatik

Braunschweig
14.10.97

Abstract

This work deals with resource management for parallel applications inbditgtd systems. Its
main contribution is to develop a new resource management concept for pgpliehtions on
heterogeneous systems.

Whilst scheduling parallel jobs in multiprocessor systems has been a tesaagocfor a long
time, interest in scheduling and load balancing strategies for paralletafiphs on workstation
clusters has recently grown. Scheduling of parallel applications is dividedwotsteps. First,
the application which shall be scheduled next has to be chosen. Second, the nodes which shal
be allocated by the application have to be selected. The last step b malfging

First, we explain the characteristics of parallel applications whietimportant for resource
management. Further, we present different workload models. We give a cltssifiof group
scheduling strategies and compare the most popular resource management syspamasidbr
applications at the moment.

We present a time-sharing algorithm called LST which is based upon L&Bgesschedul-
ing. It differs from the prominenmatrix algorithm since it uses no fixed placements of jobs.
Instead of this, it makes use of a migration facility if mapping conflictaiacd/e investigate the
influence of migration costs on the performance of LST. In a simulation, LST pesfbetter
than different space-sharing scheduling strategies.

For heterogeneous systems, the Shortest—Expected—Delay—Mapping (SED) is pré@$ented.
advantage of using SED is that the heterogeneity of the system is transparenpfagtanmer.
This is done by managing “virtual homogeneous” nodes which makes the development of a
parallel application much easier. The concept of mapping states and mappindiatgams is
introduced to investigate the behavior of different SED algorithms.

Further, we present a new dynamic load balancing strategy called Dynamis8ED is
based upon the SED mapping strategy. Dynamic-SED not only looks at the current dédiay of t
machines, but also at the currently free memory and the number of interastve It presents
a new approach to achieve a co-existence between parallel applicationsezadtivé users.

The presented scheduling and load balancing strategies make use of a migaaiion f
Since migration is an operation which consumes processor time and networkydpawver-
head caused by migration is one of the main aspects in the investigation oetgented algo-
rithms. Further, a number of ‘migration anomalies’ are defined and it is ctegkether these
migration anomalies are true for Dynamic-SED or not.

The presented trace-driven simulation results show that migration iefal @nd efficient
mechanism to support parallel applications on workstation clusters.

vi

Thanks

Lots of people have supported this work in one way or another. Foremost, | want to thank
Professor Dr. Langendorfer for his encouragement and who made this work possible.

Most of this work was performed during my time at the Institute of OperatingeBysht the
TU Braunschweig under the head of Professor Langendorfer within the reseatgh“goad
Balancing and Failure Transparency”. | must thank all my colleagues whichihéwenced
this work with their discussions. In particular, | am indebted to Stefdri ®@o has designed
and implemented theBeam migration facility and shown that transparent migration of parallel
processes in workstation clusters is feasible.

| also want to thank the students who did their student or master thesis withiastearch
group which contribute to this work. The ones who shared my ‘enthusiasm’ for group sicigedul
and load balancing are Marc Gehrke, Sven Kithne, Reinhard Oleyniczak, Swstlien &nd
Stefan Stille.

Further, | want to thank Christopher Ford, Martin Hauner, Holger Schellwadt,Michael
Schmitt for their proofreading.

Braunschweig, December 1996 Bettina Schnor

vii

viii

Contents

1

Introduction 1
1.1 Motivation o e e 1
1.2 Classification of Scheduling Strategies 2
1.3 Classification of Applications 5
1.3.1 PoolofTask 6
1.3.2 Fully Distributed Application 6
1.4 Workload Characteristics 7
1.41 WorkloadModels e 7
1.4.2 \Variable-Size-Model and Fixed—Size-Model 8
1.43 Monitoring Studies 8
1.5 Performance Metrics 10
1.6 Resource ManagementSystems 11
1.6.1 NQS/SDSC o 12
1.6.2 PVM . .. 13
1.6.3 DQS . . . 15
1.6.4 CARMIMODI 16
1.6.5 LoadLeveler 17
1.6.6 Discussion 18
1.7 SummaryandourApproach 19
1.8 Outline 20
1.9 Bibliography e 20
Dynamic Scheduling Algorithms 21
2.1 The Scheduling Algorithms, 21
211 LSScheduling 22
2.12 SNPFScheduling. 22
213 FIFO-V . . 22
214 LSTScheduling 22
2.2 Evaluation of SimulatonResults 25
2.2.1 Approximation of Costs of Migration 25
2.2.2 Workload Model and Simulation Parameters 26
2.2.3 Comparison of LS,LST,andSNPF 27
2.2.4 Discussion of LST e 27

Contents

2.2.5 Benefits of Variable-Size-Model 33
2.3 SUMMArNY e e e 33
2.4 Bibliography 37
Resource Management in Workstation Clusters 39
3.1 Load Characteristics of Workstations 40
3.2 The Challenges of WorkstationClusters 42
3.21 Network Topology e 42
3.2.2 Time-Sharing Disciplines 43
3.2.3 Heterogeneity 44
3.2.4 Motivation for Migration oL 44
3.3 ThelLoad ManagementComponent 45
3.3.1 DefinitionofDelay Factors 45
3.3.2 Calculation of Speedfactors 46
3.3.3 Load Parameters for Homogeneous Systems a7
3.3.4 Load Parameters for Heterogeneous Systems 48
3.4 SUMMANY e e e 50
3.5 Bibliography 51
Mapping Strategies for Heterogeneous Systems 53
4.1 SEDStrategy o o i 54
4.2 Mapping State Diagrams 57
4.2.1 SED1-Mapping State Diagram of System1 57
4.2.2 SED2-Mapping State Diagram of System1 58
4.2.3 SEDI1- and SED2-Mapping State Diagram of System2 58
4.3 Evaluation of SimulationResults 60
4.3.1 Definitionof Workloads, 60
4.3.2 Performance Results for the Proof-Workload 60
4.3.3 Performance Results for the Exp-Workload 64
4.3.4 Performance Results for the Hyperexp-Workload 69
4.3.5 Performance Results for FS-Workload 70
4.3.6 Influence of Hardware Characteristics 72
44 SUMMANY . . . o o e e e e e e e 74
4.5 Bibliography 75
Dynamic-SED 77
5.1 Motivation and Definitions 77
5.2 Resource Reservation e 79
5.3 MigrationRules 79
5.3.1 TheSelectionPolicy 80
5.3.2 ThelocationPolicy 81
5.4 Dynamic-SED is Ping—Pong-Free 83

5.5 ATrace-Driven Simulation 86

Contents

Xi
5.5.1 Modelofthe TestSystem 86
5.5.2 TestSystemand Parameters 87
5.5.3 Results of the Night Experiment 89
5.5.4 Results of the Day Experiment 93
5.6 Summary e 94
5.7 Bibliography 95
6 Conclusions 97
References 99

Index 112

Xii Contents

Chapter 1

Introduction

The goal of this work is to propose a new approach for resource management support fel parall
applications in heterogeneous systems. Resources may be computing nodes, menrat, and
work capacity. The resource management of computing nodes for parallel applitstionded
into two steps. First, the application which shall be scheduled next has to bench®scond,
the nodes which shall be allocated by the application have to be selected. {T$teais called
mapping

In this chapter, we give a motivation for our work and describe our “working enviratime
i.e., we will answer the following questions:

¢ Which characteristics of parallel applications are important for resouesegement?
¢ Which kind of workloads do we expect?

e Which performance metrics are suited for the comparison of schedulinggitise

Which types of scheduling strategies for parallel applications exist?
e What is the state-of-the-art?

e What is our approach?

1.1 Motivation

Many numerically intensive “Grand Challenge” applications can be solvexysrallel algo-
rithms. Examples of applications are computational models of global climate exclssgeady
flow around airfoils, galaxy formation, and nuclear explosions.

A parallel application consists of a group of communicating processes which gidee t
assigned to the processors of the given parallel or distributed system.

A 2-dimensional multi-grid application for example may consist@fprocesses. Each pro-
cess calculates the points of one square and after each calculation stegisitts results to the

2 Chapter 1. Introduction

processes which are responsible for the neighboring squares. So the proces$esraniagin
parallel with high communication after each calculation step.
The benefits of parallel job scheduling are as follows:

e Load balancing, since each process is assigned to another processor.
e Speedup through parallel processing.
¢ Reducing communication costs in the case of fine-grain interactions [2].

Since the mid 80s, the interest in scheduling disciplines for parallel apphsahcreased due
to the growing interest in parallel and distributed systems. In theafadistributed systems, the
given network topology is of major interest. Hence, the development of schedulinglidiss
is hardware driven in the sense that much work was published for hypercubes wherubggerc
became popular. Influenced by the transputer topology and the Intel/Paragon machime, mes
architectures became also popular.

When software like Linda [52, 18], PVM [150, 50, 51] and P4 [15] became available, work-
station clusters were conquered as a platform for parallel computing. Thiagiksivas to build
message passing systems which offer a more comfortable interface to théimgdieansport
layer. But when systems like PVM became more and more popular, the need faméffes
source management increased. A sign that parallel job scheduling is a nua@im@&asadays was
the establishing of a workshop at the IPPS’95 and IPPS’96 about this topic.

This work deals with resource management for parallel applications in wodtstdusters.
Workstation clusters as they are typical in use in the mid 90s consist of afpbwerkstation
with at least 32 MByte memory which are connected by an Ethernet.

While the types of machines will change and memory space may be no problem in future,
one characteristic will be unchanged: That there are a number of connected madhictes w
differ in speed and which can be used for parallel processing.

1.2 Classification of Scheduling Strategies

The research of scheduling techniques falls into two separate cldssesninisticanddynamic
scheduling

Deterministic scheduling uses information about the service demands and thef Hiee
applications for constructing a schedule.

Definition: The number of processes which are contained within a parallel applicatiolteid ca
thedegree of parallelisnor sizeof the application. Theonfigurational sizés the number
of processes which are created when the job starts.

Deterministic scheduling deals with the classioapping problem Given parallel jobs
J1, Jo, ..., Ji, with service time demands, ts, ..., t; and sizeni, ns, ..., ng, the task is to con-
struct a schedule which minimizes the overall finishing time, i.e., tme tivhen all jobs are
finished.

1.2. Classification of Scheduling Strategies 3

The mapping problem is known to be NP—complete [11]. Deterministic schedulingdsruse
some batch systems [93, 135].

We use the terrdynamic schedulingzhen parallel jobs can be dynamically submitted to the
system by the users and nothing is known about the execution time in advance. Here w
only interested igroup scheduling strategies

Definition: A scheduling strategy which schedules all processes of a parallel job sieoiltsly
is called agroup scheduling discipline

Dynamical group scheduling strategies are classified into space—sharingnangharing
disciplines [39]:

Definition: A space-sharingliscipline is a non—preemptive discipline which partitions the pro-
cessors among different parallel jobstide—sharingdiscipline uses some form of round—
robin-scheduling between the parallel jobs.

Time—-Sharing disciplines for parallel jobs have first been investigatedusyethout who
introducedco-schedulingn the context of Medusa, an operating system for the* @mlti-
microprocessor [112]. Feitelson and Rudolph have proposed time—sharing schedulngues
for large distributed systems and have introduced the termina@agy scheduling36].

Definition: A time—sharing strategy is gang schedulingliscipline if the processes of parallel
job are grouped together into a gang. All the processes in a gang are always scheduled
to execute simultaneously on distinct processing elements, using a one-tcappeign
All processes in a gang are preempted and rescheduled at the same tinre¢makt-
switch).

Gang scheduling is necessary to allow efficient execution of communicatiensive ap-
plications, combined with reasonable response time and throughput on multiprocessecar
tures. The benefits of gang scheduling are discussed in [37] and [143].

Gang scheduling is supported on the Connection Machine CM-5 [153], Intel Paragon [32],
the Meiko CS-2, and multiprocessor SGI workstations [8].

Hence, a non—preemptive group scheduling algorithm is a space—sharing algorithm and the
preemptive group scheduling algorithms are gang scheduling algorithms.

Space sharing disciplines are divided into fixed, variable, adaptive, and dypartitioning
schemes [35, 144].

Definition: A fixed partitioningscheme divides the processing elements into predifined parti-
tions which are set by the system administratorvakiable partitioningscheme sets the
number of allocated nodes according to the request of the parallel joladAptive par-
titioning scheme sets the number of nodes allocated by an application according to the
request and the system load at the time of its arrivadlyAamic partitioningscheme is an
adaptive partitioning scheme which changes the partition size allocateds@aj runtime,
to reflect changes in job requirements and system load.

4 Chapter 1. Introduction

Fixed partitioning is used on several parallel computers when for exampigpesrfor batch
and interactive workload can be defined [157]. The major disadvantage of fixetibparg is
that parallel jobs have to allocate more jobs as they need and therefoistettmal processor
fragmentations high.

The advantage of variable partitioning is that internal fragmentation is aof@e the other
hand,external processor fragmentationay occur when the available free processing elements
are insufficient to satisfy the request of any submitted job.

Adaptive partitioning schemes reduce the number of allocated nodes when the syastem |
increases. This reduces external fragmentation since jobs tend to mkdelesar of the remain-
ing free processing elements. Adaptive partitioning algorithms are ige¢ssd in [54, 123, 113].

Dynamic partitioning is the most flexible partitioning scheme and has repeatestiyshewn
to be superior to other schemes [56, 101]. However, dynamic partitioning requirésasippt
level support. This may be simple in the case of master-worker-style appiis, but for Com-
putational Fluid Dynamics (CFD) applications for example there will occur a norectegile
overhead due to redistribution of data.

Squillante has investigated dynamic partitioning schemes [144]. He statéisettieenefits of
dynamic partitioning depend on the application workload and the reconfiguration costs.

Examples for load balancing facilities which support adaptive or dynamic loaddiatpare
CARMI/WoDi [120] (see section 1.6.4), PARFORM [17] and Piranha [53].

Konura, Moreira, and Naik have implemented dynamic partitioning for CFD apiplitaa
[78]. They report that only tens of lines had to be modified within the application cauoles
are redistributed from 8 to 16 nodes or from 16 to 8 nodes for example. The timeneefsr
the redistribution of the data was only a few seconds which is a promising r€suther, they
used the measured reconfiguration times as input data for a simulation of dynatiticrpag
for different workloads.

The acceptance of dynamic partitioning has still to be proven. Since the userdtenge
her code, it has to be beneficial for her. This is obvious, if applications can getresmerces.
But why should an application release resources voluntarily? Here, the indiaigtisdum is in
conflict with the social optimum (see section 1.5).

Further, adaptive and dynamic partitioning schemes can be combined with nggasuil
non-migrating strategies.

Definition: The relocating of an already running process from one processing element to an-
other is calledViigration. The state of the process is saved into a so-calleztkpoint
The checkpoint is transfered to the new location where a new process is dreatetie
checkpoint.

The state of a process can be divided into internal and external state [116]. &h®int
state of a process consists of register contents (including stack pointer andnproguater)
and contents of the address space (typically text, data, and stack segméetgxtdrnal state
consists of I/O channels (open file descriptors, sockets), signal handleess,tiparent-child
relations, and resource usage statistics.

Migration is motivated by load balancing and failure transparency. Loacdhtialz may be
implemented on user level. Then the application decides to migrate whemfbrmed about

1.3. Classification of Applications 5

substantial load changes. Dynamic load balancing may further be supported on sty |
a migration facility which migrates processes when faster machinesrzeavailable.

The presented classification of partitioning schemes is accepted whthisctentific com-
munity which is interested in group scheduling. There exists also a commgificktion of
load balancing strategies in distributed system. Applied to paralleicapipins, this leads to the
following characterization:

Definition: 1. Static load balancing On arrival a parallel job is mapped onto a subset of
machines and runs there up to completion. The machines may be specified within a
configuration file.

2. Adaptive load balancingWhen a parallel job is assigned to a subset of machines,
this subset depends on the current load situation. Further, the number of allocated
machines depends on the current load situation.

3. Dynamic load balancing The mapping strategy regards the current load situation
like in the case of adaptive load balancing, but reacts dynamically onto loadefia

Hence, dynamic partitioning is an example for a dynamic load balancing strategy.

1.3 Classification of Applications

The classification of parallel applications can be done under different aspects.

TheBasel Algorithm Classification SchefBACS) is an approach to get a classification of
parallel applications [14]. The goal is to achieve portability and algoritheygsability, i.e., to
support the most common parallel computation schemes on the most widely distrnirtel
machine models and computation languages.

BACS characterizes the algorithmic behaviour of the application like for exaitgphlgo-
rithmic topology, its interaction mechanism (message passing, tuple spaessi..), and data
distribution.

Since the intention of this work is resource management, we will give a fitadigin of
parallel applications which concentrates on the relevant aspects for resoanagement. These
are

e computing demands,
e memory demands,
e communication and synchronization model.

In resource management systems like DQS [30], LoadLeveler [67], CARMI [120jtas
common that the user has to specify the amount of memory the application needswaimion
every host. This is done to avoid the negative effect of swapping when memory égsoarce.

Parallel applications follow different communication models and synchroaizatiodels.
We distinguish between applications which follow thaol-of-taskamodel andully distributed
applications. We will define these characteristics in the following.

6 Chapter 1. Introduction

1.3.1 Pool of Task

In the pool-of-tasks model there is a pool of tasks which can be executed in paraéee exists
a central coordinator process, the so-called master, which distributesksedynamically to the
worker processes. This type of application is also often calledémgter-workemodel.

A simple example is the calculation of the Mandelbrot set where the mastéioparthe
problem in different rectangulars and distributes them among the worker pescess

Load balancing for master-worker applications can be easily implementegpmitation
level. Since the master always has the control over the application, he tdloutiésthe work
according to the current load situation and react easily onto load changes.né&lienachines
become available, the master may start worker processes on these macturgbstribute tasks
to them, or in the case machines are overloaded, he can stop using them. dyereric par-
titioning is easily done for master-worker application, since it is only aiapease of the load
balancing strategy.

Pruyne and Livny have described a resource management system named CARMuwyphich
ports dynamic partitioning [120]. CARMI is used together with WoDi which providemtar-
face for writing master-worker programs (see section 1.6.4).

1.3.2 Fully Distributed Application

in the case of dully distributed applicatiorthere exists no special coordinator process.

Examples of fully distributed applications are numerical applications lik&ignid applica-
tions. Grid applications play an essential role in Scientific Supercomputypgcdl applications
come from the field of Computational Fluid Dynamics.

The problem size is partitioned into equal sized meshes, typically in the 2dioné&asional
space. The parallel processes solve the problem within several iterafiies each iteration
‘neighboring’ processes have to exchange intermediate results.

A description of algorithms is given by Meynen and Wriggers [102], implementations of
multigrid techniques on mesh architectures are discussed in [155, 4, 102]

Further, we distinguish betwedralancedand unbalancedapplications. In the case of a
balanced application, the computing demands of all processes are nearly thénsémaease of
an unbalanced application, the execution demands of the processes may differ.

A parallel program may for example simulate the deformation of a tin. The tirughed to
something like a disk. When the pressure and tension rises, the computing demaol step
will rise also. But this will happen for almost all regions equally because adyhemetry of the
tin. This means that, while the computing demands change during execution, the applickti
stay almost balanced.

For other input data, i.e., asymmetric objects, the application may behaverdmlanced.
This possible behaviour of parallel applications was the trigger for lots of work oncagiph-
level load balancing.

Definition: LetP? = {pi,...,p.} be the set of parallel processes which belong to the parallel
applicationJ/. The relation—* (“exchanges results”) oR is defined as follows:

1.4. Workload Characteristics 7

pi +—" p; <= p; andp; exchange intermediate results between
thek-th and(k + 1)-th computation step

Definition: Let P = {p1,...,p.} be the set of parallel processes which belong to the parallel
application.J. We say that/ follows the strong synchronization modélthe transitive
closure of the relatior—* is P for all k.

In the case of applications which follow the strong synchronization model, an unbdlanc
load situation may slow down the whole parallel application.

An example of a fully distributed application with strong synchronization isudtigrid ap-
plication. If we consider for example a 2-dimensional mesh, each node exchangeswésult
its four neighbors after each iteration. Let us assume that one sigsleverloaded and hence
it needs more time for an iteration than the other nodes. This will slow dolwh regighbors
Ay, As, Az, A4, since they cannot carry on their work without the intermediate results ftom
The delay ofA;, A2, A3, A4 will also slow down their other 8 neighbors in the next step. Hence,
the delay of one node will be propagated like a wave. Finally, the whole applicatslowed
down by a single node.

Scheduling strategies which address fully distributed applications withgtsynchroniza-
tion are presented in chapter 4.

Another criterion for parallel applications is thgranularity which gives the mean number
of operations between communicationfide grainapplication has only few operations between
communication, and eoarse grainapplication a higher number of operations. Since fine grain
applications are more communication-intensive, they need a high bandwidth and atetebt
for workstation clusters for example.

1.4 Workload Characteristics

Since the dawn of (computer) time, it has been recognized that performance analysis and mod-
eling of computer systems hinges on using a representative workload (Feitzbefg)
A most common technique to test the performance of scheduling disciplines is tsmula
For the interpretation of a simulation study, two aspects are important:tfiessimulation soft-
ware has to be correct, and second, the input workload should be realistic.

1.4.1 Workload Models

It is still an open question whether there is any correlation betweenzeeta parallel job and
its service demands.

The Fixed—-Work—Modehssumes that the work done by a job is fixed, and its execution time
depends on the degree of parallelism when it is executed. This model is the basadahl’s
law [5]. In the optimal case, there will be a speed upktofvhen the application runs oh
processors. In this model the runtime is negatively correlated to the jeb siz

8 Chapter 1. Introduction

Gustafson [57] has introduced tR&xed—-Time—ModelFixed—Time—applications have to be
solved in restricted time. An example is weather forecast. Herpriftdem is sized up by taking
the finest grid of measure points which can be solved within the given time dahdhei given
degree of parallelism. Hence, the execution time and degree of paral@lthe application are
independent. This leads to an uncorrelated workload.

On a distributed memory computer, the amount of available memory increéhg¢benum-
ber of used nodes. Hence, the problem size may be increased to fill the avaitahtay. This
gives theMemory-Bound-Mod€]149] where size and service demands of an application are
positively correlated.

1.4.2 Variable-Size—Model and Fixed—Size—Model

Beside mean inter-arrival time and mean service demands, the degreeltslisan or so—called
size of the parallel application has to be specified.

The user knows the maximum degree of parallelism of her application and normalifiespe
this value, when she submits the application to the scheduler. If the user walitxate exactly
as many processors as specified, we calfited—size—model

But most applications, like partial differential equation solvers for exapgan have a vari-
able size and only the maximum degree of parallelism is fixed. Here, speedpandeffi-
ciency curve show the optimal degree of parallelism, which normally depends onglenen-
tation and hardware.

This variable—size—mode$ a generalization of the fixed—size—model, which is included by
specifyingminsize = mazsize. Alower bound forminsize would be one, and an upper bound
for maxsize would be the total number of workstations. In our model, the size of an application
is fixed when the application is started.

In heterogeneous systems, the variable—size—model may lead to a bettenpedercom-
pared to the fixed-size-model. Consider for example a system of 10 workstatiores 4vimer-
chines are 2 times faster than the others. In spite of using the 6 slowéinesadt is of more
benefit to run the application on the 4 faster machines. In this case, it sabtlvithat the user
specifies the minimum and maximum degree of parallelism which is suitablerfappécation.
This approach is more flexible and can make better use of system resources.

When the application follows the variable—size—model, the variable, adaptivdynamic
partitioning scheme can be used. In the case of fixed-size-applications, dalyl@gartitioning
is possible.

In [44], the termrigid job is used for a parallel application with fixed size, and the term
moldable jobfor an application with variable size.

1.4.3 Monitoring Studies

Workload characteristics of uniprocessor machines are meanwhile well-knotthgebe is still
little data available about the workload of parallel systems. In this chayesummarize the
results of monitoring studies.

1.4. Workload Characteristics 9

job | averagel standard| coefficient
size | runtime | deviation| of variation

1 140.6 736.0 5.2
2 714.2 | 2422.3 3.4
4 | 1116.7| 41715 3.7
8 705.2 | 2344.3 3.3
16 | 569.3 | 1970.9 3.5

32 | 1305.3| 3311.6 2.5
64 | 1250.8| 4155.8 18
128 | 3280.1| 4408.1 13

Table 1.1: Runtime statistics at NASA Ames Research Center.

Feitelson and Nitzberg present the results of an accounting study on the 128-no&6IPSC
hypercube located at the NASA Ames Research Center [34]. The study was donettaring
fourth quarter of 1993. Mapping on the iPSC/860 is done in a space-sharing mode where jobs
are mapped exclusively onto subcubes. Hence, the partition size, i.e. ¢hefgslze parallel
applications, is always a power of 2 with 128 nodes at maximum.

Among the parallel jobs, a more-or-less uniform distribution across the pogsitdéel job
sizes is observed. The high number of sequential processes is due to Unix commards whic
were run by the system administrators mostly to check system functionality.

The percentage of jobs with size 128 was less than the other possible sizesr, Fuette
biggest possible jobs, which allocate the whole hypercube exclusively, were abaenight or
at the weekend. This leads to the assumption that only the actual allocated rimplzgEessors
was monitored but not the possible maximum parallel job size.

When the job size is set into relation to the consumed processor resourcegeckda node-
seconds, the large jobs, with 32, 64, and 128 nodes, have consumed the most computing time in
roughly equal portions. This means that the smaller number of 128-node jobs have consumed
more processor resources.

The mean runtime, standard deviation, and coefficient of variation, i.e atiloeof the stan-
dard deviation to the mean, is given in table 1.1. The coefficient of variasi@ways larger
than 1. This can be modeled by hyper-exponentially distributed service demandserfitrt
is observed that runtime and job size are positively correlated whichiist ghat the memory-
bound-model is appropriate.

A study of 23 CFD applications also reports that large jobs tend to run longer and éneghas
the memory-bound-model [106].

Feitelson reports from trace data on a 400-node Paragon at the San Diego Compteer Ce
and on a IBM SP1 at the Argonne National Lab that there is only “a weak tendenarder |
jobs to have a higher runtime” [43].

10 Chapter 1. Introduction

1.5 Performance Metrics

A scheduling discipline can be evaluated from different points of view. The useteiested
in a fast response time. Hence, a measure forintd&idual optimumis the speedupof the
application.

Definition: Thespeedug(p) is defined as

whereT'(k) gives the runtime of the application érprocessors.
TheefficiencyE(p) is defined as

_Sp T(1)
Ew) === gy

In general, measurements show a common behaviour of parallel applications.adiihg
more processing elements increases the speedup, the efficiency drops. Thisishduesing
communication overhead.

In most cases, the user will only be interested in speedup and not in theneffiaé its
implementation. While nearly the same execution time may be possibleasgmbdes, the user
will typically use as much resources as possible.

For example, Ghosal et al. [54] suppose that the efficiency function of an applidati
given in advance and use this information in their scheduling decisions. Bus thigary strong
requirement which would be hard to fulfill in most environments.

Speedup and efficiency are defined for homogeneous systems. In a heterogeneous system it
has to be defined of what kind the reference machine is. UsUglly, gives the execution time
on the fastest machine.

From the point of view of the user, the speedup shall be maximized. But from the point of
view of the system administration, an efficient use of the system is more bahafei, setting
the speedup in relation to the costs. Hence, the use of the product of these ties asetr target
function is proposed in [46, 54].

A popularsocial metricfor dynamic scheduling is theean residence timeThe residence
or response time of a sequential job is the sum of waiting and execution timbe base of a
parallel application this is the time from submitting the job until the last@ssof the application
has finished.

In the case of deterministic scheduling, the makespan is used as a meadtee gerfor-
mance. Given parallel job$,, J, ..., J,,, the makespan is the time from starting the first job up
to the completion time of the last job. Another possible criterion is for exathgl@ercentage
of processor fragmentation.

1.6. Resource Management Systems 11

1.6 Resource Management Systems

A resource management system manages the resources, i.e. processing nodesagdaha
distributed system. Similarly to the field of classical scheduling,etfeist various criteria to
decide what is a good resource management strategy. Possible goals are high-througbiput and/
a minimum mean residence time and/or preference of special applicatise<la® important
property of a resource management system is fairness, i.e. no applicationaidgrever for
getting computing resources.

A resource management system has four components:

1. Scheduler:
The scheduling component decidesiena job is scheduled.
All scheduling techniques fall into one of two classes: space-sharing ostiiguéng strate-
gies.

2. Mapping Component:
The mapping component decided)erea job is started, i.e. on which nodes.

3. Load Information Component:
The load information component gathers the current load statistics.

4. Load Balancing Component:
The load balancing component implements the load balancing strategy. Furthed, a loa
balancing mechanism is necessary: A remote execution facility in caséaptive load
balancing and a migration mechanism in case of dynamic load balancing.

Some strategies combine the scheduling and mapping strategy. Hence, thess pgstess
only a scheduling component.

There are several resource management systems in use. We will discasssthegopular
ones which support parallel applications. The classification criteria are:

1. Which architecture is supported?
2. Which types of applications are supported?

Is there special support for the pool-of-tasks or the strong- synchronization-model?
Is the fixed-size or variable—size—model supported?

3. Is the scheduling strategy

(a) space-sharing or time—sharing?

(b) fixed, variable, adaptive, or dynamic?

(c) migrating or non-migrating?

(d) Is the memory demand of the application considered in the scheduling strategy?

4. Load management:

12 Chapter 1. Introduction

(&) Which load metric is used?
(b) Are heterogeneous systems supported?
(c) Are interactive users considered?

5. Further notes.

1.6.1 NQS/SDSC

The Network Queueing System (NQS) is a batch scheduling facility develdpédSA Ames.
NQS was originally designed for throughput-oriented computation with sequential ljolass
been extended to support parallel applications. NQS is supported by various vendaeglef pa
machines and is in use among many large UNIX system sites. The POSIX @tdB&& STd
1003.2d-1994 defines a standard batch and general queuing environment which is based on NQS.
When a job is submitted, its limit on CPU and memory usage has to be specifiedardobs
classified according to these limits in different classes. Jobs thaedxheir time limit are
terminated.
Here, we describe an extension of NQS for the Intel Paragon parallel com@2}émm the
San Diego Supercomputer Center (SDSC) [157]. The SDSC batch scheduler wapel¥er
a 416-node Intel Paragon system at SDSC. The software has been adopted by Intphanofis
the software release for the Paragon machine.

1. SDSC is developed for the Intel Paragon parallel computer. The networkeatahét of
the Paragon is a 2-dimensional mesh. The nodes are managed in different paitions:
service partition for operating system services, such as the file sanekalso interactive
use, and a compute partition.

2. SDSC uses the fixed—size—model.

3. The scheduling strategy is a priority based space-sharing disciplineamittble partition-
ing.

(&) While the Intel Paragon architecture offers a gang scheduling mechands¢; S
favors space-sharing [157]: “However, time-sharing of jobs places a heaggrban
the paging system and is not practical at this time due to 1/0O band-width perfoemanc
and disk space limitations.”

(b) SDSC uses priority based scheduling combined with non-contiguous node allocation.
NQS/SDSC manages jobs in different queues according to their resource require-
ments. Jobs have to specify whether they need "fat” nodes with 32 MBytes or less
Further, they have to specify their computing demands. SDSC distinguishes three
classes: Short jobs with a time limit of 1 hour, medium jobs with a time lwhit
hours, and long jobs with a time limit of 12 hours.

The queues have different priorities. For example, the queue priority of the long resp.
short jobs is 10 resp. 12. Within a queue, the scheduling strategy is simple FIFO.

1.6. Resource Management Systems 13

To avoid starvation of processes in lower priority queues, SDSC uses agpng-of
cesses. The job priority is calculated as follows:

job_priority = queue_priority + age_factor « time,

where time is the time in hours the job has been waiting in the queuegnflactor

is a constant factor configurable by the system administrator. With an age déctor
0.1, it will take a long job 20 hours waiting in the queue to get the same high priority
as a short job.

When a job is chosen for scheduling and enough nodes are available, it will bd.starte
Otherwise, it has to wait. To avoid starvation of bigger jobs, SDSC usesxamom
priority block _priority. When the job has reached thleck _priority, scheduling of

new jobs will be blocked until there are sufficient free nodes for this job. For exampl
with block _priority = 15 and an age factor of 0.1, a long process will wait 50 hours
in the queue before blocking, i.e., reservation of nodes, will start.

Another crucial point in scheduling parallel applications on distributed memary m
chines is the mapping strategy. A typical mapping strategy for mesh arcinésct

is mapping onto rectangulars. The Paragon architecture allows non-contiguous node
allocation which means that the nodes of an application do not have to be direct
neighbors which makes the mapping strategy more flexible and increases the node
utilization. SDSC uses a modified 2-D Buddy System [157].

(c) Checkpointing and migration are not supported.
(d) The user specifies the minimum amount of memory each node should have. This is
used in determining the job queue of the application.
4. Load management:

(a) Nodes are dedicated in space-sharing mode to applications.

(b) NQS/SDSC manages machines which differ for example in their memarynes
in different queues. NQS/SDSC is also aware of single and two processor nodes.

(c) There exists a special partition for interactive jobs.

1.6.2 PVM

A popular tool to implement parallel applications on workstation clusters is PRév&Ilel Vir-

tual Maching [150]. PVM is a message passing system which supports parallel applications.
PVM is no batch scheduler. PVM creates a user-specific parallel virtaehime. The user has

to specify the hosts which shall belong to her parallel machine in a configurdéon fi

1. One of the main reasons why PVM became the most popular platform for parallelappli
tions is its availability on a wide range of heterogeneous platforms from woidessatip
to supercomputers like the Intel Paragon, KSR1, Cray-2, and Thinking Machines CM-5.

14 Chapter 1. Introduction

2. PVM applications specify a fixed size.

3. (a) PVM lacks resource management. The hosts which are specified in the @nfigur
tion file belong to the virtual parallel machine. The processes of an application
mapped in a round-robin fashion onto the nodes of its parallel virtual machine.

If two users start applications in parallel and their configuration files ltawve-
mon entries, then their applications may run concurrently on some machines without
knowing from each other.

(b) PVM uses variable partitioning.
(c) Checkpointing and migration are not supported.
(d) Memory demands are not considered.

4. Load management:

(&) The current load situation on the machines is not considered.
(b) The heterogeneity of the machines is not considered in the mapping strategy.
(c) No special actions for interactive users.

Since PVM offers no resource management, different groups have started tesaddce
management for PVM.

Humphres has implemented a resource management component for PVM [65]. The pro-
cesses are started on thdéastest machines according to the load index. The used load index is
the idle time of the machines which is not very meaningful in heterogeneous systems.

Wilhelms has implementeVM+ [161] which uses the idle time and the CPU load average
of the machines to estimate the current load situation. PVYM+ maps ontofttstest machines.
Interactive users are considered when the job is started. The estiméfimad caused by in-
teractive users is based on a user classification. The classifices#dinaind the assignment of
users to special classes does not seem very practical. PVM+ does noteatl@ahénges during
execution.

Pruyne and Livny have implemented the Condor Application Resource Management Inter-
face (CARMI) for PVM applications (see section 1.6.4).

In [33], ageneral resource managéGERM) for PVM is proposed. GRM will be distributed
with PVM 3.4. GRM uses a load metric which is similar to our delay factodiffers in the
calculation of the speed factors and the load average. Typically for P\&@dyuree management
is done for each application separately. The speed factors are defined toviighted mean
of integer and floating point performance. The weights are user configurable. Thistgveser
the opportunity to adapt the speed factor to the demands of its application. On the ottier ha
this approach is less transparent, since the task to find the optimal valeftsaseach user. The
weights of the load average will be also user configurable which is less meanifigese are
parameters of the load management which are independent from the application.

In [33], four scheduling disciplines are proposed for the GRM:

1. The originally Round-Robin scheduling,

1.6. Resource Management Systems 15

2. using the least loaded machines where only the load average is used as liad met

3. using the least loaded machines compared by their delay factors with abneBtvM
task per host,

4. using the least loaded machines compared by their delay factors (mulsk¢entey run
on a single host).

The drawback of the first discipline is that it is unaware of the current loadtisituaThe
second policy is a ‘random’ policy in heterogeneous systems as explained in chaptertd.o
latter are the only serious ones. Both is common that they insist on the fixedisidel. Hence,
in case of a fully distributed application the slowest node will slowdoenwhole application
and the policies will not make efficient use of the resources.

Gehrke has implemente®tPVMwhich supports Shortest Expected Delay mapping for PVYM
application due to the current load situation (see chapter 4) [49].

1.6.3 DQS

The Distributed Queueing System (DQS) from the University of Florida ishaduling system
for sequential and parallel applications on workstation clusters [30].

1. DQS supports different UNIX platforms such as DEC OSF/1, HP-UX, IBM ABGI
IRIX, SunOS, and Solaris. DQS supports PVM applications.

2. DQS supports the fixed—size—model.
3. The DQS scheduling is similar to native NQS.

(&) Queues can be suspended when other queues receive the jobs. Hence, spage-shari
is optional.

(b) DQS provides the user with different queues based on architecture, sofivial-
ability etc..
When submitting a job the user has to specify a list or resources like memogndis
and software availability (PVM, Mathematica etc.). DQS autoradljicselects an
appropriate queue. Like NQS, the basic feature of DQS is to map the application
onto machines which fulfill these requirements.
Applications are scheduled in FIFO order. There are two possible methods of map-
ping. The first one is to map jobs according to the queue sequence number. Then the
first queue in the list receives the job for execution. The second method isc¢dide
by weighted load average within a group so that the least busy node is setented t
the job. The actual method used is selected at compilation time.

(c) Checkpointing and migration are not supported.
(d) The user specifies the minimum amount of memory each node should have.

16 Chapter 1. Introduction

4. Load management:

(@) A CPU load average may be used as a load index.
(b) There may be several queues on a machine.
(c) No special care for interactive users.

5. The performance and behavior of DQS depends mainly on its configuration.

In [135], experiences with an implementation of DQS combined with the concégpiwi
putational equivalents” for heterogeneous systems are described. The algorithrtheeeds
expected runtime of the parallel job as further input parameter and is litaitdw fixed—
size—workload-model.

1.6.4 CARMI/WoDi

Pruyne and Livny have described a resource management system named CARMI (Cpndor A
plication Resource Management Interface) for PVM applications [120]. CARM&sed on the
Condor batch system [96].

CARMI is used together with WoDi (Work Distributor) which provides an ifaee for writ-
ing master-worker programs.

1. Like PVM and Condor, CARMI/WQODI is available on various UNIX platforms.
2. WoDi supports master-worker-applications and uses the variable—size—-model.

3. (a) WoDi supports dynamic partitioning of master-worker-applications.

(b) WoDi dynamically distributes the tasks which are created by the miastiee work-
ers.
Pruyne and Livny report that in some master-worker-applications, work stepe c
in groups, and all the results from one group have to be calculated before the next
one can be started. This means strong synchronization within a master-worker-
application.
For this reason, WoDi applications can specify the beginning and the end of such a
working cycle. When cycles are used, WoDi keeps a record of the computation times
of all steps within a cycle. This work step history can be used for furtheidsiing.
Based on estimations of the execution times of the work steps WoDi uses a greedy
work step distribution algorithm where the steps are ordered according te#tiei
mated run times.

(c) Checkpointing and migration of master-worker-applications can easitjohe on
application-level. For arbitrary PVM applications, CoCheck (ConsistentKieent-
ing) is used [121].

(d) The user specifies the minimum amount of memory which each node should have.

1.6. Resource Management Systems 17

4. Load management:

(&) The speed of a machine is determined by one of these three ways: Firgthed s
factor as a measure of the computing capacity can be used. Secondly, WoDi can
use CARMI services. Thirdly, WoDi can execute a benchmark on each netedrea
worker.

Since benchmarking uses processing capacity, the second approach is recommended.
CARMI supports information about speed factors (as calculated by the Dhrystone
and LinPack benchmarks) and about interactive users. A load index is not used.

(b) CARMI supports heterogeneous systems by using speed factors.

(c) When CARMI is informed by Condor about interactive users on a machine, the ma-
chine is not used anymore for the parallel application.

1.6.5 LoadLeveler

The IBM LoadLeveler is a resource management and scheduling system originellgpk for
the IBM SP machine [67]. Here, we describe IBM LoadLeveler Release 3.0.

1. LoadLeveler runs on every major UNIX platform such as IBM RISC and SPUMP
Solaris, SunOS, SGI IRIX. The supported parallel environments are PVM 3.3tz
or any parallel programming language which uses the LoadLeveler parallel progrgm
interfaces (such as the IBM Parallel Environment Library).

2. LoadLeveler uses the variable—size—model.
3. The scheduling strategy is space-sharing and adaptive.

(a) The scheduling of parallel applications is space-sharing. Hence, nodes aagetkdi
to one application.

(b) The scheduling strategy is adaptive and uses a so-taliggbrary reservationThis
means that when a parallel job enters the system, the central manager Bshof a
machines with machines which fulfill the job requirements. If sufficienttmrees are
not available, the central manager reserves as many machines as p¥ghiafema-
chines become available, theses machines are added to the list of revaoctedes.
Finally, when enough machines are reserved, the job is dispatched.

Since a big job may block the whole system, the amount of time the machines may
be reserved is limited. When the limit is exceeded, all reserved meshre released

and the parallel job is placed in the “deferred” queue. After some time thegiters

the LoadLeveler queue with its original priority.

The amount of time for which resources may be reserved for a job and the time a job
will remain in the deferred queue are configurable. The default value is 5 minute
reservation time and 5 minutes time out in the deferred queue.

18 Chapter 1. Introduction

(c) Checkpointing and migration are only supported for sequential processes. Tke chec
point and migration mechanism are based on Condor.

(d) The user specifies the minimum amount of memory for each node.
4. Load management:

(a) Nodes are dedicated to applications. Hence, only theataitableor not available
is used within the scheduling strategy.

(b) No special support for heterogeneous systems.

(c) The use of a resource manager is optional. The resource manager coordinates ma-
chine usage between interactive and batch jobs. Machines may become dedicated
through interactive jobs.

5. Obviously, the temporary reservation discipline is not starvation Begjobs may try to
allocate sufficient nodes repeatedly in vain.

The behavior of the discipline depends mainly on the time parameters for reserant
waiting in the deferred queue. It is the system administrator’s task tatim@ptimum
values. There is no mechanism in LoadLeveler to adapt these paramdtezsatorkload
by automatically.

The chosen default values of 5 minutes assume that load changes occur inlyetative
time intervals. However, when parallel applications run several hthisss not a realistic
assumption.

1.6.6 Discussion

PVM and CARMI/WoDi differ from the other proposed systems. PVM is mainly ssage
passing library with minimal support for the administration of the applicatidver& exist several
approaches to enhance PVM with resource management features (see for es&mpbd [33,
49]. CARMI/WoDi is a special resource management system for PVM applicatibics follow
the master-worker-programming model.

In the following, we will compare the remaining resource management sys@Q&/SDSC,
DQS, and LoadLeveler.

The only system which supports the variable—size—model is LoadLeveler. Alsaikerthe
simple fixed—size—model.

The scheduling strategy is mostly based on FIFO-queues where the queues aredigfined
to resource demands of the application. NQS/SDSC uses queues depending on the runtime
approximation of the application. DQS is more flexible and manages queues for diffgrest
of applications. For example, there may exist a queue for PVM applications and ago#uer
for applications which need Mathematica.

NQS/SDSC and LoadLeveler use a space-sharing strategy. DQS can be cdrtbguaieed-
ule different queues on the same machines.

1.7. Summary and our Approach 19

The main deficits of the systems are in load management. LoadLeveler an@BYS do
not use current load informations in their scheduling and mapping decisions. Only<dp&i
to perform adaptive load balancing. None of the systems support checkpointing andamigrati
of parallel applications. Hence, there is no support of dynamic load balancing.

1.7 Summary and our Approach

Group scheduling strategies are divided into two classes: space-sharitijmersharing disci-
plines. While space-sharing is the most common technique in most existing sy#ternenefits
of time-sharing disciplines for multiprocessor machines is repeatedly simosimulations.

It is still an open question whether time-sharing partitioning schemes malgbéeneficial
on workstation clusters. The characteristic of time-sharing policidsaisthe waiting time of a
job depends on its service demand. Therefore, we will compare time-sharingaresharing
disciplines in a simulation to investigate their behavior in workstatiostefrs (see chapter 2).

Parallel applications differ much in their computation and communication beth&\Ve have
presented two popular types of applications: pool-of-task and fully distributettafiphs. Load
balancing and scheduling for pool-of-task applications is most efficiently done orcaipgt-
level. Our goal is to support resource management of the second type of the fulllgutiestri
application which includes the important class of computation-intensive CFDcappliis.

Finally, we have described the currently most popular resource managementssistear-
allel applications. We have discussed these systems under the aspect of sghaddlioad
management. We conclude that the current support for resource management is only rudimen-
tary. In particular, the systems in use are not suited for workstatiorecéushere heterogeneity
and the presence of interactive users have to be considered in scheduling abdlérating
decisions.

Our approach is resource management support on system-level without any modsieti
the underlying operating system. The benefits are transparency and portabilis€eFlumes not
have to take care about load management and load balancing when she writes ibati@ppl
Since the resource management system is middleware between applicationratidgpgstem,
it is easier to port between different operating systems and in case ofiogesgstem changes.

This means that the resource manager runs on top of the given operating systami)NéX
derivate, and all parallel applications run in competition with “locatliofrom interactive users
or other batch jobs which are all scheduled by the native UNIX scheduler (s&nsg@).

The main contribution of our work is to develop a scheduling and load balancinggstriatr
heterogeneous systems. We introduce the concept of “virtual homogeneous nodes” to make the
heterogeneity of the system transparent for the user. The presented mappeuy SED uses
the variable—size—-model to determine an optimum mapping in a heterogeneous emtronme

While migration mechanisms in user-space are meanwhile available [116,9, 126], there
is a lack of good dynamic load balancing strategies which make use of them. \E¥atmasew
dynamic load balancing strategies called Dynamic-SED. Results froroexdréven simulations
show that the migration overhead is neglectable and that migration is an ossfhanism to
support parallel applications in workstation clusters.

20 Chapter 1. Introduction

1.8 Outline

In chapter 2, we present algorithms for dynamic scheduling, both space—sharing and time
sharing policies, and compare their performance under different workload modelsiinu-
lation. A new co-scheduling algorithm is presented which differs from the kvelvn matrix
algorithm and makes use of a migration facility. We investigate under wiickload parame-

ters the time—sharing discipline may be beneficial. Further, we investiga¢ther migration is

an adequate method for solving mapping conflicts.

In chapter 3, we discuss the special properties of workstation clusters whighortant in
resource management and introduce the concept of delay factors as a load méietefoge-
neous systems.

In chapter 4, we introduce the Shortest—Expected—Delay—Mapping (SED). SED is aghappi
strategy for heterogeneous systems which also supports the variable—size-rhedelvantage
of using SED is that the heterogeneity of the system is transparent for the prograine
is done by managing “virtual homogeneous” nodes. This makes the development of a parallel
application much easier.

We introduce the concept of mapping state diagrams as a formal description tveldtigate
the behaviour of different SED algorithms. In particular, we are interestesther SED may
benefit from using migration. Further, we present simulation experimentd thégserformance
of the algorithms.

In chapter 5, we present a new dynamic load balancing strategy called Dyn&mieASich
is based upon the SED mapping strategy. Dynamic-SED not only looks at the currerifdbiy
machines, but also at the currently free memory and the number of interastive It presents
a new approach to achieve a co-existence between parallel applicationsezadtivé users.

We define a number of ‘migration anomalies’ and check whether the migration aeeragdi
true for Dynamic-SED or not.

At the end of each chapter there is a summary and further suggested readings.

1.9 Bibliography

Feitelson gives a detailed survey over scheduling in parallel systeétmspecial care for gang
scheduling techniques [35].

Recent developments are described in the proceedings of the IPPS workshops “Job-Schedul
ing Strategies for Parallel Processing” [38, 40, 41, 42].

We do not consider application-level load balancing in this work. This is done for egampl
[94, 24, 10, 162, 82, 77, 88]. An algorithm for application-level load balancingdimensional
meshes is given in [126] which is superior than the common gradient model load ihglanc
methods.

Chapter 2
Dynamic Scheduling Algorithms

In this chapter, we present scheduling disciplines which are are suited fonudtiprocessor
systems and workstation clusters, since the only assumption is that the nodesramnnected
by a communication bus. The situation differs from parallel computers, dikexXample on a
hypercube or mesh-architecture, where the network topology is regarded in the suiedali
mapping decision.

We compare the presented algorithms for different workloads in a homogeneous system. W
choose a homogeneous system to avoid the influence of the mapping strategy on the performance
In case of homogeneous machines a simple 1-to-1-mapping is used which means tha&t on eac
machine runs at most 1 process. For the presented preemptive discipline, theiapping is
used for every time slice.

Dynamic scheduling disciplines for multiprocessors follow one of two philosophiterei
Smallest Number of Processors First (SNPF) [99, 90] or Largest Size (EB3t[92, 130].
Largest-Size—scheduling (LS) schedules parallel jobs which have a largei.siz request a
higher number of machines, first.

LS algorithms are first investigated in [130]. Here, we compare the peafucenof LS with
simple FIFO, preemptive LS, SNPF, and with FIFO-V scheduling. Therlattepts the config-
urational size of the application according to the current system load.

The preemptive algorithm called LST differs from the promineattrix algorithm since it
uses no fixed placement of jobs. Instead of this, it makes use of a migratibty i&enapping
conflicts occur. We investigate the influence of migration costs on the perfoemanc

2.1 The Scheduling Algorithms

We will investigate two space-sharing scheduling disciplines, LS andFSiRich represent
the two mainstreams on multiprocessor systems. Both scheduling discipsesa fixed-size
applications.

We have introduced LS algorithms in [130]. Here, we give an improved definitidrSof
Further, we compare these strategies with the time-sharing disciplifeah& FIFO-V. In the
simulation, we use more realistic workloads compared with [130] where onlytsésuh expo-

21

22 Chapter 2. Dynamic Scheduling Algorithms

nentially distributed service demands are given.

2.1.1 LS Scheduling

Largest size scheduling is a priority based strategy, where the priority afraving job is ini-
tialized withmazsize, i.e., its specified degree of parallelism.

The scheduler gets active when a parallel job arrives or terminatesumiygieue is ordered
according to the priorities. Larger jobs have a higher priority and are favdradielw job arrives
and there are enough nodes available and no jobmithprio is waiting in the run queue, the
job will be scheduled.

Each time the scheduler is active, the priorities of all jobs which cannot iedated are
increased. Jobs which reach the maximal prionityzprio are scheduled in FIFO order. This
saves small jobs from starvation.

If a parallel job terminates, the scheduler looks for the first parallel jahérrun queue. If
the requirements of the job can be fulfilled, this job is scheduled. This is rebeatlong as
there are sufficient free nodes.

If there have not been sufficient nodes available for the first job in the queue, wetdav
distinguish two cases. If the priority is less thanzprio, the scheduler tries to map the next job
in the run queue. If the job has already reached:prio, the scheduler gets inactive.

This means that the first job now blocks all others, until sufficient nodes getlaleaila

2.1.2 SNPF Scheduling

The Smallest Number of Processors First discipline (SNPF) is the engtrategy to the LS
scheduling. SNPF schedules the job with the smallest size first.

The SNPF policy has been investigated in [99, 90]. The studies state cotdradisults.
While Majumdar, Eager, and Bunt favour SNPF [99], Leutenegger and Vernon refd&NrF
scheduling discipline performs poorly, even when the number of processes in a joltiigefyos
correlated with the total service demands” [90]. They get to this opinion cangpsimulation
results of SNPF, a gang scheduling algorithm, and an algorithm based upon the dynaimic par
tioning scheme. The latter performs best in their simulation. Since dynamtitgrang is an
unrealistic assumption, it is much more interesting how SNPF performs cethpath other
variable or adaptive schemes. This is done in our simulation.

2.1.3 FIFO-V
Further, we compare the algorithms with FIFO-V which uses the variabéersbdel. FIFO-V
is a FIFO scheduling discipline which allocates the minimunmaf:size and idle nodes.

2.1.4 LST Scheduling

We compare LS with its time-sharing modificatibargest Size with Time slicing-ST). The
LST algorithm makes use of a migration facility. Like LS, LST favorgytajobs to reduce

2.1. The Scheduling Algorithms 23

fragmentation. LST increases the priorities of jobs which cannot be scheduledetammaller
jobs from starvation.

Arriving jobs are ordered in the run queue according to their priorities. LikettheSpriority
of a new job is equal to its size. Jobs are scheduled according to their psioritie

At the beginning of a time slice, as much jobs as possible are scheduled. Thegwrioijobs
which cannot be assigned are increased. If the priority of ajob gets equalfar-io, the priority
stays constant. Jobs which have the same priority are scheduled in a Round-Rbioin-fas

Since all processors are available at the beginning of a time slice, thelfiistthe run queue
always fits and no job can starve. If the size of the first parallel jobsis flean the number of
processors in the system, there are still free processors and the schesigies ¢he next parallel
job which fits.

Here, amapping conflictmay occur. If the application has already run on a subset of the
machines, some machines of the last placement may already be allocatedh®sr apptication.
In this case, all processes of the parallel application which cannot be scthextutdieir last
placement are migrated. Since migration causes a substantial overheaiyridied processes
will start delayed and their time slice is reduced.

Example: In a system with 8 nodes, there may run a jaton nodes 1-4 and a joly on nodes
5-6. During the first time slot a jold; with size 4 arrives. In the next time slot there will
run J; again on nodes 1-4 antj on nodes 5-8. If/; terminates during this time slot, there
will occur a mapping conflict and the two processespére migrated from nodes 5 and
6 to nodes 1 and 2.

LST usedelayed mappintp reduce mapping conflicts. When a job is scheduled for the first
time, any subset of the available nodes is suitable. Hence, nodes areddseite job, but it
will not yet allocate nodes. This is done to give the chance to another job which mreguiecan
be also fulfilled, but which has already run. Then the job with processor pnefeie assigned
first and the new job uses the remaining nodes.

Example: The system consists again of 8 nodes. There are three jobs waiting in the dueue,
and J, with size 4 and/; with size 2. Then/; andJ, are scheduled first/; will run on
nodes 1-4 and, on nodes 5-8. After 2 time slots the priority 8§ is also 4 and it is the
first job in the queue. If we assign nodes 1-2 to jbwe have to migrate the processes
of J; which can also be scheduled. Delayed mapping meangitvaitl be assigned first
to nodes 1-4, and thefy on 5-6.

If a job terminates and there is still time left in the time slice, tieat job in the run queue
which fits onto the available machines is scheduled. @hésnate selectiomas no effect on the
job priorities.

The alternate selection initiates a potentially expensive context sait¢he corresponding
machines (e.g. some of the processes may have to be swapped in again). Sioeertféad
cannot be neglected, an alternate selection is only initiated when théfeas®al0 % of the time
slice left.

24 Chapter 2. Dynamic Scheduling Algorithms

MEARAPARAES
size] 6 4]3]4]2][5]

Table 2.1: Jobs and their sizes.

Figure 2.1: Matrix Schedule.

The LST algorithm is different from thmatrix algorithmused for co-scheduling [112]. The
matrix algorithm maps a job on a fixed subset of the processors. LST uses no sdahdipping
and migrates jobs when a mapping conflict occurs.

The matrix algorithm schedules jobs in FIFO order. It is called matrix #@lguor since it
manages &n, m)-matrix wheren is the number of time slots and the number of processors.
The entrym[i, j] gives the process identifier of the process which is assigned tojrintiene slot
7. When a new job arrives, the scheduler looks whether there are sufficient pnecagsilable
in one of the time slots (First Fit). Otherwise, a new time slot is added,a.new row in the
matrix. There is used a Round Robin strategy between tirae slots.

Example: We give an example to illustrate the different behavior of LST and matrix igtgor
The jobs are given in FIFO-order in table 2.1. We assume that the service deofiatids
jobs are 2 time slots and that there is given a system with 8 nodes.

The schedule for First-Fit-matrix scheduling is given in figure 2.1. The rmh#s 4 rows,
i.e., 4 time slots are needed to find a placement for every job. In thettiiedslot an
alternate selection occurs, sinégalso fits.

The corresponding LST schedule is shown in figure 2.2. The job with the largestsize i
scheduled first. This id;. Since there are 2 nodes leff; is also scheduled in the first
slot. The priorities of all other jobs are rised. The evolution of priorities @mdaining
service times is given in table 2.2. Here, the jobs are ordered accordingittiorities.

The rowt; gives the priorities and remaining service time at the beginning ofthéime

slot. At the beginning of time slat, both J, and Js have the same priority. Since LST
uses Round-Robin between jobs of same priodiywill be scheduled first. Therefore, its
priority is marked in boldface.

2.2. Evaluation of Simulation Results 25

8

t

Figure 2.2: LST Schedule.

S| Js | 2| | 5| J5

to | 6/2|5/2 | 412|412 3/2| 2/2
t, | 6/1]|6/2|5/2|5/2]|4/2|2/1
to | 7/1)6/1|6/2|6/2]|4/1|3/1

t3 7/1|7/2|7/2|5/1
ty 8/1|7/1|7/1|6/1
ts 8/1| 8/1

Table 2.2: Jobs priorities under LST.

2.2 Evaluation of Simulation Results

The performance measure of interest is the mean residence time, witietsisnh of waiting and
execution time. The following figures give the mean residence time as adnraftthe arrival
rate. The corresponding system load is

_ A-size
=
where) is the mean arrival rate (Poisson procegshe expected execution ratethe number
of machines, andize the mean configurational size of the applications. If not stated otherwise,
we usen = 100.

)

2.2.1 Approximation of Costs of Migration

Since we want to test the behavior of the LST algorithm in a simulation, we hasgitoate the
overhead caused by migration.

The costs of migration depend on the number of processes which have to be migrated, the
process sizes, the network speed, and the used migration facility [116]. &iniéation, the
time for migration is subtracted from the time slice of the migrated f=ijab.

26 Chapter 2. Dynamic Scheduling Algorithms

We approximate the costs of migration by the measurements with the experimegtal
tion facility <PBeam [116]. The time for synchronisation and local checkpointing before mi-
grating a process is about 10 seconds. The checkpointing of several processes can be done
in parallel on the different machines. After checkpointing, the processesigrated to their
new locations. The transfer time via TCP for a process d{B can be approximated as
y = 0.4[s] + 0.0012[s/KB] * . This means about 12.7 seconds for the migration of a pro-
cess of 10MB [116].

The time which is needed for migration is the sum of checkpointing time and tretivate
If we migraten processes of size 10 MB, the costs of migrationidre+ n - 12.7 seconds.

2.2.2 Workload Model and Simulation Parameters

The behavior of the LS discipline depends on the workload characteristics. For exértipe
sizes of the parallel jobs are nearly constant, all jobs will get nearly tne gaiorities and LS
will behave like FIFO.

Random arrival processes are modeled by a Poisson process. Little is knownrediout
istic distributions of process group sizes and execution times (see sécotionTherefore, the
investigation of different workloads by varying the distributions is recommended.

In [130], the presented LS and LST algorithms were compared for exponentialijpulist!
service times and exponentially resp. uniform distributed job size.

Studies in high performance computer centers have shown a high variabiligyvices de-
mands [21, 34]. Therefore, hyperexponentially distributed service demands are agedok-
loads follow the fixed-size-model (see section 1.4).

Fixed-time-workload (FT): This workload follows the fixed-time-model, i.e., job size and
service demand are uncorrelated. The service demands are hyperexponentiédiyteiisivhere
50% of the jobs have a mean service of 10 minutes and 50% a service time of 120 minutes
(coefficient of variation is 1.56).

Memory-bound-workload (MB): The service demands depend on the job sizes and are
hyperexponentially distributed with parametgrandu,. The parameters are given in table 2.3.

size | wy | m wy | pe coeff. of variation
1 75110 s 251450 s 2.45
2-16 | .75| 2 min|.25| 34 min 2.24
17-32 | .75| 6 min|.25| 60 min 1.97
33-64 | .75| 12 min| .25| 124 min 1.98
65-128| .50 30 min|.50| 90 min 1.22

Table 2.3: Memory-bound-workload.

The job size is uniformly distributed between 1 and 100 which is motivated dayitoring
studies [34].

We test an “ideal” LST, i.e., there occur no costs for context switchingdmtvparallel jobs.
In all simulations, if not stated otherwise, the time slice size isi3@ tinits.

2.2. Evaluation of Simulation Results 27

Each process of an application has the same size of 10 MB in the simulations.

FIFO-V uses the variable-size-model. It depends on the application whetbersl memory
demands are correlated or not. In the presented simulation results we akatithere exists no
correlation. Hence, every process has again the same size of 10 MB.

Another model is possible, where the memory demands of the single processes ofleh paral
application are negative correlated to the number of assigned virtual nodesn Big case
the simulation leads to almost similar results. The reason is that theorgedemands of an
application are only used to approximate the migration costs. For the discussheninfluence
of migration see section 2.2.4.

2.2.3 Comparison of LS, LST, and SNPF

For the comparison of the above strategies, Oleyniczak has implementedlat&mprogram
with which the following figures in this chapter were created [111].

Figures 2.3 and 2.4 show the mean residence time of FIFO, LS, LST, and 85I8%pected,
any other scheduling strategy performs better than FIFO.

The lower figures show the results for FT- and MB-workload with hyperexponentiaty
tributed service demands. Additionally, we give the results with expongntiigtributed service
times (= 120 minutes), to illustrate the influence of the service time distribbifeee the upper
figuresin 2.3 and 2.4).

For the exponentially distributed service demands, there are less or no bewoefitsniie-
sharing. Under exponentially distributed MB-workload LST performs worse thaisghee-
sharing strategies. But under hyperexponentially distributed workload, it perBurssantially
better, in particularly under medium and high load.

When we compare the upper and lower figures, the benefit of a time-sharing disoipdiee
workloads with high varying service demands is impressive.

In figure 2.5 the speedups of LS, SNPF, and LST against FIFO are shown. For the FT-
workload, the two space-sharing strategies behave almost the same. Undéiuen noaded
system speedups up to 40 % are achieved. For high load the speedup rises up to 60-80 %. The
speedup of LST is substantially better than the ones of the space-sharing policies

For MB-workload, SNPF performs almost as good as LST. SNPF corresponds tan8éF, s
it minimazes the waiting times under MB-workload. While SNPF should be theifaymlicy
for MB-workload, the benefits compared with LS are not so spectacular. Thenresathat LS
schedules larger jobs much earlier than SNPF, but favors simultaneoushjabeasince they
can make use of idle processors.

2.2.4 Discussion of LST

Since the performance of LST depends on several parameters, we havehesegdrameters to
investigate their influence. The parameters are the size of the tiregthlicminimum percentage

LAl other figures show results from simulation experimenithvinyperexponentially distributed service de-
mands.

28 Chapter 2. Dynamic Scheduling Algorithms

16000

14000

12000

10000

8000

avg. residence-time in sec

6000

4000
005 01 015 02 025 03 0.35
arrival rate, jobs per 1000 sec

20000
18000
16000
14000
12000
10000
8000
6000
4000

005 01 015 02 025 03 0.35
arrival rate, jobs per 1000 sec

¥ ,
! i

avg. residence-time in sec

Figure 2.3: Mean Residence Time under Fixed-time-workload.

of time slice which is used for an alternate selection, and the costs cétioigr

We compare the LST algorithm with LST which is an “ideal” LST algorithm where no
migration costs occur, with LSNA which uses no alternate selection, and with LISW which
uses no migration. When no migration is used, there may occur fragmentationjolisiare

2.2. Evaluation of Simulation Results 29

16000

14000
12000
10000
8000
6000

avg. residence-time in sec

4000

2000 &
0.050.10.150.20.250.30.350.4 0.45 0.5
arrival rate, jobs per 1000 sec

20000
18000
16000
14000
12000
10000
8000
6000
4000

2000
0.050.1 0.150.20.250.30.350.40.450.5
arrival rate, jobs per 1000 sec

avg. residence-time in sec

Figure 2.4: Mean Residence Time under Memory-bound-workload.

waiting in the run queue due to mapping conflicts.

Figure 2.6 shows the mean residence time of the different algorithms. WhileN£Sper-
forms worse than the other algorithms, all other LST algorithms perform venilesiunder both
workloads. This means that the preemptive LS algorithms do not benefit from migration.

30 Chapter 2. Dynamic Scheduling Algorithms

100 T T T T
LS -—
80 - SNPF -+- .
LST -&-- .
60

40

20

speedup in percent against FIFO

Lo
O 4
0.05 0.1 0.15 0.2 0.25 0.3
arrival rate, jobs per 1000 sec

100 T T T T T T T

80

60

40

20

speedup in percent against FIFO

0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
arrival rate, jobs per 1000 sec

Figure 2.5: Speedup against FIFO under Fixed-time-workload (top) and Memory-bound-
workload (bottom).

To investigate whether migration has so less influence on the performanperteatages of
migrated processes are shown in figure 2.7. Under both workloads, the percentageatéani
processes increases under higher load, but only less than two percent of allgs@ressigrated

2.2. Evaluation of Simulation Results 31

20000 T T T T T

18000 | LST o— ; -
LST 0 —+- S

16000 - LST_NA -B-- YA
14000 L LSTNM - [
12000
10000
8000 |
6000 |-

40005?—/—/; | | | |
005 01 015 02 025 03 0.35
arrival rate, jobs per 1000 sec

avg. residence-time in sec

20000 T T T T T T T E Ir

18000 |- LST o Sl
16000 |67 A 5 v
14000 | LST_NM - o .
12000 !
10000
8000
6000
4000

2000 i :‘7 | | | | | | |
0.050.1 0.150.20.250.30.350.40.450.5
arrival rate, jobs per 1000 sec

avg. residence-time in sec

Figure 2.6: Mean residence time under Fixed-time-workload (top) and Memory-boutktbaabr
(bottom) for different LST Algorithms.

at all. The mean time between two migration events is also shown iref@idr A migration
event occurs when the scheduler determines that migration is necessary égpptogrconflicts.
Even under high load the mean time between two migration events is more theutd The

32 Chapter 2. Dynamic Scheduling Algorithms

2 T T T T T T T T

1.8 -
LST/FT-load -—

16 - LST/MB-load -+- .
1.4 F -

12 b -

1} A
0.8 - /1
0.6 |- A
04 A -
02 e -

0] o O N 1 1 1

0.050.1 0.150.20.250.30.350.40.450.5
arrival rate, jobs per 1000 sec

migrations in percent

500 T T T T 1 T T T

450 | ILST/FT-load —~—
400 - I_‘.\ST/MB-Ioad el
350 |
300 |
250 |
200 |
150 |
100
50 |

O | | | | | | | |
0.050.1 0.150.20.250.30.350.40.450.5
arrival rate, jobs per 1000 sec

inter-arrival-time in 1000 sec

Figure 2.7: Percentage of migrated processes (top) and mean time betweatiomigvents
(bottom).

mean number of migrated processes per migration event is about 20 for both workloads.
This shows that mapping conflicts are a rare event under the considered workloatls and t
performance of the LST algorithm cannot be improved substantially by a fagestion facility.

2.3. Summary 33

The higher influence on the performance of LST, has the alternate selection wasctests
of time slices. This makes the performance behaviour of LST nearly independenh&amoice
of the time slice size under exponentially distributed service demands [130].

Figure 2.8 shows the mean residence time for different time slice values kEifrdeorkload.
The upper figure shows the results for LST, the lower the results forN&TThe same values
for MB-workload are given in figure 2.9.

Without alternate selection the performance of LSA depends much on the time slice
size. In particularly for the FT-workload, the smaller sizes show abe&gormance, since less
processor time is wasted.

The performance of LST stays stable for the different slot sizes. Only thiestrtame slice
value of 5 minutes shows a lower performance under medium and higher load.

2.2.5 Benefits of Variable-Size-Model

Here, we compare the LS algorithms with FIFO-V which uses the variabdersodel. If there
are nodes available, FIFO-V allocates

size = min {mazsize, number of idle processaofs

nodes. Hence, theiinsize of an application is assumed to be 1.

Figure 2.10 shows the mean residence time of FIFO-V compared with the higsriis-
cussed above.

For both workloads, FIFO-V performs worse than the other disciplines under low e, e
worse than FIFO. Under medium load it performs better than the other spagegs$teategies,
and under high load it performs even better than LST.

When the application is fixed on a size, there will be the case that procesedie while
jobs are waiting in the run queue. Hence, all algorithms which have to schededesize-
workload suffer under increasing waiting time when the system load increases

In the simulation, we assume an optimal speedup omallsize processors. Hence, an
application will ben times faster om processors compared with sequential execution. The larger
jobs are the candidates to reduce their size. Hence, the runtime of the largeatipm will be
increased under FIFO-V. In particularly, these are exactly the jobshigtihservice demands in
the MB-workload. Hence, the benefits of the variable-size-model are less olivisusorkload.
For the FT-workload, there can be seen only performance benefits in the compaitisadhew
space-sharing policies.

2.3 Summary

We have presented both space-sharing and time-sharing LS strategidser,Ruet have com-

pared scheduling disciplines which are based on the fixed-size-model artulessize-model.
The presented gang scheduling algorithm LST differs from the matrix algorithnsing

migration if necessary instead of fixed mappings. We have investigatedlgarithm with dif-

Chapter 2. Dynamic Scheduling Algorithms

34
20000 T T T T T T
g 18000 [LST-5 o [
iz LST-20 -+- [
£ 16000 | ST-40 -B-- I]
) _ l".’
2 14000 | LST-60 -x ; i
8 12000 -
o)
S 10000 .
(7]
(O]
= 8000 .
(o))
>
® 6000 .
4000 ' '
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
arrival rate, jobs per 1000 sec
20000 . . T T ;
9 18000 |- LST_NA-5 <— F
2 LST NA-20 —+- /
£ 16000 | ST NA-40 -5-- .
Q -
2 14000 LST_NA-60 -x i
8 12000 -
o)
S 10000 .
7]
(O]
= 8000 .
(o))
>
® 6000 .
4000
005 01 015 02 025 03

arrival rate, jobs per 1000 sec

Figure 2.8: Influence of time slice values under Fixed-time-workload.

ferent parameter values for the size of the time slice and with/withcertnalte selection. From
our simulation results, we conclude:

e The workload characteristics and the system load are most important for chaos#fiy
cient scheduling strategy.

2.3. Summary 35

20000 T T T T T T T l:
g 18000 - | ST5 o £
2 | LST-20 —+- F-.
g 10000 15140 o
2 14000 |- LST-60 - A
§ 12000 -
S 10000 -
S
g 8000 -
o 6000 .
>
® 4000 - & .
2000 1 1 1 1 1 1 1
0.050.10.150.20.250.30.350.40.450.5
arrival rate, jobs per 1000 sec
20000 T T T T T T 7
g 18000 - | ST NA-G o— b
® 16000 | LST_NA-20 -+- L
k= LST_NA-40 -&-- [
g 14000 LST_NA-60 - ,+ 1
§ 12000 ; -
S 10000 -
S
g 8000 -
o 6000 .
>
© 4000 .. .
2000 | | | | | |

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
arrival rate, jobs per 1000 sec

Figure 2.9: Influence of time slice values under Memory-bound-workload.

¢ Simple scheduling strategies like LS and SNPF can make effcient use oésberces
compared with FIFO.

e Under FT-workload the space-sharing strategies LS and SNPF behave.sWidazon-
clude that processor fragmentation is not as dangerous as assumed. Both staagegies

36 Chapter 2. Dynamic Scheduling Algorithms

20000
18000
16000
14000
12000
10000
8000
6000
4000

0.05 0.1 0.15 0.2 0.25 0.3 035 04
arrival rate, jobs per 1000 sec

avg. residence-time in sec

20000
18000
16000
14000
12000
10000
8000
6000
4000 |

2000 1
0.050.10.150.20.250.30.350.40.450.50.55
arrival rate, jobs per 1000 sec

avg. residence-time in sec

Figure 2.10: Mean residence time under Fixed-time-workload (top) and Memory-bound-
workload (bottom).

outperformed by LST.

¢ Under MB-workload the space-sharing strategy SNPF behaves almost as good as LS

2.4. Bibliography 37

e The benefits of a time-sharing discipline under workloads with high varying service de
mands is impressive.

e Mapping conflicts are seldom under LST (less than 2 % of the processes have been mi-
grated). Hence, migration is an adequate method for solving mapping conflicts. iThe m
gration overhead is neglectable.

¢ Alternate selection is necessary to make the performance of LST indepdratarthe
choice of the time slice.

¢ Under medium and high system load, the performance can be improved by supporting the
variable-size-model.

2.4 Bibliography

The implementation of the simulation program is described in detail in [111].

An algorithm called LDLP (Largest Dimension Longest Processing tinigjlas to LS, is
investigated in [129]. LDLP needs runtime approximations for its calculatitimegbb priorities.
It is shown that the LDLP scheduling policy is suitable for a wide range of procestaorks
which own a decomposability property. Examples of decomposable graphs are decomposable
Cayley graphs such as thecube and thex-star.

Krueger et al. present a dynamic group scheduling algorithm called Scan-algouittiy:- f
percubes [79]. Scan is a non-preemptive algorithm which clusters jobs of equalTieé
simulation results show that Scan improves the mean residence timereahtpalgorithms that
do not cluster equal-sized jobs.

Feitelson presents simulation results for different “packing schemegtidanatrix algorithm
[43]. The problem to find sufficient processors for a new application is similéret@llocation
problem in memory management. In the simulation, First-Fit and Best-Fdrpesimilar, while
a mapping scheme based upon buddy systems (Buddy-Matrix-Algorithm) performs best. The
latter is not astonishing, since it reduces processor fragmentation.

Further, Feitelson investigates an algorithm which uses migratioramhstdixed placements.
This algorithm is similar to our LST algorithm presented in [130]. In the sitiaiathe migra-
tion based algorithm performs as good as the buddy allocation scheme. Feitatsaritsat this
result may be misleading, since the overhead for migration is ignored imtldesion. From our
experiences with LST, we conclude that the migration overhead is not amefaetor. Hence,
LST will outperform traditional packing schemes used in co-scheduling.

Setia [136, 137] compares a scheduling strategy similar to LST with the BudtiyxMa
Algorithm. He uses a different calculation scheme for job priorities:

priority ;= (jobsize x approz. ofruntime)™".

In a trace-driven simulation which also regards the cost of migrations, niigration-based
scheduling strategy performs better than the Buddy-Matrix-Algorithm.

38 Chapter 2. Dynamic Scheduling Algorithms

Time-Sharing on a 2-dimensional mesh architecture is investigated bplR(d24]. She
presents simulation results which show that under the time-sharing policyehe residence
time and waiting time are positively correlated. She reports that the nesédence time was in
no case higher compared with a FIFO space-sharing strategy. Further, for lo@th¢éhe mean
residence times may be improved by time-sharing, but Rotzoll gives no figurtssd.

A space-sharing strategy for a 2-dimensional mesh architecture whicarsljetts according
to their size (similar to the Scan strategy for hypercubes) is presemtidd38]. The authors
compare their algorithm for different parameters and show the influence of thregqtara on the
performance.

In [143] demand-based co-scheduling for multiprocessors is proposed. Sobalvarroiahd We
use informations about which processes are communicating in order to coscheduleesely t
The authors state that their approach is more flexible than the traditional adutiolye Obvi-
ously, the result depends on the workload characteristics. If we assume thaptlzations are
fully distributed (see section 1.3) demand-based co-scheduling is equal tbedeting.

Chapter 3

Resource Management in Workstation
Clusters

Since workstations are often dedicated to a special user, they run mostiofehidle. A number
of recent research activities have tried to exploit the computing power of emgronments
[17, 150]. Failure transparency and support for group scheduling are areas of maayt curr
research activities [116, 19, 146, 64].

The benefits of workstation clusters are their

o availability,
e price/performance ratio, and

o scalability.

Further, workstation clusters are easy to rejuvenate. While paraligbaters are out-of-date
after only 3-6 years and lots of efforts have to be done for a new investment, asimidistations
is easily replaced. If money is available, more machines can be addedméais in most cases
that more powerful machines are available. Hence, a workstation clastermparable with an
organism which cells are periodically regenerated.

In figure! 3.1 the load situation of cluster of about 150 workstations at the Technical Uni-
versity of Braunschweig is shown. The three curves show the total number of teaggrate
machines, the number of active machines, i.e., with running jobs, and the numbeclihezw
which are used by interactive users. The load change between day and nighg tingous.

The load on almost all machines increases from Friday on. This is due to eepapgdlication
which was started on Good Friday to run over the easter weekend.

Further, machines which are shown to be ‘active’ are not necessarily Hagdgd. There
may be also a lot of idle times on these machines which could have been used farioiy
applications.

The importance of workstation clusters for parallel computing is, for exampheordstrated
by the fact that the Gordon Bell Prize in the price/performance categorygoifisant achieve-
ments of supercomputers to scientific and engineering problems has been won byled paral

1This figure was provided by D.J. Schmidt of the Computing €eaf the TU Braunschweig.

39

40 Chapter 3. Resource Management in Workstation Clusters

Week 13/1994
Number

160

140 =—— AN W [,

120

100

80

0 Ao

280394 280394 290394 290394 300394 300394 310394 310394 010494 010494 020494

020494 030494 030494 040494
00:00 12:00 00:00 12:00 00:00 12:00 00:00 12:00

00:00 12:00 00:00 12:00 00:00 12:00 00:00
—total —active —interactive

Gs

Figure 3.1: Load Situation in a Workstation Cluster at the TU Braunschweig.

program on a workstation cluster in the recent years. In 1995, Panayotis Skordos cdighe M
sachusetts Institute of Technology was recognized for his modelling of air flowti fipes
[73].

In the following section we report the results from monitoring studies whick eestigated
the load situation on workstations. Next, we discuss the differences betvegkstation clusters
and parallel computers which are important in scheduling.

Since every non-trivial load balancing strategy needs load informations fiedisions, we
have to define a suitable load metric for workstation environments. This is deine third part

of this chapter. We will introduce delay factors as a load metric for heterogsrsystems and
present a heuristic approach to calculate them.

3.1 Load Characteristics of Workstations

Monitoring studies of the load situation on workstations are given in [16, 89, 26, 71].
All studies consistently report that the majority of all UNIX processes laaum time of few

3.1. Load Characteristics of Workstations 41

seconds. Cabrera has obtained the following figures [16]:
e 70 - 80 % of all processes consume less than 0.5 s cpu time,

e 78-95 % of all processes consume less than 1 s cpu time,

e only 2 % of all processes run longer than 16 s.

Ju et al. have found that about 80 % of all processes consume less than 0.5 s cfdtime [

Leland and Ott state similar results [89]. They analyzed the behaviour of 8iGmiNIX
processes during normal operation. They found the following approximation for the probabili
distribution F' of the amount of CPU time used by an arbitrary process:

(1-F(z))=r-z7¢ 1.05 < c< 1.25.

Further, Leland and Ott have investigated the joint distribution of the amoudPbf time
used and the number of disk accesses made. They report that the result confirmmithe c
mon “folk theorem” that there exist three types of processes: CPU intensivieaapls (“CPU
hogs”), I/O intensive applications (“disk hogs”), and “ordinary” processes whielreiatively
littte CPU or 1/0O with no compelling relation between use of either. Psses which are CPU
and /O intensive are rare. Only 10 of the observed processes belong to be#sclas

When we want to do load balancing, we need a load management, a scheduling and an
export/migration component [87]. The load management component gathers and disthibutes t
current load information. The scheduler is responsible for the placement decisqrms) which
side the job shall be executed. The export/migration component executes the scheeciling
sions and exports and starts the job on another machine. In case the selectssl igratready
running, it has to be migrated which causes a higher overhead.

Since the export or migration of a job adds additional overhead, this is only worttavile f
long running applications, i.e., applications which run at least several rsinute

In some distributed operating systems such as Amoeba, load balancing is donecesspr
A run server selects the machine when a job has to be created [151].r Theser ver
checks whether there is a machine of the specified architecture availRBR (S VAX, etc.) and
whether the machine has enough memory. Among the possible candidates, the fastast ma
is chosen. The used load metric is similar to the one proposed in section 3.3 &yéddteof the
machines is approximated by MIPS values.

Since most of the processes created on workstations have a lifetime of omlysadends,
this approach seems not reasonable. Instead, we use a process model witds3 class

1. Short jobs< n seconds are executed locally,
2. jobs< 15 minutes are initially placed by the load balancing system,

3. jobs> 15 minutes are initially placed by the load balancing system and perioditegiske
pointed for failure transparency. These processes may be migrated for laadibglrea-
sons.

Parallel applications typically belong to the third class of computationahsite processes.
They have to be scheduled with special care.

42 Chapter 3. Resource Management in Workstation Clusters

parallel
applications

|
global Y global
scheduling % runqueue
\ \ \
local v local vV loca vV
scheduling— scheduli scheduli
\ local \ local \ local

—arrivals —arrivals r—arrivals

[[

Vs

7

Figure 3.2: System Model [134].

3.2 The Challenges of Workstation Clusters

Scheduling on workstation clusters is quite different from scheduling on pacalieputers.
From the operating system view, each workstation is an autonomous system. &atherhas
its own scheduler, most commonly a UNIX time-sharing scheduler. A portableagphas to
consider this situation. Hence, we assume that the implementation of pgoakéeheduling has
to be done in user space on top of the kernel without any modification at the existiragioger
system. This leads to the 2-level system model shown in figure 3.2 [134].

The first level is the UNIX time-sharing system. Above this, there isteeduling facility,
which schedules only the parallel applications which are submitted to thevsyste special
user command. The global run queue for arriving parallel jobs is managed by a global sghedule
which is responsible for mapping the parallel jobs onto the machines.

3.2.1 Network Topology

Scalable parallel computers are based on special network topologies sucshesrmgpercube
architectures [154]. On these machines, an application is mapped onto prsogsich are
topologically close, or more formally, the application allocates a subgraphmiitimal diameter
[79, 91, 103, 129].

In figure 3.3 the network topology of a 4-cube and a workstation cluster is presented. Work-
station clusters typically have a simpler network topology where the machieesanected by
a broadcast medium like the Ethernet. Thus the topology does not have much influence on the
mapping decisions.

The situation gets more complex, if some workstations of the cluster are conbgatéfbr-
ent networks, i.e. Ethernet, Fast Ethernet, and ATM.

3.2. The Challenges of Workstation Clusters 43

-
\ 2 =
e b T
=
>~ =
0,00 [-
~
P |
v \
: T
1000 =

Figure 3.3: Network Topology of 4-cube and Workstation Cluster.

3.2.2 Time-Sharing Disciplines

While gang scheduling is assumed to be an efficient scheduling strategy on cugtipor ma-
chines [112, 90, 37], it is not yet clear whether gang scheduling can be useful on networks of
workstations.

In a workstation cluster, there is no synchronization hardware for contexténgtbetween
parallel applications and no global time at all. This makes the implementafitime-sharing
disciplines more difficult.

On a workstation cluster, time slices for scheduling parallel applicatamsonly be im-
plemented on top of the local scheduler and the synchronization for context switchiveebet
parallel jobs can only be done by message passing.

Switching can be done in the following way: When the global scheduler wants tdenitia
a parallel job switch, it sends a message to all machines that the running praeso be
suspended and the next process in the local run queue has to be scheduled. When amapplicati
is suspended, all messages that are “on the way” have to be saved. This mearché&wkipoint
of the application has to be made. Therefore, additional synchronization overleas.oc

In [64], first experiences with gang-scheduling on a workstation cluster areedpdhe au-
thors assume “that every workstation in the cluster is dedicated for useoasputation server”.

This assumption does not seem valid in most computer departments. The impkmeni®e
environment is tested with two applications which are not representatipafallel applications:

a program which calculates Fibonacci numbers and a program which forks threadsexthe
processor sequentially. The authors give results from measurements vetslitmsize 0.2, 0.4,

0.6, 0.8, and 1 second which are not promising even when they conclude that “gang-scheduling
on workstation clusters can be practical.” Results with a more rneadipplication should be

more interesting.

Further, a preemptive discipline may increase the dangemwapping since the memory
requirements of all running processes may exceed the available local mefharyob switch
may effect that a process has to be swapped in again. Since this may happeerf@ngecesses
of a parallel application on different machines simultaneously, networictradll rise and the
time for the parallel job switch increases considerably.

The question is, whether there are any good reasons to use a time-sharing palioyken
station clusters. Time-sharing disciplines are favoured to guaranteeaefponse times, in par-

44 Chapter 3. Resource Management in Workstation Clusters

ticular for interactive users. Since each workstation has its own Wéhéduler, short response
times for interactive users are already supported by the UNIX timerghayistem.

Another reason why time-sharing may be beneficial is the heterogeneity of theaayke.,
workload with a high coefficient of variation of job service demand. The chaistiteof time-
sharing policies is that the waiting time of a job depends on its service demandx@ariments
with a time-sharing policy in chapter 2 have shown the limited benefits unddium and high
load. Under MB-workload the space-sharing strategy SNPF behaves almost as & a

Since the benefits of co-scheduling on workstation clusters seem questionabld| eve w
clude them in our approach.

3.2.3 Heterogeneity

The most challenging property of workstation clusters is theterogeneity Heterogeneity in-
cludes different architectures which are not binary compatible, differentanesizes, and dif-
ferent speed characteristics [134].

If a parallel application is mapped onto a subset of the machines consistingvefr lad
faster machines, the slower machines may slow down the whole applicatidrthe overall
performance of the system is reduced (see section 1.3).

3.2.4 Moativation for Migration

There are three reasons why a migration facility is necessary for resmacagement in work-
station clusters [134].

Firstly, applications may profit from migration to faster hosts.

Secondly, there may heteractive usersvho want to use their machines exclusively. Condor,
as one well-known example, uses the idle times of workstations for compute-bound gdquent
jobs [96]. If the user of a workstation returns, Condor suspends the application and slikerve
user behaviour. If the user is still active after several minutes, Condoategthe application to
another idle host.

Thirdly, the failure probability in a workstation cluster is much higher comgpémeparallel
computers. Rebooting a machine may be originated by other users, due to softwesearr
by the system operator for administration reasons. Migration can improvetdéerance, by
evacuating hosts prior to regular shutdowns.

We conclude that the scheduler has to be active in case of the follonigration events

¢ shutdown of a machine,
e interactive user arrivals,
e substantial load changes on a machine which would slow down the parallel job,

e substantially faster machines become available.

3.3. The Load Management Component 45

3.3 The Load Management Component

In this section we motivate the definition délay factorsas a load metric suitable for heteroge-
neous systems and discuss several approaches to calculate this metric [132, 133]

3.3.1 Definition of Delay Factors

In a homogeneous system the current speed of a machine depends only on the current load, which
can be measured as the number of jobs in the run queue. Butin a heterogeneous system, we ha
further to consider the different server capacities and configurations. A le&titrauitable in
a heterogeneous system islelay factorwhich gives the expected delay of an application on a
machine normalized relative to, for example, the slowest machine in thensys

Let runtime(M;, load;) be the runtime of an application on machihg under loadoad;.
The delay factor of an application on machibg is defined as

ime(M;, load;
delay(M;) = runtime(M;, load;)

runtime(Mo, 0) ’
whereM,,,, denotes the machine architecture with the lowest processing capacitysiystieen.
For example, a delay of machiné; equal to 0.5 means that the application will run two times
faster on machind/; compared to the idle slowest machine.

We define thespeed factory; of machinel/; to be the quotient of the runtime on machitg
and the runtime on the slowest machine of the system when there is no other Ibadgystem

_ runtime(M;,0)
C runtime(Myw, 0)
When the machin@/; is idle, we get alelay(M;) = a;.

However, the definition of the delay factors is of no use for computing the deltoyr.fathile
runtime(Mg, 0) is the result of one benchmark for each applicatiamtime(M;, load;) has
to be calculated for every application, every machiig and every possible loddad;, which
is impossible.

Instead, we use another approach where the delay factors are only estiroatédeicurrent
load. If there are already processes running on machidé and we assume a time-sharing
system, the delay will be approximatelylay(i) = «; - (1 + n), neglecting the overhead for
time-sharing and, possibly, swapping. This motivates our redefinition of the dedtoyr f

delay(M;) := a; (1 + load;),

whereload; is an approximation for the current load. This definition regards that even if te loa
is zero on all machines, the machine with the best speed factor is mastiaéir The question
is, how to calculatey; andload;?

46 Chapter 3. Resource Management in Workstation Clusters

3.3.2 Calculation of Speed factors

A common way to calculate speed factors is benchmarking. But the experiertbesaliappli-
cations show that speed factors depend on the measured applications. Thighmakss of a
common speed factor difficult.

We have measured the speed characteristics of applications which are popuarcom-
puter department due to our system accounting, and of some popular benchmarks.

The speed factors for &NX application, a C-compiler run (gcc), a program which calculates
Mandelbrot sets (mdst), the PovRay raytracer, and the dhrystone benchmarkvemerstable
3.1. Additionally, the relative MIPS values are given. The speed factor &theSLC is 1, since
this is the slowest architecture in our system.

IATEX | gee | mdst| PovRay| dhrystone| MIPS
Sun SLC 1.00 | 1.00| 1.00| 1.00 1.00 1.00
Sun IPC 0.83 | 0.75| 0.55| 0.73 0.84 0.79
Sun ELC 0.70 | 0.69| 0.34| 0.52 0.56 0.53
Sun Classid 0.72 | 0.56| 0.36| 0.46 0.36 -
Sun SS2 0.53 | 0.45| 0.26| 0.42 0.46 0.44

Table 3.1: Speed factors of different applications.

The measurements confirm that the speed characteristic of a machine aledslepehe
measured application. The reason is that the applications differ in the riitetifig point and
integer arithmetic, and in their I/O-behaviour.

While the ranking of the machines stays stable for the different applications (thexwdp-
tion is Sun Classic which is slower than the Sun ELC for some applicationfaatest for some
others), the absolute values differ significantly. If we have an applicationimg on an idle Sun
ELC, the expected delay on this machine will@& - (1 + 1) = 1.4 according to the speed
factor of the ATX application. This looks worse than the expected delay on an idle Sun SLC.
But if we use instead the speed factor which is measured for the Mandelbeggigation, the
expected delay will be 0.68 which looks better than the idle SLC. Hence, the |daciey
decision depends mainly on the used speed factors.

There are two solutions for this problem. The load management can use one speed fact
for each machine which is calculated as a mean value from severakdiffeenchmarks. This
approach is transparent for the user, but may lead to non-optimal placemeidrgeofghe load
balancing facility.

Alternatively, the user may give hints how much I/O traffic will occurhirit her application
and whether the application does mainly floating point or integer arithmetic. Treetoad
management component can choose the suitable speed factor due to these chiasacteris

3.3. The Load Management Component 47

1 T T T T T T

: .
T avenrun_60 —o—
0o e avenrun_30 -+--

o b e 4

08 | A i
0.7 + s i -
06 | / y B

05 2 Y 4

avenrun

0.4 | ¥ \ Bl
o3| / N ks
02 / 4

0.1/]

o L L L L L L L L
o 20 40 60 00 120 140 160 180

0 1
time [s]

Figure 3.4: Comparison of 1-minute-average and 30-seconds-average.

3.3.3 Load Parameters for Homogeneous Systems

Most UNIX kernels, i.e. HP-UX, Irix, SunOS, Solaris, and FreeBSDhegatoad statistics peri-
odically every 5 seconds. This information is available throughvtingt at or sar command
[107] which report statistics about the CPU run queue, the virtual memory, diskxtewiches,
and CPU activity. Altogethernst at reports about 22 load parameters.

The reported values of the run queue are non-averaged snapshot values. A procekasvhich
been running for the first 4 seconds and is then interrupted because of I/O will not bedcount
the run queue length.

To get more reliable load informations, load averages are in common use svhaith the
gathered load parameters exponentially. These load averages,asadledn are calculated as

avenrun(t) = e~* avenrup(t — 1) + (1 —e"%) - load,

whereload is the sum of the length of the CPU run queue (including the running process) and the
number of processes which are waiting for 1/Qs the smoothing period, arids the smoothing
interval. Since UNIX updates its load statistics every 5 seconds, a binggterioda = 5 sec-
onds is used. UNIX providemvenrurvalues for the smoothing intervals= 1,5 and 15 minutes.

This means that in case of the 1-minute-average the old load value is weigitied.92
and the newoad is weighted with0.08. Hence, the load average reacts very slowly on load
changes. Figure 3.4 shows the value of the 1-minute-average when a processimivedle
system and runs for 2 minutes. The curve for a 30-second-average is also shoemparison.
Theavenrunmetric adapts very slowly to load changes. When the job is already running for 60
seconds, the value alvenrun60is still about 0.6 instead of 1.

48 Chapter 3. Resource Management in Workstation Clusters

Comparison of Load Metrics in Homogeneous Environments

There already exist comparisonsadenrunwith other load indices which show thavenrunis
not the best choice for a load metric even in homogeneous environments [45, 84].

Kunz [84] tested six one-dimensional workload descriptors based on paramietensiii-
ber of processes in the run-queue, CPU-time, or 1-minute load average withith al@acing
environment on a network of homogeneous UNIX workstations. The results show that all ex-
amined descriptors lower the mean response time of processes and that giegbestorkload
descriptor is the number of processes in the run queue, and the worst is the 1-minuatecload
age. Further, combining the two best single workload descriptors, the number of poitete
run queue and the system call rate, leads to no improvement over the schedsilensusing a
one-dimensional workload descriptor.

Similar results are presented by Ferrari and Zhou [45]. The authors haviestisd a wide
range of load indices within a load balancing environment. The results alsotednz load
indices which are more up to date than the UNIX 1-min average improve therpenice of the
load balancing facility.

The index which is found to be among the best is the sum of the CPU- and disk— queue
lengths, and the amount of processes in page wait, averaged over a 4 second perivdarfd
Zhou implemented their own system statistic inside the kernel to gathecsaent information.
The length of the used system queues was sampled every 10 ms by the clock intartimgt r
and used to compute the one-second average. These variables were manageéingthe k

It has to be mentioned that these results depend on the used workload. When theiader ar
time of jobs is in the magnitude of some minutasenrunis capable to adapt to load changes
in time. Hence, the time constraints given by the expected workload detewhgteeravenrun
adapts to load changes fast enough. The major problem is that the results cannot b&gdneral
for heterogeneous systems.

3.3.4 Load Parameters for Heterogeneous Systems

Ferrari and Zhou report that the metric which equals the total number of proceasigsto run
and execute, being paged and swapped, and doing file I/O performs besavdienuses
also the number of processes in the run queue and disk queue. But the parameter dis& queue i
misleading in heterogeneous systems.
An example which illustrates the situation for configurational heterogeneous meacisi
shown in table 3.2.
We used an artificial workload which consumes a large amount of system-timesidts
of a process which repeatedly opens a file, writes a byte into it, closesems the same file,
reads a byte from it and closes it again. This load is characterized by a I& opkrations. We
call it sys n, wheren gives the number of started processes. These processes run concurrently to
the measured application. It is obvious that this type of load is in no way realist enables us
to examine the behaviour of certain applications under various background loads guyte easil
The Sun SS2 was configured as a file server in the first test case (akddsses of the
background load were local), and in the second as a diskless client (the fiseseeere remote

3.3. The Load Management Component

via NFS). The file accesses of the gcc application were via NFS in both. cases

The measured benchmark which runs concurrently to the artificial workload ethpila-
tion run. We give the delay of this benchmark compared to the execution time cai¢h8S2.
The results in table 3.2 show that the delay factors for the gcc applicatiaquéaeesimilar by
contrast to the gathered load data. Hence, the disk queue as load metricciallgspesleading

in this case.
SS2 (file server)| SS2 (diskless)
load disk delay disk delay
run queue gcc | run queue gcc
sysl 0.92 1.22 0.03 1.26
sys2 1.75 1.28 0.08 1.37
sys3 2.76 131 0.87 1.50

Further, we tested the smoothed run queue parameter as load parameteryfdacteta in
heterogeneous environments. Again, we used an artificial workload as background tead. T
background load, called PUn, consists of: processes which are always runnable.

In table 3.3 the delays of the gcc compiler and g application, which run concurrently
to the workload” PUn, are shown. Here, the reported delay is normalized to the local execution
on the idle machines. The standard deviations of the measurements were beamele %.

The CPU run queue lengths are gathered before the benchmarks are started. Weanake t

observations:

1. The delay of the applications is correlated with the CPU run queue lengths éoclaiiec-

tures.

2. The more CPU-bound applicatiofigX suffers more under the load PUn than the C-
compiler. The delay of the’IeX application unde’ PU3 is about 3.5 on the SS2, where
the delay of the gcc application under the same load is only 1.87. This effect can be ob-
served on all machines. Th&liEX application spends about 137.4 seconds in execution
and 2.0 seconds in the system, while the gcc compiler spends about 124 seconds in execu-
tion and 21.8 seconds in the system. Since I/O interrupts are handled with a highigy, pr
the gcc application is not delayed by t6é”Un load as much as the numbeshould let

expect.

If the delay factors of machines have to be compared, it is not necessary to compute the
exact values, only the order isimportant. Since the ranking induced by the CPU run ejugtis |
and the ranking induced by the real observed delays is the same for both applicago@®U
run queue seems to be a good parameter to specify the load for all the considertet@mres.

Table 3.2: Disk queue and delay.

Therefore, we use the following simple delay faétor

delay:= o - (1 + CPU run queug

2This definition was first used in our experimental YALB (Yetdther Load Balancing System [147]).

50 Chapter 3. Resource Management in Workstation Clusters

Type | load CPU IATEX | gce
run queue delay | delay
SS2 || none 0.04 - -
cpul 112 2.03 | 1.28
cpu2 2.17 2.66 | 1.60
cpu3 3.13 3.50 | 1.87
ELC || none 0.19 - -
cpul 0.98 190 | 141
cpu2 2.13 273 | 1.77
cpu3 3.01 3.65 | 2.13
IPC || none 0.11 - -
cpul 1.00 192 | 151
cpu2 2.01 2.79 | 2.03
cpu3 2.96 3.66 | 2.43
SLC || none 0.02 - -
cpul 0.99 189 | 149
cpu2 1.97 2.74 | 1.99
cpu3 2.96 3.70 | 2.49

Table 3.3: Evaluation of CPU run queue

The quality of this delay factor is evaluated in [133, 132]. The metric is deiste trace-
driven simulation of a load balancing system. The load balancing system desrthe fastest
available machine in the system based upon the current delay values of the machine

The results are evaluated by calculating si@vdownwhich is the difference between the
runtime on the chosen machine and the possible optimal placement. In the simtilatgiow-
down of compute-intensive applications is between 10-20 % which is a promisiuig résly
under medium and high load, i.e., when there are no idle machines any more, tdewiow
values increase over 50 %.

3.4 Summary

Scheduling parallel applications on a workstation cluster has to be done on the todaxfahe
time-sharing scheduler. This leads to a 2-level architecture of the schgdybtem.

We have discussed the problems of co-scheduling on workstation clusters. We cdhatude
co-scheduling is not feasible in these environments.

We have explained why a migration facility is necessary for resource margaén work-
station clusters.

The most challenging property in scheduling is the heterogeneity of workstatioarslastd
the presence of interactive users.

3.5. Bibliography 51

We have introduced delay factors as a load metric for heterogeneous systemesardgut
a heuristic approach to calculate them which behaves well for compute-i@eaygplications
[133, 132].

3.5 Bibliography

Parts of this chapter are published in [133, 132, 134].

In [133, 132], the presented run queue based delay factor is compared with a lvad me
which is calculated by neural networks. Whilst the first is easy to cakalad performs satis-
factory in heterogeneous systems, the neural network approach yields bettey; espeécially
under medium and high load.

52

Chapter 3. Resource Management in Workstation Clusters

Chapter 4

Mapping Strategies for Heterogeneous
Systems

In this chapter, we present mapping algorithms for heterogeneous systems wlaatradegption

of the Shortest—Expected—Delayapping (SED) proposed for sequential processes. SED in
homogeneous systems is known as “join the shortest queue”. This is the optimajysinattee
case of sequential processes in homogeneous systems [163, 134].

In a heterogeneous system, the runtime of an arriving job depends not only on the number of
jobs in the run queue, but also on the server capacity. When a sequential yais aiie SED
strategy assigns the job to the node with the shortest expected delay based umethiedelay
factors. Studies of scheduling strategies for heterogeneous systems showDlaitB&forms
other strategies like for example Bernoulli Splitting [108].

SED supports the variable—size—-model in a heterogeneous environment. The advantage of
using SED is that the heterogeneity of the system is tranparent for the programmer.

Saphir et al. state that “currently most applications at NASA Ames ateally load bal-
anced, assuming that each processor is equally fast so that the work should be evwedby
among them” [127]. It is easier for the developer of an parallel applicatiorsgarae that all
nodes are equally fast and to do not care for heterogeneity.

The proposed SED mapping for parallel applications searches for “virtually homogé&neous
nodes. Therefore, the heterogeneity of the system is transparent. This matteegiopment of
a parallel application much easier.

We present preemptive and non-preemptive SED strategies. The preemptipéndis are
no gang scheduling disciplines, since gang scheduling seems to be not feasible iateorks
clusters (see section 3.2).

We introduce the concept of mapping state diagrams to investigate the behaviouereindiff
SED algorithms. In particular, we are interested whether SED may béwefiuising migration.
Further, we did simulation experiments to test the performance of the algerithm

Mapping state diagrams have shown to be an useful description tool for invesfitjze
behaviour of the algorithms and to analyse the simulation results.

SED1 scheduling, the concept of mapping state diagrams, and simulation reshlthevi
Proof-workload for SED1 are published in [134]. Here, we give an improved defirof map-

53

54 Chapter 4. Mapping Strategies for Heterogeneous Systems

ping state diagrams.

4.1 SED Strategy

The characteristics of SED are

¢ the user has to specify the maximum and minimum degree of paralletigms{ze and
maxsize),

e the global run queue is managed in FIFO order,

e migration, if faster machines become available.

Definition of Delay Classes

SED maps a parallel application ontistually homogeneous node., onto machines with the
same current delay.
Thedelay factorof a machinels; at timet is given as

di(t) == a;(1 + load(t)),

where loag(t) is the number of runnable processes on mach(see chapter 3).

Since we suppose that the applications follow $tveng synchronization modele. every
process of a parallel job tends to synchronize with other processes of the pgppliestion, the
slower machines will slowdown the faster ones.

Definition: Thecurrent delay classD;, of a parallel jobP;, which is assigned to machinds;,
with current delay factors;, j = 1,2, ..., n, is defined as
Dy :=maz{d;|j=1,2,...,n}.

We claim that the highest delay of a process is limited bydhe, value of the slowest
architecture, i.e., SED maps at most one process onto a machine of the simhéstture.

Let oy, k = 1,..., K be the different speed factors of the machines. The speed factors are
ordered {; = 1, ax = amq). We introduce a-set, which consists of the representatives of the
delay classes:

d-set:={j|j ENA 1<) < Unas}-

There arenazclass := | d-set| delay classes. The representative delay factor of delay class

1 is denoted byy;, the lower bound by; . , and the upper bound by, ,.. The first delay class

min maz*

Oivprin 71— 0.5,
0; = 1+0.5.

maz

In our example, we have; = 1, an.. = 4 andd-set = {1,2,3,4}. The corresponding
delay classes are shown in table 4.1.

When the load index of a machine changes significantly, the machine will also change i
delay class.

4.1. SED Strategy 55

0i | i | Oivas
1 1 1.5
2|15 | 25
3|25 | 35
41 35 | 45

Table 4.1: Example of delay classes.

The SED Mapping Algorithm

The components; of theavailability vector(a;, as, . . ., Gmazcass) give the number of currently
available nodes in clags

The SED algorithm compares different possible mappings by the resulting expecgd del
SED maps an application onto the machines which are currently in delaynelass

Om . {(2
" = min { —

A,

i€ {l,..,mazclass} A a;, > minsize},

a;,

wherea;, = min {a;, mawsize}. If there is more than one delay class which fulfills this equa-
tion, we choose the fastest one. Hence, the application is started with gllestndegree of
parallelism which gives the best speed-up under the current load situation.

This is done to reduce communication costs. For example, if we map a 2-dimensidtial m
grid application on 16 nodes instead of mapping them onto 4 faster nodes, we reduce the numbe
of operations per node to a quarter. At the same time, the communication costsyanaloat
for inner nodes. Since data have to be exchanged between neighbouring nodes, the total commu-
nication costs on 4 nodes for each iteration4as®2 - « = 8a, whereq is the length of one square.
If the application runs on 16 nodes, the total communication costs willibe - ¢ = 24a.

The chosen delay class is called theexpected delay classf the application (EDC). The
expected delay timef the application (EDT) |§f—

o

The Availability Vector

We will compare two SED algorithms, called SED1 and SED2. The algorithffes d the
calculation of the availability vector which leads to different mappingsiess.

SED1 uses an availability vector which is a generalization of the 1-t@afiping used in ho-
mogeneous systems. There, a parallel application is spread onto the givesprebgsnapping
1 process onto 1 machine. In delay classe all machines with current delay less or edjijal

To determine the components of the availability vector, we have to consideurtieatdelay
factorsd;(t) of the machines and theslow—down threshold;(¢) which is defined as follows.
This threshold gives the maximum delay which can be tolerated on a makthiwihout slow-
ing down one of the assigned applications. We define

si(t) := min {0, | a process of applicatioR, runs on}M; with EDC = £k} .

56 Chapter 4. Mapping Strategies for Heterogeneous Systems

appl.2

ﬁ appl.1 appl.1 appl.2

Figure 4.1: Different Mappings of SED1 (left) and SED2 (right).

When the system is idle;(t) = amaz-

The availability vector is calculated as follows. The components aiialinéd with zero. If
d; < s;, thenay, := ai, + 1 for all classes: > d;. This is checked for every machiié;. In our
example, when all machines are idle, the availability vectgs,s, 5, 30).

The SED2 algorithm counts a machine with current delay & ‘asrtual nodes” with delay
k. For all delay classeis= 1, ..., mazclass and machined/;, j =1, ..., ng,

ai; = maz {k | a; - (k +load)) < min {d;,,.,s;} }

is calculated. The;; are summed for all machines and give the compongat the availability
vector. In our example system, this result$n10, 15, 45), when the system is idle.

SED1 and SED?2 result in different mapping situations. For example, in ansysiih 5
machines may be two faster machines with= a», = 1 and 3 slower machines with; =
a4 = ag = 2. Figure 4.1 shows the mapping situation when there are two applications in the run
queue, both withninsize = 1 andmaxsize = 5. While SED1 spreads application 1 over all 5
machines, SED2 maps the application compactly onto 3 of the 5 machines.

The values off;, s; and(aq, as, ..., ame) @re updated whenever a parallel job is assigned or
terminates.

Termination of a Parallel Job

When a job terminates, the scheduler updates the expected delays and checksjoletrer
waiting in the run queue and may be mapped now. If the run queue is empty, the schiedaller ¢
whether a running job can be migrated to machines of a faster delay class.

For example, when application 1 on the left side of figure 4.1 terminates, appli@aruns
alone on the two fast machines with a new expected delay of 1. This schedulingsevaltéd
upgrading

Since the application is always running and containetba;, we cannot calculat®),, as
above, but use

Dy, = maz {a;(1 + load;(t) — 1)| P is ass. taV/;} .

When a job is upgraded, the thresholg®f all machines have to be recalculated. This also
effects the availability vector.

4.2. Mapping State Diagrams 57

4.2 Mapping State Diagrams

We introduce mapping state diagrams to characterize the behavior of the SEEhaigdviap-
ping state diagrams are distinct from state diagrams which describe thendyshavior in terms
of number of jobs in the system.

Definition: A mapping statés a tuple(m,, ma, ..., Mmazeass) With one component; for each
delay class. Let; denote the maximal number of virtual nodes in delay clasken the
system is idle. The component; is av;-tuple, where each entmy,;,, j = 1,2,....,v;
gives the number of applications with sizevhich allocate virtual nodes of delay class

Like in state diagrams, state transitions occur when an applicatimesuor terminates. The
possible state transitions are visualized in a mapping state diagranaping state diagrans
a directed graph whose nodes are the possible mapping states. There is an edge frdrtonode
nodeB when a state transition exists framto B.

The advantages of mapping state diagrams compared with normal state diaggams a

e There are less states since different run queue lengths are not consideredaRésstine
mapping state diagram more manageable.

e Since the mapping diagram gives information about the current location of the ajopljcat
migrations are observed as special state transitions.

e Since mapping state diagrams consider virtual nodes, processes which run pseladoparal
on the same machine (due to the local time-sharing system) are also inciutiedniodel.

When we consider workloads where the user specifies the maximum degree of garalleli
of her application equal to the maximum number of machines or maximum number of virtual
nodes, the number of possible mapping states decrease enormously, since a singlécapplic
tends to fill almost the whole system.

The only information about the workload which we need for constructing the mapping state
diagram are theninsize andmazsize parameters. In the following we show the mapping state
diagram for different systems in the case of applications which specifysize = 30 and
mansize = 1.

When there is only one job running in a delay class, we note only the size of the running job,
i.e., a mapping statép, 0, 0,25) means that one application is running on 5 machines of delay
class 1 and another application is running on 25 machines in delay class 4.

4.2.1 SEDI1-Mapping State Diagram of System 1

Example system 1 consists of 5 fast machinres=(1) and 25 slower machines with = 4. The
mapping state diagram of SED1 for system 1 is shown in figure 4.2.

The mapping diagram shows that SED1 in system 1 has the following charécsenisder
the given load:

58 Chapter 4. Mapping Strategies for Heterogeneous Systems

—pJODS in run queue

i. K ... UN queue em) i
(0,0,0,0) = Y 0,0.0.0)
/.f AN /'f
~0,0,030) { (00,0 25 "™(0,6,0,30)
+ b t | + A
C(o 5030 i (50,0,) C(o, 5,0, 30)
upgrade™,_ / (0\5 00
5,0,0,0 5,0,
Ca2? 4

Figure 4.2: Mapping State Diagram of System 1: SED1 (left) and SED1-NU (1{ity4).

e At most 2 jobs are running in parallel,

e jobs may run in time-sharing mode (mapping state (0, 5, 0, 30)),
e upgrading may occur, and

o there will be no migration at all.

We will compare SED1 with SED1-NU which uses no upgrading (see fig. 4.2).

4.2.2 SED2-Mapping State Diagram of System 1

When we use SED2 instead of SED1, the availability vects,i$0, 15,45) in case system 1 is
idle. SED2 maps the first arriving application also on 30 virtual nodes of deday dl. But SED2
uses the fast machines first. There will be 4 processes running on each of sesb flaachines
and only 10 of the slower machines are used. The availability vector ig®@y0, 15).

The next arriving job will allocate the remaining 15 machines. Now, ther@ gbs running
on machines of delay class 4. We denote the corresponding mapping stat6,8s30 + 15).
The complete mapping state diagram is shown in figure 4.3. While no upgrading occDi3, SE
makes use of migration. The mapping state diagram of SED2-NM which does not usganigra
is also shown in figure 4.3.

4.2.3 SED1- and SED2-Mapping State Diagram of System 2

In system 2 there are 20 machines with= 1 and 10 machines witx = 4. Here, SED
divides the system into two homogeneous subsystems: One consists of the 20 fast and one of
the 10 slower machines. Since SED1 and SED2 behave the same in homogeneoiss fystem
mapping state diagrams are exactly the same (see figure 4.4).

The mapping diagram shows that SED has the following characteristics ansgst

4.2. Mapping State Diagrams 59

N ':_ ‘ ::.
H >(0,3, 0, 0)==--- (5,0, 0, 0) ;"">(O, 0,0,0)
I !
(0,0,0,30) ™ (50,0, 25@ i (0,0,0,30)
A -, i : A
: ~Y
(0,0,0,30+15) (0,0,0,25) C(o 0,0, 30+15)
; ' migration :
fereen (0, 0, 15, 0):»(0 0 15, 256 i (, 0, 0l 15)
Figure 4.3: Mapping State Diagram of System 1: SED2 (left) and SED2-NM (right)
\ —pjODS iN run queue \
(o’ O, 0’ 0) - [UN qUeue empty (0’ 0’ O, O)
‘./ x4
(20,0, 0 ', 0 i (10+10,0,0,10) 200, 0, 0)
s . A
+ Y + :
0,0,10) § (10+10,0,0,0) C(zo, 0,0,10) i
mlgratlon'. N ’x‘ \ N :
(10, 0, 0, 0) (0,0, 0, 10)

Figure 4.4: Mapping State Diagram of System 2: SED2 (left) and SED2-NM (ffityB4).

e At most 3 jobs are running in parallel (stgte) + 10,0, 0, 10)),
e 1-to-1-mapping between processes and machines,

e space-sharing between applications,

o there will be no upgrading at all, and

e migration may occur.

We will compare SED2 with SED2-NM that uses no migration. The Mapping statgatin
of SED2-NM is similar to the left side of figure 4.4.

60 Chapter 4. Mapping Strategies for Heterogeneous Systems

4.3 Evaluation of Simulation Results

Oleyniczak has implemented a simulation program [111] for the presented sciuestuditegies
and has created the figures shown in this chapter. The simulation softwarganssfrom gnyLeh
[114].

The approximation of migration costs is the same as in case of the homogeneous sgstem (
section 2.2).

4.3.1 Definition of Workloads

In the simulations, we investigate the algorithms under four different worklo&ldee follow
the variable—size—model and the fourth the fixed-size—-model. The given megnofalervice
times are the execution times when the application would run sequentially cof thmefastest
machine in the systenu(= 1).

Proof-Workload: In the first workload we use the variable—size—model withz size = 30
andminsize = 1. Sincemaxsize is equal to the number of machines in the systems, the parallel
jobs will act greedily and allocate as many nodes as possible. To get a bettestanding of the
behavior of the algorithms under different hardware characteristics and theesirrectness of
the simulation software, we use an artificial workload with constantcsedémands (100 min).

Exp-Workload: In the Exp-workload we use an exponentially distributed service demands
with a mean service time 120 minutes.

Hyperexp-Workload: In the Hyperexp-workload the service demands are hyperexponen-
tially distributed where 50 % of the jobs have a mean service time of 10 miaoteS0 % of the
jobs have a mean service time of 120 minutes. Hyperexponentially distributédesdemands
are motivated by several monitoring studies in parallel computer centenegervice demands
with coefficient of variation between 1.3 and 3.7 have been observed (seefople [34]).

FS-Workload: Here, the service demands are hyperexponentially distributed like in the
Hyperexp-workload. The FS-workload follows the fixed-size—model where the sipg@mly
distributed between 1 and 30.

We compare the performance of the SED algorithms in the two example systemsoéfhe
ficient of variation of the generated random numbers for the service demands is alio=Z®
of the Exp-workload resp. 1.6 for the Hyperexp-workload.

4.3.2 Performance Results for the Proof-Workload

We use this workload for the discussion of the upgrading technique and of migration of SED1.

The results of our simulations are shown in figure 4.5. The mean residencehenmagtn
waiting time, and the mean computing time of the jobs are given as a parasfigterjob arrival
rate. Further, the percentage of upgraded resp. migrated processes is shown.

4.3.

Evaluation of Simulation Results

avg. computing-time in sec avg. waiting-time in sec avg. residence time in sec

delay-upgrades in percent

5000 T T T T T

4500 | 5.SEDL |
4000 | LS-SED1-NU - i
3500
3000
2500
2000
1500
1000
500 |-

L L
02 04 06 08 1
arrival rate, jobs per 1000 sec

12 14 16

18

5000 —————

4500 | 5.5EDT i
4000 | LS-SED1-NU - i
3500
3000 |
2500 |
2000 |
1500 |
1000 |

0.2 04 06 08
arrival rate, jobs per 1000 sec

I
1 12 14 16

18

1250 T T T T
1200 -
1150 | LS-SED1-NU -+-- . T
1100
1050
1000
950
900
850 |

LS-SED1 —-— -+

800 L L
02 04 06 08 1
arrival rate, jobs per 1000 sec

12 14 16

18

30 T T T T

25 | LS-SEDL <—

L L
02 04 06 08 1
arrival rate, jobs per 1000 sec

12 14 16 18

avg. computing-time in sec avg. waiting-time in sec avg. residence-time in sec

migrations in percent

1200 - | s.sED —— /

LS-SED-NM -+--

1000
800
600
400
L L
0 05 1 15 2 25 3 35
arrival rate, jobs per 1000 sec
500 T T T T "\
450 |5 SED o /
400 |- LS-SED-NM -+-- /
350
300
250
200
150
100
50
0 L L
0 05 1 15 2 25 3 35
arrival rate, jobs per 1000 sec
T T T T
1200 - | s.sED ——
LS-SED-NM -+--
1000

2 25 3 35
arrival rate, jobs per 1000 sec

0 05 1 15

30 T T T

25 -

20 -

15

0 05 1 15 2 25 3 35
arrival rate, jobs per 1000 sec

61

Figure 4.5: Simulation results with System 1 (left) and System 2 (right) updmf-workload.

62 Chapter 4. Mapping Strategies for Heterogeneous Systems

Influence of Upgrading

For system 1, upgrading reduces both waiting and computing time. The percentage of upgrades
decreases with increasing system load. This occurs, since upgrading is done onlthe/inen
queue is empty.

Nevertheless, upgrading leads to a better performance even under high lofiguiseé.6).
The reason can be found by observing the corresponding mapping state diagram.

In case of SED1-NU the corresponding mapping state for higher lo&l is0,30). The
asymptotic computing tirme

Climes = (3«"%4‘?/%) 'ta

wheret is the mean service time demand of the jobs-(100min), and the weights andy are
the solution of the equations % =y- 31‘0 andz + y = 1. In this case there will be 3 jobs running
with delayt while one job runs with delay. This givesciim.. = & - t = 12005 (see fig. 4.5).

In case of SED1 the system may change between the $tate9, 25) and(0, 5,0, 30). The
asymptotic computing time in stafé, 0, 0, 25) is

(e gtv3s) 0
Climes = | T+ = Rl B
! 579)0

with weightsz = § andy = 2. The resulting asymptotic computing time is about 1060 s which
is the upper boundary of the SED1 curve in figure 4.5.

Discussion of Migration

The mapping state analysis has shown that under the given workload migration ocgurs onl
system 2. Further, SED1 and SED2 behave the same in system 2.

The simulation shows the benefits of migration under low and medium load in sy<ts=s 2
fig. 4.5). Under low load most jobs will be mapped onto the 20 fast machines and wignately
occurs. The percentage of migrated processes increases with increadindridar higher load
the run queue will seldom be empty and the probability of migration decreases again.

Figure 4.5 shows that migration reduces the mean waiting time. SED1 edsias the
computing time up to an arrival rate of about 2.3 jobs per 1000 seconds. Here, the jofis bene
from the shorter runtime on the faster machines after migration. But for higher$&D1-NM
leads to the smaller mean computing time. The reason is that the tweggsatesult in different
asymptotic computing times.

Without migration most of the time the system will be in st¢é, 0,0, 10) under high load.

The corresponding computing timegs(S R %) = 533, 3 seconds. When SED1 is used
the system may be in mapping sté26, 0, 0, 10) or (10+10, 0, 0, 10). The latter has a computing
time of § (4 sS4 %) = 800 seconds which increases the mean computing time of
SED1 compared with SED1-NM.

The different behavior of upgrading and migration is summarized in figure 4.6 where the
speed-up of SED1 against SED1-NU in system 1 resp. SED1-NM in system 2ws.sHAte
speed-up of SED1 against SED1-NU is defined as

res. time of SED1-NU- res. time of SED1

speed SEDL:
peedup (> residence time of SED1 ’

4.3. Evaluation of Simulation Results 63

° 50 T T T T T T

>

£ 45 I LS-SED1 —<— .
E :
3 35 - .
g 30 | s
>

5, 25 -
3 20 |- .
= 15 k- _
o

3 10 -
@

g st -
n 0 | | | | |

02 04 06 08 1 12 14 16
arrival rate, jobs per 1000 sec

o 35 T T T T T T T
X
£ 30 LS-SED —~—
5 25 | -
©
=) 20]
IS 15 k- |
e
= 10 |- -
e
E - -
o
> L USRS S U -
©
o
o S T
w

_lO 1 1 1 1 1 1 1

0 05 1 15 2 25 3 35 4
arrival rate, jobs per 1000 sec

Figure 4.6: Speed-Up of SED1 by upgrading in system 1 (top) and by migration in system 2
(bottom) under the Proof-workload.

and similar for SED1-NM. While the benefits of upgrading increase under higher lod&i, SE
with migration shows substantial benefits under low and medium load. It shouldavet@éthe
possible speed-up depends on the hardware characteristics of the system.

64 Chapter 4. Mapping Strategies for Heterogeneous Systems

5000 T T T T E T Fr
g 400K SED1 —<— N
®» 4000 SEDI1-NU -+-- 7.
£ SED2 -5-- / i
o 39007 SED2NM -
= 3000 [SED2-greedy -
8 2500 -
c
§ 2000 8
g 1500 .
% 1000 -
500 | -
O | | | | |
02 04 06 08 1 12 14
arrival rate, jobs per 1000 sec
100 . . . T T
SED1 <—
g 80 | SED2 -+ -
. SED2-greedy -8--
g
2 60 -
(9]
(%]
g M------- B------ 8------ B------ B------ Gh------ 21
S 40 | -
s
S g
= 20 X
O | | | | |

02 04 06 038 1 12 14
arrival rate, jobs per 1000 sec

Figure 4.7: Mean residence time (top) and job size (bottom) for system 1 for thev@kead.

4.3.3 Performance Results for the Exp-Workload

The mean residence times for the different algorithms in system 1 and sgstemshown in fig-
ure 4.7 and 4.8. Since SED1 and SED2 behave the same for system 2 under the giveadyorkl
only curves labeled SED are shown (see figure 4.8).

In system 1, the simulation results for SED1 and SED2 show a very sibglaavior. The

4.3. Evaluation of Simulation Results 65

2500 T T T T T,
2 SED <—
®» 2000 | SED-NM -+~ A
£ SED2-greedy -&--
Q
£ 1500 | -
@
[S]
c
§ 1000 - .
(%]
2]
o 500 | -
©
O | | | | |
0 0.5 1 1.5 2 2.5 3
arrival rate, jobs per 1000 sec
100 T T T T T
B At
o 80 SED2 —«—]
L SED2-greedy -+--
@
o
@ 60 - -
(9]
(]
]
8 40 + .
a
(=)
S 20 I M@ i
O | | | | |

0 0.5 1 15 2 25 3
arrival rate, jobs per 1000 sec

Figure 4.8: Mean residence time (top) and job size (bottom) for system 2 for thev@kead.

best performance is achieved by SED2 in both systems. Migration and upgragiray@s the
performance of SED.

66 Chapter 4. Mapping Strategies for Heterogeneous Systems

Influence of the Expected Job Size

Both SED1 and SED2 are comparedfeizsize = 30 which is equal to the number of machines
in the system. We also tested the SED strategiesmithsize = 100.

For SED2, the maximum number of virtual nodes in system 1 is 45, and 90 in system 2.
Hence, SED2 maps a job onto all virtual nodes and becomes a simple FIFO stildtegymu-
lation results for SED2 are labeled as SED2-greedy in figure 4.7 and 4.8. Siisrder SED1
stay the same, since the maximal number of virtual nodes is equal to the number ofiesachi
The figures show that SED2 makes efficient use of the resources with this wbiikldzoth
systems, even under high load.

Since SED2 tends to map more processes onto a machine than SED1 under this greedy w
load, this may result in a lack of memory resources and the machines magveaaping. So,
in a real implementation of the SED algorithms, the available memory reseurave to be
considered.

Influence of Migration

The benefits of migration are shown in figure 4.9, where the speedup of SED2 agdd&st SE
NM is plotted. While migration has only less benefits in system 1 (less tharspe¥dup), the
speedup achieved in system 2 increases up to nearly 30 %. The benefits ofomidesrease
under higher load.

The reason of the different behavior of SED in the two systems can be found by observing
the corresponding mapping state diagrams (see figure 4.3 and refmap2). Whilem $ySED
migrates processes from machines of delay class 4 to machines of de&Bcthe processes
can be migrated to machines of delay class 1 in case of system 2. This reguitoverall better
speedup.

Since the possible speedup depends on the hardware characteristics of the sghsamyea
of thea values will result in higher or lower speedups.

Migration is an operation which consumes processor time and network capaicige the
network is highly loaded during the transfer time of a process, migration eventsisible” to
all users.

The number of migrations and the time between the migration events depend on the job
arrival rate and the job service demands (see figure 4.9). The smallestaabseerarrival time
is observed in system 2 (1919.0 sec for arrival-rate 2.8). This seemgtaloleefor users in a
workstation cluster. Further, when the mean service demands of the jobs @eveasxpect that
the mean interarrival times will also increase.

Since migration occurs only when the global runqueue is empty, migration events should
decrease under higher load. This is not true for system 2. Here the mean timerbetigestion
events stay almost constant for medium and higher load. The mapping state diaggdig. 4é.4)
shows that even under high load migration may occur (state transitibs- 10,0,0,10) —

(10 4 10,0,0,0)).

Here, we investigate migration events which occur when faster macbetesvailable. If

more than one process is migrated, we call thisigration bulk The length of a bulk is the

4.3. Evaluation of Simulation Results

60
50
40
30
20
10

0

speedup through migration in %

-10

20

15

10

Interarrival-times of mig-events in 1000 sec

67

SED2-Sysl —-—
SED2-Sys2 -+---

0.5 1

15

2

2.5

arrival rate, jobs per 1000 sec

SED2-Sysl —<—
SED2-Sys2 -+-

o B
-

A+

0

0.5 1

15

2

2.5

arrival rate, jobs per 1000 sec

3

Figure 4.9: Speedup of SED2 through migration (top), and mean time between arigragints

(bottom) for the Exp-workload.

number of migrated processes and gives information about the costs. The meaf nugts-
tion in system 1 are higher than in system 2, since SED2 migrates 15 propessagration
event in the case of system 1, and 10 processes in the case of system 2 (sBeafig.444). But
overall, since the migration costs are several seconds for 10 MB proct#eseare neglectable

68

Figure 4.10: Mean residence time (top) and job size (bottom) for system 1 for thee:itppe

workload.

avg. residence-time in sec

avg. processes per job

2500

2000

1500

1000

Chapter 4. Mapping Strategies for Heterogeneous Systems

T T T T T T T T /

SED1 —— ;
- SED1-NU -+ /A
SED2 -&--
SED2-NM - /

SED2-greedy -4---

02040608 1 12141618 2

100

80

60

arrival rate, jobs per 1000 sec

SED1 «—
o SED2 -+--
SED2-greedy ---

02040608 1 12141618 2

arrival rate, jobs per 1000 sec

compared with the service demands of the jobs.

4.3. Evaluation of Simulation Results

avg. residence-time in sec

avg. processes per job

2500 T T T T T T T
SED —~—
2000 SED-NM -+--- -
SED2-greedy -8--
1500 -
1000 -
500
0
0 05 1 15 2 25 3 35 4
arrival rate, jobs per 1000 sec
100 T T T T T T T

B s T et e 1

80 |- SED2 —+—
SED2-greedy -+-

60 - -
40 - -

20 _%,

O | | | | | | |
0 05 1 15 2 25 3 35 4
arrival rate, jobs per 1000 sec

69

Figure 4.11: Mean residence time (top) and job size (bottom) for system 2 for thee:itppe

workload.

4.3.4 Performance Results for the Hyperexp-Workload

The Hyperexp-workload differs from the Exp-workload only in the distribution of theiser
demands. The coefficient of variation of this workload is 1.6, and it is about 0.9 fdExpe

workload.

70 Chapter 4. Mapping Strategies for Heterogeneous Systems

The mean residence times for the different algorithms in system 1 and sgsaeenshown
in figure 4.10 and 4.11. Since much more jobs with a shorter service demand deivegan
residence times are smaller compared to the Exp-workload. Howeverewetinterested in
the absolute performance values, but in the behavior of the algorithms comparedetitbther.

Comparing the figures for Exp-workload 4.7 and 4.8 with the figures 4.10 and 4.11 for
Hyperexp-workload, we see that the different disciplines have a similar behavior bote
workloads. Again, SED2 achieves the best performance in both systems.

The benefits of migration are shown in figure 4.12, where the speedup of SED2 against
SED2-NM is plotted. In system 2, a maximum speedup of 30 % is achieved by migeattbn
a minimum speedup of 10 % even under high load. This differs from the results under Exp-
workload where the benefits of migration decreased for higher load. If we do not ussiarigr
each job which is mapped on the slower machines runs there up to completionnBgitafion
is possible, the long running jobs which are mapped onto the slower machines migtiage t
faster ones when they become available. The faster machines may be occupieddpyr short
running job. Ifitis also a long running application, the probability for migratioess| but on the
other side itis not neccessary for the overall performance. In casesh@arunning application,
the probability of migration increases. Hence, under the Hyperexp-workload a highen{zere
of applications will be served by the faster machines due to migration.

The smallest interarrival time is again observed in system 2 (1346 ®sarrival-rate 3.6).
This seems acceptable for users in a workstation cluster.

Since the possible speedup depends on the hardware characteristics of the syhsamea
of thea values will result in bigger or smaller speedups.

4.3.5 Performance Results for FS-Workload

Figure 4.13 shows that SED2 performs better than SED1 in both systems. Snuenber of
available nodes is much higher under SED2, this discipline is much more flexible teehbadl
fixed-size—workload.

In contrast to the results under variable—size—workload, upgrading makes therzerterof
SED1 worse. When an application is upgraded, this means it uses more virtualty sinde it
will use some machines exclusively after upgrading. This means the number abdevaibdes
is reduced by upgrading. This makes SEDL1 less flexible for the FS-workload.

The performance of SED2 is again improved by migration. For the FS-workloadheledsp
of SED2 against SED2 without migration increases up to about 20 % in both sysfEmes.
speedup curves for both systems are shown in figure 4.14 (labeled Fix-SED2-Sgpgétber
with the speedup curves under the variable—size—workload (labeled Var-S§ER22E While
there are less benefits of migration for the variable—size—workload in syktehe situation
is quite different for the FS-workload. In systems 2, there are performance tsevteserved
under both types of workload. While under the variable—size—workload the benefits of angrati
decrease under higher load, the speedup by migration increases under higher loadse tife ca
FS-workload.

The number of migration events is much higher under FS-workload (see figure 4.14). Since
applications with sizes between 1 and 30 arrive, the probability that desrjedd may migrate to

4.3. Evaluation of Simulation Results 71

50 T T T T T T T

40 b SED2-Sysl —-—|
- SED2-Sys2 -+---
2
B 30 - +,>P""‘+\F\+\ I
= g T
£ 20 F / T .

/ e
% + |
3 10 B
o
)
OO o0
_lO | | | | | | |

0 05 1 15 2 25 3 35 4
arrival rate, jobs per 1000 sec

20 T ', T T T T T T
3 SED2-Sysl —<—
% SED2-Sys2 -+--
8 15 .
o
—
=
Q
E 10 .
T
2
5 5h .
o} -
s ﬁ\\"“‘%—ﬁ—v_,
O | | | | | | |

0 05 1 15 2 25 3 35 4
arrival rate, jobs per 1000 sec

Figure 4.12: Speedup of SED2 through migration (top), and mean time between omgnatnts
(bottom) for the Hyperexp-workload.

the faster machines is much higher.

72 Chapter 4. Mapping Strategies for Heterogeneous Systems

5000 T SEbl T T 70 T T T]
9 4500 FSEp1-NU -+-- f
® 4000 | SED2 8- ¢ ;A
c -]] P
£ 3500 | SED2-NM -/ s
£
$ >< i
S eI
o]
>
‘G —
O | | | | | | | |
02 040608 1 1214 16 1.8 2
arrival rate, jobs per 1000 sec
5000 . . . T
+ SED1 <— |
9 4500 - SED1-NU -+~ |]
® 4000 | | SED2 B | .
£ 3500 | [SED2-NM ¢)
£ 3000} i L
& 2500 | m 1
L 2000 - K .
8 1500 |- X .
S 1000 * X
> oo BT 8]
8 ggo [EEenEs -
O | | | | |

0 1 2 3 4 5 6
arrival rate, jobs per 1000 sec

Figure 4.13: Mean residence time for system 1 (top) and system 2 (bottom) foofk&ad.

4.3.6 Influence of Hardware Characteristics

We expect that the speedup which is achieved by migration will be higher whenpleeee
machines by faster ones.

Therefore, we tested SED for systems with different hardware chasdicte The systems
are given in table 4.2. These are the example systems 1 and 2 as before, andXyshich

4.3. Evaluation of Simulation Results

50 T T T T T
40 | Var-SED2-Sys1 —o— |
= Var-SED2-Sys2 -+---
o Fix-SED2-Sys1 -a--
;i 30 A Fix-SED2-Sys2 -
; "
£ 20/ A
S | EEEEg T ey
8 X ~+
) 10 o X
o el o
o X
FE00000000
(R e e
-10 1 I 1 1 1

0 1 2 3 4 5
arrival rate, jobs per 1000 sec

20 T T T
3 Var-SED2-Sysl —<—
% Var-SED2-Sys2 -+--
8 15 + Fix-SED2-Sys1 -8-- |
= Fix-SED2-Sys2 -
=
Q
E 10
T
2
6 5 r X
£ X ‘j{‘j(—»yx N

O | | | | |

0 1 2 3 4 5
arrival rate, jobs per 1000 sec

73

Figure 4.14: Speedup of SED2 through migration (top), and mean time between omgnatnts

(bottom) for FS-workload.

consists of 20 machines with; = 1 and 10 machines with, = 10. This means that 20

machines are replaced by faster ones compared with system 2.

The mapping state of system 2’ is the same like system 2 (see fig. 4.4). Ims¥/steost of
the jobs are executed on the faster machines with speed factor 1 resp. 4sldhes machines

74 Chapter 4. Mapping Strategies for Heterogeneous Systems

System| a; =1 |az=4| az =10
1 5 25 -
2 20 10 -
2 20 - 10
3 5 20 5

Table 4.2: Systems with different hardware characteristics.

will only be used, if the others are occupied.

The different speedups and the mean time between migration events are stiigurei 4.15.
These are results from the simulation with the Hyperexp-workload.

The ‘individual speedup’ of a job achieved by migration is

EDTy4
EDTnew ’

where EDT,;4 is the expected delay time before, ahdT,., the expected delay time after
migration. Since the size of the application is unchanged during migration, this istequa

EDOold
EDChe’

the quotient of the corresponding expected delay classes.

The individual speedup of processes in system 2 is 4, in the case of system 2 it is
L = 10. This means that for the individual process it is much more beneficial to migrate i
system 2'. Figure 4.15 shows that this corresponds also to a higher social speexiopcisd:

The same is true for system 3 where a higher individual speedup results in a higler soci

speedup compared with system 1 and 2.

4.4 Summary

We have presented and compared SED mapping strategies for parallel apmicet heteroge-
neous systems. SED make the heterogeneity of the system transparent for the user.

We introduced the concept of mapping state diagrams to characterize the behatier of t
algorithms. Further, we tested their performance in a simulation.

The simulations have shown some of the dependencies between the system configuration,
workload characteristics, and scheduling performance.

The presented simulation results show the benefits of the upgrading technique usdd by SE
under the variable—size—workload. Further, process migration leads to an edpesformance.
The overhead which is caused by migration is expected to be tolerabletlsinabserved num-
bers of migrations which are neccessary to improve the performance ikowery

The presented SED1 and SED2 policies differ in their calculation of thiahildy vector.
SED2 makes better use of the resources and shows a better performancénulited systems
for variable—size and fixed-size workloads.

4.5. Bibliography

Speedup through migration in %

Mig-interarrival-times in 1000 sec

60

50

40

30

20

10

0

20

15

10

0

T T T T T T T
BEgg Sys1l —<— |
o - Sys2 -+
; 'S Sys 2’ -8
o B, Sys 3 o
B
O >< X"X‘_
R e Sy .
X Xt ..
» o T
L X TR B4
* AR
R DA s 2 4 | | |

0O 05 1 15 2
arrival rate, jobs per 1000 sec

25 3 35 4

T T T

Sysl —<—
Sys 2 —+-

i Sys 2’ -8--
Sys 3 ~x-

i P l

X 5\\? -
e T gy o
1 1 1 : ' : I

0 05 1 15 2
arrival rate, jobs per 1000 sec

25 3 35 4

75

Figure 4.15: Speedup of SED2 through migration (top), and mean time between omgnatnts
(bottom) for Hyperexp-workload in different systems.

4.5 Bibliography

An implementation of SED2 scheduling for PVM applications is described in [49].

A time-sharing scheduling strategy which shall be implemented in the contied®@dM [19]

76 Chapter 4. Mapping Strategies for Heterogeneous Systems

is presented by Al-Sagabi, Otto and Walpole [3]. They use the concept of ‘virtaaeégsors’
which is similar to our ‘virtual nodes” to make effcient use of heterogeneou$imes but the
algorithm is based upon the fixed-size-model. The algorithm calculates thenglatef a job
in three steps (Minimum Turn Around Time Algorithm, Compression Algorithm, axplaB-
sion Algorithm). The authors do not investigate whether a preemptive policy iditiahen
workstation clusters.

Chapter 5
Dynamic-SED

In this chapter, we extend SED2 to Dynamic-SED to make it operationakal’ ‘workstation
environments. Dynamic-SED regards not only the current delay of the machinesstiel
currently free memory and the number of interactive users. It presents gpesaah to achieve
a co-existence between parallel applications and interactive users.

The presented location and selection rules are part of Marc Gehrke’smthassis [49].
Gehrke has implemented SED for PVM applications and carried out the preserdediriven
simulation. Further, we define different ‘migration anomalies’ and checkhehnéhese anoma-
lies are true for Dynamic-SED or not.

Several studies about migration strategies have been published (see foreef@nplL, 58,
164]). They all have in common that they investigate migration policies in honsmyes systems
with no special care of parallel applications. Further, they all use a flilzzyclassification of
lowly, medium, and highly loaded machines, and they are not aware of interaseys.

While it has been argued that migration is not always beneficial for load balaimdiagmo-
geneous systems [31], the situation is different in heterogeneous systems whieagiapplmay
profit from migration to faster hosts.

5.1 Motivation and Definitions

Up to now, we tested the performance of the SED algorithms under “closed confjitienshe
only load in the system was due to parallel jobs. As long as all jobs are subtoittieel global
scheduler and no local ‘background’ load occurs the scheduler will take care thatdke o
the applications will be guaranteédBut when jobs arrive which are not mapped by the global
scheduler like jobs from interactive users, applications may get out of thaiyslel

Workstations are user dedicated machines and only their idle times should beukedyf
running and parallel applications. The question is how both, parallel applicaticimt@nactive
user, can coexist. In this chapter, we present Dynamic-SED, where aésarand migration
rules are added to the SED discipline.

1See the definition of the slowdown-threshold.

7

78 Chapter 5. Dynamic-SED

The SED discipline maps a parallel job onto machines which are currently sathe delay
class. When the user of a machine gets active again, the local load on the nmaejirise. This
means that the application is slowed down by the user.

On the other side, the user is handicapped by the parallel application which cormumes
cessor and memory resources. Even in the case that the user does not need Blbtap&city
when starting a text editor or an Web browser for example, he will need songesBf free
memory for a pleasant operation. The user has different opportunities to actsitdhaison:

e He does a enpt e | ogi n on another lower loaded host which benefits the parallel ap-
plication.

e He is frustrated and does a log off which also benefits the parallel appficati
e He can urge the system administrator to stop the application.

¢ He ignores the slowdown and keeps on working.

We will favour the last possibility in our scheduling discipline. The schedulingiglise
shall try to fulfill two principles [49]:

Principle 1: The user who wants to work at a workstation takes precedence over thelparalle
jobs.

Principle 2: The expected delay of the application shall be constant or decrease.

The only solution to fulfill these principles in the presence of interactivesusdo migrate
a parallel application when the resources get rare. Principle 2 statherftimat the target node
should be within the delay class of the application.

In the next sections, we will present the details of Dynamic-SED that widslfill these
principles. An evaluation of an experiment with this discipline in a realka@tion cluster is
presented in section 5.5.

First, the system has to recognize interactive users [49].

Definition: An interactive uselis a user who is logged on and regularly submits jobs to the
system.

Some systems like Condor [96] observe whether there is someone active on the coasole or
the mice device of the machine. Butin a distributed environment people are usetkteemote
on different machines, in special when there are some faster machihessiypstem available. In
this case the console and the mice device will be meaningless.

Further, it is possible to check periodically whether a user is active UNIX environment,
the output of theé op-command displays information about processes. The raw cpu percentage
is used to rank the processes. Sihog itself is a resource intensive operation, its use is rejected
in the design.

The notice whether there is any user logged on, we us@tisecommand which lists the
login name, terminal name, and login time for each current user. These itionare read
from the/ et ¢/ ut np file.

In the description of the migration rules, we use the following definition [49]:

5.2. Resource Reservation 79

Definition: Each entry in thé et c/ ut np file defines annteractive user

The benefit of this definition is that the system can periodically check whether #ne
entries in the et ¢/ ut np file and identify interactive users.

The proposed strategy acts preventively and reserves resources for thetiveauser. When
these reserved resources are not enough to guarantee the claimed prinégrsymof a pro-
cess is necessary. The reservation, selection, and location policycigbéesin the following
sections.

5.2 Resource Reservation

Since interactive users shall not be disturbed by the parallel applicationsseese cpu and
memory resources. Therefore, we introduce two paramétei,.,.,, andmem, e, which
give the percentage of cpu time and the amount of memory which shall be reseriedrfactive
processes.

Since swapping will slowdown the performance, machines which seem to bemneritical
should no longer be available in the delay classes. The parameter,;, gives the lower bound
for free memory. If the free memory drops under this bound, the probability of swapping is
increased.

The components;; for machinej with currentloadoad; and current free memontemory;
are calculated as follows [49]:

foad, — load; if there are no interactive users (5.1)
- load; + load,.s.,» if there are interactive users ’
memory; if there are no interactive users
mem; = (5.2)
MEMOoTY; — MeMresery It there are interactive users
maz{k | a; - (k +load;)) < min{d;,s;}} if mem; > mem,
I 0 otherwise

Dynamic-SED reserves some amount of resources for interactive useranidust is cho-
sen to be independent from the number of current users. Since interactive usdécsderadher
things like ‘thinking’, they will not start processes all the time. Hence, the€rved resources’
may be shared between the different users.

5.3 Migration Rules

The introduced resource reservation is suitable to protect the users whoriaetly working.
Future users who will log on later cannot be regarded. The only possibility to oealctad

80 Chapter 5. Dynamic-SED

changes like additional interactive users is migration. The benefits of noigrédr load bal-
ancing are twofold. First, the new interactive user is no longer handicapped by réiielpa
application, and second, the parallel application can gain performance.

Migration strategies consist ofselectionand alocationpolicy.

Definition: The selection policy determines the migration candidate, i.e., it deteamwhich
process on which machine has to be migrated. The location policy chooses the idestinat
host for a migration candidate.

Several studies about migration strategies have been published (see foreekainl64]).
They all have in common that they investigate migration policies in homogengsigsis with
no special care of parallel applications and that they are not aware of titerasers.

Here, we add selection and location rules for parallel applications toEBea®yjorithm (see
paragraph 4).

5.3.1 The Selection Policy

In previous papers, the selection policy is always host-oriented. In the éstthie load bal-
ancing system checks whether there are overloaded hosts. If there are,téme ayls select
the migration candidate. In [164] for example, policies are compared whicht gk most
computation-intensive process, which select the job which has been running fong¢fest time
so far, and combination of these strategies.

The selection policy for SED is process-oriented. Since SED tries to gearantexpected
delay, the process becomes a migration candidate when the current delay gétssitynivorse
than the expected one. Further, a process may get a migration candidate if hahtets free
memory and swapping may occur. Finally, a high number of interactive users @z @
process to become a migration candidate [49].

Definition: A process is called migration candidatef at least one of the following properties
holds:

1. The process was started with expected déland the current delay of its hogis
d]' with d]' —a; > §imaz.
2. The process is running on hgswith memory; < memmin.

3. The process is running on hgstvhere the number of interactive users exceed the
maximum number which are permissible on hast

The current delayi; of machinej includes the already running process. Hence, we have to
subtract this process from the current load to calculate the current expelztgd de

Oc]'(l + (load]- — 1)) = d]' —a; > Jznua:'

We assume in this definition that the process is computation-intensive and eaosesof ap-
proximately 1.

5.3. Migration Rules 81

The reservation rule reserves resources for interactive users,ibastumed that only few
users are active at once. Hence, to many users rises the probability thasteaone user will be
handicapped. The maximum number of permissible users is dependent on the architecture. A
machine with less main memory has a smaller maximum number than a fasnmadgth a lot
of memory.

Migration itself is a resource consuming process [116, 49]. The state of the pioagso
be saved. Then, the process has to be transmitted over the network to the rieatidagtost.
During the transmission phase, almost all of the net capacity will be usedidoaton and all
other processes which want to make use of the network, like the file servexeompée, are
delayed. This will indeed worry all users. Hence, migration has to be usefuittar

Therefore, the global scheduler checks all of its processes periodically whtetiyeare mi-
gration candidates or not. When it was noticed to be a migration candidate foaldéves, the
process will be selected.

The Selection Algorithm

The selection policy uses the following parameters [49]:

0T time between two checks,
¢: counter for positive checks, i.e., detecting that the process is a
migration candidate (initially zero),
upper bound of positive checks without action if there is
no interactive user,
... upper bound of positive checks without action if there is
an interactive user.

The counter is used to avoid unnecessary migrations. Two different upper bounds are used
to make the policy more sensitive in the presence of interactive users {©@hofs, > c2,..)-
The algorithm works as follows:

1. Each process is periodically checkéd' seconds) and its counter is updated:

¢+ 1 if the process is a migration candidate
c =
¢ — 1 if the process is no migration candidate

(5.4)

2. If c = ¢, (no interactive users) resp. if = ¢, (interactive users), the process is
selected for migration.

5.3.2 The Location Policy

After selecting a process for migration, the destination host has to be de¢eknihis is done
by the location policy.
The main location rule for SED is very simple.

Main Location Rule: When the process was started in delay clageen any machine
which belongs currently to delay claswill be an adequate destination host.

82 Chapter 5. Dynamic-SED

Only when the delay class is empty, the situation gets more difficulty. Therptation policy
depends on whether there are interactive users on the origin host or not. If therteeaetive
users on the origin host, the need for migration is much higher than without interastrs.

When the delay class is empty, the process has to accept a slowdown. Theasssibfe
destination host® is the set of hosts without interactive users and enough memory. Otherwise,
we would migrate also the problem.

P := {k | there are no interactive users on hbsindmemoryy > memupin} (5.5)

Interactive Users on the Origin Host

In this case the process has to be migrated for the benefit of the interactijdise
Let j be the origin host. The destination host is the host with the lowest current delely whi
has at least as much memory as the origin host. Sinsealready running onj, we have to
recalculate the available memory. Leemory_usage(p) be the memory currently used by
then
memory; ;= memory; + memory_usage(p),

and
daest = Min{dy, | k € P A memory; < memory A dy, < d™**}. (5.6)

The upper bound™* limits the number of processes on a host. Otherwise, single hosts
without interactive users could be hopelessly overloaded.
If a destination host still cannot be found, the memory condition is dropped:
dgest = min{dy |k € P A dy, < d™"}. (5.7

If still no destination host can be found, the user has to accept the situation.

No Interactive Users on the Origin Host

In this case, the process has dropped out of its delay class and/or memory & sAfter
migration the delay of the process should be substantially improved [49].
Now, the origin hosj belongs toP. Since the process is already runningjotthe delay of
ponjis
d; = dj — 0.

We claim that the delay of the destination host should be at least better than.one

daest = min{dy, | k € P A memory; < memory, A d; — d > aj}. (5.8)

5.4. Dynamic-SED is Ping—Pong—Free 83

5.4 Dynamic-SED is Ping—Pong—Free

Introducing migration rules into a resource management system keeps the dangesdbsses
are migrated around like nomads.

Gehrke reports that during the simulation Rimg-Pong-effectvas observed. He describes
Ping-Pong-situations as follows [49]:

e A process is migrated from hostl to hostB.
e Now the load on hostl decreases and the situation is fine on hast
e Sincep is added to the load on hoB, processes 0B may become migration candidates.

e Since the load situation is normalized dn location A may look better tharB andp is
migrated back.

A solution for this problem is to use a migration counter. Each time a procesgjiated,
its counter is increased. When the counter has reached a threshold which givesxthreim
number of allowed migrations, the process will not be migrated any more. Thisosois simple
and recommended within load balancing strategies (see for example [59]).

In a workstation cluster, migration is not only used for load balancing, but for thefivef
interactive users. Further, jobs with a runtime of several days or weekprailably migrate
more often than a short job of some hours. Hence, the threshold should give a maximum number
of migrations per hour for example.

In the following, we will show that the migration rules of Dynamic-SED avoidgPPong
situations without using a threshold. We introduce further migration properties ackiwheth-
er these properties are true for Dynamic-SED.

Definition: We call a system of migration rulgsing-pong-freef for every procesg which
is migrated from hostl under current load situatiolvad 4, to hostB under current load
situation/oadp one of the following conditions holds:

(1) pis no migration candidate on haBtunder loadoadp.

(2) pis a migration candidate on haBtunder loadoad g, but no better destination host
is available, i.e.p remains onB.

Theorem: The migration rules of Dynamic-SED are ping-pong-free.

Proof: If the main location rule was applied, procgswill be no migration candidate and (1)
holds.

Otherwise, the delay of the new destination hqs}; is higher than the delay class of
proces® and it becomes a migration candidate. In this cagg,was chosen fron? due
to rule 5.6, 5.7, or 5.8. Hence, there is no interactive useggnand a new destination
hostdest is determined due to 5.8:

84

Chapter 5. Dynamic-SED

P' ={k|k € P Amemory;, < memory, Ad;, —dp>a,,} (5.9)

We have to show that no better destination host is available;i.8.= dest which is true
if P'C P.

Leti,.;, be the origin host fronp.

Interactive users oNiypsg:

SinceP contains only hosts which have no interactive usevsl never be migrated back

to iorig-

Whenig.; was chosen due to 5.6, therenigmory;,,,, < memory;, .. This means that

the memory and the delay requirement in 5.9 shrinks the set of possible machines, and
thereisP’ C P.

Wheniz.s; was chosen due to 5.7, it is the fastest host regardless of the memory. Hence,
again there i’ C P.

No interactive USers OMi,;g:
Then,iq.,; Was chosen dueto 5.8. Thererismorylfmy < memory;, andd; . —d;,., >

Torig
Qg
Hence

U
Torig

—dr >, +diy, — de > i, T, >y,

and again we have’ C P. ¢

After migration the system should run stable and the next migration should happeritenly a

load changes which are not related to the migration itself.

A stronger property than ping-pong-free is migration-stable:

Definition: We call a system of migration rulesigration-stableif after migration of a process

p from hostA under current load situatiolvad 4, to host B under current load situation
loadg, will cause no migration with origiB.

If a system of migration rules is migration-stable, no process onBd&comes a migration

candidate, or, if a process df may become a migration candidate, there will be no better
destination host available.

Theorem: The migration rules of Dynamic-SED are not migration-stable.

Example: Let p be a process running on ha$twithout interactive users. Dynamic-SED may

migrate procesg from A to B because of to high delay oh.
Hence, there are no interactive usersin
Let ¢ be a process oR with expected delay 1 and

memory_usage(p) = memory_usage(q) + 9, 6 > 0. (5.10)

5.4. Dynamic-SED is Ping—Pong—Free 85

Thengq drops out of its delay class and gets a migration candidate. The destination host
will be calculated due to 5.8:

dgest = Min{dy | k € P A memoryy < memory, A dy — d, > ap}, (5.11)
wherememoryp is the free memory ol withoutg. Since

memoryy = memorys + memoryusage(q) — memory_usage(p)
= memoryg — 0,

the memory condition is less rigid and a héstvhich was not a suitable destination for
the bigger procegsmay become now a suitable destination host for the smaller prgcess
Hence,g is migrated toC'.

A situation which should be avoided is circular migrations of processes.

Definition: We say that a system of migration rulesisular-freeif a migration of a procesg
from hostA, to hostA; will cause no migrations fromt; to hostA;;;, i = 1,...,n — 1
with A, = Ap.

Theorem: The migration rules of Dynamic-SED are circular-free.
Proof: Let us assume that Dynamic-SED is not circular-free. Then there exis@maf hosts
A;, 1=0,...,nwith Ag = A, andA,,, is destination of a process frony.

We will show the contradiction for three hostls B, C'. The argumentation is analogous
for longer chains. Let procegamigrate fromA to B, procesg; from B to C', and process
r from C'to A.

When A is allowed to be a migration destination, there are no interactive user. on
Hence, all destinations are determined due to rule 5.8.

Sincep is migrated fromA to B, there is

d£4 — dB > qa > 07
whered/, is the delay o4 without p.
C'is destination for process Hence,

d%*dc>0{3>0,

whered is the delay orB withoutq. Since meanwhilg is running onB, there is?};, = dg
and we have
dg —dc > ag > 0.

From the migration of it follows that

d% —da > ag >0,

86 Chapter 5. Dynamic-SED

wheredg; is the delay o withoutr but meanwhile witty running onC'. Hencedy: = dc-.
The current delayi4 of A is the delay ofd without p which is equal taZ), .

Therefore,
do — d£4 > ac > 0.
This gives a strong monotone decreasing chain of delays:
dy >dp >de > d,,
which is a contradiction. O

It follows that processes will never be swapped between two hosts, imégration from A
to B will never cause a migration of another process fiBrto A.

5.5 A Trace-Driven Simulation

We present the results of a trace-driven simulation to valuate the penfieerof the Dynamic-
SED algorithm, i.e., SED with additionally reservation and migratioesuds introduced in
section 5.2 and 5.3. A detailed description can be found in [49].

The interesting questions are:

e Can the delay of a parallel application be guaranteed within a toleranceahtirring
execution?

e How many migrations per hour occur? This gives an approximation of the migratics cost
and whether the migration overhead is tolerable.

Dynamic-SED has to be tested now under changing load situations and in the presence of
interactive users. Therefore, we need informations about load caused acineusers who
work concurrently to the parallel applications on the machines.

In this case, a trace-driven simulation is recommended where the inpuigtara for current
load, free memory, and number of interactive users is received from magireal workstation
cluster.

During the simulation the current deldy is calculated from the trace data and used within
the Dynamic-SED scheduling.

5.5.1 Model of the Test System

The test model is based upon the following assumptions [49]:

e The processes of a parallel application are computation-intensive.

In this case a parallel process will appear most of the time in the run queueufteat
delayd; of machinej is then calculated as

d; = d;eul + ;- ny, (5.12)

5.5. A Trace-Driven Simulation 87

Whered;m’ is the real monitored delay of machirieandn; is the number of processes
which are mapped onto this machine by the global scheduler during the simulation.

e The memory resources of processes which are mapped by the global scheduler during the
simulation are 0.

The reason for this assumption is the inaccurate load statistics of UNI€nsgs The
common interface for load informations on UNIX platforms is thest at command
(see section 3). The available memory statistic gives only a hint aboute@erfemory
and no correct informations. This is due to caching strategies which are imoomse in
current file systems. Pages which are belonging to the cache are subtraotetidrfree
memory, while these pages are available.

Therefore, it would be misleading to calculate with memory resource demands

e The action of the user in the presence of parallel jobs is ‘ignore it".

The sampled trace data give the load situation in the test environmithut parallel
applications. Hence, the presence of interactive users is also monitdrexlit parallel
applications and the action of the user in the presence of parallel applicatiomst ¢
simulated.

Therefore, we assume that the user keeps on working as long as he did due to the trace
dat&.

5.5.2 Test System and Parameters

To test Dynamic-SED, we need informations about the load situation, free memdthe num-
ber of interactive users over a period of time for several machines. Tlosviiog simulation
uses trace data which were gathered on 28 Sun workstation in the InstituteratiOp&ystems
and Computer Networks at the Technical University of Braunschweig. The macmdesbeir
characteristics are listed in table 5.1. The column labéled gives the maximal number of
interactive users monitored during the sampling of the data.

The parameters of Dynamic-SED are chosen as follows for the given testrement [49]:

Reservation Parameters

memqmqq, = 500 kBytes: This bound was delivered from practical experiences with SunOS.

MEMyesery = 1 MBYyte: If mem,..er iS chosen to high, it means that the machine may get
unavailable, while the interactive users may not make use of the resournehke Other
hand, programs used by interactive usersXkermacs, ornet scape tend to use several
MBytes.

20n the other hand, it is a common observation that user tefidetidrom a machine when they recognize that
the load on the machine gets higher.

88 Chapter 5. Dynamic-SED

[name Jtype | o [ime | memory] disk |

achill | IPC |3,36| 2 20 MB | yes
amalthea ELC | 2,72 | 3 16 MB | no
ares | SS5 1 8 64 MB | yes
athena | SLC 4 1 8MB | no
atlas | SLC 4 1 16 MB | no
bacchus| ELC | 2,72 | 3 16 MB | no
bal SLC 4 1 16 MB | no
bayes | SS2 2 3 32 MB | yes
eos IPC |3,36| 2 24 MB | yes
hektor | IPC |[3,36 | 2 24 MB | yes
helena | SLC 4 1 16 MB | no
helios | SS2 2 4 40 MB | yes
io SLC 4 1 8MB | no
isis SLC 4 1 16 MB | no
janus | ELC |2,72| 3 16 MB | no
kastor | SS20| 1 10 96 MB | yes
logic IPC 336 | 2 36 MB | yes
moloch | SLC 4 1 16 MB | no
nemesis| IPC | 3,36 | 2 12 MB | yes
neptun | SLC 4 1 16 MB | no
neuro | SLC 4 1 16 MB | no
pandora| SLC 4 1 8MB | no
possi | SLC 4 1 16 MB | no
ra SS2 2 1 48 MB | yes
ran SLC 4 1 16 MB | no
sol SS10| 1 5 64 MB | yes
thor SLC 4 1 16 MB | no
venus | SLC 4 1 16 MB | no

Table 5.1: Test Environment [49].

load_reserv = 0.5: Since interactive processes need only less computing péwet,reserv
should be less than 1. Due to the local UNIX scheduling and their short runtime, ithey w
be scheduled with an higher priority than the long running parallel application.

Migration Parameters

6T = 3 min: The scheduler will check every three minutes, whether there is any noigrati
candidate.

z? = 4: When the process is a migration candidate over a time period of at least ®minut

max

and an user is active, the process will be selected for migration.

5.5. A Trace-Driven Simulation 89

z! = 6: If nouseris active, but the process is a migration candidate over a tirioel pérl5

max

minutes, it will be selected for migration.
d™*®* = 12: This bound is to avoid overloading of a single host.

Simulation Parameters

One important workload parameter is the size of the parallel application. Tipéhden the
specifiedminsize andmazsize and on the currently available nodes. If the application is started
during night time, when the system is low loaded, the configurational size of the djoplivall
be higher. Therefore, two different experiments were simulated. Imitfte experiment, the
parallel application was started at 0:00 h in the night and monitored over 4 diayke day
experiment, the parallel application was started at 4:00 pm in the afternoon and moniteeed

4 days.
Both experiments were simulated for three parallel applications whicér difftheir sizes:

1. The first applicatiom,c.q, has
minsize = 1,
mazsize = Qmazclass-

Here,maxsize is equal to the maximum number of available virtual nodes.

2. The second applicatiafi;, has
minsize = maxsize = 0.7 + Gazvclass-

Since there isninsize = mazsize, the application will allocate exactly 70 % of the
available resources.

3. The third applicatioms, has
minsize = maxsize = 0.5+ Gnazvclass-

Asp will allocate exactly 50 % of the available resources.

5.5.3 Results of the Night Experiment
At the start time of the application, the availability vector(%6,10,26). This leads to the
following configurational sizes:
1. Agreeay hasminsize = 1 andmaazsize = 36. Hence, the configurational size is 26 with
expected delay im& DT = & ~ 0.15.
2. Ay hasminsize = mazsize = 18. Hence, the configurational size is 18 with expected
delay timeEDT = & ~ 0.22.

3. Asp hasminsize = mazsize = 13. Hence, the configurational size is 13 with expected
delay timeEDT = & ~ 0.31.

90

Migrations Migrations Migrations

Migrations

Chapter 5. Dynamic-SED

26—
18 -+

8
6
4
2

0 5 10 15 20

0 5 10 15 20

10 15 20

Time [hours]
10 T T T T
8 - -
6 - -
4| i
2 - -
0 L N 5
0 5 10 15 20
Time [hours]

Figure 5.1: Number of Migrations over 4 days [49].

5.5. A Trace-Driven Simulation 91

Migration Overhead

Figure 5.1 shows the number of migrations per hour for all 4 days. The curves for themtiffer
applications are labeled by the corresponding job size.

As expected, the number of migrations correlates to the number of interactie (sser
figure 5.2). Migrations occur from about 10 h a.m. up to 7 h p.m. which corresponds to the
working time of the staff and the students at the institute.

The observed maximum number of migrations per hour is H4{Qr.q,, 7 for Az, and 5 for
Aso. The mean number of migrations per hour over all 4 days is 1.2A ks, 0.61 for Az,
and 0.63 forAs,. This means that twice as much processes of the big application are migrated
compared with the smaller applications. The number of migrationglfpiand A5, are almost
the same.

40 T T
35
30
25
20
15
10

Number of users

10 20 30 40 50 60 70 80 90
Time [hours]

Figure 5.2: Number of interactive users over 4 days [49].

Agreeqy allocates all available nodes including the slowest machines. If a user logseon
of these machines, migration will necessarily occur due to our migration. rdlee smaller
applicationsds, and A7y do not occupy all machines. Hence, not every new interactive user will
cause a migration.

The number of migrations is further correlated with the load situation on thenashines
[49]. If the load on the fast machines increases, processes will be migoatgtier probably
slower nodes. If the system load decreases again, the processes wilerbigichtto the faster
nodes. This is visible in the migration peaks at about 6 h p.m..

Slowdown of the Applications

Figure 5.3 shows the current delay classes of the applications over the ob4etagd. The
current delay class of the application was defined to be the maximum delay whiaf tree
processes of the application currently has.

92 Chapter 5. Dynamic-SED

While all 3 applications were started within the same delay class,utrertt delay class of
Agreeqy 1S almost significantly higher. This shows that the application is much more slibev

downed.
SinceA,,..q, allocates all machines, there is no possible destination host for migration whe

the interactive users start working.

12 T T T T T T T T

A AN -
VAN 4
LA

SUY N,

Delay of appl.
(o))

10 20 30 40 50 60 70 80 90
Time [hours]

)
[
a
<
g
S
)
01 -
0 1 1 1 1 1 1 1 1 1

10 20 30 40 50 60 70 80 90
Time [hours]

Figure 5.3: The current delay class of the applications over 4 days (top) and theeekgelety
time of the applications over 4 days (bottom) [49].

The delays of the smaller applications could be hold most of the time between 4 aher6. T
are two reasons for this behaviour. Firstly, it is less probably that the esnzsgdplications suffer
under overloaded hosts. Secondly, if an overload situation occurs, it willdoe probably that
a destination host can be found.

In figure 5.3, the delay time of the applications is shown, i.e., the current defdediby the
size of the application. The observed delay timelgf..4, is almost the best. Since the smallest

5.5. A Trace-Driven Simulation 93

‘ appl. ‘ size‘ mean delay clas}smean delay tim% EDT ‘ slowdown‘

Agreedy | 26 8.2 82 ~0.32 0.15 | 113%
A | 18 6.04 8% ~0.36 0.22 64 %
Asp 13 5.43 548~ 0.42 0.31 35%

Table 5.2: Different delays of the applications [49].

delay time offers the shortest runtime, the greedy approach pays off for the #éipplica

Table 5.2 shows the mean delay class, the mean delay time, the origikzigted delay time
(ED), and the slowdown of the applications. While the mean delay timé,af,, is 0.32, the
mean delay time oflq is 0.36. This means that;, is almost as fast as the greedy application.

When we compare EDT and observed mean time delay, the slowdown of the gppdidg-a
tion is with 113 % the highest. This shows again that the application suffersiségntiy under
high system load.

The slowdown of the smallest application is with 35 % a very good result whiabhieved
by migration. WhileA;, was migrated as often a&;, the slowdown is with 64 % higher.

5.5.4 Results of the Day Experiment

The second measurement was started at 4 h p.m.. At this time the ditgiladctor was
(0,5,9,15) due to the loaded system. This leads to the following configurational sizes:

1. Agreeay hasminsize = 1 andmaazsize = 25. Hence, the configurational size is 15 with
expected delay img DT = £ ~ 0.27.

2. A hasminsize = mazsize = 10. Hence, the configurational size is 10 with expected
delay timeEDT = & = 0.40.

3. Ao hasminsize = maxsize = 7. Hence, the configurational size is 7 with expected
delay timeEDT = 2 ~ 0.43.

Aso could be started in delay class 3 this time. The sizd Hf.,, is comparable wittir, of
the night experiment. Again, the greedy application has the smallest expected dela

The maximum number of migrations per hour is only 3 .., and 2 for the other ones.
Since the applications are started when the system is already in its highéituation, less
resources are used and further, less migrations are necessary to guaER®estence between
parallel applications and interactive users.

Table 5.3 shows the observed delays of the applications. The observed delaysareal
the expected delays. Since the sizes of the applications are much smaltes, éasier to hold
the delay during the execution.

94 Chapter 5. Dynamic-SED

‘ appl. ‘ size‘ mean delay clas}smean delay tim% EDT ‘ slowdown‘

Agreedy | 15 5.26 5% ~035 | 027 | 30%
A | 10 4.23 128 5 0.42 0.40 5%
Asy | 7 3.52 22 ~050 | 043 | 16%

Table 5.3: Different delays of the applications for the day experiment [49].

5.6 Summary

The experiments with Dynamic-SED have shown that migration is a useful tolodbalanc-
ing in a workstation cluster. We conclude that in the given test environment:

1. The migration rules add a tolerable overhead to the system, since theumaxrinmber of
migrations per hour is moderate.

2. The delay of greedy applications which allocate all in the idle systemad@ihodes will
increase significantly during execution.

3. When the application uses only about 70 % of the in the idle system available nodes, the
runtime of the application will be approximately as good as the greedy applicatidesbut
migrations resp. migration wishes will occur.

4. When the applications are started at day time, the number of migrationsateweThis
means that the reservation rules of Dynamic-SED have proven to guarargegistence
between parallel applications and interactive users.

Obviously, we have to distinct betwe@mdividual and social optimum The individual
optimum was achieved by the greedy application in both experiments. But at tieetisaen
we observe the highest migration rate and the highest number of migration wishestvety
available destination host.

When the greedy application allocates all possible nodes, there will be almpessibility
to migrate when interactive users start working. This means that for long ruapjigations
which will run over days, it has to be forbidden to allocate all available nodes

For the observed environment, Gehrke has given a rule of thumb [49] which werstate i
following way:

Rule of Thumb: The social optimum for long running applications will be achieved when
30 % of the available nodes are reserved for interactive users.

The measure for “available nodes” is the number of nadgs....s in the slowest delay
class in the idle system. The maximum number of nodes which may be allocated bgl para
applications is

Pnuw = 70% * Gmaazclass-

5.7. Bibliography 95

If the availability vector of the idle system is for example 2, 3,10), P,,.. will be 7. Hence,
the maximum size of an applications will be 7. If for example an applicatioraitest on the
fastest host, the availability vector will k46,0, 0,6). Let Q denote the number of already allo-
cated nodes. Thefl = 4 and a second application can be started with size at Rgst—Q = 3.

The trace-driven simulation of Dynamic-SED in a workstation clusterduee for only one
application at a time. Additionally, it it interesting how Dynamic-SED bafsawhen several
parallel applications are running. Therefore, we have formulated differgratiun properties.
While the migration rules of Dynamic-SED are ping-pong-free and circular-fhesy are not
migration stable.

5.7 Bibliography

A survey of migration strategies and migration systems is given in [115].

Systems which support migration of parallel applications<«aBeaR [116, 117], MPVM
[19], CoCheck [146]. While MPVM and CoCheck support only PVM applicatierBzAR is
not restricted to any programming model.

Migration strategies for load balancing are studied in [31, 81, 58, 164]. Thesesindes-
tigate migration policies in homogeneous systems with no special care ofepagllications
and interactive users.

In [59, 60], a loadbalancing algorithm based upon the gradient model is proposed. The
algorithm considers communication costs in its decisions, but no memory demantserfit
does not take care of interactive users. Simulation results are prefarae?tdimensional mesh
and Hypercubes.

96

Chapter 5. Dynamic-SED

Chapter 6

Conclusions

First, we have shown that the behavior of the presented scheduling algorithms depehdsm
the characteristics of the workload and that simple scheduling disciplires3ilor SNPF result
in high performance benefits compared to FIFO.

Under medium and high system load, the performance can be improved, if the applicati
uses the variable-size-model. While a wide range of applications such as fij#iDations
follow this model, there are less resource management systems availsibte support this
opportunity.

One of the main contributions of this work is to investigate whether migratiamiuseful
tool for scheduling and load balancing in workstation clusters. Both, the pregentedgharing
discipline LST and the SED mapping policies make use of migration.

LST makes use of migration, if a mapping conflict occurs. The simulation reshdis that
mapping conflicts are seldom under LST (less than 2 % of the processes have besadhigr
and the migration overhead is neglectable.

The SED mapping discipline migrates processes when faster machines becilnielav
The Dynamic-SED strategy adds further migration rules to support dynamic loattiga

The simulations have shown that these are useful rules which lead to arvedgerfor-
mance. The overhead which is caused by migration is expected to be tolsiabéethe observed
numbers of migrations are very low.

Mapping state diagrams have shown to be an useful description tool for invesfitjze
behaviour of the algorithms and to analyse the simulation results.

The trace-driven simulation of Dynamic-SED in a workstation clusterdueee for only one
application at a time. Additionally, it it interesting how Dynamic-SED befsawhen several
parallel applications are running. Therefore, we have formulated migration iegpeWhile
the migration rules of Dynamic-SED are ping-pong-free and circular-free aiteeyot migration
stable.

97

98

Chapter 6. Conclusions

References

[1] S.B. Akers and B. Krishnamurthy. A group theoretic model for symmetricdotenection
networks. InProceedings of the Intern. Conference Parallel Processiages 216-223,
1986.

[2] S. G. Akl and K. Quiu. A novel routing scheme on the star and pancake networksand i
applications.Parallel Computing19:95-101, 1993.

[3] K. Al-Sagabi, S.W. Otto, and J. Walpole. Gang scheduling in heterogeneotibudest
systems. Technical report, Departement of Computer Science and EngineegggnOr
Graduate Institute of Science and Technology, 1994.

[4] M. Alef. Concepts for efficient multigrid implementation on suprenum-bkehitectures.
Parallel Computing17:1-16, 1991.

5

—_

G. Amdahl. Validity of the single-processor approach to achieving large scahputing
capabilities. IPAFIPS Conference Proceeding®lume 30, pages 483-485, Atlantic City
NJ, 1967.

[6] H. Angstl. Design und Implementierung einer Scheduling-Komponente fiir das Codine
Batch-Queuing-Systen. Master’s thesis, Fachhochschule Regensburg, 1995.

[7] A. Barak, S. Guday, and R. G. WheeleThe MOSIX Distributed Operating System
Springer—Verlag, 1993.

[8] J.M. Barton and N. Bitar. A scalable multi-discipline, multi-prosesscheduling frame-
work for IRIX. In Feitelson and Rudolph [40], pages 45-69.

[9] D. L. Black. Scheduling Support for Concurrency and Parallelism in the Mgmr&ing
System.IEEE Computer23(5):35-43, 1990.

[10] J. E. Boillat. Load balancing and Poisson equation in a gr@pmcurrency: Practice and
Experience2(4):289-311, 1990.

[11] S. H. Bokhari. On the mapping problehEEE Transactions on ComputinG-30(3):207—
214, March 1981.

99

100 References

[12] T. Bodnniger, R. Esser, and D. Krekel. CM-5E, KSR2, Paragon XP/S: Apenative
description of massively parallel computetkournal of Parallel Computing21(2):199—
232, 1995.

[13] Jim Browne, Jack Dongarra, Alan H. Karp, Ken Kennedy, and Dave Kuck. Gddtn
Prize 1988.EEE Software6(3):78-85, May 1989.

[14] H. Burkhart, C.F. Korn, S. Gutzwiller, P. Ohnacker, and S. Waser. 8A&&&asel Algorithm
Classification Scheme. Technical Report 93-3, University of Basel, ME®63.

[15] R. Butler and E. Lusk. Monitors, Messages and Clusters: The P4 Pa&tedigtamming
System.Parallel Computing20:547-564, 1994.

[16] L. Cabrera. The influence of workload on load balancing strategieRroeceedings of the
1986 USENIX Summer Technical Conferemzges 446-458, Atlanta, 1986.

[17] C. H. Cap and V. Strumpen. Efficient parallel computing in distributeckatation envi-
ronments.Parallel Computing19(11):1221-1234, 1993.

[18] N. Carriero and D. Gelernter. Linda in conte@ommunication of the ACMB2(4):444—
458, 1989.

[19] Jeremy Casas, Dan L. Clark, Ravi Konuru, Steve W. Otto, Robert M. Rrauny
Jonathan Walpole. MPVM: A migration transparent version of PV@bmputing Sys-
tems 8(2):171-216, 1995.

[20] G.I.Chenand T. H. Lai. Scheduling jobs on partitionable hyperculmesnal of Parallel
and Distributed Computindl2:74-78, 1991.

[21] S. Chiang, R. Mansharamani, and M. Vernon. Use of application charactessd lim-
ited preemption for run—to—completion parallel processor scheduling policie®ron
ceedings of the 1994 ACM SIGMETRICS Conference on Measurements and Modelling of
Computer Systempages 33-44, 1994.

[22] P.-J. Chuang and N.-F. Tzeng. An efficient submesh allocation straiegyesh computer
systems. IrProc. of the 1991 International Conference on Distributed Computer Systems
May 1991.

[23] F.G. Coffman, M.R. Garey, and D.S. Johnson. Approximation algorithms for kwkipa
- an updated survey. In G. Ausiello and Serafini [48], pages 49-106.

[24] G. Cybenko. Dynamic load balancing for distributed memory multiprocessionsnal
of Parallel and Distributed Computing:279-301, 1989.

[25] K. Day and A. Tripathi. Arrangement graphs: A class of generalized stanhgt Infor-
mation Processing Letterd2(5):235-241, 1992.

References 101

[26] M. V. Devarakonda and R. K. lyer. Predictability of process resource us#ge
measurement-based study on UNIXIEEE Transactions on Software Engineering
15(12):1579-1586, December 1989.

[27] Jack Dongarra, Alan H. Karp, and Ken Kennedy. Gordon Bell Awards 1887E Soft-
ware, 5(3):108-112, May 1988.

[28] Jack Dongarra, Alan H. Karp, Ken Kennedy, and Dave Kuck. Gordon Bell RA38.
IEEE Software7(3):100-110, May 1990.

[29] Jack Dongarra, Alan H. Karp, Ken Miura, and Host Simon. Gordon Bell R62€.|[EEE
Software 8(3):92-102, May 1991.

[30] D.W. Duke, T.P. Green, and J.L. Pasko. Research towards a hetevagametworked
computing cluster: The Distributed Queueing Cluster, Version 3.0. Techrepatt,
Florida State University, 1994. ftp.scri.fsu.edu:/pub/DQS.

[31] D. L. Eager, E. D. Lazowska, and J. Zahorjan. The limited performancefit@ of mi-
grating active processes for load shariRgrformance Evaluatiqr6(1):63—72, 1988.

[32] R. Esser and R. Knecht. Intel Paragon XP/S - Architecture and Soffvasieonment. In
Supercomputer '93Mannheim, 1993.

[33] G.E. Fagg, K.S. London, and J.J. Dongarra. Taskers and general resource fgdanage
PVM Supporting DCE Process Managemnet. In A. Bode, J. Dongarra, T. Ludwig, and
V. Sunderam, editor®arallel Virtual Machines - EuroPVM'96pages 180-187. Springer,
October 1996.

[34] Feitelson and Nitzberg. Job Characteristics of a Production pareileitsic workload on
the NASA Ames iPSC/860. lhecture Notes in Computer Science 988ges 337-360.
Springer, 1995.

[35] D. G. Feitelson. A Survey of Scheduling in Multiprogrammed ParallelSyst Tech-
nical Report RC 19790 (87657), IBM T. J. Watson Research Center, February 1995.
http://www.cs.huji.ac.il/feit.

[36] D. G. Feitelson and L. Rudolph. Distributed hierarchical control for pelrptocessing.
IEEE Computer23(5):65-77, 1990.

[37] D. G. Feitelson and L. Rudolph. Gang scheduling performance benefits for fime-grai
synchronizationJournal of Parallel and Distributed Computing6:306—318, 1992.

[38] D. G. Feitelson and L. Rudolph, editotkb Scheduling Strategies for Parallel Processing
Proceedings of the IPPS '95 Workshop, Lecture Notes in Computer Science 949. Springer,
Santa Barbara, April 1995.

102 References

[39] D. G. Feitelson and L. Rudolph. Parallel job scheduling: Issues and approbcbhesture
Notes in Computer Science 94fhges 1-18. Springer, 1995.

[40] D. G. Feitelson and L. Rudolph, editodab Scheduling Strategies for Parallel Processing
Proceedings of the IPPS '96 Workshop, Lecture Notes in Computer Science 1162, Santa
Barbara, April 1996. Springer.

[41] D. G. Feitelson and L. Rudolph, editodab Scheduling Strategies for Parallel Processing
Proceedings of the IPPS '97 Workshop, Lecture Notes in Computer Science 1291, Geneva,
April 1997.

[42] D. G. Feitelson and L. Rudolph, editordob Scheduling Strategies for Parallel Process-
ing, Proceedings of the IPPS '98 Workshop, Lecture Notes in Computer Science 1459.
Springer, April 1998.

[43] D.G. Feitelson. Packing Schemes for Gang Scheduling. In Feitelson and R{4@]ph
pages 89-110.

[44] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.G. Sevcik, and P. Wong. Theory and
Practice in Parallel Job Scheduling. In D. G. Feitelson and L. Rudolph, edtarceed-
ings of the IPPS '97 Workshop Job Scheduling Strategies for Parallel Processiugme
1291 ofLecture Notes in Computer Scienpages 1-25, Geneva, April 1997. Springer.

[45] D. Ferrari and S. Zhou. An empirical investigation of load indices fodlbalancing
applications. IrPerformance '87pages 515-528. Elsevier Science Publishers, 1988.

[46] H.P. Flatt and K. Kennedy. Performance of Parallel Comput&arallel Computing
12(1):1-20, 1989.

[47] lan Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. waadt Infrastructure
for the I-WAY High-Performance Distributed Computing ExperimentPhoceeding 5th
IEEE Symp. on High Performance Distributed ComputldeE Computer Society Press,
1996. http://www.mcs.anl.gov/globus.

[48] M. Lucertini G. Ausiello and P. Serafini, editor&lgorithm Design for Computer Systems
Design Springer, 1984.

[49] Marc Gehrke. Ressourcemanagement fur PVM—-Anwendungen. Master’s thettst
fur Betriebssysteme und Rechnerverbund, TU Braunschweig, 1996.

[50] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,aady V
Sunderam. PVM3 Users Guide and Reference Manual. Technical Report TM-12187, Oak
Ridge National Laboratory, September 1994.

[51] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Robert Manchek,ady V
SunderamPVM: Parallel Virtual Machine — A Users’ Guide and Tutorial for Networked
Parallel Computing The MIT Press, Cambridge, Massachusetts, 1994.

References 103

[52] D. Gelernter. Generative communication in Lind&CM Transactions on Programming
Languages and Systen’1):80-112, 1985.

[53] D. Gelernter and D. Kaminsky. Supercomputing out of recycled garbage mitraty
Experiences with Piranha. Proc. of the ACM International Conference on Supercom-
puting July 1992.

[54] D. Ghosal, G. Serazzi, and S. K. Tripathi. The processor working setsansktin schedul-
ing multiprocessor systemilEEE Transactions on Software Engineeriig(5):443-453,
1991.

[55] R. L. Graham. Bounds on multiprocessing timing anomali€&AM J. Appl. Math.
17(2):416-429, 1969.

[56] A. Gupta, A. Tucker, and S. Urushibara. The impact of operating system saoigedul
policies and synchronization methods on the performance of parallel applications. In
Proceedings of the 1991 ACM SIGMETRICS Conference on Measurements and Modeling
of Computer Systempages 120-132, 1991.

[57] J. Gustafson. Reevaluating Amdahl’s LaBommunications of the ACM1(5):532-533,
1988.

[58] Mor Harchol-Balter and Allen B. Downey. Exploiting lifetime distitions for dynamic
load balancing. IfProceedings of 15th ACM Symposium on Operating Systems Principles
Poster Session (SIGOPS'9page 236, December 1995.

[59] H.-U. HeiB. Dynamic Decentralized Load Balancing: The Particles éggi. InPro-
ceedings of the International Symposium on Computer and Information Sciences VI
Istanbul, 1993.

[60] H.-U. HeiR. Prozessorzuteilung in ParallelrechnerBl Wissenschaftsverlag, 1994.

[61] R.L. Hendersen. Job Scheduling Under the Portable Batch System. In Dit&8séie
and L. Rudolph, editorsJob Scheduling Strategies for Parallel Processipgges 279—
294, Santa Barbara, April 1995. Proceedings of the IPPS "95 Workshop, Lecture Notes in
Computer Science 949, Springer. LNCS 949.

[62] D. Henrich. Lastverteilung fur Branch-and-bound auf eng-gekoppelten Parallelrechnern
Dissertation, Universitat Karlsruhe, 1994.

[63] D. Henrich. Local load balancing according to a simple liquid modeRPARS Workshqgp
PARS Mitteilungen, Stuttgart, 1995.

[64] A. Hori, H. Tezuka, Y. Ishikawa, N. Soda, H. Konaka, and M. Maeda. Impleatient of
Gang-Scheduling on Workstation Cluster. In Feitelson and Rudolph [40], pages 126—-139.

104 References

[65] Christopher Wade Humphres. A load balancing extension for the PVM softwaesyst
Master’s thesis, University of Alabama, Alabama, 1995.

[66] Kai Hwang.Advanced Computer Architecture: Parallelism, Scalability, Programmibility
McGraw-Hill, 1993.

[67] 1BM Corporation.Using and Administering LoadLeveler — Release 8.8dition, August
1996. Document Number SC23-3989-00.

[68] IEEE, editor. Proceedings of the 6th International Conference on Distributed Computer
SystemsWashington, 1986.

[69] IEEE, editor. Proceedings of the 8th International Conference on Distributed Computer
SystemsWashington, D.C., 1988.

[70] C. Jacgmot, E. Milgrom, W. Joossen, and Y. Berbers. Unix and Load-BalankiSgr-
vey. InProceedings of the EUUG '8®ages 1-15, April 1989.

[71] J. Ju, G. Xu, and K. Yang. An Intelligent Dynamic Load Balancer for Workstia@lus-
ters. Operating System Revie®9(1):7-16, 1995.

[72] Jiubin Ju and Yong Wang. Scheduling PVM taskperating System Revie®0(3):22—
31, July 1996.

[73] Alan H. Karp, Michael Heath, and Al Geist. 1995 Gordon Bell Prize WinndEEEE
Computer 29(1):79-85, January 1996.

[74] Alan H. Karp, Michael Heath, Don Heller, and Horst Simon. 1994 Gordon BéteP
Winners.|[EEE Computer28(1):68-74, January 1995.

[75] Alan H. Karp, Don Heller, and Host Simon. 1993 Gordon Bell Prize WinnéEEE
Computey27(1):69-75, January 1994.

[76] Alan H. Karp, Ken Miura, and Host Simon. Gordon Bell Prize 1992EE Computer
26(1):77-82, January 1993.

[77] G. A. Kohring. Dynamic load balancing for parallelized particle simolagion MIMD
computersParallel Computing21:683-693, 1995.

[78] R.B. Konura, J.E. Moreira, and V.K. Naik. Application-Assisted Dyna®¢heduling on
Large-Scale Multi-Computer Systems. In Luc Bougé, Pierre Fraigniaud, Rigeotte,
and Yves Robert, editor®arallel Processing, Volume 1l of the Proceedings of the Sec-
ond International Euro-Par Conference (Euro-Par'9&plume 1124 ot.ecture Notes in
Computer Scieng@ages 621-630. ENS Lyon, Springer, August 1996.

[79] P. Krueger, T.-H. Lai, and V. A. Radiya. Processor allocation vs. jbledaling on hyper-
cube computers. IRroc. of the 1991 International Conference on Distributed Computer
Systemgpages 394-401, May 1991.

References 105

[80] P. Krueger and M. Livny. The diverse objectives of distributed schedulingies! In
Proceedings of the 7th International Conference on Distributed Computer Sygages
242-249, September 1987. Berlin, West Germany.

[81] P. Krueger and M. Livny. A comparison of preemptive and non-preemptive load dis
tributing. InProceedings of the eighth International Conference on Distributed Computer
Systemgpages 123-130, 1988.

[82] N. Kuck, M. Middendorf, and H. Schmeck. Generic branch-and-bound on a network
of transputers. In R. Grebe et al., editofsansputer Applications and Systenpages
521-535. 10S Press, 1993.

[83] S. Kuihne. Gruppen-Scheduling. Studienarbeit, 1993. Institut fir Betriebssystaine
Rechnerverbund, TU Braunschweig.

[84] T. Kunz. The influence of different workload descriptions on a heuristic load hatanc
system.|EEE Transactions on Software Engineeridg(7):725-730, July 1991.

[85] S. Lakshmivarahan, J.-S. Jwo, and S.K. Dhall. Symmetry in intercoonecetworks
based on Cayley graphs of permutation groups: A surReyallel Computing 19:361—
407, 1993.

[86] H. Langendorfer, editorPraxisorientierte Parallelverarbeitung — Beitrage zum 3. Work-
shop Uber Wissenschaftliches Rechignaunschweig, October 1994. Hanser.

[87] H. Langendorfer and B. Schnoverteilte SystemeHanser, Minchen, 1994.

[88] T. Lauer. Adaptive dynamische LastbalancierunBhD thesis, Max Planck Institut fur
Informatik Saarbriicken, 1995.

[89] W.E. Leland and T. J. Ott. Load-balancing heuristics and process beharoodeedings
of Performance '86 and ACM Sigmetrics 199ages 54—69, 1986.

[90] S.T. Leutenegger and M. K. Vernon. The performance of multiprogrammed mukggroc
sor scheduling policies. IRroc. of the 1990 ACM SIGMETRICS Conference on Measure-
ments & Modeling of Computer Systerpages 226-236, May 1990.

[91] K. Li and K. H. Cheng. Job scheduling in partitionable mesh connected systeBms.
Proceedings of the 1989 International Conference on Parallel Procespampes 65-72,
1989.

[92] K. Liand K. H. Cheng. Job Scheduling in a Partitionable Mesh using a two-dioreais
Buddy System Partitioning SchemiEEE Transactions on Parallel and Distributed Sys-
tems 2(4):413-422, October 1991.

106 References

[93] D.A. Lifka. The ANL/IBM SP Scheduling System. In D. G. Feitelson andRudolph,
editors,Job Scheduling Strategies for Parallel Processipages 295-303, Santa Barbara,
April 1995. Proceedings of the IPPS '95 Workshop, Lecture Notes in Computer Science
949, Springer. LNCS 949.

[94] F. C.Linand R. M. Keller. The gradient model load balancing methBBE Transactions
on Software Engineerind.3(1):32—-38, 1987.

[95] M. Litzkow and M. Solomon. Supporting checkpointing and process migration outside
the UNIX kernel. INnUSENIX Conference Proceedingsmges 283-290, San Francisco,
CA, Winter 1992. USENIX.

[96] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor - A hunter of idle workstatioris.
Proceedings of the 8th International Conference of Distributed Sysfeeges 104-111,
Los Alamitos, Calif., 1988. IEEE CS Press.

[97] Martin Loitz. Lmake — Entwurf und Implementierung eines paralleletk®Brogramms.
Master’s thesis, Institut fir Betriebssysteme und Rechnerverbund, BunBchweig,
1993.

[98] D. Long, J. Caroll, and C. Park. A Study of the Reliability of Internet Sitke®roceedings
of the 10th Symposium on Reliable Distributed Syspemges 177-186, 1991.

[99] S. Majumdar, D.L. Eager, and R.B. Bunt. Scheduling in Multiprogrammed|lea6ys-
tems. InProceedings of the 1988 ACM SIGMETRICS Conference on Measurements and
Modelling of Computer Systensages 104-113, May 1988.

[100] Herrmann G. Matthies and Josef Schille, editdParalleles und Verteiltes Rechnen —
Beitrage zum 4. Workshop Uiber Wissenschaftliches Rechaehen, October 1996. TU
Braunschweig, Shaker.

[101] C. McCann, R. Vaswani, and J. Zahorjan. A dynamic processor allocation fmiicylti-
programmed shared—memory multiprocess&GM Transactions on Computer Systems
11(2):146-178, May 1993.

[102] S. Meynen and P. Wriggers. Parallele Algorithmen zur Losung von nichtine2roble-
men in der Festkdrpermechanik. In Matthies and Schille [100], pages 129-138.

[103] D. Min and M. W. Mutka. Effects of job size irregularity on the dynamiorgse schedul-
ing of a 2-D mesh multicomputer. I5th International PARLE Conferencpages 476—
487, June 1993.

[104] M. W. Mutka. Estimating capacity for sharing in a privately owned wiatksn environ-
ment. IEEE Transactions on Software Engineerid@(4):319-328, April 1992.

References 107

[105] M. W. Mutka and M. Livny. Scheduling remote processing capacity in a wdista
processor bank network. IRroceedings of the 7th International Conference on Dis-
tributed Computer Systemsages 2-9, 1987.

[106] V.K. Naik, S.K. Setia, and M.S. Squillante. Performance analysisto§gheduling poli-
cies in parallel supercomputer environmentsSupercomputer'931993.

[107] E. Nemeth, G. Snyder, S. Seebass, and T. R. HBMIX System Administration Hand-
book, Sec. EditionPrentice Hall, Englewood Cliffs, 1995.

[108] L. Ni and K. Hwang. Optimal load balancing strategies for a multiple psmresystem.
In 1981 International Conference on Parallel Processipgges 362—-367, August 1981.

[109] L. Ni and K. Hwang. Optimal load balancing in a multiple processor systetm many
job classeslEEE Transactions on Software Engineerii8E-11(5):491-496, 1985.

[110] L. M. Ni, C. Xu, and T. B. Gendreau. A distributed drafting algorithm forddelancing.
IEEE Transactions on Software Engineeriid (10):1153-1161, October 1985.

[111] Reinhard Oleyniczak. Simulation von Gruppenschedulingverfahren fiir heterBggne
tformen. Master’s thesis, Institut fir Betriebssysteme und Rechriemedr TU Braun-
schweig, 1997.

[112] J. K. Ousterhout. Scheduling techniques for concurrent system8rd Imternational
Conference on Distributed Computing Systepages 22—30, Miami, 1982.

[113] E. W. Parsons and K. C. Sevcik. Processor scheduling for high—variabiliicese¢ime
distributions. InLecture Notes in Computer Science 9g8ges 127-145. Springer, 1995.

[114] S. Petri. gnuLeh- Ein Werkzeug zur Simulation lokaler Netze. Master's thesis, Indtitut
Betriebssysteme und Rechnerverbund, TU Braunschweig, 1991.

[115] S. Petri. Lastausgleich und Fehlertoleranz in Workstation-ClusteD thesis, Institut
fur Betriebssysteme und Rechnerverbund, TU Braunschweig, 1996. In Preparation.

[116] S. Petri and H. Langendorfer. Load Balancing and Fault Tolerance in Yaltdcs
Clusters — Migrating Groups of Communicating Procesgeperating Systems Review
29(4):25-36, October 1995.

[117] S. Petri, B. Schnor, H. Langendorfer, and J. Steinborn. Consistent Glohekitfets for
Distributed Applications on Clusters of Unix Workstations. In Matthies actali& [100],
pages 77-86.

[118] Stefan Petri, Bettina Schnor, Matthias Becker, Bernd HinrichsTTscharntke, and
Horst Langendorfer. Evaluation of Multicast Methods to Maintain a Globah&l&pace
for Transparent Process Migration in Workstation Clusters. In M. Digtdr editorKom-
munikation in Verteilten Systememformatik aktuell, pages 224-234, Braunschweig,
February 1997. GI/ITG Fachtagung KIVS'97, Springer.

108 References

[119] R. Popescu-Zeletin, G. LeLann, and K.H. Kim, edito”soceedings of the 7th Interna-
tional Conference on Distributed Computer SysteBeslin, 1987. IEEE.

[120] J. Pruyne and M. Livny. Parallel Processing on Dynamic Resources wiRMIA In
Lecture Notes in Computer Science 9d8ges 259-279. Springer, 1995.

[121] J. Pruyne and M. Livny. Managing Checkpoints for Parallel Programs. In Defgel&
son and L. Rudolph, editordpb Scheduling Strategies for Parallel Processing, IPPS’'96
Workshop)volume 1162 of.ecture Notes in Computer Scienpages 140-154. Springer,
April 1996.

[122] S. Ranka, J.-C. Wang, and N. Yeh. Embedding meshes on the star grapimal of
Parallel and Distributed Computing. 9(2):131-135, October 1993.

[123] E. Rosti, E. Smirni, G. Serazzi, and L.W. Dowdy. Analysis of non-work-eorisg pro-
cessor partitioning policies. In D. G. Feitelson and L. Rudolph, editlmis,Scheduling
Strategies for Parallel Processingages 165-181, Santa Barbara, April 1995. Proceed-
ings of the IPPS '95 Workshop, Springer. LNCS 949.

[124] B. Rotzoll. Dynamischer Multiprogrammbetrieb von Parallelrechneriwedekind, edi-
tor, Verteilte Systemeages 229-243. Bl, 1994.

[125] Y. Rouskov and P.K. Srimani. Fault diameter of star graphgormation Processing
Letters 48(5):243-252, December 1993.

[126] P. Sanders and Th. Worsch. Konvergente lokale Lastverteilungsverfahrémremdod-
ellierung durch Zellularautomaten. RARS-Mitteilungen Nr. 19ages 285-291. Gl FG
3.1.2,1995.

[127] W. Saphir, L.A. Tanner, and B. Traversat. Job Management RequirenoeM#$& Par-
allel Systems and Clusters. Lrecture Notes in Computer Science 9p8ges 319-336.
Springer, 1995.

[128] S. Sattler. Leistungsanalyse von Algorithmen fur Gruppen-Scheduling. Strlubéna
1995. Institut fiir Betriebssysteme und Rechnerverbund, TU Braunschweig.

[129] B. Schnor. Architectures and algorithms for group schedulinBrdceedings of the Inter-
national Conference on Parallel Computing Technologies 1p88es 225-233, Obninsk
1993.

1

[130] B. Schnor. Dynamic scheduling of parallel applications.Létture Notes in Computer
Science 964, Third International Conference on Parallel Computing Technolqgiges
109-116, St. Petersburg, 1995.

[131] B. Schnor, H. Langendorfer, and S. Petri. Einsatz neuronaler Netze gilalancierung
in Workstationclustern. In Langendorfer [86], pages 154—165.

References 109

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

B. Schnor, S. Petri, and H. Langendorfer. A Detailed Comparison oftioadi and Neu-
ral Network Based Approaches for Load Metrics on Heterogeneous Platforistthies
and Schille [100], pages 93-106.

B. Schnor, S. Petri, and H. Langendorfer. Load Management for Load Badanai
Heterogeneous Platforms: A Comparison of Traditional and Neural NetworkdBgse
proaches. In Luc Bougé, Pierre Fraigniaud, Anne Mignotte, and Yves Robert,seditor
Parallel Processing, Volume Il of the Proceedings of the Second International Euro-Par
Conference (Euro-Par'96)volume 1124 ofLecture Notes in Computer Sciengages
615-620. ENS Lyon, Springer, August 1996.

B. Schnor, S. Petri, R. Oleyniczak, and H. Langendorfer. Scheduling ofébappli-
cations on Heterogeneous Workstation Clusters. In Koukou Yetongnon and Salifm Harir
editors,Proceedings of the ISCA 9th International Conference on Parallel and Distributed
Computing Systemsolume 1, pages 330-337, Dijon, September 1996. ISCA.

J. Schile and A. Brandes. Practical Aspects Using a Distributexliig System. In
Clemens H. Cap, editoiMorkstations und ihre Anwendungen, Proceedings der Fach-
tagung SIWORK'96pages 91-102. vdf Hochschulverlag AG an der ETH Zurich, May
1996.

S. K. Setia. Trace-driven analysis of migration-based gang schedulimiggdbr parallel
computers. In H. Dietz, editoRroceedings of the 1997 International Conference on
Parallel Processingpages 489-492, August 1997.

S. K. Setia. Trace-driven analysis of migration-based gang schedulirgegdbr parallel
computers. Technical Report TR97-03, Computer Science Departement, George Mason
Universit, 1997.

S. K. Setia, M. S. Squillante, and S. K. Tripathi. Processor schedulingudtipro-
grammed, distributed memory parallel computer®erformance Evaluation Review
21(1):158-170, June 1993.

S. K. Setia and S. K. Tripathi. A comparative analysis of static pemregartitioning
policies for parallel computers. Proceedings of the International Workshop on Modeling
and Simulation of Computer and Telecommunication Systems (MASQ@iE8p 283—
286, 1993.

K. C. Sevcik. Application scheduling and processor allocation in multiprogresnpar-
allel processing system®erformance Evaluatiqri9:107-140, 1994.

J.-P. Sheu, W.-H. Liaw, and T.-S. Chen. A broadcasting algorithm irgsdigh intercon-
nection networksinformation Processing Letterd8(5):237—242, December 1993.

J. Skovira, W. Chan, H. Zhou, and D. Lifka. The EASY - LoadLeveler APIéujIn
Feitelson and Rudolph [40], pages 41-47.

110 References

[143] P. G. Sobalvarro and W. E. Weihl. Demand-based coscheduling of parall@rjahsilti-
programmed multiprocessors. In D. G. Feitelson and L. Rudolph, edimosScheduling
Strategies for Parallel Processingages 106-126, Santa Barbara, April 1995. Proceed-
ings of the IPPS '95 Workshop, Springer. LNCS 949.

[144] M.S. Squillante. On the benefits and limitations of dynamic partitioning iallghicom-
puter systems. In D. G. Feitelson and L. Rudolph, editdwb, Scheduling Strategies for
Parallel Processingpages 219-238, Santa Barbara, April 1995. Proceedings of the IPPS
'95 Workshop, Springer. LNCS 949.

[145] Susanne Steiner. Priority based location policies applied to heterogenewes s
speeds. Technical report, Institut fir Betriebssysteme und Rechnerverbuirdrditat
Hildesheim, 1995.

[146] Georg Stellner. Resource Management and Checkpointing for PVNrokceedings of
the Second European PVM User Group Meetingpn, 1995.

[147] S. Stille. Lastbalancierung in verteilten Systemen. Mastbesis, Institut fur Betrieb-
ssysteme und Rechnerverbund, TU Braunschweig, 1993.

[148] Tony T.Y. Suen and Johnny S.K. Wong. Efficient Task Migration Algorithm fcs-Di
tributed SystemslEEE Transactions on Parallel and Distributed SysteB(4):488—-499,
July 1992.

[149] X.-H. Sun and L.M. Ni. Scalable problems and memory-bounded speebiwypnal of
Parallel and Distributed Computind9(1):27-37, 1993.

[150] V. S. Sunderam. PVM: A framework for parallel distributed computi@pncurrency:
Practice and Experien¢e(4):315-339, 1990.

[151] Andrew S. TanenbaunModern Operating SystemBrentice Hall, 1992.

[152] Marvin M. Theimer and Keith A. Lantz. Finding Idle Machines in a Workstabased
Distributed System. IfProceedings of the 8th International Conference on Distributed
Computer Systempages 112-122, San Jose, CA, June 1988.

[153] Thinking Machined Corp.Connection Machine CM-5 Technical Summalpvember
1992.

[154] A. Trew and G. Wilson (Eds.)Past, Present, Parallel: A Survey of Available Parallel
Computing System$pringer, 1991.

[155] U. Trottenberg and K. Solchenbach. Parallele Algorithmen und ihre Abbildung ealf pa
lele Rechnerarchitektureinformationstechnik30(2):71-82, 1988.

[156] A. M. van Tilborg and L. D. Wittie. Wave scheduling - distributed adition of task forces
in network computers. IRroceedings of the 2nd International Conference on Distributed
Computing Systempages 337-347, Paris, 1981.

References 111

[157] M. Wan, R. Moore, G. Kremenek, and K. Steube. A Batch Scheduler for thePlatagon
with a non-contiguous Node Allocation Algorithm. In D.G. Feitelson and L. Rudolph,
editors,Job Scheduling Strategies for Parallel Processing, IPPS'96 Worksho)me
1162 ofLecture Notes in Computer Scienpages 48—64. Springer, April 1996.

[158] Q. Wang and K. H. Cheng. List scheduling of parallel tasksformation Processing
Letters 37:291-297, May 1991.

[159] A. Weinrib and S. Shenker. Greed is not enough: Adaptive load sharing in laryede-
neous systems. IRAroc. InfoCompages 986—994, 1988.

[160] Jon B. Weissmann and Andrew S. Grimshaw. A Federated Model for Schedulivige-
Area Systems. IProceeding 5th IEEE Symp. on High Performance Distributed Comput-
ing, pages 542-550. IEEE Computer Society Press, 1996.

[161] Gerhard WilhelmsDynamische adaptive Lastverteilung fur PVM mittels unscharfer Be-
nutzerprofile - PVM+ PhD thesis, Universitat Augsburg, Oktober 1994,

[162] M. H. Willebeek-LeMair and A. P. Reeves. Strategies for dynamic lealdncing on
highly parallel computersTransactions on Parallel and Distributed Systed®), 1993.

[163] W. Winston. Optimality of the shortest line disciplindournal of Applied Probability
14:181-189, 1977.

[164] W. Zhu and P. Socko. Migration Impact on Load Balancing - An Experience on Banoe
In Proc. of the Fifth International Symposium on High Performance Distributed Comput-
ing, pages 531-540, August 1996.

[165] Y. Zhu. Efficient processor allocation strategies for mesh-connectetiebammputers.
Journal of Parallel and Distributed Computing6:328—-337, 1992.

Index

application
balanced, 6
fully distributed, 5
pool-of-task, 5
unbalanced, 6
availability vector, 55
avenrun, 47

BACS, 5

CARMI/WoDi, 16
CFD, 4
checkpoint, 4
CoCheck, 16, 95
communication
coarse grain, 7
fine grain, 7
Condor, 18

degree of parallelism, 2
delay
current delay class, 54
EDC, 55
EDT, 55
expected delay class, 55
expected delay time, 55
delay factor, 45
DQS, 15
Dynamic-SED, 77

efficiency, 10

FIFO-V, 22

fragmentation
external, 4
internal, 4

GRM, 14

112

load

information component, 11

load balancing

adaptive, 5
application-level, 6
component, 11
dynamic, 5

static, 5

LoadLeveler, 17
location, 80

mapping, 1

component, 11
conflict, 23
problem, 2
state, 57

matrix algorithm, 24

Best-Fit, 37
Buddy, 37
First-Fit, 37

migration, 4, 80

bulk, 66
candidate, 80
circular-free, 85
cost, 25

event, 44
ping-pong-free, 83
stable, 84

model

strong synchronization, 54
fixed—size, 8

Fixed-Time, 8
Fixed—Work, 7
Memory-Bound, 8
process, 41

strong synchronization, 7

Index

variable—size, 8
MPVM, 95

NQS, 12

optimum
individual, 10, 94
social, 10, 94

partitioning
adaptive, 3
dynamic, 3
fixed, 3
variable, 3

<PBEAM, 26, 95

PVM, 13
PVM+, 14
S-PVM, 15

residence time, 10, 25
resource

management system, 11

sar, 47
scheduler, 11
scheduling
Largest Size, 21
co, 3,24
deterministic, 2
dynamic, 3
gang, 3
group, 3
LS, 22
LST, 22
SNPF, 22
space-sharing, 3
time—sharing, 3
SDSC, 12
SED, 54
Dynamic-SED, 77
upgrading, 56
selection, 80
size, 2,8
configurational, 2

moldable, 8

rigid, 8
speed factor, 45
speedup, 10

virtually homogeneous, 54

vmestat, 47

113

