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Abstract

This work deals with resource management for parallel applications in distributed systems. Its
main contribution is to develop a new resource management concept for parallel applications on
heterogeneous systems.

Whilst scheduling parallel jobs in multiprocessor systems has been a research topic for a long
time, interest in scheduling and load balancing strategies for parallel applications on workstation
clusters has recently grown. Scheduling of parallel applications is divided intotwo steps. First,
the application which shall be scheduled next has to be chosen. Second, the nodes which shall
be allocated by the application have to be selected. The last step is called mapping.

First, we explain the characteristics of parallel applications which are important for resource
management. Further, we present different workload models. We give a classification of group
scheduling strategies and compare the most popular resource management systems forparallel
applications at the moment.

We present a time-sharing algorithm called LST which is based upon Largest-Size schedul-
ing. It differs from the prominentmatrix algorithm, since it uses no fixed placements of jobs.
Instead of this, it makes use of a migration facility if mapping conflicts occur. We investigate the
influence of migration costs on the performance of LST. In a simulation, LST performs better
than different space-sharing scheduling strategies.

For heterogeneous systems, the Shortest–Expected–Delay–Mapping (SED) is presented.The
advantage of using SED is that the heterogeneity of the system is transparent for theprogrammer.
This is done by managing “virtual homogeneous” nodes which makes the development of a
parallel application much easier. The concept of mapping states and mapping state diagrams is
introduced to investigate the behavior of different SED algorithms.

Further, we present a new dynamic load balancing strategy called Dynamic-SEDwhich is
based upon the SED mapping strategy. Dynamic-SED not only looks at the current delay of the
machines, but also at the currently free memory and the number of interactiveusers. It presents
a new approach to achieve a co-existence between parallel applications and interactive users.

The presented scheduling and load balancing strategies make use of a migration facility.
Since migration is an operation which consumes processor time and network capacity, the over-
head caused by migration is one of the main aspects in the investigation of the presented algo-
rithms. Further, a number of ‘migration anomalies’ are defined and it is checked whether these
migration anomalies are true for Dynamic-SED or not.

The presented trace-driven simulation results show that migration is a useful and efficient
mechanism to support parallel applications on workstation clusters.

v



vi



Thanks

Lots of people have supported this work in one way or another. Foremost, I want to thank
Professor Dr. Langendörfer for his encouragement and who made this work possible.

Most of this work was performed during my time at the Institute of Operating Systems at the
TU Braunschweig under the head of Professor Langendörfer within the research group “Load
Balancing and Failure Transparency”. I must thank all my colleagues which haveinfluenced
this work with their discussions. In particular, I am indebted to Stefan Petri who has designed
and implemented the P BEAM migration facility and shown that transparent migration of parallel
processes in workstation clusters is feasible.

I also want to thank the students who did their student or master thesis within theresearch
group which contribute to this work. The ones who shared my ‘enthusiasm’ for group scheduling
and load balancing are Marc Gehrke, Sven Kühne, Reinhard Oleyniczak, Susann Sattler, and
Stefan Stille.

Further, I want to thank Christopher Ford, Martin Hauner, Holger Schellwatt, and Michael
Schmitt for their proofreading.

Braunschweig, December 1996 Bettina Schnor

vii



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Classification of Scheduling Strategies . . . . . . . . . . . . . . . . . . . . .. . 2
1.3 Classification of Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . .5

1.3.1 Pool of Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Fully Distributed Application . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Workload Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
1.4.1 Workload Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4.2 Variable–Size–Model and Fixed–Size–Model . . . . . . . . . . . . . . . 8
1.4.3 Monitoring Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Resource Management Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6.1 NQS/SDSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6.2 PVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.6.3 DQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.4 CARMI/WoDi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.5 LoadLeveler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.7 Summary and our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Dynamic Scheduling Algorithms 21
2.1 The Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 LS Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.2 SNPF Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.3 FIFO-V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4 LST Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Evaluation of Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . .25
2.2.1 Approximation of Costs of Migration . . . . . . . . . . . . . . . . . . . 25
2.2.2 Workload Model and Simulation Parameters . . . . . . . . . . . . . . . 26
2.2.3 Comparison of LS, LST, and SNPF . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Discussion of LST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



x Contents

2.2.5 Benefits of Variable-Size-Model . . . . . . . . . . . . . . . . . . . . . . 33
2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.4 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Resource Management in Workstation Clusters 39
3.1 Load Characteristics of Workstations . . . . . . . . . . . . . . . . . . . . . . .. 40
3.2 The Challenges of Workstation Clusters . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Time-Sharing Disciplines . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.3 Heterogeneity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.4 Motivation for Migration . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 The Load Management Component . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Definition of Delay Factors . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 Calculation of Speed factors . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Load Parameters for Homogeneous Systems . . . . . . . . . . . . . . . 47
3.3.4 Load Parameters for Heterogeneous Systems . . . . . . . . . . . . . . . 48

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Mapping Strategies for Heterogeneous Systems 53
4.1 SED Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Mapping State Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2.1 SED1-Mapping State Diagram of System 1 . . . . . . . . . . . . . . . . 57
4.2.2 SED2-Mapping State Diagram of System 1 . . . . . . . . . . . . . . . . 58
4.2.3 SED1- and SED2-Mapping State Diagram of System 2 . . . . . . . . . . 58

4.3 Evaluation of Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . .60
4.3.1 Definition of Workloads . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.2 Performance Results for the Proof-Workload . . . . . . . . . . . . . . . 60
4.3.3 Performance Results for the Exp-Workload . . . . . . . . . . . . . . . . 64
4.3.4 Performance Results for the Hyperexp-Workload . . . . . . . . . . . . . 69
4.3.5 Performance Results for FS-Workload . . . . . . . . . . . . . . . . . . . 70
4.3.6 Influence of Hardware Characteristics . . . . . . . . . . . . . . . . . . . 72

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Dynamic-SED 77
5.1 Motivation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Resource Reservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3 Migration Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.1 The Selection Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 The Location Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Dynamic-SED is Ping–Pong–Free . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 A Trace-Driven Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 86



Contents xi

5.5.1 Model of the Test System . . . . . . . . . . . . . . . . . . . . . . . . . 86
5.5.2 Test System and Parameters . . . . . . . . . . . . . . . . . . . . . . . . 87
5.5.3 Results of the Night Experiment . . . . . . . . . . . . . . . . . . . . . . 89
5.5.4 Results of the Day Experiment . . . . . . . . . . . . . . . . . . . . . . . 93

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.7 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Conclusions 97

References 99

Index 112



xii Contents



Chapter 1

Introduction

The goal of this work is to propose a new approach for resource management support for parallel
applications in heterogeneous systems. Resources may be computing nodes, memory, andnet-
work capacity. The resource management of computing nodes for parallel applicationsis divided
into two steps. First, the application which shall be scheduled next has to be chosen. Second,
the nodes which shall be allocated by the application have to be selected. The last step is called
mapping.

In this chapter, we give a motivation for our work and describe our “working environment”,
i.e., we will answer the following questions:� Which characteristics of parallel applications are important for resourcemanagement?� Which kind of workloads do we expect?� Which performance metrics are suited for the comparison of scheduling strategies?� Which types of scheduling strategies for parallel applications exist?� What is the state-of-the-art?� What is our approach?

1.1 Motivation

Many numerically intensive “Grand Challenge” applications can be solved using parallel algo-
rithms. Examples of applications are computational models of global climate exchange, unsteady
flow around airfoils, galaxy formation, and nuclear explosions.

A parallel application consists of a group of communicating processes which have to be
assigned to the processors of the given parallel or distributed system.

A 2-dimensional multi-grid application for example may consist ofm2 processes. Each pro-
cess calculates the points of one square and after each calculation step it sends its results to the

1



2 Chapter 1. Introduction

processes which are responsible for the neighboring squares. So the processes are all running in
parallel with high communication after each calculation step.

The benefits of parallel job scheduling are as follows:� Load balancing, since each process is assigned to another processor.� Speedup through parallel processing.� Reducing communication costs in the case of fine-grain interactions [2].

Since the mid 80s, the interest in scheduling disciplines for parallel applications increased due
to the growing interest in parallel and distributed systems. In the caseof distributed systems, the
given network topology is of major interest. Hence, the development of scheduling disciplines
is hardware driven in the sense that much work was published for hypercubes when hypercubes
became popular. Influenced by the transputer topology and the Intel/Paragon machine, mesh
architectures became also popular.

When software like Linda [52, 18], PVM [150, 50, 51] and P4 [15] became available, work-
station clusters were conquered as a platform for parallel computing. The firsttask was to build
message passing systems which offer a more comfortable interface to the underlying transport
layer. But when systems like PVM became more and more popular, the need for efficient re-
source management increased. A sign that parallel job scheduling is a main issue nowadays was
the establishing of a workshop at the IPPS’95 and IPPS’96 about this topic.

This work deals with resource management for parallel applications in workstation clusters.
Workstation clusters as they are typical in use in the mid 90s consist of a powerful workstation
with at least 32 MByte memory which are connected by an Ethernet.

While the types of machines will change and memory space may be no problem in future,
one characteristic will be unchanged: That there are a number of connected machines which
differ in speed and which can be used for parallel processing.

1.2 Classification of Scheduling Strategies

The research of scheduling techniques falls into two separate classes,deterministicanddynamic
scheduling.

Deterministic scheduling uses information about the service demands and the sizeof the
applications for constructing a schedule.

Definition: The number of processes which are contained within a parallel application is called
thedegree of parallelismor sizeof the application. Theconfigurational sizeis the number
of processes which are created when the job starts.

Deterministic scheduling deals with the classicalmapping problem. Given parallel jobsJ1; J2; :::; Jk with service time demandst1; t2; :::; tk and sizen1; n2; :::; nk, the task is to con-
struct a schedule which minimizes the overall finishing time, i.e., the time when all jobs are
finished.
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The mapping problem is known to be NP–complete [11]. Deterministic scheduling is used in
some batch systems [93, 135].

We use the termdynamic schedulingwhen parallel jobs can be dynamically submitted to the
system by the users and nothing is known about the execution time in advance. Here, we are
only interested ingroup scheduling strategies.

Definition: A scheduling strategy which schedules all processes of a parallel job simultaneously
is called agroup scheduling discipline.

Dynamical group scheduling strategies are classified into space–sharing and time–sharing
disciplines [39]:

Definition: A space–sharingdiscipline is a non–preemptive discipline which partitions the pro-
cessors among different parallel jobs. Atime–sharingdiscipline uses some form of round–
robin–scheduling between the parallel jobs.

Time–Sharing disciplines for parallel jobs have first been investigated by Ousterhout who
introducedco-schedulingin the context of Medusa, an operating system for the Cm� multi-
microprocessor [112]. Feitelson and Rudolph have proposed time–sharing scheduling techniques
for large distributed systems and have introduced the terminologygang scheduling[36].

Definition: A time–sharing strategy is agang schedulingdiscipline if the processes of parallel
job are grouped together into a gang. All the processes in a gang are always scheduled
to execute simultaneously on distinct processing elements, using a one-to-one-mapping.
All processes in a gang are preempted and rescheduled at the same time (multi-context-
switch).

Gang scheduling is necessary to allow efficient execution of communication-intensive ap-
plications, combined with reasonable response time and throughput on multiprocessor architec-
tures. The benefits of gang scheduling are discussed in [37] and [143].

Gang scheduling is supported on the Connection Machine CM-5 [153], Intel Paragon [32],
the Meiko CS-2, and multiprocessor SGI workstations [8].

Hence, a non–preemptive group scheduling algorithm is a space–sharing algorithm and the
preemptive group scheduling algorithms are gang scheduling algorithms.

Space sharing disciplines are divided into fixed, variable, adaptive, and dynamic partitioning
schemes [35, 144].

Definition: A fixed partitioningscheme divides the processing elements into predifined parti-
tions which are set by the system administrator. Avariable partitioningscheme sets the
number of allocated nodes according to the request of the parallel job. Anadaptive par-
titioning scheme sets the number of nodes allocated by an application according to the
request and the system load at the time of its arrival. Adynamic partitioningscheme is an
adaptive partitioning scheme which changes the partition size allocated to jobs at runtime,
to reflect changes in job requirements and system load.
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Fixed partitioning is used on several parallel computers when for example partitions for batch
and interactive workload can be defined [157]. The major disadvantage of fixed partitioning is
that parallel jobs have to allocate more jobs as they need and therefore, theinternal processor
fragmentationis high.

The advantage of variable partitioning is that internal fragmentation is avoided. On the other
hand,external processor fragmentationmay occur when the available free processing elements
are insufficient to satisfy the request of any submitted job.

Adaptive partitioning schemes reduce the number of allocated nodes when the system load
increases. This reduces external fragmentation since jobs tend to make earlier use of the remain-
ing free processing elements. Adaptive partitioning algorithms are investigated in [54, 123, 113].

Dynamic partitioning is the most flexible partitioning scheme and has repeatedly been shown
to be superior to other schemes [56, 101]. However, dynamic partitioning requires application-
level support. This may be simple in the case of master-worker-style applications, but for Com-
putational Fluid Dynamics (CFD) applications for example there will occur a non-neglectable
overhead due to redistribution of data.

Squillante has investigated dynamic partitioning schemes [144]. He states that the benefits of
dynamic partitioning depend on the application workload and the reconfiguration costs.

Examples for load balancing facilities which support adaptive or dynamic load balancing are
CARMI/WoDi [120] (see section 1.6.4), PARFORM [17] and Piranha [53].

Konura, Moreira, and Naik have implemented dynamic partitioning for CFD applications
[78]. They report that only tens of lines had to be modified within the application code.Jobs
are redistributed from 8 to 16 nodes or from 16 to 8 nodes for example. The time measured for
the redistribution of the data was only a few seconds which is a promising result.Further, they
used the measured reconfiguration times as input data for a simulation of dynamic partitioning
for different workloads.

The acceptance of dynamic partitioning has still to be proven. Since the user has tochange
her code, it has to be beneficial for her. This is obvious, if applications can get moreresources.
But why should an application release resources voluntarily? Here, the individualoptimum is in
conflict with the social optimum (see section 1.5).

Further, adaptive and dynamic partitioning schemes can be combined with migrating and
non-migrating strategies.

Definition: The relocating of an already running process from one processing element to an-
other is calledMigration. The state of the process is saved into a so-calledcheckpoint.
The checkpoint is transfered to the new location where a new process is createdfrom the
checkpoint.

The state of a process can be divided into internal and external state [116]. The internal
state of a process consists of register contents (including stack pointer and program counter)
and contents of the address space (typically text, data, and stack segments). The external state
consists of I/O channels (open file descriptors, sockets), signal handlers, timers, parent-child
relations, and resource usage statistics.

Migration is motivated by load balancing and failure transparency. Load balancing may be
implemented on user level. Then the application decides to migrate when it is informed about
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substantial load changes. Dynamic load balancing may further be supported on system level by
a migration facility which migrates processes when faster machines become available.

The presented classification of partitioning schemes is accepted within the scientific com-
munity which is interested in group scheduling. There exists also a common classification of
load balancing strategies in distributed system. Applied to parallel applications, this leads to the
following characterization:

Definition: 1. Static load balancing: On arrival a parallel job is mapped onto a subset of
machines and runs there up to completion. The machines may be specified within a
configuration file.

2. Adaptive load balancing: When a parallel job is assigned to a subset of machines,
this subset depends on the current load situation. Further, the number of allocated
machines depends on the current load situation.

3. Dynamic load balancing: The mapping strategy regards the current load situation
like in the case of adaptive load balancing, but reacts dynamically onto load changes.

Hence, dynamic partitioning is an example for a dynamic load balancing strategy.

1.3 Classification of Applications

The classification of parallel applications can be done under different aspects.
TheBasel Algorithm Classification Scheme(BACS) is an approach to get a classification of

parallel applications [14]. The goal is to achieve portability and algorithmic re-usability, i.e., to
support the most common parallel computation schemes on the most widely distributed virtual
machine models and computation languages.

BACS characterizes the algorithmic behaviour of the application like for example its algo-
rithmic topology, its interaction mechanism (message passing, tuple space, signals, ...), and data
distribution.

Since the intention of this work is resource management, we will give a classification of
parallel applications which concentrates on the relevant aspects for resource management. These
are� computing demands,� memory demands,� communication and synchronization model.

In resource management systems like DQS [30], LoadLeveler [67], CARMI [120] etc. it is
common that the user has to specify the amount of memory the application needs at minimum on
every host. This is done to avoid the negative effect of swapping when memory becomes scarce.

Parallel applications follow different communication models and synchronization models.
We distinguish between applications which follow thepool-of-tasksmodel andfully distributed
applications. We will define these characteristics in the following.
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1.3.1 Pool of Task

In the pool-of-tasks model there is a pool of tasks which can be executed in parallel. There exists
a central coordinator process, the so-called master, which distributes thetasks dynamically to the
worker processes. This type of application is also often called themaster-workermodel.

A simple example is the calculation of the Mandelbrot set where the master partitions the
problem in different rectangulars and distributes them among the worker processes.

Load balancing for master-worker applications can be easily implemented onapplication
level. Since the master always has the control over the application, he can distribute the work
according to the current load situation and react easily onto load changes. Whennew machines
become available, the master may start worker processes on these machines and distribute tasks
to them, or in the case machines are overloaded, he can stop using them. Hence,dynamic par-
titioning is easily done for master-worker application, since it is only a special case of the load
balancing strategy.

Pruyne and Livny have described a resource management system named CARMI whichsup-
ports dynamic partitioning [120]. CARMI is used together with WoDi which provides aninter-
face for writing master-worker programs (see section 1.6.4).

1.3.2 Fully Distributed Application

in the case of afully distributed applicationthere exists no special coordinator process.
Examples of fully distributed applications are numerical applications like multigrid applica-

tions. Grid applications play an essential role in Scientific Supercomputing. Typical applications
come from the field of Computational Fluid Dynamics.

The problem size is partitioned into equal sized meshes, typically in the 2- or 3-dimensional
space. The parallel processes solve the problem within several iterations. After each iteration
‘neighboring’ processes have to exchange intermediate results.

A description of algorithms is given by Meynen and Wriggers [102], implementations of
multigrid techniques on mesh architectures are discussed in [155, 4, 102]

Further, we distinguish betweenbalancedand unbalancedapplications. In the case of a
balanced application, the computing demands of all processes are nearly the same.In the case of
an unbalanced application, the execution demands of the processes may differ.

A parallel program may for example simulate the deformation of a tin. The tin iscrushed to
something like a disk. When the pressure and tension rises, the computing demand of each step
will rise also. But this will happen for almost all regions equally because of thesymmetry of the
tin. This means that, while the computing demands change during execution, the application will
stay almost balanced.

For other input data, i.e., asymmetric objects, the application may behave as if unbalanced.
This possible behaviour of parallel applications was the trigger for lots of work on application-
level load balancing.

Definition: Let P = fp1; :::; png be the set of parallel processes which belong to the parallel
applicationJ . The relation !k (“exchanges results”) onP is defined as follows:
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thek-th and(k + 1)-th computation step:
Definition: Let P = fp1; :::; png be the set of parallel processes which belong to the parallel

applicationJ . We say thatJ follows thestrong synchronization modelif the transitive
closure of the relation !k isP for all k.

In the case of applications which follow the strong synchronization model, an unbalanced
load situation may slow down the whole parallel application.

An example of a fully distributed application with strong synchronization is a multigrid ap-
plication. If we consider for example a 2-dimensional mesh, each node exchanges results with
its four neighbors after each iteration. Let us assume that one nodeA is overloaded and hence
it needs more time for an iteration than the other nodes. This will slow down all 4 neighborsA1; A2; A3; A4, since they cannot carry on their work without the intermediate results fromA.
The delay ofA1; A2; A3; A4 will also slow down their other 8 neighbors in the next step. Hence,
the delay of one node will be propagated like a wave. Finally, the whole application is slowed
down by a single node.

Scheduling strategies which address fully distributed applications with strong synchroniza-
tion are presented in chapter 4.

Another criterion for parallel applications is theirgranularity which gives the mean number
of operations between communication. Afine grainapplication has only few operations between
communication, and acoarse grainapplication a higher number of operations. Since fine grain
applications are more communication-intensive, they need a high bandwidth and are notsuited
for workstation clusters for example.

1.4 Workload Characteristics

Since the dawn of (computer) time, it has been recognized that performance analysis and mod-
eling of computer systems hinges on using a representative workload (Feitelson/Nitzberg)

A most common technique to test the performance of scheduling disciplines is simulation.
For the interpretation of a simulation study, two aspects are important: first, the simulation soft-
ware has to be correct, and second, the input workload should be realistic.

1.4.1 Workload Models

It is still an open question whether there is any correlation between the size of a parallel job and
its service demands.

TheFixed–Work–Modelassumes that the work done by a job is fixed, and its execution time
depends on the degree of parallelism when it is executed. This model is the base for Amdahl’s
law [5]. In the optimal case, there will be a speed up ofk when the application runs onk
processors. In this model the runtime is negatively correlated to the job size.
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Gustafson [57] has introduced theFixed–Time–Model. Fixed–Time–applications have to be
solved in restricted time. An example is weather forecast. Here theproblem is sized up by taking
the finest grid of measure points which can be solved within the given time and with the given
degree of parallelism. Hence, the execution time and degree of parallelismof the application are
independent. This leads to an uncorrelated workload.

On a distributed memory computer, the amount of available memory increases with the num-
ber of used nodes. Hence, the problem size may be increased to fill the availablememory. This
gives theMemory-Bound-Model[149] where size and service demands of an application are
positively correlated.

1.4.2 Variable–Size–Model and Fixed–Size–Model

Beside mean inter-arrival time and mean service demands, the degree of parallelism or so–called
size of the parallel application has to be specified.

The user knows the maximum degree of parallelism of her application and normally specifies
this value, when she submits the application to the scheduler. If the user wants to allocate exactly
as many processors as specified, we call it afixed–size–model.

But most applications, like partial differential equation solvers for example, can have a vari-
able size and only the maximum degree of parallelism is fixed. Here, speedup curve and effi-
ciency curve show the optimal degree of parallelism, which normally depends on theimplemen-
tation and hardware.

This variable–size–modelis a generalization of the fixed–size–model, which is included by
specifyingminsize = maxsize. A lower bound forminsize would be one, and an upper bound
for maxsize would be the total number of workstations. In our model, the size of an application
is fixed when the application is started.

In heterogeneous systems, the variable–size–model may lead to a better performance com-
pared to the fixed-size–model. Consider for example a system of 10 workstations where 4 ma-
chines are 2 times faster than the others. In spite of using the 6 slower machines it is of more
benefit to run the application on the 4 faster machines. In this case, it is advisable that the user
specifies the minimum and maximum degree of parallelism which is suitable for her application.
This approach is more flexible and can make better use of system resources.

When the application follows the variable–size–model, the variable, adaptive, or dynamic
partitioning scheme can be used. In the case of fixed-size-applications, only variable partitioning
is possible.

In [44], the termrigid job is used for a parallel application with fixed size, and the term
moldable jobfor an application with variable size.

1.4.3 Monitoring Studies

Workload characteristics of uniprocessor machines are meanwhile well–known, but there is still
little data available about the workload of parallel systems. In this chapterwe summarize the
results of monitoring studies.
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job average standard coefficient
size runtime deviation of variation
1 140.6 736.0 5.2
2 714.2 2422.3 3.4
4 1116.7 4171.5 3.7
8 705.2 2344.3 3.3
16 569.3 1970.9 3.5
32 1305.3 3311.6 2.5
64 1250.8 4155.8 1.8
128 3280.1 4408.1 1.3

Table 1.1: Runtime statistics at NASA Ames Research Center.

Feitelson and Nitzberg present the results of an accounting study on the 128-node iPSC/860
hypercube located at the NASA Ames Research Center [34]. The study was done duringthe
fourth quarter of 1993. Mapping on the iPSC/860 is done in a space-sharing mode where jobs
are mapped exclusively onto subcubes. Hence, the partition size, i.e. the size of the parallel
applications, is always a power of 2 with 128 nodes at maximum.

Among the parallel jobs, a more-or-less uniform distribution across the possibleparallel job
sizes is observed. The high number of sequential processes is due to Unix commands which
were run by the system administrators mostly to check system functionality.

The percentage of jobs with size 128 was less than the other possible sizes. Further, these
biggest possible jobs, which allocate the whole hypercube exclusively, were observed at night or
at the weekend. This leads to the assumption that only the actual allocated numberof processors
was monitored but not the possible maximum parallel job size.

When the job size is set into relation to the consumed processor resources measured in node-
seconds, the large jobs, with 32, 64, and 128 nodes, have consumed the most computing time in
roughly equal portions. This means that the smaller number of 128-node jobs have consumed
more processor resources.

The mean runtime, standard deviation, and coefficient of variation, i.e., the ratio of the stan-
dard deviation to the mean, is given in table 1.1. The coefficient of variation is always larger
than 1. This can be modeled by hyper-exponentially distributed service demands. Further, it
is observed that runtime and job size are positively correlated which is ahint that the memory-
bound-model is appropriate.

A study of 23 CFD applications also reports that large jobs tend to run longer and emphasizes
the memory-bound-model [106].

Feitelson reports from trace data on a 400-node Paragon at the San Diego Computer Center
and on a IBM SP1 at the Argonne National Lab that there is only “a weak tendency for larger
jobs to have a higher runtime” [43].
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1.5 Performance Metrics

A scheduling discipline can be evaluated from different points of view. The user isinterested
in a fast response time. Hence, a measure for theindividual optimumis the speedupof the
application.

Definition: ThespeedupS(p) is defined asS(p) = T (1)T (p)
whereT (k) gives the runtime of the application onk processors.

TheefficiencyE(p) is defined asE(p) = S(p)p = T (1)p � T (p) :
In general, measurements show a common behaviour of parallel applications. Whileadding

more processing elements increases the speedup, the efficiency drops. This is due to the rising
communication overhead.

In most cases, the user will only be interested in speedup and not in the efficiency of its
implementation. While nearly the same execution time may be possible with less nodes, the user
will typically use as much resources as possible.

For example, Ghosal et al. [54] suppose that the efficiency function of an application is
given in advance and use this information in their scheduling decisions. But this is a very strong
requirement which would be hard to fulfill in most environments.

Speedup and efficiency are defined for homogeneous systems. In a heterogeneous system it
has to be defined of what kind the reference machine is. Usually,T (1) gives the execution time
on the fastest machine.

From the point of view of the user, the speedup shall be maximized. But from the point of
view of the system administration, an efficient use of the system is more beneficial. i.e., setting
the speedup in relation to the costs. Hence, the use of the product of these two metrics as a target
function is proposed in [46, 54].

A popularsocial metricfor dynamic scheduling is themean residence time. The residence
or response time of a sequential job is the sum of waiting and execution time. In the case of a
parallel application this is the time from submitting the job until the last process of the application
has finished.

In the case of deterministic scheduling, the makespan is used as a measure forthe perfor-
mance. Given parallel jobsJ1; J2; :::; Jn, the makespan is the time from starting the first job up
to the completion time of the last job. Another possible criterion is for examplethe percentage
of processor fragmentation.
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1.6 Resource Management Systems

A resource management system manages the resources, i.e. processing nodes and memory, of a
distributed system. Similarly to the field of classical scheduling, there exist various criteria to
decide what is a good resource management strategy. Possible goals are high-throughput and/or
a minimum mean residence time and/or preference of special application classes. An important
property of a resource management system is fairness, i.e. no application maywait forever for
getting computing resources.

A resource management system has four components:

1. Scheduler:
The scheduling component decides,whena job is scheduled.
All scheduling techniques fall into one of two classes: space-sharing or time-sharing strate-
gies.

2. Mapping Component:
The mapping component decides,wherea job is started, i.e. on which nodes.

3. Load Information Component:
The load information component gathers the current load statistics.

4. Load Balancing Component:
The load balancing component implements the load balancing strategy. Further, a load
balancing mechanism is necessary: A remote execution facility in case ofadaptive load
balancing and a migration mechanism in case of dynamic load balancing.

Some strategies combine the scheduling and mapping strategy. Hence, these systems possess
only a scheduling component.

There are several resource management systems in use. We will discuss themost popular
ones which support parallel applications. The classification criteria are:

1. Which architecture is supported?

2. Which types of applications are supported?

Is there special support for the pool-of-tasks or the strong- synchronization-model?
Is the fixed-size or variable–size–model supported?

3. Is the scheduling strategy

(a) space-sharing or time–sharing?

(b) fixed, variable, adaptive, or dynamic?

(c) migrating or non-migrating?

(d) Is the memory demand of the application considered in the scheduling strategy?

4. Load management:
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(a) Which load metric is used?

(b) Are heterogeneous systems supported?

(c) Are interactive users considered?

5. Further notes.

1.6.1 NQS/SDSC

The Network Queueing System (NQS) is a batch scheduling facility developed at NASA Ames.
NQS was originally designed for throughput-oriented computation with sequential jobs.It has
been extended to support parallel applications. NQS is supported by various vendors of parallel
machines and is in use among many large UNIX system sites. The POSIX Standard IEEE STd
1003.2d-1994 defines a standard batch and general queuing environment which is based on NQS.

When a job is submitted, its limit on CPU and memory usage has to be specified. Jobsare
classified according to these limits in different classes. Jobs that exceed their time limit are
terminated.

Here, we describe an extension of NQS for the Intel Paragon parallel computer [32] from the
San Diego Supercomputer Center (SDSC) [157]. The SDSC batch scheduler was developed for
a 416-node Intel Paragon system at SDSC. The software has been adopted by Intel and ispart of
the software release for the Paragon machine.

1. SDSC is developed for the Intel Paragon parallel computer. The network architecture of
the Paragon is a 2-dimensional mesh. The nodes are managed in different partitions:A
service partition for operating system services, such as the file server,and also interactive
use, and a compute partition.

2. SDSC uses the fixed–size–model.

3. The scheduling strategy is a priority based space-sharing discipline with variable partition-
ing.

(a) While the Intel Paragon architecture offers a gang scheduling mechanism, SDSC
favors space-sharing [157]: “However, time-sharing of jobs places a heavy burden on
the paging system and is not practical at this time due to I/O band-width performance
and disk space limitations.”

(b) SDSC uses priority based scheduling combined with non-contiguous node allocation.

NQS/SDSC manages jobs in different queues according to their resource require-
ments. Jobs have to specify whether they need ”fat” nodes with 32 MBytes or less.
Further, they have to specify their computing demands. SDSC distinguishes three
classes: Short jobs with a time limit of 1 hour, medium jobs with a time limitof 4
hours, and long jobs with a time limit of 12 hours.

The queues have different priorities. For example, the queue priority of the long resp.
short jobs is 10 resp. 12. Within a queue, the scheduling strategy is simple FIFO.
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To avoid starvation of processes in lower priority queues, SDSC uses aging ofpro-
cesses. The job priority is calculated as follows:job priority = queue priority + age factor ? time;
where time is the time in hours the job has been waiting in the queue andage factor
is a constant factor configurable by the system administrator. With an age factorof
0.1, it will take a long job 20 hours waiting in the queue to get the same high priority
as a short job.

When a job is chosen for scheduling and enough nodes are available, it will be started.
Otherwise, it has to wait. To avoid starvation of bigger jobs, SDSC uses a maximum
priority block priority. When the job has reached theblock priority, scheduling of
new jobs will be blocked until there are sufficient free nodes for this job. For example,
with block priority = 15 and an age factor of 0.1, a long process will wait 50 hours
in the queue before blocking, i.e., reservation of nodes, will start.

Another crucial point in scheduling parallel applications on distributed memory ma-
chines is the mapping strategy. A typical mapping strategy for mesh architectures
is mapping onto rectangulars. The Paragon architecture allows non-contiguous node
allocation which means that the nodes of an application do not have to be direct
neighbors which makes the mapping strategy more flexible and increases the node
utilization. SDSC uses a modified 2-D Buddy System [157].

(c) Checkpointing and migration are not supported.

(d) The user specifies the minimum amount of memory each node should have. This is
used in determining the job queue of the application.

4. Load management:

(a) Nodes are dedicated in space-sharing mode to applications.

(b) NQS/SDSC manages machines which differ for example in their memory resources
in different queues. NQS/SDSC is also aware of single and two processor nodes.

(c) There exists a special partition for interactive jobs.

1.6.2 PVM

A popular tool to implement parallel applications on workstation clusters is PVM(Parallel Vir-
tual Machine) [150]. PVM is a message passing system which supports parallel applications.
PVM is no batch scheduler. PVM creates a user-specific parallel virtual machine. The user has
to specify the hosts which shall belong to her parallel machine in a configuration file.

1. One of the main reasons why PVM became the most popular platform for parallel applica-
tions is its availability on a wide range of heterogeneous platforms from workstations up
to supercomputers like the Intel Paragon, KSR1, Cray-2, and Thinking Machines CM-5.
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2. PVM applications specify a fixed size.

3. (a) PVM lacks resource management. The hosts which are specified in the configura-
tion file belong to the virtual parallel machine. The processes of an applicationare
mapped in a round-robin fashion onto the nodes of its parallel virtual machine.
If two users start applications in parallel and their configuration files havecom-
mon entries, then their applications may run concurrently on some machines without
knowing from each other.

(b) PVM uses variable partitioning.

(c) Checkpointing and migration are not supported.

(d) Memory demands are not considered.

4. Load management:

(a) The current load situation on the machines is not considered.

(b) The heterogeneity of the machines is not considered in the mapping strategy.

(c) No special actions for interactive users.

Since PVM offers no resource management, different groups have started to add resource
management for PVM.

Humphres has implemented a resource management component for PVM [65]. The pro-
cesses are started on then fastest machines according to the load index. The used load index is
the idle time of the machines which is not very meaningful in heterogeneous systems.

Wilhelms has implementedPVM+ [161] which uses the idle time and the CPU load average
of the machines to estimate the current load situation. PVM+ maps onto then fastest machines.
Interactive users are considered when the job is started. The estimationof load caused by in-
teractive users is based on a user classification. The classification itself and the assignment of
users to special classes does not seem very practical. PVM+ does not act on load changes during
execution.

Pruyne and Livny have implemented the Condor Application Resource Management Inter-
face (CARMI) for PVM applications (see section 1.6.4).

In [33], ageneral resource manager(GRM) for PVM is proposed. GRM will be distributed
with PVM 3.4. GRM uses a load metric which is similar to our delay factor.It differs in the
calculation of the speed factors and the load average. Typically for PVM, resource management
is done for each application separately. The speed factors are defined to be theweighted mean
of integer and floating point performance. The weights are user configurable. This givesthe user
the opportunity to adapt the speed factor to the demands of its application. On the other hand,
this approach is less transparent, since the task to find the optimal values isleft to each user. The
weights of the load average will be also user configurable which is less meaningful. These are
parameters of the load management which are independent from the application.

In [33], four scheduling disciplines are proposed for the GRM:

1. The originally Round-Robin scheduling,
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2. using the least loaded machines where only the load average is used as load metric,

3. using the least loaded machines compared by their delay factors with at mostone PVM
task per host,

4. using the least loaded machines compared by their delay factors (multiple tasks may run
on a single host).

The drawback of the first discipline is that it is unaware of the current load situation. The
second policy is a ‘random’ policy in heterogeneous systems as explained in chapter 3.The two
latter are the only serious ones. Both is common that they insist on the fixed-size-model. Hence,
in case of a fully distributed application the slowest node will slowdown the whole application
and the policies will not make efficient use of the resources.

Gehrke has implementedS-PVMwhich supports Shortest Expected Delay mapping for PVM
application due to the current load situation (see chapter 4) [49].

1.6.3 DQS

The Distributed Queueing System (DQS) from the University of Florida is a scheduling system
for sequential and parallel applications on workstation clusters [30].

1. DQS supports different UNIX platforms such as DEC OSF/1, HP-UX, IBM AIX, SGI
IRIX, SunOS, and Solaris. DQS supports PVM applications.

2. DQS supports the fixed–size–model.

3. The DQS scheduling is similar to native NQS.

(a) Queues can be suspended when other queues receive the jobs. Hence, space-sharing
is optional.

(b) DQS provides the user with different queues based on architecture, software avail-
ability etc..

When submitting a job the user has to specify a list or resources like memory demands
and software availability (PVM, Mathematica etc.). DQS automatically selects an
appropriate queue. Like NQS, the basic feature of DQS is to map the application
onto machines which fulfill these requirements.

Applications are scheduled in FIFO order. There are two possible methods of map-
ping. The first one is to map jobs according to the queue sequence number. Then the
first queue in the list receives the job for execution. The second method is to schedule
by weighted load average within a group so that the least busy node is selected to run
the job. The actual method used is selected at compilation time.

(c) Checkpointing and migration are not supported.

(d) The user specifies the minimum amount of memory each node should have.
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4. Load management:

(a) A CPU load average may be used as a load index.

(b) There may be several queues on a machine.

(c) No special care for interactive users.

5. The performance and behavior of DQS depends mainly on its configuration.

In [135], experiences with an implementation of DQS combined with the concept of“com-
putational equivalents” for heterogeneous systems are described. The algorithm needsthe
expected runtime of the parallel job as further input parameter and is limitedto the fixed–
size–workload-model.

1.6.4 CARMI/WoDi

Pruyne and Livny have described a resource management system named CARMI (Condor Ap-
plication Resource Management Interface) for PVM applications [120]. CARMI is based on the
Condor batch system [96].

CARMI is used together with WoDi (Work Distributor) which provides an interface for writ-
ing master-worker programs.

1. Like PVM and Condor, CARMI/WODI is available on various UNIX platforms.

2. WoDi supports master-worker-applications and uses the variable–size–model.

3. (a) WoDi supports dynamic partitioning of master-worker-applications.

(b) WoDi dynamically distributes the tasks which are created by the masterto the work-
ers.

Pruyne and Livny report that in some master-worker-applications, work steps come
in groups, and all the results from one group have to be calculated before the next
one can be started. This means strong synchronization within a master-worker-
application.

For this reason, WoDi applications can specify the beginning and the end of such a
working cycle. When cycles are used, WoDi keeps a record of the computation times
of all steps within a cycle. This work step history can be used for further scheduling.

Based on estimations of the execution times of the work steps WoDi uses a greedy
work step distribution algorithm where the steps are ordered according to their esti-
mated run times.

(c) Checkpointing and migration of master-worker-applications can easily bedone on
application-level. For arbitrary PVM applications, CoCheck (Consistent Checkpoint-
ing) is used [121].

(d) The user specifies the minimum amount of memory which each node should have.
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4. Load management:

(a) The speed of a machine is determined by one of these three ways: Firstly, a speed
factor as a measure of the computing capacity can be used. Secondly, WoDi can
use CARMI services. Thirdly, WoDi can execute a benchmark on each new created
worker.

Since benchmarking uses processing capacity, the second approach is recommended.
CARMI supports information about speed factors (as calculated by the Dhrystone
and LinPack benchmarks) and about interactive users. A load index is not used.

(b) CARMI supports heterogeneous systems by using speed factors.

(c) When CARMI is informed by Condor about interactive users on a machine, the ma-
chine is not used anymore for the parallel application.

1.6.5 LoadLeveler

The IBM LoadLeveler is a resource management and scheduling system originally developed for
the IBM SP machine [67]. Here, we describe IBM LoadLeveler Release 3.0.

1. LoadLeveler runs on every major UNIX platform such as IBM RISC and SP, HP-UX,
Solaris, SunOS, SGI IRIX. The supported parallel environments are PVM 3.3 andabove
or any parallel programming language which uses the LoadLeveler parallel programming
interfaces (such as the IBM Parallel Environment Library).

2. LoadLeveler uses the variable–size–model.

3. The scheduling strategy is space-sharing and adaptive.

(a) The scheduling of parallel applications is space-sharing. Hence, nodes are dedicated
to one application.

(b) The scheduling strategy is adaptive and uses a so-calledtemporary reservation. This
means that when a parallel job enters the system, the central manager scans alist of
machines with machines which fulfill the job requirements. If sufficient machines are
not available, the central manager reserves as many machines as possible.When ma-
chines become available, theses machines are added to the list of reservedmachines.
Finally, when enough machines are reserved, the job is dispatched.

Since a big job may block the whole system, the amount of time the machines may
be reserved is limited. When the limit is exceeded, all reserved machines are released
and the parallel job is placed in the “deferred” queue. After some time the jobreenters
the LoadLeveler queue with its original priority.

The amount of time for which resources may be reserved for a job and the time a job
will remain in the deferred queue are configurable. The default value is 5 minutes
reservation time and 5 minutes time out in the deferred queue.
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(c) Checkpointing and migration are only supported for sequential processes. The check-
point and migration mechanism are based on Condor.

(d) The user specifies the minimum amount of memory for each node.

4. Load management:

(a) Nodes are dedicated to applications. Hence, only the stateavailableor not available
is used within the scheduling strategy.

(b) No special support for heterogeneous systems.

(c) The use of a resource manager is optional. The resource manager coordinates ma-
chine usage between interactive and batch jobs. Machines may become dedicated
through interactive jobs.

5. Obviously, the temporary reservation discipline is not starvation free.Big jobs may try to
allocate sufficient nodes repeatedly in vain.

The behavior of the discipline depends mainly on the time parameters for reservation and
waiting in the deferred queue. It is the system administrator’s task to findthe optimum
values. There is no mechanism in LoadLeveler to adapt these parameters tothe workload
by automatically.

The chosen default values of 5 minutes assume that load changes occur in relatively short
time intervals. However, when parallel applications run several hours,this is not a realistic
assumption.

1.6.6 Discussion

PVM and CARMI/WoDi differ from the other proposed systems. PVM is mainly a message
passing library with minimal support for the administration of the application. There exist several
approaches to enhance PVM with resource management features (see for example [65, 161, 33,
49]. CARMI/WoDi is a special resource management system for PVM applicationswhich follow
the master-worker-programming model.

In the following, we will compare the remaining resource management systems:NQS/SDSC,
DQS, and LoadLeveler.

The only system which supports the variable–size–model is LoadLeveler. All others use the
simple fixed–size–model.

The scheduling strategy is mostly based on FIFO-queues where the queues are defineddue
to resource demands of the application. NQS/SDSC uses queues depending on the runtime
approximation of the application. DQS is more flexible and manages queues for differenttypes
of applications. For example, there may exist a queue for PVM applications and anotherqueue
for applications which need Mathematica.

NQS/SDSC and LoadLeveler use a space-sharing strategy. DQS can be configured to sched-
ule different queues on the same machines.
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The main deficits of the systems are in load management. LoadLeveler and NQS/SDSC do
not use current load informations in their scheduling and mapping decisions. Only DQS is able
to perform adaptive load balancing. None of the systems support checkpointing and migration
of parallel applications. Hence, there is no support of dynamic load balancing.

1.7 Summary and our Approach

Group scheduling strategies are divided into two classes: space-sharing andtime-sharing disci-
plines. While space-sharing is the most common technique in most existing systems, the benefits
of time-sharing disciplines for multiprocessor machines is repeatedly shownin simulations.

It is still an open question whether time-sharing partitioning schemes may bealso beneficial
on workstation clusters. The characteristic of time-sharing policies isthat the waiting time of a
job depends on its service demand. Therefore, we will compare time-sharing and space-sharing
disciplines in a simulation to investigate their behavior in workstation clusters (see chapter 2).

Parallel applications differ much in their computation and communication behavior. We have
presented two popular types of applications: pool-of-task and fully distributed applications. Load
balancing and scheduling for pool-of-task applications is most efficiently done on application-
level. Our goal is to support resource management of the second type of the fully distributed
application which includes the important class of computation-intensive CFD applications.

Finally, we have described the currently most popular resource management systems for par-
allel applications. We have discussed these systems under the aspect of scheduling and load
management. We conclude that the current support for resource management is only rudimen-
tary. In particular, the systems in use are not suited for workstation clusters where heterogeneity
and the presence of interactive users have to be considered in scheduling and loadbalancing
decisions.

Our approach is resource management support on system-level without any modifications at
the underlying operating system. The benefits are transparency and portability. Theuser does not
have to take care about load management and load balancing when she writes her application.
Since the resource management system is middleware between application and operating system,
it is easier to port between different operating systems and in case of operating system changes.

This means that the resource manager runs on top of the given operating system, i.e.an UNIX
derivate, and all parallel applications run in competition with “local load” from interactive users
or other batch jobs which are all scheduled by the native UNIX scheduler (see section 3.2).

The main contribution of our work is to develop a scheduling and load balancing strategy for
heterogeneous systems. We introduce the concept of “virtual homogeneous nodes” to make the
heterogeneity of the system transparent for the user. The presented mapping strategy SED uses
the variable–size–model to determine an optimum mapping in a heterogeneous environment.

While migration mechanisms in user-space are meanwhile available [116, 117,19, 146], there
is a lack of good dynamic load balancing strategies which make use of them. We present a new
dynamic load balancing strategies called Dynamic-SED. Results from a trace-driven simulations
show that the migration overhead is neglectable and that migration is an useful mechanism to
support parallel applications in workstation clusters.
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1.8 Outline

In chapter 2, we present algorithms for dynamic scheduling, both space–sharing and time–
sharing policies, and compare their performance under different workload models ina simu-
lation. A new co-scheduling algorithm is presented which differs from the well-known matrix
algorithm and makes use of a migration facility. We investigate under whichworkload parame-
ters the time–sharing discipline may be beneficial. Further, we investigate whether migration is
an adequate method for solving mapping conflicts.

In chapter 3, we discuss the special properties of workstation clusters which are important in
resource management and introduce the concept of delay factors as a load metric forheteroge-
neous systems.

In chapter 4, we introduce the Shortest–Expected–Delay–Mapping (SED). SED is a mapping
strategy for heterogeneous systems which also supports the variable–size–model.The advantage
of using SED is that the heterogeneity of the system is transparent for the programmer. This
is done by managing “virtual homogeneous” nodes. This makes the development of a parallel
application much easier.

We introduce the concept of mapping state diagrams as a formal description tool to investigate
the behaviour of different SED algorithms. In particular, we are interested whether SED may
benefit from using migration. Further, we present simulation experiments to test the performance
of the algorithms.

In chapter 5, we present a new dynamic load balancing strategy called Dynamic-SED which
is based upon the SED mapping strategy. Dynamic-SED not only looks at the current delayof the
machines, but also at the currently free memory and the number of interactiveusers. It presents
a new approach to achieve a co-existence between parallel applications and interactive users.

We define a number of ‘migration anomalies’ and check whether the migration anomalies are
true for Dynamic-SED or not.

At the end of each chapter there is a summary and further suggested readings.

1.9 Bibliography

Feitelson gives a detailed survey over scheduling in parallel systems with special care for gang
scheduling techniques [35].
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[94, 24, 10, 162, 82, 77, 88]. An algorithm for application-level load balancing ond-dimensional
meshes is given in [126] which is superior than the common gradient model load balancing
methods.
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Dynamic Scheduling Algorithms

In this chapter, we present scheduling disciplines which are are suited for bothmultiprocessor
systems and workstation clusters, since the only assumption is that the nodes areinterconnected
by a communication bus. The situation differs from parallel computers, like for example on a
hypercube or mesh-architecture, where the network topology is regarded in the scheduling and
mapping decision.

We compare the presented algorithms for different workloads in a homogeneous system. We
choose a homogeneous system to avoid the influence of the mapping strategy on the performance.
In case of homogeneous machines a simple 1-to-1-mapping is used which means that on each
machine runs at most 1 process. For the presented preemptive discipline, the 1-to-1-mapping is
used for every time slice.

Dynamic scheduling disciplines for multiprocessors follow one of two philosophies, either
Smallest Number of Processors First (SNPF) [99, 90] or Largest Size First(LS) [92, 130].
Largest–Size–scheduling (LS) schedules parallel jobs which have a larger size, i.e., request a
higher number of machines, first.

LS algorithms are first investigated in [130]. Here, we compare the performance of LS with
simple FIFO, preemptive LS, SNPF, and with FIFO-V scheduling. The latter adapts the config-
urational size of the application according to the current system load.

The preemptive algorithm called LST differs from the prominentmatrix algorithm, since it
uses no fixed placement of jobs. Instead of this, it makes use of a migration facility if mapping
conflicts occur. We investigate the influence of migration costs on the performance.

2.1 The Scheduling Algorithms

We will investigate two space-sharing scheduling disciplines, LS and SNPF, which represent
the two mainstreams on multiprocessor systems. Both scheduling disciplines assume fixed-size
applications.

We have introduced LS algorithms in [130]. Here, we give an improved definition ofLS.
Further, we compare these strategies with the time-sharing discipline LST and FIFO-V. In the
simulation, we use more realistic workloads compared with [130] where only results from expo-

21
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nentially distributed service demands are given.

2.1.1 LS Scheduling

Largest size scheduling is a priority based strategy, where the priority of an arriving job is ini-
tialized withmaxsize, i.e., its specified degree of parallelism.

The scheduler gets active when a parallel job arrives or terminates. The run queue is ordered
according to the priorities. Larger jobs have a higher priority and are favored. If a new job arrives
and there are enough nodes available and no job withmaxprio is waiting in the run queue, the
job will be scheduled.

Each time the scheduler is active, the priorities of all jobs which cannot be scheduled are
increased. Jobs which reach the maximal prioritymaxprio are scheduled in FIFO order. This
saves small jobs from starvation.

If a parallel job terminates, the scheduler looks for the first parallel job inthe run queue. If
the requirements of the job can be fulfilled, this job is scheduled. This is repeated as long as
there are sufficient free nodes.

If there have not been sufficient nodes available for the first job in the queue, we have to
distinguish two cases. If the priority is less thanmaxprio, the scheduler tries to map the next job
in the run queue. If the job has already reachedmaxprio, the scheduler gets inactive.

This means that the first job now blocks all others, until sufficient nodes get available.

2.1.2 SNPF Scheduling

The Smallest Number of Processors First discipline (SNPF) is the inverse strategy to the LS
scheduling. SNPF schedules the job with the smallest size first.

The SNPF policy has been investigated in [99, 90]. The studies state contradictory results.
While Majumdar, Eager, and Bunt favour SNPF [99], Leutenegger and Vernon report that “SNPF
scheduling discipline performs poorly, even when the number of processes in a job is positively
correlated with the total service demands” [90]. They get to this opinion comparing simulation
results of SNPF, a gang scheduling algorithm, and an algorithm based upon the dynamic parti-
tioning scheme. The latter performs best in their simulation. Since dynamic partitioning is an
unrealistic assumption, it is much more interesting how SNPF performs compared with other
variable or adaptive schemes. This is done in our simulation.

2.1.3 FIFO-V

Further, we compare the algorithms with FIFO-V which uses the variable-size-model. FIFO-V
is a FIFO scheduling discipline which allocates the minimum ofmaxsize and idle nodes.

2.1.4 LST Scheduling

We compare LS with its time-sharing modificationLargest Size with Time slicing(LST). The
LST algorithm makes use of a migration facility. Like LS, LST favors large jobs to reduce
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fragmentation. LST increases the priorities of jobs which cannot be scheduled to save smaller
jobs from starvation.

Arriving jobs are ordered in the run queue according to their priorities. Like LS, the priority
of a new job is equal to its size. Jobs are scheduled according to their priorities.

At the beginning of a time slice, as much jobs as possible are scheduled. The priorities of jobs
which cannot be assigned are increased. If the priority of a job gets equal tomaxprio, the priority
stays constant. Jobs which have the same priority are scheduled in a Round-Robin-fashion.

Since all processors are available at the beginning of a time slice, the firstjob in the run queue
always fits and no job can starve. If the size of the first parallel job is less than the number of
processors in the system, there are still free processors and the scheduler assigns the next parallel
job which fits.

Here, amapping conflictmay occur. If the application has already run on a subset of the
machines, some machines of the last placement may already be allocated by another application.
In this case, all processes of the parallel application which cannot be scheduled on their last
placement are migrated. Since migration causes a substantial overhead, themigrated processes
will start delayed and their time slice is reduced.

Example: In a system with 8 nodes, there may run a jobJ1 on nodes 1-4 and a jobJ2 on nodes
5-6. During the first time slot a jobJ3 with size 4 arrives. In the next time slot there will
runJ1 again on nodes 1-4 andJ3 on nodes 5-8. IfJ1 terminates during this time slot, there
will occur a mapping conflict and the two processes ofJ2 are migrated from nodes 5 and
6 to nodes 1 and 2.

LST usesdelayed mappingto reduce mapping conflicts. When a job is scheduled for the first
time, any subset of the available nodes is suitable. Hence, nodes are reserved for the job, but it
will not yet allocate nodes. This is done to give the chance to another job which requirements can
be also fulfilled, but which has already run. Then the job with processor preference is assigned
first and the new job uses the remaining nodes.

Example: The system consists again of 8 nodes. There are three jobs waiting in the queue,J1
andJ2 with size 4 andJ3 with size 2. ThenJ1 andJ2 are scheduled first.J1 will run on
nodes 1-4 andJ2 on nodes 5-8. After 2 time slots the priority ofJ3 is also 4 and it is the
first job in the queue. If we assign nodes 1-2 to jobJ3, we have to migrate the processes
of J1 which can also be scheduled. Delayed mapping means thatJ1 will be assigned first
to nodes 1-4, and thenJ3 on 5-6.

If a job terminates and there is still time left in the time slice, thenext job in the run queue
which fits onto the available machines is scheduled. Thisalternate selectionhas no effect on the
job priorities.

The alternate selection initiates a potentially expensive context switchon the corresponding
machines (e.g. some of the processes may have to be swapped in again). Since thisoverhead
cannot be neglected, an alternate selection is only initiated when there is at least 10 % of the time
slice left.
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size 6 4 3 4 2 5

Table 2.1: Jobs and their sizes.
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Figure 2.1: Matrix Schedule.

The LST algorithm is different from thematrix algorithmused for co-scheduling [112]. The
matrix algorithm maps a job on a fixed subset of the processors. LST uses no such fixed mapping
and migrates jobs when a mapping conflict occurs.

The matrix algorithm schedules jobs in FIFO order. It is called matrix algorithm, since it
manages a(n;m)-matrix wheren is the number of time slots andm the number of processors.
The entrym[i; j] gives the process identifier of the process which is assigned to nodej in time sloti. When a new job arrives, the scheduler looks whether there are sufficient processors available
in one of the time slots (First Fit). Otherwise, a new time slot is added, i.e., a new row in the
matrix. There is used a Round Robin strategy between then time slots.

Example: We give an example to illustrate the different behavior of LST and matrix algorithm.
The jobs are given in FIFO-order in table 2.1. We assume that the service demandsof all
jobs are 2 time slots and that there is given a system with 8 nodes.

The schedule for First-Fit-matrix scheduling is given in figure 2.1. The matrix has 4 rows,
i.e., 4 time slots are needed to find a placement for every job. In the thirdtime slot an
alternate selection occurs, sinceJ5 also fits.

The corresponding LST schedule is shown in figure 2.2. The job with the largest size is
scheduled first. This isJ1. Since there are 2 nodes left,J5 is also scheduled in the first
slot. The priorities of all other jobs are rised. The evolution of priorities and remaining
service times is given in table 2.2. Here, the jobs are ordered according to their priorities.
The rowti gives the priorities and remaining service time at the beginning of thei-th time
slot. At the beginning of time slott1 bothJ1 andJ6 have the same priority. Since LST
uses Round-Robin between jobs of same priority,J6 will be scheduled first. Therefore, its
priority is marked in boldface.
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Figure 2.2: LST Schedule.J1 J6 J2 J4 J3 J5t0 6/2 5/2 4/2 4/2 3/2 2/2t1 6/1 6/2 5/2 5/2 4/2 2/1t2 7/1 6/1 6/2 6/2 4/1 3/1t3 7/1 7/2 7/2 5/1t4 8/1 7/1 7/1 6/1t5 8/1 8/1

Table 2.2: Jobs priorities under LST.

2.2 Evaluation of Simulation Results

The performance measure of interest is the mean residence time, which is the sum of waiting and
execution time. The following figures give the mean residence time as a function of the arrival
rate. The corresponding system load is� := � � size� � n ;
where� is the mean arrival rate (Poisson process),� the expected execution rate,n the number
of machines, andsize the mean configurational size of the applications. If not stated otherwise,
we usen = 100.

2.2.1 Approximation of Costs of Migration

Since we want to test the behavior of the LST algorithm in a simulation, we have toestimate the
overhead caused by migration.

The costs of migration depend on the number of processes which have to be migrated, the
process sizes, the network speed, and the used migration facility [116]. In thesimulation, the
time for migration is subtracted from the time slice of the migrated parallel job.
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We approximate the costs of migration by the measurements with the experimentalmigra-
tion facility P BEAM [116]. The time for synchronisation and local checkpointing before mi-
grating a process is about 10 seconds. The checkpointing of several processes can be done
in parallel on the different machines. After checkpointing, the processes are migrated to their
new locations. The transfer time via TCP for a process ofx KB can be approximated asy = 0:4[s] + 0:0012[s=KB] � x. This means about 12.7 seconds for the migration of a pro-
cess of 10MB [116].

The time which is needed for migration is the sum of checkpointing time and transfer time.
If we migraten processes of size 10 MB, the costs of migration are10 + n � 12:7 seconds.

2.2.2 Workload Model and Simulation Parameters

The behavior of the LS discipline depends on the workload characteristics. For example, if the
sizes of the parallel jobs are nearly constant, all jobs will get nearly the same priorities and LS
will behave like FIFO.

Random arrival processes are modeled by a Poisson process. Little is known aboutreal-
istic distributions of process group sizes and execution times (see section1.4). Therefore, the
investigation of different workloads by varying the distributions is recommended.

In [130], the presented LS and LST algorithms were compared for exponentially distributed
service times and exponentially resp. uniform distributed job size.

Studies in high performance computer centers have shown a high variability in service de-
mands [21, 34]. Therefore, hyperexponentially distributed service demands are used. Both work-
loads follow the fixed-size-model (see section 1.4).

Fixed-time-workload (FT): This workload follows the fixed-time-model, i.e., job size and
service demand are uncorrelated. The service demands are hyperexponentially distributed where
50% of the jobs have a mean service of 10 minutes and 50% a service time of 120 minutes
(coefficient of variation is 1.56).

Memory-bound-workload (MB): The service demands depend on the job sizes and are
hyperexponentially distributed with parameter�1 and�2. The parameters are given in table 2.3.

size w1 �1 w2 �2 coeff. of variation
1 .75 10 s .25 450 s 2.45

2-16 .75 2 min .25 34 min 2.24
17-32 .75 6 min .25 60 min 1.97
33-64 .75 12 min .25 124 min 1.98
65-128 .50 30 min .50 90 min 1.22

Table 2.3: Memory-bound-workload.

The job size is uniformly distributed between 1 and 100 which is motivated by monitoring
studies [34].

We test an “ideal” LST, i.e., there occur no costs for context switching between parallel jobs.
In all simulations, if not stated otherwise, the time slice size is 30 time units.
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Each process of an application has the same size of 10 MB in the simulations.
FIFO-V uses the variable-size-model. It depends on the application whether size and memory

demands are correlated or not. In the presented simulation results we assumethat there exists no
correlation. Hence, every process has again the same size of 10 MB.

Another model is possible, where the memory demands of the single processes of an parallel
application are negative correlated to the number of assigned virtual nodes. But in this case
the simulation leads to almost similar results. The reason is that the memory demands of an
application are only used to approximate the migration costs. For the discussion ofthe influence
of migration see section 2.2.4.

2.2.3 Comparison of LS, LST, and SNPF

For the comparison of the above strategies, Oleyniczak has implemented a simulation program
with which the following figures in this chapter were created [111].

Figures 2.3 and 2.4 show the mean residence time of FIFO, LS, LST, and SNPF.As expected,
any other scheduling strategy performs better than FIFO.

The lower figures show the results for FT- and MB-workload with hyperexponentiallydis-
tributed service demands. Additionally, we give the results with exponentially distributed service
times (� = 120 minutes), to illustrate the influence of the service time distribution1 (see the upper
figures in 2.3 and 2.4).

For the exponentially distributed service demands, there are less or no benefits from time-
sharing. Under exponentially distributed MB-workload LST performs worse than thespace-
sharing strategies. But under hyperexponentially distributed workload, it performssubstantially
better, in particularly under medium and high load.

When we compare the upper and lower figures, the benefit of a time-sharing disciplineunder
workloads with high varying service demands is impressive.

In figure 2.5 the speedups of LS, SNPF, and LST against FIFO are shown. For the FT-
workload, the two space-sharing strategies behave almost the same. Under a medium loaded
system speedups up to 40 % are achieved. For high load the speedup rises up to 60-80 %. The
speedup of LST is substantially better than the ones of the space-sharing policies.

For MB-workload, SNPF performs almost as good as LST. SNPF corresponds to SJF, since
it minimazes the waiting times under MB-workload. While SNPF should be the favorite policy
for MB-workload, the benefits compared with LS are not so spectacular. The reason is that LS
schedules larger jobs much earlier than SNPF, but favors simultaneously small jobs, since they
can make use of idle processors.

2.2.4 Discussion of LST

Since the performance of LST depends on several parameters, we have varied these parameters to
investigate their influence. The parameters are the size of the time slice, the minimum percentage

1All other figures show results from simulation experiments with hyperexponentially distributed service de-
mands.
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Figure 2.3: Mean Residence Time under Fixed-time-workload.

of time slice which is used for an alternate selection, and the costs of migration.
We compare the LST algorithm with LST0 which is an “ideal” LST algorithm where no

migration costs occur, with LSTNA which uses no alternate selection, and with LSTNM which
uses no migration. When no migration is used, there may occur fragmentation whilejobs are
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Figure 2.4: Mean Residence Time under Memory-bound-workload.

waiting in the run queue due to mapping conflicts.
Figure 2.6 shows the mean residence time of the different algorithms. While LST NA per-

forms worse than the other algorithms, all other LST algorithms perform very similar under both
workloads. This means that the preemptive LS algorithms do not benefit from migration.
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Figure 2.5: Speedup against FIFO under Fixed-time-workload (top) and Memory-bound-
workload (bottom).

To investigate whether migration has so less influence on the performance, thepercentages of
migrated processes are shown in figure 2.7. Under both workloads, the percentage of migrated
processes increases under higher load, but only less than two percent of all processes are migrated
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Figure 2.6: Mean residence time under Fixed-time-workload (top) and Memory-bound-workload
(bottom) for different LST Algorithms.

at all. The mean time between two migration events is also shown in figure 2.7. A migration
event occurs when the scheduler determines that migration is necessary due to mapping conflicts.
Even under high load the mean time between two migration events is more than 10hours! The
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Figure 2.7: Percentage of migrated processes (top) and mean time between migration events
(bottom).

mean number of migrated processes per migration event is about 20 for both workloads.
This shows that mapping conflicts are a rare event under the considered workloads and the

performance of the LST algorithm cannot be improved substantially by a faster migration facility.
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The higher influence on the performance of LST, has the alternate selection which uses rests
of time slices. This makes the performance behaviour of LST nearly independent fromthe choice
of the time slice size under exponentially distributed service demands [130].

Figure 2.8 shows the mean residence time for different time slice values under FT-workload.
The upper figure shows the results for LST, the lower the results for LSTNA. The same values
for MB-workload are given in figure 2.9.

Without alternate selection the performance of LSTNA depends much on the time slice
size. In particularly for the FT-workload, the smaller sizes show a better performance, since less
processor time is wasted.

The performance of LST stays stable for the different slot sizes. Only the smallest time slice
value of 5 minutes shows a lower performance under medium and higher load.

2.2.5 Benefits of Variable-Size-Model

Here, we compare the LS algorithms with FIFO-V which uses the variable-size-model. If there
are nodes available, FIFO-V allocatessize = min fmaxsize; number of idle processorsg
nodes. Hence, theminsize of an application is assumed to be 1.

Figure 2.10 shows the mean residence time of FIFO-V compared with the algorithms dis-
cussed above.

For both workloads, FIFO-V performs worse than the other disciplines under low load, even
worse than FIFO. Under medium load it performs better than the other space-sharing strategies,
and under high load it performs even better than LST.

When the application is fixed on a size, there will be the case that processorsare idle while
jobs are waiting in the run queue. Hence, all algorithms which have to schedule fixed-size-
workload suffer under increasing waiting time when the system load increases.

In the simulation, we assume an optimal speedup on allmaxsize processors. Hence, an
application will ben times faster onn processors compared with sequential execution. The larger
jobs are the candidates to reduce their size. Hence, the runtime of the larger applications will be
increased under FIFO-V. In particularly, these are exactly the jobs withhigh service demands in
the MB-workload. Hence, the benefits of the variable-size-model are less obviousthis workload.
For the FT-workload, there can be seen only performance benefits in the comparison with the
space-sharing policies.

2.3 Summary

We have presented both space-sharing and time-sharing LS strategies. Further, we have com-
pared scheduling disciplines which are based on the fixed-size-model and variable-size-model.

The presented gang scheduling algorithm LST differs from the matrix algorithm inusing
migration if necessary instead of fixed mappings. We have investigated this algorithm with dif-
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Figure 2.8: Influence of time slice values under Fixed-time-workload.

ferent parameter values for the size of the time slice and with/without alternate selection. From
our simulation results, we conclude:� The workload characteristics and the system load are most important for choosingan eff-

cient scheduling strategy.
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Figure 2.9: Influence of time slice values under Memory-bound-workload.� Simple scheduling strategies like LS and SNPF can make effcient use of theresources
compared with FIFO.� Under FT-workload the space-sharing strategies LS and SNPF behave similar. We con-
clude that processor fragmentation is not as dangerous as assumed. Both strategiesare
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Figure 2.10: Mean residence time under Fixed-time-workload (top) and Memory-bound-
workload (bottom).

outperformed by LST.� Under MB-workload the space-sharing strategy SNPF behaves almost as good as LST.



2.4. Bibliography 37� The benefits of a time-sharing discipline under workloads with high varying service de-
mands is impressive.� Mapping conflicts are seldom under LST (less than 2 % of the processes have been mi-
grated). Hence, migration is an adequate method for solving mapping conflicts. The mi-
gration overhead is neglectable.� Alternate selection is necessary to make the performance of LST independentfrom the
choice of the time slice.� Under medium and high system load, the performance can be improved by supporting the
variable-size-model.

2.4 Bibliography

The implementation of the simulation program is described in detail in [111].
An algorithm called LDLP (Largest Dimension Longest Processing time), similar to LS, is

investigated in [129]. LDLP needs runtime approximations for its calculation ofthe job priorities.
It is shown that the LDLP scheduling policy is suitable for a wide range of processornetworks
which own a decomposability property. Examples of decomposable graphs are decomposable
Cayley graphs such as then-cube and then-star.

Krueger et al. present a dynamic group scheduling algorithm called Scan-algorithm for hy-
percubes [79]. Scan is a non-preemptive algorithm which clusters jobs of equal size. Their
simulation results show that Scan improves the mean residence time compared to algorithms that
do not cluster equal-sized jobs.

Feitelson presents simulation results for different “packing schemes” forthe matrix algorithm
[43]. The problem to find sufficient processors for a new application is similar tothe allocation
problem in memory management. In the simulation, First-Fit and Best-Fit perform similar, while
a mapping scheme based upon buddy systems (Buddy-Matrix-Algorithm) performs best. The
latter is not astonishing, since it reduces processor fragmentation.

Further, Feitelson investigates an algorithm which uses migration instead of fixed placements.
This algorithm is similar to our LST algorithm presented in [130]. In the simulation, the migra-
tion based algorithm performs as good as the buddy allocation scheme. Feitelson states that this
result may be misleading, since the overhead for migration is ignored in the simulation. From our
experiences with LST, we conclude that the migration overhead is not a relevant factor. Hence,
LST will outperform traditional packing schemes used in co-scheduling.

Setia [136, 137] compares a scheduling strategy similar to LST with the Buddy-Matrix-
Algorithm. He uses a different calculation scheme for job priorities:priority := (jobsize� approx: ofruntime)�1:
In a trace-driven simulation which also regards the cost of migrations, this migration-based
scheduling strategy performs better than the Buddy-Matrix-Algorithm.
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Time-Sharing on a 2-dimensional mesh architecture is investigated by Rotzoll [124]. She
presents simulation results which show that under the time-sharing policy the mean residence
time and waiting time are positively correlated. She reports that the mean residence time was in
no case higher compared with a FIFO space-sharing strategy. Further, for higher load the mean
residence times may be improved by time-sharing, but Rotzoll gives no figures for this.

A space-sharing strategy for a 2-dimensional mesh architecture which clusters jobs according
to their size (similar to the Scan strategy for hypercubes) is presented in [103]. The authors
compare their algorithm for different parameters and show the influence of the parameters on the
performance.

In [143] demand-based co-scheduling for multiprocessors is proposed. Sobalvarro and Weihl
use informations about which processes are communicating in order to coschedule only these.
The authors state that their approach is more flexible than the traditional co-scheduling. Obvi-
ously, the result depends on the workload characteristics. If we assume that theapplications are
fully distributed (see section 1.3) demand-based co-scheduling is equal to co-scheduling.



Chapter 3

Resource Management in Workstation
Clusters

Since workstations are often dedicated to a special user, they run most of the time idle. A number
of recent research activities have tried to exploit the computing power of such environments
[17, 150]. Failure transparency and support for group scheduling are areas of many current
research activities [116, 19, 146, 64].

The benefits of workstation clusters are their� availability,� price/performance ratio, and� scalability.

Further, workstation clusters are easy to rejuvenate. While parallel computers are out-of-date
after only 3-6 years and lots of efforts have to be done for a new investment, a single workstations
is easily replaced. If money is available, more machines can be added whichmeans in most cases
that more powerful machines are available. Hence, a workstation cluster is comparable with an
organism which cells are periodically regenerated.

In figure1 3.1 the load situation of cluster of about 150 workstations at the Technical Uni-
versity of Braunschweig is shown. The three curves show the total number of ready-to-operate
machines, the number of active machines, i.e., with running jobs, and the number of machines
which are used by interactive users. The load change between day and night time is obvious.
The load on almost all machines increases from Friday on. This is due to a parallel application
which was started on Good Friday to run over the easter weekend.

Further, machines which are shown to be ‘active’ are not necessarily highlyloaded. There
may be also a lot of idle times on these machines which could have been used for longrunning
applications.

The importance of workstation clusters for parallel computing is, for example, demonstrated
by the fact that the Gordon Bell Prize in the price/performance category for significant achieve-
ments of supercomputers to scientific and engineering problems has been won by a parallel

1This figure was provided by D.J. Schmidt of the Computing Center of the TU Braunschweig.
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Figure 3.1: Load Situation in a Workstation Cluster at the TU Braunschweig.

program on a workstation cluster in the recent years. In 1995, Panayotis Skordos of the Mas-
sachusetts Institute of Technology was recognized for his modelling of air flow in flute pipes
[73].

In the following section we report the results from monitoring studies which have investigated
the load situation on workstations. Next, we discuss the differences between workstation clusters
and parallel computers which are important in scheduling.

Since every non-trivial load balancing strategy needs load informations for itsdecisions, we
have to define a suitable load metric for workstation environments. This is done inthe third part
of this chapter. We will introduce delay factors as a load metric for heterogeneous systems and
present a heuristic approach to calculate them.

3.1 Load Characteristics of Workstations

Monitoring studies of the load situation on workstations are given in [16, 89, 26, 71].
All studies consistently report that the majority of all UNIX processes havea run time of few
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seconds. Cabrera has obtained the following figures [16]:� 70 - 80 % of all processes consume less than 0.5 s cpu time,� 78 - 95 % of all processes consume less than 1 s cpu time,� only 2 % of all processes run longer than 16 s.

Ju et al. have found that about 80 % of all processes consume less than 0.5 s cpu time [71].
Leland and Ott state similar results [89]. They analyzed the behaviour of 9.5 million UNIX

processes during normal operation. They found the following approximation for the probability
distributionF of the amount of CPU time used by an arbitrary process:(1� F (x)) � r � x�c; 1:05 < c < 1:25:

Further, Leland and Ott have investigated the joint distribution of the amount ofCPU time
used and the number of disk accesses made. They report that the result confirms the com-
mon “folk theorem” that there exist three types of processes: CPU intensive applications (“CPU
hogs”), I/O intensive applications (“disk hogs”), and “ordinary” processes which use relatively
little CPU or I/O with no compelling relation between use of either. Processes which are CPU
and I/O intensive are rare. Only 10 of the observed processes belong to both classes.

When we want to do load balancing, we need a load management, a scheduling and an
export/migration component [87]. The load management component gathers and distributes the
current load information. The scheduler is responsible for the placement decisions,i.e., on which
side the job shall be executed. The export/migration component executes the schedulingdeci-
sions and exports and starts the job on another machine. In case the selected process is already
running, it has to be migrated which causes a higher overhead.

Since the export or migration of a job adds additional overhead, this is only worthwile for
long running applications, i.e., applications which run at least several minutes.

In some distributed operating systems such as Amoeba, load balancing is done per process.
A run server selects the machine when a job has to be created [151]. Therun server
checks whether there is a machine of the specified architecture available (SPARC, VAX, etc.) and
whether the machine has enough memory. Among the possible candidates, the fastest machine
is chosen. The used load metric is similar to the one proposed in section 3.3.2. Thespeed of the
machines is approximated by MIPS values.

Since most of the processes created on workstations have a lifetime of only a few seconds,
this approach seems not reasonable. Instead, we use a process model with 3 classes:

1. Short jobs< n seconds are executed locally,

2. jobs< 15 minutes are initially placed by the load balancing system,

3. jobs> 15 minutes are initially placed by the load balancing system and periodically check-
pointed for failure transparency. These processes may be migrated for load balancing rea-
sons.

Parallel applications typically belong to the third class of computational-intensive processes.
They have to be scheduled with special care.
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Figure 3.2: System Model [134].

3.2 The Challenges of Workstation Clusters

Scheduling on workstation clusters is quite different from scheduling on parallelcomputers.
From the operating system view, each workstation is an autonomous system. Each machine has
its own scheduler, most commonly a UNIX time-sharing scheduler. A portable approach has to
consider this situation. Hence, we assume that the implementation of paralleljob scheduling has
to be done in user space on top of the kernel without any modification at the existing operating
system. This leads to the 2-level system model shown in figure 3.2 [134].

The first level is the UNIX time-sharing system. Above this, there is a scheduling facility,
which schedules only the parallel applications which are submitted to the system by a special
user command. The global run queue for arriving parallel jobs is managed by a global scheduler,
which is responsible for mapping the parallel jobs onto the machines.

3.2.1 Network Topology

Scalable parallel computers are based on special network topologies such as mesh or hypercube
architectures [154]. On these machines, an application is mapped onto processors which are
topologically close, or more formally, the application allocates a subgraph with minimal diameter
[79, 91, 103, 129].

In figure 3.3 the network topology of a 4-cube and a workstation cluster is presented. Work-
station clusters typically have a simpler network topology where the machines are connected by
a broadcast medium like the Ethernet. Thus the topology does not have much influence on the
mapping decisions.

The situation gets more complex, if some workstations of the cluster are connectedby differ-
ent networks, i.e. Ethernet, Fast Ethernet, and ATM.
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3.2.2 Time-Sharing Disciplines

While gang scheduling is assumed to be an efficient scheduling strategy on multiprocessor ma-
chines [112, 90, 37], it is not yet clear whether gang scheduling can be useful on networks of
workstations.

In a workstation cluster, there is no synchronization hardware for context switching between
parallel applications and no global time at all. This makes the implementation of time-sharing
disciplines more difficult.

On a workstation cluster, time slices for scheduling parallel applicationscan only be im-
plemented on top of the local scheduler and the synchronization for context switching between
parallel jobs can only be done by message passing.

Switching can be done in the following way: When the global scheduler wants to initiate
a parallel job switch, it sends a message to all machines that the running process has to be
suspended and the next process in the local run queue has to be scheduled. When an application
is suspended, all messages that are “on the way” have to be saved. This means thata checkpoint
of the application has to be made. Therefore, additional synchronization overhead occurs.

In [64], first experiences with gang-scheduling on a workstation cluster are reported. The au-
thors assume “that every workstation in the cluster is dedicated for use as acomputation server”.
This assumption does not seem valid in most computer departments. The implemented runtime
environment is tested with two applications which are not representative for parallel applications:
a program which calculates Fibonacci numbers and a program which forks threads to thenext
processor sequentially. The authors give results from measurements with time slice size 0.2, 0.4,
0.6, 0.8, and 1 second which are not promising even when they conclude that “gang-scheduling
on workstation clusters can be practical.” Results with a more realistic application should be
more interesting.

Further, a preemptive discipline may increase the danger ofswapping, since the memory
requirements of all running processes may exceed the available local memory.The job switch
may effect that a process has to be swapped in again. Since this may happen for several processes
of a parallel application on different machines simultaneously, network traffic will rise and the
time for the parallel job switch increases considerably.

The question is, whether there are any good reasons to use a time-sharing policy onwork-
station clusters. Time-sharing disciplines are favoured to guarantee short response times, in par-
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ticular for interactive users. Since each workstation has its own UNIXscheduler, short response
times for interactive users are already supported by the UNIX time-sharing system.

Another reason why time-sharing may be beneficial is the heterogeneity of the workload, i.e.,
workload with a high coefficient of variation of job service demand. The characteristic of time-
sharing policies is that the waiting time of a job depends on its service demand. Ourexperiments
with a time-sharing policy in chapter 2 have shown the limited benefits under medium and high
load. Under MB-workload the space-sharing strategy SNPF behaves almost as good as LST.

Since the benefits of co-scheduling on workstation clusters seem questionable, we will ex-
clude them in our approach.

3.2.3 Heterogeneity

The most challenging property of workstation clusters is theirheterogeneity. Heterogeneity in-
cludes different architectures which are not binary compatible, different memory sizes, and dif-
ferent speed characteristics [134].

If a parallel application is mapped onto a subset of the machines consisting of slower and
faster machines, the slower machines may slow down the whole application, and the overall
performance of the system is reduced (see section 1.3).

3.2.4 Motivation for Migration

There are three reasons why a migration facility is necessary for resource management in work-
station clusters [134].

Firstly, applications may profit from migration to faster hosts.
Secondly, there may beinteractive userswho want to use their machines exclusively. Condor,

as one well-known example, uses the idle times of workstations for compute-bound sequential
jobs [96]. If the user of a workstation returns, Condor suspends the application and observes the
user behaviour. If the user is still active after several minutes, Condor migrates the application to
another idle host.

Thirdly, the failure probability in a workstation cluster is much higher compared to parallel
computers. Rebooting a machine may be originated by other users, due to software errors, or
by the system operator for administration reasons. Migration can improve fault tolerance, by
evacuating hosts prior to regular shutdowns.

We conclude that the scheduler has to be active in case of the followingmigration events:� shutdown of a machine,� interactive user arrivals,� substantial load changes on a machine which would slow down the parallel job,� substantially faster machines become available.
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3.3 The Load Management Component

In this section we motivate the definition ofdelay factorsas a load metric suitable for heteroge-
neous systems and discuss several approaches to calculate this metric [132, 133].

3.3.1 Definition of Delay Factors

In a homogeneous system the current speed of a machine depends only on the current load, which
can be measured as the number of jobs in the run queue. But in a heterogeneous system, we have
further to consider the different server capacities and configurations. A load metric suitable in
a heterogeneous system is adelay factorwhich gives the expected delay of an application on a
machine normalized relative to, for example, the slowest machine in the system.

Let runtime(Mi; loadi) be the runtime of an application on machineMi under loadloadi.
The delay factor of an application on machineMi is defined asdelay(Mi) := runtime(Mi; loadi)runtime(Mslow; 0) ;
whereMslow denotes the machine architecture with the lowest processing capacity in thesystem.
For example, a delay of machineMi equal to 0.5 means that the application will run two times
faster on machineMi compared to the idle slowest machine.

We define thespeed factor�i of machineMi to be the quotient of the runtime on machineMi
and the runtime on the slowest machine of the system when there is no other load in the system�i := runtime(Mi; 0)runtime(Mslow; 0) :
When the machineMi is idle, we get adelay(Mi) = �i:

However, the definition of the delay factors is of no use for computing the delay factor. Whileruntime(Mslow; 0) is the result of one benchmark for each application,runtime(Mi; loadi) has
to be calculated for every application, every machineMi, and every possible loadloadi, which
is impossible.

Instead, we use another approach where the delay factors are only estimated from the current
load. If there are alreadyn processes running on machineMi and we assume a time-sharing
system, the delay will be approximatelydelay(i) = �i � (1 + n), neglecting the overhead for
time-sharing and, possibly, swapping. This motivates our redefinition of the delay factordelay(Mi) := �i (1 + loadi);
whereloadi is an approximation for the current load. This definition regards that even if the load
is zero on all machines, the machine with the best speed factor is most attractive. The question
is, how to calculate�i andloadi?
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3.3.2 Calculation of Speed factors

A common way to calculate speed factors is benchmarking. But the experiences with real appli-
cations show that speed factors depend on the measured applications. This makesthe use of a
common speed factor difficult.

We have measured the speed characteristics of applications which are popularin our com-
puter department due to our system accounting, and of some popular benchmarks.

The speed factors for a LATEX application, a C-compiler run (gcc), a program which calculates
Mandelbrot sets (mdst), the PovRay raytracer, and the dhrystone benchmark are shown in table
3.1. Additionally, the relative MIPS values are given. The speed factor of theSun SLC is 1, since
this is the slowest architecture in our system.

LATEX gcc mdst PovRay dhrystone MIPS
Sun SLC 1.00 1.00 1.00 1.00 1.00 1.00
Sun IPC 0.83 0.75 0.55 0.73 0.84 0.79
Sun ELC 0.70 0.69 0.34 0.52 0.56 0.53
Sun Classic 0.72 0.56 0.36 0.46 0.36 –
Sun SS2 0.53 0.45 0.26 0.42 0.46 0.44

Table 3.1: Speed factors of different applications.

The measurements confirm that the speed characteristic of a machine also depends on the
measured application. The reason is that the applications differ in the rate offloating point and
integer arithmetic, and in their I/O-behaviour.

While the ranking of the machines stays stable for the different applications (the only excep-
tion is Sun Classic which is slower than the Sun ELC for some applications andfaster for some
others), the absolute values differ significantly. If we have an application running on an idle Sun
ELC, the expected delay on this machine will be0:7 � (1 + 1) = 1:4 according to the speed
factor of the LATEX application. This looks worse than the expected delay on an idle Sun SLC.
But if we use instead the speed factor which is measured for the Mandelbrot setapplication, the
expected delay will be 0.68 which looks better than the idle SLC. Hence, the load balancing
decision depends mainly on the used speed factors.

There are two solutions for this problem. The load management can use one speed factor
for each machine which is calculated as a mean value from several different benchmarks. This
approach is transparent for the user, but may lead to non-optimal placement decisions of the load
balancing facility.

Alternatively, the user may give hints how much I/O traffic will occur within her application
and whether the application does mainly floating point or integer arithmetic. Then the load
management component can choose the suitable speed factor due to these characteristics.
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Figure 3.4: Comparison of 1-minute-average and 30-seconds-average.

3.3.3 Load Parameters for Homogeneous Systems

Most UNIX kernels, i.e. HP-UX, Irix, SunOS, Solaris, and FreeBSD, gather load statistics peri-
odically every 5 seconds. This information is available through thevmstat or sar command
[107] which report statistics about the CPU run queue, the virtual memory, disk, context switches,
and CPU activity. Altogether,vmstat reports about 22 load parameters.

The reported values of the run queue are non-averaged snapshot values. A process whichhas
been running for the first 4 seconds and is then interrupted because of I/O will not be counted in
the run queue length.

To get more reliable load informations, load averages are in common use whichsmooth the
gathered load parameters exponentially. These load averages, calledavenrun, are calculated as

avenrunb(t) = e�ab avenrunb(t� 1) + (1� e�ab ) � load;
whereload is the sum of the length of the CPU run queue (including the running process) and the
number of processes which are waiting for I/O,a is the smoothing period, andb is the smoothing
interval. Since UNIX updates its load statistics every 5 seconds, a smoothing perioda = 5 sec-
onds is used. UNIX providesavenrunvalues for the smoothing intervalsb = 1; 5 and 15 minutes.

This means that in case of the 1-minute-average the old load value is weighted with 0.92
and the newload is weighted with0:08. Hence, the load average reacts very slowly on load
changes. Figure 3.4 shows the value of the 1-minute-average when a process arrives in an idle
system and runs for 2 minutes. The curve for a 30-second-average is also shown for comparison.
Theavenrunmetric adapts very slowly to load changes. When the job is already running for 60
seconds, the value ofavenrun60 is still about 0.6 instead of 1.



48 Chapter 3. Resource Management in Workstation Clusters

Comparison of Load Metrics in Homogeneous Environments

There already exist comparisons ofavenrunwith other load indices which show thatavenrunis
not the best choice for a load metric even in homogeneous environments [45, 84].

Kunz [84] tested six one-dimensional workload descriptors based on parameters like num-
ber of processes in the run-queue, CPU-time, or 1-minute load average within a load balancing
environment on a network of homogeneous UNIX workstations. The results show that all ex-
amined descriptors lower the mean response time of processes and that the bestsingle workload
descriptor is the number of processes in the run queue, and the worst is the 1-minute loadaver-
age. Further, combining the two best single workload descriptors, the number of processes in the
run queue and the system call rate, leads to no improvement over the scheduler versions using a
one-dimensional workload descriptor.

Similar results are presented by Ferrari and Zhou [45]. The authors have alsotested a wide
range of load indices within a load balancing environment. The results also indicate that load
indices which are more up to date than the UNIX 1-min average improve the performance of the
load balancing facility.

The index which is found to be among the best is the sum of the CPU– and disk– queue
lengths, and the amount of processes in page wait, averaged over a 4 second period. Ferrari and
Zhou implemented their own system statistic inside the kernel to gather such current information.
The length of the used system queues was sampled every 10 ms by the clock interrupt routine
and used to compute the one-second average. These variables were managed by the kernel.

It has to be mentioned that these results depend on the used workload. When the inter arrival
time of jobs is in the magnitude of some minutes,avenrunis capable to adapt to load changes
in time. Hence, the time constraints given by the expected workload determinewhetheravenrun
adapts to load changes fast enough. The major problem is that the results cannot be generalized
for heterogeneous systems.

3.3.4 Load Parameters for Heterogeneous Systems

Ferrari and Zhou report that the metric which equals the total number of processesready to run
and execute, being paged and swapped, and doing file I/O performs best. Theavenrunuses
also the number of processes in the run queue and disk queue. But the parameter disk queue is
misleading in heterogeneous systems.

An example which illustrates the situation for configurational heterogeneous machines is
shown in table 3.2.

We used an artificial workload which consumes a large amount of system–time and consists
of a process which repeatedly opens a file, writes a byte into it, closes it, reopens the same file,
reads a byte from it and closes it again. This load is characterized by a lot of I/O operations. We
call it sys n, wheren gives the number of started processes. These processes run concurrently to
the measured application. It is obvious that this type of load is in no way realistic, but enables us
to examine the behaviour of certain applications under various background loads quite easily.

The Sun SS2 was configured as a file server in the first test case (all file accesses of the
background load were local), and in the second as a diskless client (the file accesses were remote
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via NFS). The file accesses of the gcc application were via NFS in both cases.
The measured benchmark which runs concurrently to the artificial workload is thecompila-

tion run. We give the delay of this benchmark compared to the execution time on the idle SS2.
The results in table 3.2 show that the delay factors for the gcc application arequite similar by
contrast to the gathered load data. Hence, the disk queue as load metric is especially misleading
in this case.

SS2 (file server) SS2 (diskless)
load disk delay disk delay

run queue gcc run queue gcc
sys1 0.92 1.22 0.03 1.26
sys2 1.75 1.28 0.08 1.37
sys3 2.76 1.31 0.87 1.50

Table 3.2: Disk queue and delay.

Further, we tested the smoothed run queue parameter as load parameter for delay factors in
heterogeneous environments. Again, we used an artificial workload as background load. The
background load, calledCPUn, consists ofn processes which are always runnable.

In table 3.3 the delays of the gcc compiler and the LATEX application, which run concurrently
to the workloadCPUn, are shown. Here, the reported delay is normalized to the local execution
on the idle machines. The standard deviations of the measurements were between 0and 3 %.

The CPU run queue lengths are gathered before the benchmarks are started. We make two
observations:

1. The delay of the applications is correlated with the CPU run queue lengths for allarchitec-
tures.

2. The more CPU-bound application LATEX suffers more under the loadCPUn than the C-
compiler. The delay of the LATEX application underCPU3 is about 3.5 on the SS2, where
the delay of the gcc application under the same load is only 1.87. This effect can be ob-
served on all machines. The LATEX application spends about 137.4 seconds in execution
and 2.0 seconds in the system, while the gcc compiler spends about 124 seconds in execu-
tion and 21.8 seconds in the system. Since I/O interrupts are handled with a higher priority,
the gcc application is not delayed by theCPUn load as much as the numbern should let
expect.

If the delay factors ofn machines have to be compared, it is not necessary to compute the
exact values, only the order is important. Since the ranking induced by the CPU run queue lengths
and the ranking induced by the real observed delays is the same for both applications, the CPU
run queue seems to be a good parameter to specify the load for all the considered architectures.

Therefore, we use the following simple delay factor2

delay:= � � (1 + CPU run queue):
2This definition was first used in our experimental YALB (Yet Another Load Balancing System [147]).
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Type load CPU LATEX gcc
run queue delay delay

SS2 none 0.04 – –
cpu1 1.12 2.03 1.28
cpu2 2.17 2.66 1.60
cpu3 3.13 3.50 1.87

ELC none 0.19 – –
cpu1 0.98 1.90 1.41
cpu2 2.13 2.73 1.77
cpu3 3.01 3.65 2.13

IPC none 0.11 – –
cpu1 1.00 1.92 1.51
cpu2 2.01 2.79 2.03
cpu3 2.96 3.66 2.43

SLC none 0.02 – –
cpu1 0.99 1.89 1.49
cpu2 1.97 2.74 1.99
cpu3 2.96 3.70 2.49

Table 3.3: Evaluation of CPU run queue

The quality of this delay factor is evaluated in [133, 132]. The metric is tested in a trace-
driven simulation of a load balancing system. The load balancing system determines the fastest
available machine in the system based upon the current delay values of the machines.

The results are evaluated by calculating theslowdownwhich is the difference between the
runtime on the chosen machine and the possible optimal placement. In the simulationthe slow-
down of compute-intensive applications is between 10-20 % which is a promising result. Only
under medium and high load, i.e., when there are no idle machines any more, the slowdown
values increase over 50 %.

3.4 Summary

Scheduling parallel applications on a workstation cluster has to be done on the top of thelocal
time-sharing scheduler. This leads to a 2-level architecture of the scheduling system.

We have discussed the problems of co-scheduling on workstation clusters. We concludethat
co-scheduling is not feasible in these environments.

We have explained why a migration facility is necessary for resource management in work-
station clusters.

The most challenging property in scheduling is the heterogeneity of workstation clusters and
the presence of interactive users.
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We have introduced delay factors as a load metric for heterogeneous systems and presented
a heuristic approach to calculate them which behaves well for compute-intensive applications
[133, 132].

3.5 Bibliography

Parts of this chapter are published in [133, 132, 134].
In [133, 132], the presented run queue based delay factor is compared with a load metric

which is calculated by neural networks. Whilst the first is easy to calculate and performs satis-
factory in heterogeneous systems, the neural network approach yields better results, especially
under medium and high load.
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Chapter 4

Mapping Strategies for Heterogeneous
Systems

In this chapter, we present mapping algorithms for heterogeneous systems which arean adaption
of the Shortest–Expected–Delaymapping (SED) proposed for sequential processes. SED in
homogeneous systems is known as “join the shortest queue”. This is the optimal strategy in the
case of sequential processes in homogeneous systems [163, 134].

In a heterogeneous system, the runtime of an arriving job depends not only on the number of
jobs in the run queue, but also on the server capacity. When a sequential job arrives, the SED
strategy assigns the job to the node with the shortest expected delay based on the current delay
factors. Studies of scheduling strategies for heterogeneous systems show that SED outperforms
other strategies like for example Bernoulli Splitting [108].

SED supports the variable–size–model in a heterogeneous environment. The advantage of
using SED is that the heterogeneity of the system is tranparent for the programmer.

Saphir et al. state that “currently most applications at NASA Ames are statically load bal-
anced, assuming that each processor is equally fast so that the work should be divided evenly
among them” [127]. It is easier for the developer of an parallel application to assume that all
nodes are equally fast and to do not care for heterogeneity.

The proposed SED mapping for parallel applications searches for “virtually homogeneous”
nodes. Therefore, the heterogeneity of the system is transparent. This makes thedevelopment of
a parallel application much easier.

We present preemptive and non-preemptive SED strategies. The preemptive disciplines are
no gang scheduling disciplines, since gang scheduling seems to be not feasible in workstation
clusters (see section 3.2).

We introduce the concept of mapping state diagrams to investigate the behaviour of different
SED algorithms. In particular, we are interested whether SED may benefitfrom using migration.
Further, we did simulation experiments to test the performance of the algorithms.

Mapping state diagrams have shown to be an useful description tool for investigating the
behaviour of the algorithms and to analyse the simulation results.

SED1 scheduling, the concept of mapping state diagrams, and simulation results with the
Proof-workload for SED1 are published in [134]. Here, we give an improved definition of map-

53
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ping state diagrams.

4.1 SED Strategy

The characteristics of SED are� the user has to specify the maximum and minimum degree of parallelism (minsize andmaxsize),� the global run queue is managed in FIFO order,� migration, if faster machines become available.

Definition of Delay Classes

SED maps a parallel application ontovirtually homogeneous nodes, i.e., onto machines with the
same current delay.

Thedelay factorof a machineMi at timet is given asdi(t) := �i(1 + loadi(t));
where loadi(t) is the number of runnable processes on machinei (see chapter 3).

Since we suppose that the applications follow thestrong synchronization model, i.e. every
process of a parallel job tends to synchronize with other processes of the parallelapplication, the
slower machines will slowdown the faster ones.

Definition: Thecurrent delay classDk of a parallel jobPk which is assigned to machinesMj ;
with current delay factorsdj ; j = 1; 2; :::; nk is defined asDk := max fdj j j = 1; 2; :::; nkg.

We claim that the highest delay of a process is limited by the�max value of the slowest
architecture, i.e., SED maps at most one process onto a machine of the slowestarchitecture.

Let �k; k = 1; :::; K be the different speed factors of the machines. The speed factors are
ordered (�1 = 1, �K = �max). We introduce a�-set, which consists of the representatives of the
delay classes: �-set:= fj j j 2 N ^ 1 � j � �maxg :

There aremaxclass := j �-setj delay classes. The representative delay factor of delay classi is denoted by�i, the lower bound by�imin , and the upper bound by�imax . The first delay class
is [1; 1:5). For all other classes[�imin; �imax), we define�imin = i� 0:5;�imax = i+ 0:5:

In our example, we have�1 = 1; �max = 4 and�-set = f1; 2; 3; 4g : The corresponding
delay classes are shown in table 4.1.

When the load index of a machine changes significantly, the machine will also change its
delay class.
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1 1 1:5
2 1:5 2:5
3 2:5 3:5
4 3:5 4:5

Table 4.1: Example of delay classes.

The SED Mapping Algorithm

The componentsai of theavailability vector(a1; a2; : : : ; amaxclass) give the number of currently
available nodes in classi.

The SED algorithm compares different possible mappings by the resulting expected delay.
SED maps an application onto the machines which are currently in delay classm, if�mamp = min ( �iaip ����� i 2 f1; :::; maxclassg ^ aip � minsize) ;
whereaip = min fai; maxsizeg. If there is more than one delay class which fulfills this equa-
tion, we choose the fastest one. Hence, the application is started with the smallest degree of
parallelism which gives the best speed-up under the current load situation.

This is done to reduce communication costs. For example, if we map a 2-dimensional multi-
grid application on 16 nodes instead of mapping them onto 4 faster nodes, we reduce the number
of operations per node to a quarter. At the same time, the communication costs are only halved
for inner nodes. Since data have to be exchanged between neighbouring nodes, the total commu-
nication costs on 4 nodes for each iteration are4 � 2 � a = 8a, wherea is the length of one square.
If the application runs on 16 nodes, the total communication costs will be24 � 2 � a2 = 24a.

The chosen delay classm is called theexpected delay classof the application (EDC). The
expected delay timeof the application (EDT) is�mamp .

The Availability Vector

We will compare two SED algorithms, called SED1 and SED2. The algorithms differ in the
calculation of the availability vector which leads to different mapping decisions.

SED1 uses an availability vector which is a generalization of the 1-to-1-mapping used in ho-
mogeneous systems. There, a parallel application is spread onto the given processors by mapping
1 process onto 1 machine. In delay classi are all machines with current delay less or equal�i.

To determine the components of the availability vector, we have to consider the current delay
factorsdi(t) of the machines and theirslow–down thresholdsi(t) which is defined as follows.
This threshold gives the maximum delay which can be tolerated on a machineMi without slow-
ing down one of the assigned applications. We definesi(t) := min f�k j a process of applicationPk runs onMi with EDC= kg :
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appl.2

appl.1
appl.1 appl.2

Figure 4.1: Different Mappings of SED1 (left) and SED2 (right).

When the system is idle,si(t) = �max.
The availability vector is calculated as follows. The components are initialized with zero. Ifdi � si, thenak := ak + 1 for all classesk � di. This is checked for every machineMi. In our

example, when all machines are idle, the availability vector is(5; 5; 5; 30).
The SED2 algorithm counts a machine with current delay 1 ask “virtual nodes” with delayk. For all delay classesi = 1; :::; maxclass and machinesMj; j = 1; :::; nk,aij = max fk j �j � (k + loadj) � min f�imax ; sjg g

is calculated. Theaij are summed for all machines and give the componentai of the availability
vector. In our example system, this results in(5; 10; 15; 45), when the system is idle.

SED1 and SED2 result in different mapping situations. For example, in a system with 5
machines may be two faster machines with�1 = �2 = 1 and 3 slower machines with�3 =�4 = �5 = 2. Figure 4.1 shows the mapping situation when there are two applications in the run
queue, both withminsize = 1 andmaxsize = 5. While SED1 spreads application 1 over all 5
machines, SED2 maps the application compactly onto 3 of the 5 machines.

The values ofdi; si and(a1; a2; :::; amax) are updated whenever a parallel job is assigned or
terminates.

Termination of a Parallel Job

When a job terminates, the scheduler updates the expected delays and checks whetherjobs are
waiting in the run queue and may be mapped now. If the run queue is empty, the scheduler checks
whether a running job can be migrated to machines of a faster delay class.

For example, when application 1 on the left side of figure 4.1 terminates, application 2 runs
alone on the two fast machines with a new expected delay of 1. This scheduling eventis called
upgrading.

Since the application is always running and contained inloadj, we cannot calculateDk as
above, but use Dk = max f�j(1 + loadj(t)� 1)j Pk is ass. toMjg :

When a job is upgraded, the thresholdssi of all machines have to be recalculated. This also
effects the availability vector.
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4.2 Mapping State Diagrams

We introduce mapping state diagrams to characterize the behavior of the SED algorithm. Map-
ping state diagrams are distinct from state diagrams which describe the system behavior in terms
of number of jobs in the system.

Definition: A mapping stateis a tuple(m1; m2; :::; mmaxclass) with one componentmi for each
delay class. Let�i denote the maximal number of virtual nodes in delay classi when the
system is idle. The componentmi is a �i-tuple, where each entrymij ; j = 1; 2; ::::; �i
gives the number of applications with sizej which allocate virtual nodes of delay classi.

Like in state diagrams, state transitions occur when an application arrives or terminates. The
possible state transitions are visualized in a mapping state diagram. Amapping state diagramis
a directed graph whose nodes are the possible mapping states. There is an edge from nodeA to
nodeB when a state transition exists fromA toB.

The advantages of mapping state diagrams compared with normal state diagrams are:� There are less states since different run queue lengths are not considered. This makes the
mapping state diagram more manageable.� Since the mapping diagram gives information about the current location of the application,
migrations are observed as special state transitions.� Since mapping state diagrams consider virtual nodes, processes which run pseudoparallel
on the same machine (due to the local time-sharing system) are also included in the model.

When we consider workloads where the user specifies the maximum degree of parallelism
of her application equal to the maximum number of machines or maximum number of virtual
nodes, the number of possible mapping states decrease enormously, since a single application
tends to fill almost the whole system.

The only information about the workload which we need for constructing the mapping state
diagram are theminsize andmaxsize parameters. In the following we show the mapping state
diagram for different systems in the case of applications which specifymaxsize = 30 andminsize = 1.

When there is only one job running in a delay class, we note only the size of the running job,
i.e., a mapping state(5; 0; 0; 25) means that one application is running on 5 machines of delay
class 1 and another application is running on 25 machines in delay class 4.

4.2.1 SED1-Mapping State Diagram of System 1

Example system 1 consists of 5 fast machines (� = 1) and 25 slower machines with� = 4. The
mapping state diagram of SED1 for system 1 is shown in figure 4.2.

The mapping diagram shows that SED1 in system 1 has the following characteristics under
the given load:
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(0, 0, 0, 30)

(0, 0, 0, 0)

(0, 0, 0, 25)

(0, 5, 0, 30) (5, 0, 0, 25)

(5, 0, 0, 0)

jobs in run queue
run queue empty

upgrade

(0, 0, 0, 30)

(0, 0, 0, 0)

(0, 5, 0, 0)

(0, 5, 0, 30)

Figure 4.2: Mapping State Diagram of System 1: SED1 (left) and SED1-NU (right)[134].� At most 2 jobs are running in parallel,� jobs may run in time-sharing mode (mapping state (0, 5, 0, 30)),� upgrading may occur, and� there will be no migration at all.

We will compare SED1 with SED1-NU which uses no upgrading (see fig. 4.2).

4.2.2 SED2-Mapping State Diagram of System 1

When we use SED2 instead of SED1, the availability vector is(5; 10; 15; 45) in case system 1 is
idle. SED2 maps the first arriving application also on 30 virtual nodes of delay class 4. But SED2
uses the fast machines first. There will be 4 processes running on each of the 5 fastest machines
and only 10 of the slower machines are used. The availability vector is now(0; 0; 0; 15).

The next arriving job will allocate the remaining 15 machines. Now, there are2 jobs running
on machines of delay class 4. We denote the corresponding mapping state as(0; 0; 0; 30 + 15).
The complete mapping state diagram is shown in figure 4.3. While no upgrading occurs, SED2
makes use of migration. The mapping state diagram of SED2-NM which does not use migration
is also shown in figure 4.3.

4.2.3 SED1- and SED2-Mapping State Diagram of System 2

In system 2 there are 20 machines with� = 1 and 10 machines with� = 4. Here, SED
divides the system into two homogeneous subsystems: One consists of the 20 fast and one of
the 10 slower machines. Since SED1 and SED2 behave the same in homogeneous systems, the
mapping state diagrams are exactly the same (see figure 4.4).

The mapping diagram shows that SED has the following characteristics in system 2.
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(5, 0, 0, 25)

(5, 0, 0, 0)

(0, 0, 0, 25)

(0, 0, 15, 25)

(0, 0, 0, 30)

(0, 0, 0, 0)

(0, 0, 0, 30+15)

(0, 0, 15, 0)

migration

(0, 0, 0, 30)

(0, 0, 0, 0)

(0, 0, 0, 30+15)

(0, 0, 0, 15)

Figure 4.3: Mapping State Diagram of System 1: SED2 (left) and SED2-NM (right).

(0, 0, 0, 0)
jobs in run queue
run queue empty

(20, 0, 0, 0)

(20, 0, 0, 10)

(10, 0, 0, 0)

(10+10, 0, 0, 0)

*

migration

(10+10, 0, 0, 10)

(0, 0, 0, 0)

(20, 0, 0, 0)

(20, 0, 0, 10)

(0, 0, 0, 10)

Figure 4.4: Mapping State Diagram of System 2: SED2 (left) and SED2-NM (right)[134].� At most 3 jobs are running in parallel (state(10 + 10; 0; 0; 10)),� 1-to-1-mapping between processes and machines,� space-sharing between applications,� there will be no upgrading at all, and� migration may occur.

We will compare SED2 with SED2-NM that uses no migration. The Mapping state diagram
of SED2-NM is similar to the left side of figure 4.4.
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4.3 Evaluation of Simulation Results

Oleyniczak has implemented a simulation program [111] for the presented scheduling strategies
and has created the figures shown in this chapter. The simulation software uses parts from simuLan
[114].

The approximation of migration costs is the same as in case of the homogeneous system (see
section 2.2).

4.3.1 Definition of Workloads

In the simulations, we investigate the algorithms under four different workloads.Three follow
the variable–size–model and the fourth the fixed-size–model. The given mean value of service
times are the execution times when the application would run sequentially on oneof the fastest
machine in the system (� = 1).

Proof-Workload: In the first workload we use the variable–size–model withmaxsize = 30
andminsize = 1. Sincemaxsize is equal to the number of machines in the systems, the parallel
jobs will act greedily and allocate as many nodes as possible. To get a better understanding of the
behavior of the algorithms under different hardware characteristics and to testthe correctness of
the simulation software, we use an artificial workload with constant service demands (100 min).

Exp-Workload: In the Exp-workload we use an exponentially distributed service demands
with a mean service time 120 minutes.

Hyperexp-Workload: In the Hyperexp-workload the service demands are hyperexponen-
tially distributed where 50 % of the jobs have a mean service time of 10 minutesand 50 % of the
jobs have a mean service time of 120 minutes. Hyperexponentially distributed service demands
are motivated by several monitoring studies in parallel computer centers where service demands
with coefficient of variation between 1.3 and 3.7 have been observed (see forexample [34]).

FS-Workload: Here, the service demands are hyperexponentially distributed like in the
Hyperexp-workload. The FS-workload follows the fixed-size–model where the size isuniformly
distributed between 1 and 30.

We compare the performance of the SED algorithms in the two example systems. Thecoef-
ficient of variation of the generated random numbers for the service demands is about 0.9in case
of the Exp-workload resp. 1.6 for the Hyperexp-workload.

4.3.2 Performance Results for the Proof-Workload

We use this workload for the discussion of the upgrading technique and of migration of SED1.
The results of our simulations are shown in figure 4.5. The mean residence time, the mean

waiting time, and the mean computing time of the jobs are given as a parameterof the job arrival
rate. Further, the percentage of upgraded resp. migrated processes is shown.
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Figure 4.5: Simulation results with System 1 (left) and System 2 (right) underProof-workload.
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Influence of Upgrading

For system 1, upgrading reduces both waiting and computing time. The percentage of upgrades
decreases with increasing system load. This occurs, since upgrading is done only when the run
queue is empty.

Nevertheless, upgrading leads to a better performance even under high load (seefigure 4.6).
The reason can be found by observing the corresponding mapping state diagram.

In case of SED1-NU the corresponding mapping state for higher load is(0; 5; 0; 30). The
asymptotic computing timeis climes = �x � 25 + y � 430� � t;
wheret is the mean service time demand of the jobs (t = 100min), and the weightsx andy are
the solution of the equationsx � 25 = y � 430 andx+ y = 1. In this case there will be 3 jobs running
with delay 430 while one job runs with delay25 . This givesclimes = 210 � t = 1200s (see fig. 4.5).

In case of SED1 the system may change between the states(5; 0; 0; 25) and(0; 5; 0; 30). The
asymptotic computing time in state(5; 0; 0; 25) isclimes = �x � 15 + y � 425� � t;
with weightsx = 49 andy = 59 . The resulting asymptotic computing time is about 1060 s which
is the upper boundary of the SED1 curve in figure 4.5.

Discussion of Migration

The mapping state analysis has shown that under the given workload migration occurs only in
system 2. Further, SED1 and SED2 behave the same in system 2.

The simulation shows the benefits of migration under low and medium load in system 2(see
fig. 4.5). Under low load most jobs will be mapped onto the 20 fast machines and migration rarely
occurs. The percentage of migrated processes increases with increasing load. Under higher load
the run queue will seldom be empty and the probability of migration decreases again.

Figure 4.5 shows that migration reduces the mean waiting time. SED1 also reduces the
computing time up to an arrival rate of about 2.3 jobs per 1000 seconds. Here, the jobs benefit
from the shorter runtime on the faster machines after migration. But for higher load, SED1-NM
leads to the smaller mean computing time. The reason is that the two strategies result in different
asymptotic computing times.

Without migration most of the time the system will be in state(20; 0; 0; 10) under high load.
The corresponding computing time is19 �8 � 120 + 1 � 410� = 533; �3 seconds. When SED1 is used
the system may be in mapping state(20; 0; 0; 10) or (10+10; 0; 0; 10). The latter has a computing
time of 19 �4 � 110 + 4 � 110 + 1 � 410� = 800 seconds which increases the mean computing time of
SED1 compared with SED1-NM.

The different behavior of upgrading and migration is summarized in figure 4.6 where the
speed-up of SED1 against SED1-NU in system 1 resp. SED1-NM in system 2 is shown. The
speed-up of SED1 against SED1-NU is defined as

speedup (SED1)= res. time of SED1-NU� res. time of SED1
residence time of SED1

;
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Figure 4.6: Speed-Up of SED1 by upgrading in system 1 (top) and by migration in system 2
(bottom) under the Proof-workload.

and similar for SED1-NM. While the benefits of upgrading increase under higher load, SED1
with migration shows substantial benefits under low and medium load. It should be clear that the
possible speed-up depends on the hardware characteristics of the system.
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Figure 4.7: Mean residence time (top) and job size (bottom) for system 1 for the Exp-workload.

4.3.3 Performance Results for the Exp-Workload

The mean residence times for the different algorithms in system 1 and system2 are shown in fig-
ure 4.7 and 4.8. Since SED1 and SED2 behave the same for system 2 under the given workload,
only curves labeled SED are shown (see figure 4.8).

In system 1, the simulation results for SED1 and SED2 show a very similarbehavior. The
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Figure 4.8: Mean residence time (top) and job size (bottom) for system 2 for the Exp-workload.

best performance is achieved by SED2 in both systems. Migration and upgrading improves the
performance of SED.



66 Chapter 4. Mapping Strategies for Heterogeneous Systems

Influence of the Expected Job Size

Both SED1 and SED2 are compared formaxsize = 30 which is equal to the number of machines
in the system. We also tested the SED strategies withmaxsize = 100.

For SED2, the maximum number of virtual nodes in system 1 is 45, and 90 in system 2.
Hence, SED2 maps a job onto all virtual nodes and becomes a simple FIFO strategy. The simu-
lation results for SED2 are labeled as SED2-greedy in figure 4.7 and 4.8. The results for SED1
stay the same, since the maximal number of virtual nodes is equal to the number of machines.
The figures show that SED2 makes efficient use of the resources with this workload in both
systems, even under high load.

Since SED2 tends to map more processes onto a machine than SED1 under this greedy work-
load, this may result in a lack of memory resources and the machines may start swapping. So,
in a real implementation of the SED algorithms, the available memory resources have to be
considered.

Influence of Migration

The benefits of migration are shown in figure 4.9, where the speedup of SED2 against SED2-
NM is plotted. While migration has only less benefits in system 1 (less than 5 %speedup), the
speedup achieved in system 2 increases up to nearly 30 %. The benefits of migration decrease
under higher load.

The reason of the different behavior of SED in the two systems can be found by observing
the corresponding mapping state diagrams (see figure 4.3 and refmap2). While in system 1 SED
migrates processes from machines of delay class 4 to machines of delay class 3, the processes
can be migrated to machines of delay class 1 in case of system 2. This results in an overall better
speedup.

Since the possible speedup depends on the hardware characteristics of the system, achange
of the� values will result in higher or lower speedups.

Migration is an operation which consumes processor time and network capacity.Since the
network is highly loaded during the transfer time of a process, migration events are “visible” to
all users.

The number of migrations and the time between the migration events depend on the job
arrival rate and the job service demands (see figure 4.9). The smallest observed interarrival time
is observed in system 2 (1919.0 sec for arrival-rate 2.8). This seems acceptable for users in a
workstation cluster. Further, when the mean service demands of the jobs increase, we expect that
the mean interarrival times will also increase.

Since migration occurs only when the global runqueue is empty, migration events should
decrease under higher load. This is not true for system 2. Here the mean time between migration
events stay almost constant for medium and higher load. The mapping state diagram (see fig. 4.4)
shows that even under high load migration may occur (state transition(10 + 10; 0; 0; 10) !(10 + 10; 0; 0; 0)).

Here, we investigate migration events which occur when faster machinesget available. If
more than one process is migrated, we call this amigration bulk. The length of a bulk is the
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Figure 4.9: Speedup of SED2 through migration (top), and mean time between migration events
(bottom) for the Exp-workload.

number of migrated processes and gives information about the costs. The mean costsof migra-
tion in system 1 are higher than in system 2, since SED2 migrates 15 processesper migration
event in the case of system 1, and 10 processes in the case of system 2 (see fig. 4.3 and 4.4). But
overall, since the migration costs are several seconds for 10 MB processes, they are neglectable
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Figure 4.10: Mean residence time (top) and job size (bottom) for system 1 for the Hyperexp-
workload.

compared with the service demands of the jobs.
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Figure 4.11: Mean residence time (top) and job size (bottom) for system 2 for the Hyperexp-
workload.

4.3.4 Performance Results for the Hyperexp-Workload

The Hyperexp-workload differs from the Exp-workload only in the distribution of the service
demands. The coefficient of variation of this workload is 1.6, and it is about 0.9 for theExp-
workload.
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The mean residence times for the different algorithms in system 1 and system2 are shown
in figure 4.10 and 4.11. Since much more jobs with a shorter service demand arrive, the mean
residence times are smaller compared to the Exp-workload. However, we are not interested in
the absolute performance values, but in the behavior of the algorithms compared witheach other.

Comparing the figures for Exp-workload 4.7 and 4.8 with the figures 4.10 and 4.11 for
Hyperexp-workload, we see that the different disciplines have a similar behavior under both
workloads. Again, SED2 achieves the best performance in both systems.

The benefits of migration are shown in figure 4.12, where the speedup of SED2 against
SED2-NM is plotted. In system 2, a maximum speedup of 30 % is achieved by migrationand
a minimum speedup of 10 % even under high load. This differs from the results under Exp-
workload where the benefits of migration decreased for higher load. If we do not use migration,
each job which is mapped on the slower machines runs there up to completion. But ifmigration
is possible, the long running jobs which are mapped onto the slower machines migrate to the
faster ones when they become available. The faster machines may be occupied bya long or short
running job. If it is also a long running application, the probability for migration is less, but on the
other side it is not neccessary for the overall performance. In case it is ashort running application,
the probability of migration increases. Hence, under the Hyperexp-workload a higher percentage
of applications will be served by the faster machines due to migration.

The smallest interarrival time is again observed in system 2 (1346.8 secfor arrival-rate 3.6).
This seems acceptable for users in a workstation cluster.

Since the possible speedup depends on the hardware characteristics of the system, achange
of the� values will result in bigger or smaller speedups.

4.3.5 Performance Results for FS-Workload

Figure 4.13 shows that SED2 performs better than SED1 in both systems. Since the number of
available nodes is much higher under SED2, this discipline is much more flexible to handle the
fixed-size–workload.

In contrast to the results under variable–size–workload, upgrading makes the performance of
SED1 worse. When an application is upgraded, this means it uses more virtually nodes, since it
will use some machines exclusively after upgrading. This means the number of available nodes
is reduced by upgrading. This makes SED1 less flexible for the FS-workload.

The performance of SED2 is again improved by migration. For the FS-workload, the speedup
of SED2 against SED2 without migration increases up to about 20 % in both systems.The
speedup curves for both systems are shown in figure 4.14 (labeled Fix-SED2-Sys1/2)together
with the speedup curves under the variable–size–workload (labeled Var-SED2-Sys1/2). While
there are less benefits of migration for the variable–size–workload in system1, the situation
is quite different for the FS-workload. In systems 2, there are performance benefits observed
under both types of workload. While under the variable–size–workload the benefits of migration
decrease under higher load, the speedup by migration increases under higher load in the case of
FS-workload.

The number of migration events is much higher under FS-workload (see figure 4.14). Since
applications with sizes between 1 and 30 arrive, the probability that a smaller job may migrate to
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Figure 4.12: Speedup of SED2 through migration (top), and mean time between migration events
(bottom) for the Hyperexp-workload.

the faster machines is much higher.
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Figure 4.13: Mean residence time for system 1 (top) and system 2 (bottom) for FS-workload.

4.3.6 Influence of Hardware Characteristics

We expect that the speedup which is achieved by migration will be higher when we replace
machines by faster ones.

Therefore, we tested SED for systems with different hardware characteristics. The systems
are given in table 4.2. These are the example systems 1 and 2 as before, and system 2’ which
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Figure 4.14: Speedup of SED2 through migration (top), and mean time between migration events
(bottom) for FS-workload.

consists of 20 machines with�1 = 1 and 10 machines with�2 = 10. This means that 20
machines are replaced by faster ones compared with system 2.

The mapping state of system 2’ is the same like system 2 (see fig. 4.4). In system 3, most of
the jobs are executed on the faster machines with speed factor 1 resp. 4. The 5slowest machines
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System �1 = 1 �2 = 4 �3 = 10
1 5 25 -
2 20 10 -
2’ 20 - 10
3 5 20 5

Table 4.2: Systems with different hardware characteristics.

will only be used, if the others are occupied.
The different speedups and the mean time between migration events are shown in figure 4.15.

These are results from the simulation with the Hyperexp-workload.
The ‘individual speedup’ of a job achieved by migration isEDToldEDTnew ;

whereEDTold is the expected delay time before, andEDTnew the expected delay time after
migration. Since the size of the application is unchanged during migration, this is equal toEDColdEDCnew ;
the quotient of the corresponding expected delay classes.

The individual speedup of processes in system 2 is41 = 4, in the case of system 2’ it is101 = 10. This means that for the individual process it is much more beneficial to migrate in
system 2’. Figure 4.15 shows that this corresponds also to a higher social speedup as expected.

The same is true for system 3 where a higher individual speedup results in a higher social
speedup compared with system 1 and 2.

4.4 Summary

We have presented and compared SED mapping strategies for parallel applications on heteroge-
neous systems. SED make the heterogeneity of the system transparent for the user.

We introduced the concept of mapping state diagrams to characterize the behavior of the
algorithms. Further, we tested their performance in a simulation.

The simulations have shown some of the dependencies between the system configuration,
workload characteristics, and scheduling performance.

The presented simulation results show the benefits of the upgrading technique used by SED
under the variable–size–workload. Further, process migration leads to an improved performance.
The overhead which is caused by migration is expected to be tolerable, sincethe observed num-
bers of migrations which are neccessary to improve the performance is verylow.

The presented SED1 and SED2 policies differ in their calculation of the availability vector.
SED2 makes better use of the resources and shows a better performance in the simulated systems
for variable–size and fixed-size workloads.
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Figure 4.15: Speedup of SED2 through migration (top), and mean time between migration events
(bottom) for Hyperexp-workload in different systems.

4.5 Bibliography

An implementation of SED2 scheduling for PVM applications is described in [49].
A time-sharing scheduling strategy which shall be implemented in the context ofMPVM [19]
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is presented by Al-Saqabi, Otto and Walpole [3]. They use the concept of ‘virtual processors’
which is similar to our ‘virtual nodes” to make effcient use of heterogeneous machines but the
algorithm is based upon the fixed-size-model. The algorithm calculates the placement of a job
in three steps (Minimum Turn Around Time Algorithm, Compression Algorithm, and Expan-
sion Algorithm). The authors do not investigate whether a preemptive policy is beneficial on
workstation clusters.



Chapter 5

Dynamic-SED

In this chapter, we extend SED2 to Dynamic-SED to make it operational in ‘real’ workstation
environments. Dynamic-SED regards not only the current delay of the machines, but also the
currently free memory and the number of interactive users. It presents a new approach to achieve
a co-existence between parallel applications and interactive users.

The presented location and selection rules are part of Marc Gehrke’s master thesis [49].
Gehrke has implemented SED for PVM applications and carried out the presentedtrace-driven
simulation. Further, we define different ‘migration anomalies’ and check whether these anoma-
lies are true for Dynamic-SED or not.

Several studies about migration strategies have been published (see for example [31, 81, 58,
164]). They all have in common that they investigate migration policies in homogeneous systems
with no special care of parallel applications. Further, they all use a fuzzy-like classification of
lowly, medium, and highly loaded machines, and they are not aware of interactive users.

While it has been argued that migration is not always beneficial for load balancingin homo-
geneous systems [31], the situation is different in heterogeneous systems where applications may
profit from migration to faster hosts.

5.1 Motivation and Definitions

Up to now, we tested the performance of the SED algorithms under “closed conditions”, i.e., the
only load in the system was due to parallel jobs. As long as all jobs are submittedto the global
scheduler and no local ‘background’ load occurs the scheduler will take care that the delays of
the applications will be guaranteed1. But when jobs arrive which are not mapped by the global
scheduler like jobs from interactive users, applications may get out of their delays.

Workstations are user dedicated machines and only their idle times should be used for long
running and parallel applications. The question is how both, parallel application andinteractive
user, can coexist. In this chapter, we present Dynamic-SED, where reservation and migration
rules are added to the SED discipline.

1See the definition of the slowdown-threshold.

77
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The SED discipline maps a parallel job onto machines which are currently in thesame delay
class. When the user of a machine gets active again, the local load on the machinemay rise. This
means that the application is slowed down by the user.

On the other side, the user is handicapped by the parallel application which consumespro-
cessor and memory resources. Even in the case that the user does not need a lot of CPU capacity
when starting a text editor or an Web browser for example, he will need some MBytes of free
memory for a pleasant operation. The user has different opportunities to act in thissituation:� He does aremote login on another lower loaded host which benefits the parallel ap-

plication.� He is frustrated and does a log off which also benefits the parallel application.� He can urge the system administrator to stop the application.� He ignores the slowdown and keeps on working.

We will favour the last possibility in our scheduling discipline. The scheduling discipline
shall try to fulfill two principles [49]:

Principle 1: The user who wants to work at a workstation takes precedence over the parallel
jobs.

Principle 2: The expected delay of the application shall be constant or decrease.

The only solution to fulfill these principles in the presence of interactive users is to migrate
a parallel application when the resources get rare. Principle 2 states further that the target node
should be within the delay class of the application.

In the next sections, we will present the details of Dynamic-SED that tries to fulfill these
principles. An evaluation of an experiment with this discipline in a real workstation cluster is
presented in section 5.5.

First, the system has to recognize interactive users [49].

Definition: An interactive useris a user who is logged on and regularly submits jobs to the
system.

Some systems like Condor [96] observe whether there is someone active on the console oron
the mice device of the machine. But in a distributed environment people are used towork remote
on different machines, in special when there are some faster machines in the system available. In
this case the console and the mice device will be meaningless.

Further, it is possible to check periodically whether a user is active. In aUNIX environment,
the output of thetop-command displays information about processes. The raw cpu percentage
is used to rank the processes. Sincetop itself is a resource intensive operation, its use is rejected
in the design.

The notice whether there is any user logged on, we use thewho-command which lists the
login name, terminal name, and login time for each current user. These informations are read
from the/etc/utmp file.

In the description of the migration rules, we use the following definition [49]:
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Definition: Each entry in the/etc/utmp file defines aninteractive user.

The benefit of this definition is that the system can periodically check whether there are
entries in the/etc/utmp file and identify interactive users.

The proposed strategy acts preventively and reserves resources for the interactive user. When
these reserved resources are not enough to guarantee the claimed principles, migration of a pro-
cess is necessary. The reservation, selection, and location policy is described in the following
sections.

5.2 Resource Reservation

Since interactive users shall not be disturbed by the parallel applications, wereserve cpu and
memory resources. Therefore, we introduce two parameters,loadreserv andmemreserv, which
give the percentage of cpu time and the amount of memory which shall be reserved forinteractive
processes.

Since swapping will slowdown the performance, machines which seem to be memory critical
should no longer be available in the delay classes. The parametermemmin gives the lower bound
for free memory. If the free memory drops under this bound, the probability of swapping is
increased.

The componentsaij for machinej with current loadloadj and current free memorymemoryj
are calculated as follows [49]:

loadj = (
loadj if there are no interactive users
loadj + loadreserv if there are interactive users

(5.1)memj = 8><>: memoryj if there are no interactive usersmemoryj �memreserv if there are interactive users
(5.2)aij = ( maxfk j �j � (k + loadj) � minf�i; sjgg if memj > memmin0 otherwise
(5.3)

Dynamic-SED reserves some amount of resources for interactive users. Thisamount is cho-
sen to be independent from the number of current users. Since interactive users tendto do other
things like ‘thinking’, they will not start processes all the time. Hence, the ‘reserved resources’
may be shared between the different users.

5.3 Migration Rules

The introduced resource reservation is suitable to protect the users who are currently working.
Future users who will log on later cannot be regarded. The only possibility to reacton load
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changes like additional interactive users is migration. The benefits of migration for load bal-
ancing are twofold. First, the new interactive user is no longer handicapped by the parallel
application, and second, the parallel application can gain performance.

Migration strategies consist of aselectionand alocationpolicy.

Definition: The selection policy determines the migration candidate, i.e., it determines which
process on which machine has to be migrated. The location policy chooses the destination
host for a migration candidate.

Several studies about migration strategies have been published (see for example [31, 164]).
They all have in common that they investigate migration policies in homogeneous systems with
no special care of parallel applications and that they are not aware of interactive users.

Here, we add selection and location rules for parallel applications to the SED algorithm (see
paragraph 4).

5.3.1 The Selection Policy

In previous papers, the selection policy is always host-oriented. In the first step, the load bal-
ancing system checks whether there are overloaded hosts. If there are, the system will select
the migration candidate. In [164] for example, policies are compared which select the most
computation-intensive process, which select the job which has been running for the longest time
so far, and combination of these strategies.

The selection policy for SED is process-oriented. Since SED tries to guarantee an expected
delay, the process becomes a migration candidate when the current delay gets significantly worse
than the expected one. Further, a process may get a migration candidate if its hosthas less free
memory and swapping may occur. Finally, a high number of interactive users may cause a
process to become a migration candidate [49].

Definition: A process is called amigration candidateif at least one of the following properties
holds:

1. The process was started with expected delay�i and the current delay of its hostj isdj with dj � �j > �maxi .

2. The process is running on hostj with memoryj < memmin:
3. The process is running on hostj where the number of interactive users exceed the

maximum number which are permissible on hostj.
The current delaydj of machinej includes the already running process. Hence, we have to

subtract this process from the current load to calculate the current expected delay:�j(1 + (loadj � 1)) = dj � �j > �maxi :
We assume in this definition that the process is computation-intensive and causesa load of ap-
proximately 1.
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The reservation rule reserves resources for interactive users, but itis assumed that only few
users are active at once. Hence, to many users rises the probability that at most one user will be
handicapped. The maximum number of permissible users is dependent on the architecture. A
machine with less main memory has a smaller maximum number than a fast machine with a lot
of memory.

Migration itself is a resource consuming process [116, 49]. The state of the process has to
be saved. Then, the process has to be transmitted over the network to the new destination host.
During the transmission phase, almost all of the net capacity will be used for migration and all
other processes which want to make use of the network, like the file server for example, are
delayed. This will indeed worry all users. Hence, migration has to be used carefully.

Therefore, the global scheduler checks all of its processes periodically whetherthey are mi-
gration candidates or not. When it was noticed to be a migration candidate for several times, the
process will be selected.

The Selection Algorithm
The selection policy uses the following parameters [49]:�T : time between two checks,c: counter for positive checks, i.e., detecting that the process is a

migration candidate (initially zero),c1max: upper bound of positive checks without action if there is
no interactive user,c2max: upper bound of positive checks without action if there is
an interactive user.

The counterc is used to avoid unnecessary migrations. Two different upper bounds are used
to make the policy more sensitive in the presence of interactive users (choosing c1max > c2max).
The algorithm works as follows:

1. Each process is periodically checked (�T seconds) and its counter is updated:c = ( c + 1 if the process is a migration candidatec� 1 if the process is no migration candidate

(5.4)

2. If c = c1max (no interactive users) resp. ifc = c2max (interactive users), the process is
selected for migration.

5.3.2 The Location Policy

After selecting a process for migration, the destination host has to be determined. This is done
by the location policy.

The main location rule for SED is very simple.

Main Location Rule: When the process was started in delay classi, then any machine
which belongs currently to delay classi will be an adequate destination host.
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Only when the delay class is empty, the situation gets more difficulty. Then, the location policy
depends on whether there are interactive users on the origin host or not. If there areinteractive
users on the origin host, the need for migration is much higher than without interactive users.

When the delay class is empty, the process has to accept a slowdown. The set ofpossible
destination hostsP is the set of hosts without interactive users and enough memory. Otherwise,
we would migrate also the problem.P := fk j there are no interactive users on hostk andmemoryk > memming (5.5)

Interactive Users on the Origin Host

In this case the process has to be migrated for the benefit of the interactive user [49].
Let j be the origin host. The destination host is the host with the lowest current delay which

has at least as much memory as the origin host. Sincep is already running onj, we have to
recalculate the available memory. Letmemory usage(p) be the memory currently used byp,
then memory0j := memoryj +memory usage(p);
and ddest = minfdk j k 2 P ^memory0j � memoryk ^ dk < dmaxg: (5.6)

The upper bounddmax limits the number of processes on a host. Otherwise, single hosts
without interactive users could be hopelessly overloaded.

If a destination host still cannot be found, the memory condition is dropped:ddest = minfdk j k 2 P ^ dk < dmaxg: (5.7)

If still no destination host can be found, the user has to accept the situation.

No Interactive Users on the Origin Host

In this case, the process has dropped out of its delay class and/or memory is scarce. After
migration the delay of the process should be substantially improved [49].

Now, the origin hostj belongs toP . Since the process is already running onj, the delay ofp on j is d0j := dj � �j :
We claim that the delay of the destination host should be at least better than one�j .ddest = minfdk j k 2 P ^memory0j � memoryk ^ d0j � dk > �jg: (5.8)
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5.4 Dynamic-SED is Ping–Pong–Free

Introducing migration rules into a resource management system keeps the danger thatprocesses
are migrated around like nomads.

Gehrke reports that during the simulation noPing-Pong-effectwas observed. He describes
Ping-Pong-situations as follows [49]:� A processp is migrated from hostA to hostB.� Now the load on hostA decreases and the situation is fine on hostA.� Sincep is added to the load on hostB, processes onB may become migration candidates.� Since the load situation is normalized onA, locationA may look better thanB andp is

migrated back.

A solution for this problem is to use a migration counter. Each time a process is migrated,
its counter is increased. When the counter has reached a threshold which gives themaximum
number of allowed migrations, the process will not be migrated any more. This solution is simple
and recommended within load balancing strategies (see for example [59]).

In a workstation cluster, migration is not only used for load balancing, but for the benefit of
interactive users. Further, jobs with a runtime of several days or weeks will probably migrate
more often than a short job of some hours. Hence, the threshold should give a maximum number
of migrations per hour for example.

In the following, we will show that the migration rules of Dynamic-SED avoid Ping-Pong
situations without using a threshold. We introduce further migration properties and check wheth-
er these properties are true for Dynamic-SED.

Definition: We call a system of migration rulesping-pong-freeif for every processp which
is migrated from hostA under current load situationloadA to hostB under current load
situationloadB one of the following conditions holds:

(1) p is no migration candidate on hostB under loadloadB.

(2) p is a migration candidate on hostB under loadloadB, but no better destination host
is available, i.e.,p remains onB.

Theorem: The migration rules of Dynamic-SED are ping-pong-free.

Proof: If the main location rule was applied, processp will be no migration candidate and (1)
holds.

Otherwise, the delay of the new destination hostidest is higher than the delay class of
processp and it becomes a migration candidate. In this case,idest was chosen fromP due
to rule 5.6, 5.7, or 5.8. Hence, there is no interactive user onidest and a new destination
hostdest is determined due to 5.8:
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We have to show that no better destination host is available, i.e.,idest = dest which is true
if P 0 � P .

Let iorig be the origin host fromp.

Interactive users oniorig:
SinceP contains only hosts which have no interactive users,p will never be migrated back
to iorig.
Whenidest was chosen due to 5.6, there ismemoryiorig � memoryidest. This means that
the memory and the delay requirement in 5.9 shrinks the set of possible machines, and
there isP 0 � P .

Whenidest was chosen due to 5.7, it is the fastest host regardless of the memory. Hence,
again there isP 0 � P .

No interactive users oniorig:

Then,idest was chosen due to 5.8. There ismemory0iorig � memory0idest andd0iorig�didest >�iorig .
Hence d0iorig � dk > �iorig + didest � dk > �iorig + �idest > �idest ;
and again we haveP 0 � P . }

After migration the system should run stable and the next migration should happen only after
load changes which are not related to the migration itself.

A stronger property than ping-pong-free is migration-stable:

Definition: We call a system of migration rulesmigration-stableif after migration of a processp from hostA under current load situationloadA to hostB under current load situationloadB, will cause no migration with originB.

If a system of migration rules is migration-stable, no process on hostB becomes a migration
candidate, or, if a process onB may become a migration candidate, there will be no better
destination host available.

Theorem: The migration rules of Dynamic-SED are not migration-stable.

Example: Let p be a process running on hostA without interactive users. Dynamic-SED may
migrate processp fromA toB because of to high delay onA.

Hence, there are no interactive users onB.

Let q be a process onB with expected delay 1 andmemory usage(p) = memory usage(q) + �; � > 0: (5.10)
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Thenq drops out of its delay class and gets a migration candidate. The destination host
will be calculated due to 5.8:ddest = minfdk j k 2 P ^memory0B � memoryk ^ d0B � dk > �Bg; (5.11)

wherememory0B is the free memory onB without q. Sincememory0B = memoryB + memory usage(q) � memory usage(p)= memoryB � �;
the memory condition is less rigid and a hostC which was not a suitable destination for
the bigger processp may become now a suitable destination host for the smaller processq.
Hence,q is migrated toC.

A situation which should be avoided is circular migrations of processes.

Definition: We say that a system of migration rules iscircular-free if a migration of a processp
from hostA0 to hostA1 will cause no migrations fromAi to hostAi+1; i = 1; :::; n � 1
with An = A0.

Theorem: The migration rules of Dynamic-SED are circular-free.

Proof: Let us assume that Dynamic-SED is not circular-free. Then there exists a chain of hostsAi; i = 0; :::; n with A0 = An andAi+1 is destination of a process fromAi.
We will show the contradiction for three hostsA;B;C. The argumentation is analogous
for longer chains. Let processp migrate fromA toB, processq from B toC, and processr fromC toA.

WhenA is allowed to be a migration destination, there are no interactive users onA.
Hence, all destinations are determined due to rule 5.8.

Sincep is migrated fromA toB, there isd0A � dB > �A > 0;
whered0A is the delay onA without p.C is destination for processq. Hence,d00B � dC > �B > 0;
whered00B is the delay onB withoutq. Since meanwhilep is running onB, there isd00B = dB
and we have dB � dC > �B > 0:
From the migration ofr it follows thatd000C � ~dA > �C > 0;
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whered000C is the delay onC withoutr but meanwhile withq running onC. Hence,d000C = dC .
The current delay~dA of A is the delay ofA without p which is equal tod0A.

Therefore, dC � d0A > �C > 0:
This gives a strong monotone decreasing chain of delays:d0A > dB > dC > d0A;
which is a contradiction. }

It follows that processes will never be swapped between two hosts, i.e., amigration fromA
toB will never cause a migration of another process fromB toA.

5.5 A Trace-Driven Simulation

We present the results of a trace-driven simulation to valuate the performance of the Dynamic-
SED algorithm, i.e., SED with additionally reservation and migration rules as introduced in
section 5.2 and 5.3. A detailed description can be found in [49].

The interesting questions are:� Can the delay of a parallel application be guaranteed within a tolerance interval during
execution?� How many migrations per hour occur? This gives an approximation of the migration costs
and whether the migration overhead is tolerable.

Dynamic-SED has to be tested now under changing load situations and in the presence of
interactive users. Therefore, we need informations about load caused by interactive users who
work concurrently to the parallel applications on the machines.

In this case, a trace-driven simulation is recommended where the input parameters for current
load, free memory, and number of interactive users is received from monitoring a real workstation
cluster.

During the simulation the current delaydj is calculated from the trace data and used within
the Dynamic-SED scheduling.

5.5.1 Model of the Test System

The test model is based upon the following assumptions [49]:� The processes of a parallel application are computation-intensive.

In this case a parallel process will appear most of the time in the run queue. Thecurrent
delaydj of machinej is then calculated asdj = drealj + �j � nj; (5.12)
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wheredrealj is the real monitored delay of machinej andnj is the number of processes
which are mapped onto this machine by the global scheduler during the simulation.� The memory resources of processes which are mapped by the global scheduler during the
simulation are 0.

The reason for this assumption is the inaccurate load statistics of UNIX systems. The
common interface for load informations on UNIX platforms is thevmstat command
(see section 3). The available memory statistic gives only a hint about the free memory
and no correct informations. This is due to caching strategies which are in common use in
current file systems. Pages which are belonging to the cache are subtracted from the free
memory, while these pages are available.

Therefore, it would be misleading to calculate with memory resource demands.� The action of the user in the presence of parallel jobs is ‘ignore it’.

The sampled trace data give the load situation in the test environmentwithout parallel
applications. Hence, the presence of interactive users is also monitoredwithout parallel
applications and the action of the user in the presence of parallel applications cannot be
simulated.

Therefore, we assume that the user keeps on working as long as he did due to the trace
data2.

5.5.2 Test System and Parameters

To test Dynamic-SED, we need informations about the load situation, free memory and the num-
ber of interactive users over a period of time for several machines. The following simulation
uses trace data which were gathered on 28 Sun workstation in the Institute of Operating Systems
and Computer Networks at the Technical University of Braunschweig. The machinesand their
characteristics are listed in table 5.1. The column labeledimax gives the maximal number of
interactive users monitored during the sampling of the data.

The parameters of Dynamic-SED are chosen as follows for the given test environment [49]:
Reservation Parametersmemmin = 500 kBytes: This bound was delivered from practical experiences with SunOS.memreserv = 1 MByte: If memreserv is chosen to high, it means that the machine may get

unavailable, while the interactive users may not make use of the resources. On the other
hand, programs used by interactive users likeX, emacs, ornetscape tend to use several
MBytes.

2On the other hand, it is a common observation that user tend toflee from a machine when they recognize that
the load on the machine gets higher.
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name type � imax memory disk

achill IPC 3; 36 2 20 MB yes
amalthea ELC 2; 72 3 16 MB no

ares SS 5 1 8 64 MB yes
athena SLC 4 1 8 MB no
atlas SLC 4 1 16 MB no

bacchus ELC 2; 72 3 16 MB no
bal SLC 4 1 16 MB no

bayes SS 2 2 3 32 MB yes
eos IPC 3; 36 2 24 MB yes

hektor IPC 3; 36 2 24 MB yes
helena SLC 4 1 16 MB no
helios SS 2 2 4 40 MB yes

io SLC 4 1 8 MB no
isis SLC 4 1 16 MB no

janus ELC 2; 72 3 16 MB no
kastor SS 20 1 10 96 MB yes
logic IPC 3:36 2 36 MB yes

moloch SLC 4 1 16 MB no
nemesis IPC 3; 36 2 12 MB yes
neptun SLC 4 1 16 MB no
neuro SLC 4 1 16 MB no

pandora SLC 4 1 8 MB no
possi SLC 4 1 16 MB no

ra SS 2 2 1 48 MB yes
ran SLC 4 1 16 MB no
sol SS 10 1 5 64 MB yes
thor SLC 4 1 16 MB no

venus SLC 4 1 16 MB no

Table 5.1: Test Environment [49].

load reserv = 0.5: Since interactive processes need only less computing power,load reserv
should be less than 1. Due to the local UNIX scheduling and their short runtime, they will
be scheduled with an higher priority than the long running parallel application.

Migration Parameters�T = 3 min: The scheduler will check every three minutes, whether there is any migration
candidate.z2max = 4: When the process is a migration candidate over a time period of at least 9 minutes
and an user is active, the process will be selected for migration.
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minutes, it will be selected for migration.dmax = 12: This bound is to avoid overloading of a single host.

Simulation Parameters
One important workload parameter is the size of the parallel application. This depend on the

specifiedminsize andmaxsize and on the currently available nodes. If the application is started
during night time, when the system is low loaded, the configurational size of the application will
be higher. Therefore, two different experiments were simulated. In thenight experiment, the
parallel application was started at 0:00 h in the night and monitored over 4 days. In the day
experiment, the parallel application was started at 4:00 pm in the afternoon and monitoredover
4 days.

Both experiments were simulated for three parallel applications which differ in their sizes:

1. The first applicationAgreedy hasminsize = 1;maxsize = amaxclass:
Here,maxsize is equal to the maximum number of available virtual nodes.

2. The second applicationA70 hasminsize = maxsize = 0:7 � amaxclass:
Since there isminsize = maxsize, the application will allocate exactly 70 % of the
available resources.

3. The third applicationA50 hasminsize = maxsize = 0:5 � amaxclass:A50 will allocate exactly 50 % of the available resources.

5.5.3 Results of the Night Experiment

At the start time of the application, the availability vector is(3; 6; 10; 26). This leads to the
following configurational sizes:

1. Agreedy hasminsize = 1 andmaxsize = 36. Hence, the configurational size is 26 with
expected delay timeEDT = 426 � 0:15.

2. A70 hasminsize = maxsize = 18. Hence, the configurational size is 18 with expected
delay timeEDT = 418 � 0:22.

3. A50 hasminsize = maxsize = 13. Hence, the configurational size is 13 with expected
delay timeEDT = 413 � 0:31.
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Figure 5.1: Number of Migrations over 4 days [49].
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Migration Overhead

Figure 5.1 shows the number of migrations per hour for all 4 days. The curves for the different
applications are labeled by the corresponding job size.

As expected, the number of migrations correlates to the number of interactive users (see
figure 5.2). Migrations occur from about 10 h a.m. up to 7 h p.m. which corresponds to the
working time of the staff and the students at the institute.

The observed maximum number of migrations per hour is 9 forAgreedy , 7 forA70, and 5 forA50. The mean number of migrations per hour over all 4 days is 1.27 forAgreedy, 0.61 forA70,
and 0.63 forA50. This means that twice as much processes of the big application are migrated
compared with the smaller applications. The number of migrations forA70 andA50 are almost
the same.
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Figure 5.2: Number of interactive users over 4 days [49].Agreedy allocates all available nodes including the slowest machines. If a user logs onone
of these machines, migration will necessarily occur due to our migration rules. The smaller
applicationsA50 andA70 do not occupy all machines. Hence, not every new interactive user will
cause a migration.

The number of migrations is further correlated with the load situation on the fast machines
[49]. If the load on the fast machines increases, processes will be migratedto other probably
slower nodes. If the system load decreases again, the processes will migrate back to the faster
nodes. This is visible in the migration peaks at about 6 h p.m..

Slowdown of the Applications

Figure 5.3 shows the current delay classes of the applications over the observed4 days. The
current delay class of the application was defined to be the maximum delay which oneof the
processes of the application currently has.
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While all 3 applications were started within the same delay class, the current delay class ofAgreedy is almost significantly higher. This shows that the application is much more often slow
downed.

SinceAgreedy allocates all machines, there is no possible destination host for migration when
the interactive users start working.
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Figure 5.3: The current delay class of the applications over 4 days (top) and the expected delay
time of the applications over 4 days (bottom) [49].

The delays of the smaller applications could be hold most of the time between 4 and 6. There
are two reasons for this behaviour. Firstly, it is less probably that the smaller applications suffer
under overloaded hosts. Secondly, if an overload situation occurs, it will be more probably that
a destination host can be found.

In figure 5.3, the delay time of the applications is shown, i.e., the current delay divided by the
size of the application. The observed delay time ofAgreedy is almost the best. Since the smallest
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appl. size mean delay classmean delay time EDT slowdownAgreedy 26 8:2 8:226 � 0:32 0:15 113 %A70 18 6:04 6:0418 � 0:36 0:22 64 %A50 13 5:43 5:4313 � 0:42 0:31 35 %

Table 5.2: Different delays of the applications [49].

delay time offers the shortest runtime, the greedy approach pays off for the application.
Table 5.2 shows the mean delay class, the mean delay time, the originally expected delay time

(ED), and the slowdown of the applications. While the mean delay time ofAgreedy is 0.32, the
mean delay time ofA70 is 0.36. This means thatA70 is almost as fast as the greedy application.

When we compare EDT and observed mean time delay, the slowdown of the greedy applica-
tion is with 113 % the highest. This shows again that the application suffers significantly under
high system load.

The slowdown of the smallest application is with 35 % a very good result whichis achieved
by migration. WhileA70 was migrated as often asA50, the slowdown is with 64 % higher.

5.5.4 Results of the Day Experiment

The second measurement was started at 4 h p.m.. At this time the availability vector was(0; 5; 9; 15) due to the loaded system. This leads to the following configurational sizes:

1. Agreedy hasminsize = 1 andmaxsize = 25. Hence, the configurational size is 15 with
expected delay timeEDT = 415 � 0:27.

2. A70 hasminsize = maxsize = 10. Hence, the configurational size is 10 with expected
delay timeEDT = 410 � 0:40.

3. A50 hasminsize = maxsize = 7. Hence, the configurational size is 7 with expected
delay timeEDT = 37 � 0:43.A50 could be started in delay class 3 this time. The size ofAgreedy is comparable withA70 of

the night experiment. Again, the greedy application has the smallest expected delay.
The maximum number of migrations per hour is only 3 forAgreedy and 2 for the other ones.

Since the applications are started when the system is already in its highestload situation, less
resources are used and further, less migrations are necessary to guaranteea co-existence between
parallel applications and interactive users.

Table 5.3 shows the observed delays of the applications. The observed delays are closer to
the expected delays. Since the sizes of the applications are much smaller, itwas easier to hold
the delay during the execution.
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appl. size mean delay classmean delay time EDT slowdownAgreedy 15 5:26 5:2615 � 0:35 0:27 30 %A70 10 4:23 4:2310 � 0:42 0:40 5 %A50 7 3:52 3:527 � 0:50 0:43 16 %

Table 5.3: Different delays of the applications for the day experiment [49].

5.6 Summary

The experiments with Dynamic-SED have shown that migration is a useful tool forload balanc-
ing in a workstation cluster. We conclude that in the given test environment:

1. The migration rules add a tolerable overhead to the system, since the maximum number of
migrations per hour is moderate.

2. The delay of greedy applications which allocate all in the idle system available nodes will
increase significantly during execution.

3. When the application uses only about 70 % of the in the idle system available nodes, the
runtime of the application will be approximately as good as the greedy application, butless
migrations resp. migration wishes will occur.

4. When the applications are started at day time, the number of migrations are very low. This
means that the reservation rules of Dynamic-SED have proven to guarantee a coexistence
between parallel applications and interactive users.

Obviously, we have to distinct betweenindividual and social optimum. The individual
optimum was achieved by the greedy application in both experiments. But at the same time
we observe the highest migration rate and the highest number of migration wishes without any
available destination host.

When the greedy application allocates all possible nodes, there will be almost nopossibility
to migrate when interactive users start working. This means that for long runningapplications
which will run over days, it has to be forbidden to allocate all available nodes.

For the observed environment, Gehrke has given a rule of thumb [49] which we state in the
following way:

Rule of Thumb: The social optimum for long running applications will be achieved when
30 % of the available nodes are reserved for interactive users.

The measure for “available nodes” is the number of nodesamaxclass in the slowest delay
class in the idle system. The maximum number of nodes which may be allocated by parallel
applications is Pmax = 70% � amaxclass:
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If the availability vector of the idle system is for example(1; 2; 3; 10),Pmax will be 7. Hence,
the maximum size of an applications will be 7. If for example an application is started on the
fastest host, the availability vector will be(0; 0; 0; 6). LetQ denote the number of already allo-
cated nodes. ThenQ = 4 and a second application can be started with size at mostPmax�Q = 3.

The trace-driven simulation of Dynamic-SED in a workstation cluster wasdone for only one
application at a time. Additionally, it it interesting how Dynamic-SED behaves when several
parallel applications are running. Therefore, we have formulated different migration properties.
While the migration rules of Dynamic-SED are ping-pong-free and circular-free, they are not
migration stable.

5.7 Bibliography

A survey of migration strategies and migration systems is given in [115].
Systems which support migration of parallel applications are P BEAM [116, 117], MPVM

[19], CoCheck [146]. While MPVM and CoCheck support only PVM applications, P BEAM is
not restricted to any programming model.

Migration strategies for load balancing are studied in [31, 81, 58, 164]. These studies inves-
tigate migration policies in homogeneous systems with no special care of parallel applications
and interactive users.

In [59, 60], a loadbalancing algorithm based upon the gradient model is proposed. The
algorithm considers communication costs in its decisions, but no memory demands. Further, it
does not take care of interactive users. Simulation results are presentedfor a 2-dimensional mesh
and Hypercubes.
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Chapter 6

Conclusions

First, we have shown that the behavior of the presented scheduling algorithms depends much on
the characteristics of the workload and that simple scheduling disciplines like LS or SNPF result
in high performance benefits compared to FIFO.

Under medium and high system load, the performance can be improved, if the application
uses the variable-size-model. While a wide range of applications such as CFD applications
follow this model, there are less resource management systems available which support this
opportunity.

One of the main contributions of this work is to investigate whether migration is an useful
tool for scheduling and load balancing in workstation clusters. Both, the presentedtime-sharing
discipline LST and the SED mapping policies make use of migration.

LST makes use of migration, if a mapping conflict occurs. The simulation resultsshow that
mapping conflicts are seldom under LST (less than 2 % of the processes have been migrated)
and the migration overhead is neglectable.

The SED mapping discipline migrates processes when faster machines become available.
The Dynamic-SED strategy adds further migration rules to support dynamic load balancing.

The simulations have shown that these are useful rules which lead to an improved perfor-
mance. The overhead which is caused by migration is expected to be tolerable, since the observed
numbers of migrations are very low.

Mapping state diagrams have shown to be an useful description tool for investigating the
behaviour of the algorithms and to analyse the simulation results.

The trace-driven simulation of Dynamic-SED in a workstation cluster wasdone for only one
application at a time. Additionally, it it interesting how Dynamic-SED behaves when several
parallel applications are running. Therefore, we have formulated migration properties. While
the migration rules of Dynamic-SED are ping-pong-free and circular-free, theyare not migration
stable.

97
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