
Dynamic-SED for Load Balancing of Parallel

Applications in Heterogeneous Systems

Proceedings of the International Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA'97), June 30 - July 2, 1997 Las Vegas, Nevada, USA

B. Schnor

Institute for Telematics

University of L�ubeck

Ratzeburger Allee 160

23538 L�ubeck, Germany

schnor@itm.mu-luebeck.de

M. Gehrke

�

Ritterbrunnen 6

38100 Braunschweig

Germany

Abstract In this paper, we present Dynamic-

SED for load balancing in clusters of workstations.

Dynamic-SED regards not only the current load of

the machines, but also the currently free memory

and the number of interactive users. It presents

a new approach to achieve a co-existence between

parallel applications and interactive users. We

show that the migration rules of Dynamic-SED are

circular-free. Results from a trace-driven simula-

tion are promising, since the maximum number of

migrations per hour is moderate.

Keywords: dynamic load balancing, migration,

workstation cluster

1 Introduction and Related

Work

A workstation cluster may also be considered

as a parallel computer. A number of research

activities have tried to exploit the computing

power of such environments [6, 7, 9]. Work-

stations are user dedicated machines and only

their idle times should be used for long running

and parallel applications. The question is how

�

Parts of this work were done within Marc Gehrkes

master thesis [2] at the Institute of Operating Systems

and Computer Networks at the Technical University of

Braunschweig, Germany.

both, parallel application and interactive user,

can coexist.

We present and investigate a dynamic load

balancing strategy called Dynamic-SED. It

takes into consideration the current delay of

the machines, currently free memory, and the

number of interactive users.

Migration is the mechanism which is used

to react on load changes. Migration strategies

for load balancing are studied in [1, 5, 3, 10].

These studies investigate migration policies in

homogeneous systems with no special care of

parallel applications and interactive users.

In [4], a load balancing algorithm based

upon the gradient model is proposed. The al-

gorithm considers communication costs in its

decisions, but no memory demands. Further,

it does not take care of interactive users. Simu-

lation results are presented for a 2-dimensional

mesh and Hypercubes. The gradient model is

not well suited for a workstation cluster, since

the underlying network topology is a fully con-

nected mesh.

In the next section, we present the Dynamic-

SED discipline. In section 3, we investigate

the stability of the migration rules. The be-

haviour of Dynamic-SED is tested in a trace-

driven simulation. The results are given in sec-

tion 4.



2 Dynamic-SED Discipline

The Shortest-Expected-Delay (SED) discipline

was �rst presented in [8]. Here, we give an im-

proved version of SED with a new de�nition of

the availability vector. The advantage of using

SED is that the heterogeneity of the system is

transparent for the programmer of a parallel

application.

Dynamic-SED is intended to ful�ll the fol-

lowing two principles:

Principle 1: The user who wants to work at

a workstation takes precedence over the

parallel jobs.

Principle 2: The expected delay of the appli-

cation shall be constant or decrease.

Our approach is the reservation of resources

and migration to react on load changes.

2.1 The SED Mapping Algorithm

SED maps a parallel application onto virtually

homogeneous nodes, i.e., onto machines with

the same current delay. The delay factor of a

machine M

i

at time t is given as

d

i

(t) := �

i

(1 + load

i

(t));

where load

i

(t) is the number of runnable pro-

cesses on machine i, and �

i

is a so-called speed

factor which is a measure for the processor

speed of machine i.

The machines are managed in delay classes.

The components a

i

of the availability vec-

tor (a

1

; a

2

; : : : ; a

maxclass

) give the number of

currently available nodes in class i. A ma-

chine with current delay 1 counts as k \virtual

nodes" with delay k. For all delay classes i =

1; :::; maxclass and machines M

j

; j = 1; :::; n

k

,

a

i

j

= max fk j �

j

� (k + load

j

) � min f�

max

i

; s

j

gg

is calculated, where �

max

i

is the upper bound

of the delay class i and s

j

is the slow{down

threshold of machine M

j

. This threshold gives

the maximum delay which can be tolerated on

a machine M

i

without slowing down one of the

assigned applications.

Table 1: Example of delay classes.

�

i

�

min

i

�

max

i

1 1 1:5

2 1:5 2:5

3 2:5 3:5

4 3:5 4:5

The a

i

j

are summed for all machines and

give the component a

i

of the availability vector.

The availability vector is updated whenever a

parallel job is assigned, terminates or migrates.

For example, a system consisting of 5 ma-

chines with �

1

= 1 and 25 machines with

�

4

= 4 has the availability vector (5; 10; 15; 45),

when the system is idle. The delay classes with

their representative �

i

, and upper and lower

bound are given in table 1.

The user has to specify only the min-

imum and maximum degree of parallelism

of her application (minsize resp. maxsize).

SED maps an application onto the ma-

chines which are currently in delay class m,

if

�

m

a

m

p

= min

n

�

i

a

i

p

�

�

�
i 2 f1; :::; maxclassg

^ a

i

p

� minsize

	

; where

a

i

p

= min fa

i

; maxsizeg. If there is more than

one delay class which ful�lls this equation, the

fastest one is chosen.

We call

�

m

a

m

p

the expected delay time (EDT)

of the application.

2.2 Resource Reservation for

Dynamic-SED

Dynamic-SED reserves some amount of re-

sources for interactive users. This amount is

chosen to be independent from the number of

current users. Since interactive users tend to

do other things like `thinking', they will not

run processes incessantly. Hence, the `reserved

resources' may be shared between the di�erent

users.

The parameters load

reserv

and mem

reserv

give the percentage of cpu time and the amount

of memory which shall be reserved for interac-

tive processes. The parameter mem

min

gives



the lower bound for free memory. If the free

memory drops under this bound, the probabil-

ity of swapping is increased.

The reservation is done during the calcu-

lation of the availability vector. The com-

ponents a

i

j

for machine j with current load

load

j

and current free memory memory

j

are

calculated as follows. If there are interactive

users, there is load

j

= load

j

+ load

reserv

and

mem

j

= memory

j

� mem

reserv

. Otherwise,

there is load

j

= load

j

and mem

j

= memory

j

:

If mem

j

> mem

min

, we calculate

a

i

j

= maxfk j �

j

�(k+load

j

) � minf�

max

i

; s

j

gg;

otherwise, there is a

i

j

= 0.

2.3 Migration Rules for Dynamic-

SED

Migration strategies consist of a selection and

a location policy. The selection policy deter-

mines the migration candidate, i.e., it deter-

mines which process on which machine has to

be migrated. The location policy chooses the

destination host for a migration candidate.

2.3.1 The Selection Policy:

The selection policy for Dynamic-SED is

process-oriented. Since Dynamic-SED tries to

guarantee the expected delay time EDT, the

process becomes a migration candidate when

the current delay gets signi�cantly worse than

the expected one. Further, a process may be-

come a migration candidate if its host has less

free memory capacity and swapping may occur.

Finally, a high number of interactive users may

cause a process to become a migration candi-

date.

De�nition 1 A process is called a migration

candidate if at least one of the following prop-

erties holds:

1. The process was started with expected de-

lay �

i

and the current delay of its host j is

d

j

with d

j

� �

j

> �

max

i

.

2. The process is running on host j with

memory

j

< mem

min

:

3. The process is running on host j where

the number of interactive users exceed the

maximum number which are permissible

on host j.

Dynamic-SED checks, whether a process is

a migration candidate over a period of time.

This is done to avoid unnecessary migrations.

Two di�erent upper bounds are used to make

the policy more sensitive in the presence of in-

teractive users (choosing c

1

max

> c

2

max

).

The selection policy works as follows:

1. Each process is periodically checked and

its counter is updated: There is c = c+ 1;

if the process is a migration candidate, and

otherwise c = c� 1.

2. If c = c

1

max

(no interactive users) resp. if

c = c

2

max

(interactive users), the process is

selected for migration.

2.3.2 The Location Policy:

The main location rule for Dynamic-SED is

very simple.

Main Location Rule: When the pro-

cess was started in delay class i, then any

machine which currently belongs to de-

lay class i will be an adequate destination

host.

When the delay class is empty, the process has

to accept a slowdown. The set of possible des-

tination hosts P is the set of hosts k with-

out interactive users and enough memory, i.e.,

memory

k

> mem

min

. Otherwise, we would

also migrate the problem.

The location policy depends on whether

there are interactive users on the origin host

or not.

Interactive Users on the Origin Host

In this case the process has to be migrated for

the bene�t of the interactive user.



Let j be the origin host. The destination

host is the host with the lowest current de-

lay which has at least as much memory as

the origin host. Since p is already running on

j, we have to recalculate the available mem-

ory. Letmemory usage(p) be the memory cur-

rently used by p, thenmemory

0

j

:= memory

j

+

memory usage(p); and

d

dest

= minfd

k

j k 2 P ^

memory

0

j

� memory

k

^ d

k

< d

max

g:

The upper bound d

max

limits the number of

processes on a host. Otherwise, single hosts

without interactive users could be hopelessly

overloaded.

If a destination host still cannot be found,

the memory condition is dropped:

d

dest

= minfd

k

j k 2 P ^ d

k

< d

max

g:

If still no destination host can be found, the

user has to accept the situation.

No Interactive Users on the Origin Host

In this case, the process has dropped out of

its delay class and/or memory is scarce. After

migration the delay of the process should be

substantially improved.

Now, the origin host j belongs to P . Since

the process is already running on j, the delay

of p on j is

d

0

j

:= d

j

� �

j

:

We claim that the delay of the destination host

should be at least better than one �

j

.

d

dest

= minfd

k

j k 2 P ^

memory

0

j

� memory

k

^ d

0

j

� d

k

> �

j

g(1)

3 Dynamic-SED is Ping-

Pong{Free

Introducing migration rules into a resource

management system there is the danger that

processes are migrated around like nomads.

De�nition 2 We call a system of migration

rules migration-stable if after migration of a

process p from host A under current load situ-

ation load

A

to host B under current load situa-

tion load

B

, will cause no migration with origin

B.

If a system of migration rules is migration-

stable, no process on host B becomes a migra-

tion candidate, or, if a process on B may be-

come a migration candidate, there will be no

better destination host available.

Theorem 1 The migration rules of Dynamic-

SED are not migration-stable.

Example: Consider the following situation.

Let p be a process running on host A without

interactive users. When p drops out of its delay

class, Dynamic-SED migrates process p from A

to host B. Hence, there are no interactive users

on B.

Let q be a process on B with ex-

pected delay 1 and memory usage(p) =

memory usage(q) + �; � > 0: Then q drops

out of its delay class and gets a migration can-

didate. The destination host will be calculated

due to equation 1:

d

dest

= minfd

k

j k 2 P ^

memory

0

B

� memory

k

^ d

0

B

� d

k

> �

B

g;

wherememory

0

B

is the free memory on B with-

out q. Since

memory

0

B

= memory

B

+memory usage(q)

�memory usage(p)

= memory

B

� �;

the memory condition is less rigid and a host

C which was not a suitable destination for

the bigger process p may now become a suit-

able destination host for the smaller process q.

Hence, q is migrated to C. }

A situation which should be avoided is one

of circular migrations of processes.

De�nition 3 We say that a system of migra-

tion rules is circular-free if a migration of a



process p from host A

0

to host A

1

will cause no

migrations from A

i

to host A

i+1

; i = 1; :::; n�1

with A

n

= A

0

.

Theorem 2 The migration rules of Dynamic-

SED are circular-free.

Proof: Let us assume that Dynamic-SED is

not circular-free. Then there exists a chain of

hosts A

i

; i = 0; :::; n with A

0

= A

n

and A

i+1

is

destination of a process from A

i

.

We will show the contradiction for three

hosts A;B;C. The argumentation is analogous

for longer chains. Let process p migrate from

A to B, process q from B to C, and process r

from C to A.

Since A is allowed to be a destination host,

there are no interactive users on A. Hence, all

destinations are determined due to rule 1.

Since p is migrated from A to B, there is

d

0

A

� d

B

> �

A

> 0;

where d

0

A

is the delay on A without p.

C is destination for process q. Hence,

d

00

B

� d

C

> �

B

> 0;

where d

00

B

is the delay on B without q. Since

meanwhile p is running on B, there is d

00

B

= d

B

and we have

d

B

� d

C

> �

B

> 0:

From the migration of r it follows that

d

000

C

�

~

d

A

> �

C

> 0;

where d

000

C

is the delay on C without r but

meanwhile with q running on C. Hence, d

000

C

=

d

C

. The current delay

~

d

A

of A is the delay of

A without p which is equal to d

0

A

.

Therefore,

d

C

� d

0

A

> �

C

> 0:

This gives a strong monotone decreasing

chain of delays:

d

0

A

> d

B

> d

C

> d

0

A

;

which is a contradiction. }

It follows that processes will never be

swapped between two hosts, i.e., a migration

from A to B will never cause a migration of

another process from B to A. We call this

property ping{pong{free.

4 A Trace-Driven Simulation

To test Dynamic-SED, we did a trace-driven

simulation. We were interested in the following

questions:

� Can the delay of a parallel application

be guaranteed within a tolerance interval

during execution?

� How many migrations per hour do occur?

This gives an approximation of the migra-

tion costs and whether the migration over-

head is tolerable.

The trace data about the load situation, free

memory and the number of interactive users

were gathered on 28 Sun workstations. In the

night experiment, the parallel application was

started at 0:00 h and monitored over 4 days.

In the day experiment, the parallel application

was started at 4:00 pm and monitored over 4

days.

Both experiments were simulated for three

parallel applications which di�er in their

maxsize: The �rst application A

greedy

spec-

i�es maxsize equal to the maximum number

of available virtual nodes a

maxclass

, the second

application A

70

will allocate 70 % of the avail-

able resources, and the third application A

50

will allocate exactly 50 % of the available re-

sources.

4.1 Model and Parameters of the

Test System

The test model is based upon the following as-

sumptions:

� The processes of a parallel application are

computation-intensive.



In this case a parallel process will appear

most of the time in the run queue. The

current delay d

j

of machine j is then cal-

culated as

d

j

= d

real

j

+ �

j

� n

j

;

where d

real

j

is the monitored delay of ma-

chine j and n

j

is the number of processes

which are mapped onto this machine by

the global scheduler during the simulation.

� The memory resources of processes which

are mapped by the global scheduler during

the simulation are 0.

The reason for this assumption is the in-

accurate load statistics of UNIX systems.

The available memory statistic gives only

a hint about the free memory and no cor-

rect informations. This is due to caching

strategies which are in common use in cur-

rent �le systems. Pages which are belong-

ing to the cache are subtracted from the

free memory, while these pages are avail-

able.

� The action of the user in the presence of

parallel jobs is `ignore it'.

The sampled trace data give the load situ-

ation in the test environment without par-

allel applications. Hence, the presence of

interactive users is also monitored with-

out parallel applications and the action of

the user in the presence of parallel appli-

cations cannot be simulated.

Therefore, we assume that the user keeps

on working as long as he did due to the

trace data.

Reservation Parameters:

mem

min

= 500 kBytes: This bound was

delivered from practical experiences with

SunOS.

mem

reserv

= 1 MByte: If mem

reserv

is

chosen to high, the machine may get un-

available while the interactive users may

not make use of the resources. On the

other hand, programs used by interactive

users like X, emacs, or netscape tend to

use several MBytes.

load reserv = 0.5: Since interactive pro-

cesses only need low computing power,

load reserv should be less than 1. Due

to the local UNIX scheduling and their

short runtime, they will be scheduled with

a higher priority than the long running

parallel application.

Migration Parameters:

�T = 3 min: The scheduler will check every

three minutes, whether there is any migra-

tion candidate.

c

2

max

= 4: When the process is a migration

candidate over a time period of at least 9

minutes and an user is active, the process

will be selected for migration.

c

1

max

= 6: If no user is active, but the pro-

cess is a migration candidate over a time

period of 15 minutes, it will be selected for

migration.

d

max

= 12: This is the maximum number of

processes which are permissible per host.

4.2 Migration Overhead

Figure 1 shows the number of migrations per

hour over 4 days for the night experiment. The

curves for the di�erent applications are labeled

by the corresponding job size. Migrations oc-

cur from about 10 h a.m. up to 7 h p.m. which

corresponds to the working time of the sta�

and the students at the institute.

The observed maximum number of migra-

tions per hour is 9 for A

greedy

, 7 for A

70

, and 5

for A

50

. The mean number of migrations per

hour over all 4 days is 1.27 for A

greedy

, 0.61 for

A

70

, and 0.63 for A

50

. This means that twice

as many processes of the large application are

migrated compared with the smaller applica-

tions. The number of migrations for A

70

and

A

50

are almost the same.



0

2

4

6

8

10

0 5 10 15 20

M
ig

ra
tio

ns

Time [hours]

26
18
13

0

2

4

6

8

10

0 5 10 15 20

M
ig

ra
tio

ns

Time [hours]

26
18
13

0

2

4

6

8

10

0 5 10 15 20

M
ig

ra
tio

ns

Time [hours]

26
18
13

0

2

4

6

8

10

0 5 10 15 20

M
ig

ra
tio

ns

Time [hours]

26
18
13

Figure 1: Number of Migrations over 4 days.

Table 2: Di�erent delays of the applications for

the night experiment.

appl. size MDC MDT EDT sd

A

greedy

26 8:2 0.32 0:15 113

A

70

18 6:04 0:36 0:22 64

A

50

13 5:43 0.42 0:31 35

For the day experiment, the maximum num-

ber of migrations per hour is only 3 for A

greedy

and 2 for the other ones. Since the applications

are started when the system is already in its

highest load situation, less resources are used

and further, less migrations are necessary to

guarantee a co-existence between parallel ap-

plications and interactive users.

4.3 Slowdown of the Applications

The evolution of the current delay of the ap-

plication is summarized in table 2 and 3. For

each application, the tables show the size of the

application, the mean delay class (MDC), the

mean delay time (MDT) which is the MDC di-

vided by the size of the application, and the ex-

pected delay time (EDT). The slowdown (sd)

of the applications is de�ned as

sd =

EDT�MDT

EDT

and compares the expected and mean delay

time.

For the night experiment, the mean delay

time of A

greedy

is 0.32 and the mean delay time

of A

70

is 0.36. This means thatA

70

is almost as

fast as the greedy application. The slowdown

of the greedy application is with 113 % the

highest. This shows again that the application

su�ers signi�cantly under high system load.

Table 3 shows the observed delays of the

applications for the day experiment. The ob-

served delays are closer to the expected delays.

Since the sizes of the applications are much

smaller, it was easier to hold the delay during

the execution.



Table 3: Di�erent delays of the applications for

the day experiment.

appl. size MDC MDT EDT sd

A

greedy

15 5:26 0.35 0:27 30

A

70

10 4:23 0.42 0:40 5

A

50

7 3:52 0.50 0:43 16

5 Conclusions

The experiments with Dynamic-SED have

shown that migration is a useful tool for load

balancing in a workstation cluster. We con-

clude that in the given test environment:

1. The migration rules add a tolerable over-

head to the system, since the maximum

number of migrations per hour is moder-

ate.

2. The delay of greedy applications which

allocate all in the idle system available

nodes will increase signi�cantly during ex-

ecution.

3. When the application uses only about

70 % of the available nodes in the idle sys-

tem, the runtime of the application will

be approximately as good as the greedy

application, but less migrations resp. mi-

gration wishes will occur.

4. When the applications are started at day

time, the number of migrations are very

low. This means that the reservation rules

of Dynamic-SED have proven to guaran-

tee a coexistence between parallel applica-

tions and interactive users.

References

[1] D. L. Eager, E. D. Lazowska, and J. Za-

horjan. The limited performance bene�ts

of migrating active processes for load shar-

ing. Performance Evaluation, 6(1):63{72,

1988.

[2] Marc Gehrke. Ressourcemanagement f�ur

PVM{Anwendungen. Master's thesis, In-

stitut f�ur Betriebssysteme und Rechn-

erverbund, TU Braunschweig, 1996.

[3] Mor Harchol-Balter and Allen B. Downey.

Exploiting lifetime distributions for dy-

namic load balancing. In Proceedings

of 15th ACM Symposium on Operat-

ing Systems Principles Poster Session

(SIGOPS'95), page 236, December 1995.

[4] H.-U. Hei�. Dynamic Decentralized Load

Balancing: The Particles Approach. In

Proceedings of the International Sympo-

sium on Computer and Information Sci-

ences VIII, Istanbul, 1993.

[5] P. Krueger and M. Livny. A comparison of

preemptive and non-preemptive load dis-

tributing. In Proceedings of the eighth

International Conference on Distributed

Computer Systems, pages 123{130, 1988.

[6] S. Petri and H. Langend�orfer. Load Bal-

ancing and Fault Tolerance in Worksta-

tion Clusters { Migrating Groups of Com-

municating Processes. Operating Systems

Review, 29(4):25{36, October 1995.

[7] J. Pruyne and M. Livny. Parallel Process-

ing on Dynamic Resources with CARMI.

In Lecture Notes in Computer Science

949, pages 259{279. Springer, 1995.

[8] B. Schnor, S. Petri, R. Oleyniczak, and

H. Langend�orfer. Scheduling of Paral-

lel Applications on Heterogeneous Work-

station Clusters. In Koukou Yetongnon

and Salim Hariri, editors, Proceedings of

the ISCA 9th International Conference on

Parallel and Distributed Computing Sys-

tems, volume 1, pages 330{337, Dijon,

September 1996. ISCA.

[9] V. S. Sunderam. PVM: A framework for

parallel distributed computing. Concur-



rency: Practice and Experience, 2(4):315{

339, 1990.

[10] W. Zhu and P. Socko. Migration Im-

pact on Load Balancing - An Experience

on Amoeba. In Proc. of the Fifth In-

ternational Symposium on High Perfor-

mance Distributed Computing, pages 531{

540, August 1996.


