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I. MOTIVATION

As ToT devices become more prevalent, fixing security
vulnerabilities in a timely manner is becoming crucial. The
Federal Office for Information Security has published secu-
rity recommendations for IoT devices (Appendix “SYS.4.4:
Allgemeines IoT-Gerit” in [1]). This includes:

SYS.4.4.A1 The devices SHALL have update functions. The
manufacturer SHALL offer an update process.

SYS.4.4.A3 If security vulnerabilities are identified, they
SHALL be fixed as soon as possible. ... In general, care
MUST be taken to obtain patches and updates from trusted
sources only.

Typically, if vendors offer an over-the-air (OTA) update
procedure, the new firmware is transferred over an encrypted
connection using for example TLS or DTLS[2]. This requires a
trustworthy Public Key Infrastructure (PKI) with pre-installed
public vendor keys or certificates on the devices. Paracha et al.
investigated the TLS behavior from Consumer IoT devices [3].
They report that deprecated and distrusted CA certificates are
rarely removed from device root stores. But several incidents
have proven in the past that the trustworthiness of PKIs is not
always given, either due to governmental motives [4] or due
to the disclosure of private keys [5, 6].

In addition, in case a vendor key is compromised, safe
key-rollover procedures are missing. With a compromised
vendor key an attacker is able to sign firmware updates and
install malicious updates through a man in the middle attack.
Looking at the situation for secure web communication, there
exist several approaches to heal the situation like Certification
Authority Authorization (CAA, 8654) records, certification
revocation lists and the Online Certificate Status protocol
(OCSP, RFC 8954). But none has shown to be effective. Google,
for example decided in 2012 to default Chrome not to check
for certificate revocation on non-extended certificates [7].

Several research groups have undertaken efforts to adapt
update processes for the IoT. For example, the UpKit [8]
implementation is based on CoAP, and MUP [9] adapts the
UpKit protocol for MQTT-based IoT environments.

Recently, the IETF adopted two RFCs regarding updates
for constrained IoT devices [10, 11]. RFC 9019 proposes
an architecture for Software Updates for Internet of Things
(SUIT) [10] and is called SUIT-architecture in the following.
SUIT assumes asymmetric cryptography and a public key
infrastructure. A data structure called manifest specifies 24

elements with detailed information about the firmware (see
section 3 in RFC 9124 [11]).

All these approaches have in common that they follow a two-
step approach where signed metadata (the so-called manifest)
describing the new update is downloaded and checked first
before the update file is downloaded and installed. In case
of SUIT, this is at least an option: “Firmware images and
manifests may be conveyed as a bundle or detached.” The
two-step approach is already used in The Update Framework
(TUF) [12] which was the base of the update process for the
Tor project. In case of the IoT, this approach is preferable, since
it allows to reject invalid software at an early stage preventing
unnecessary firmware transfers which saves energy [9].

The first step in acquiring the update manifest is to contact
the vendor server. Therefore, a DNS query is issued. This
query can be used to get more security relevant information
about the communication partner. Instead of relying on a PKI
alone, we propose to re-use security features of the Domain
Name Service Security extensions (DNSSEC) (RFC 4033).
While approaches like DoT (RFC 7858), DoH (RFC 8484) or
DNS over CoAP [13] aim to secure the DNS communication
itself, mainly for privacy issues, they all stick with a not well
maintained PKI infrastructure (see for example [3]). On the
other side, DNSSEC and DANE (RFC 7671) have proven to
be successful in securing mail server communication. [14]
shows that 82% of SMTP servers manage DANE correctly.
Furthermore, they show that 99% of domains that outsource
their SMTP servers manage DANE correctly.

Since DNS allows to store hash values and even keys
within DNS records (see DNSSEC/DANE resp. IPSECKEY
records), we propose to secure the firmware update process by
DNSSEC/DANE in the following cases:

1) Vendor - Update Server communication with DANE/TLS:
Instead of trusting the PKI, the public key within the
certificate is validated by DANE.

2) Validating the firmware manifest with IPSECKEY records,

3) Validating the key rollover manifest with IPSECKEY
records,

The next section describes the necessary extensions to

secure an SUIT-conform update protocol. Our prototype
implementation for MUP is described in Section III.

II. SECURING UPDATES WITH DNSSEC/DANE

For many IoT devices the use of DNSSEC is beyond their
compute capability or not possible as they are deployed in
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a constrained network. Using IoT devices with no direct
connection to the Internet is typical for industrial IoT where
edge computing architectures are common. Even for consumer
IoT devices the use of Thread [15] and Zigbee networks, which
are based on IEEE 802.15.4 becomes increasingly common.
These IoT devices communicate via a border router or an edge
device with Internet services.

In the case of an update these edge devices must store
and forward the update to the device. The SUIT-architecture
sees these edge devices as part of the firmware server. The
MYNO update protocol (MUP) [9] is an example that uses an
edge node to distribute software updates. MUP specifies how
firmware updates can be deployed and verified. These steps
conform to the RFC 9019 requirements. For the rest of this
paper the terminology and architecture of MUP will be used.

A. DANE

If an update becomes available or an IoT device requests an
update, the edge device (Update Server) contacts the Vendor
Server which starts with querying the DNS server as seen in
Figure 1. The communication between the Update Server and
the Vendor Server is TLS encrypted. We propose to verify the
certificate of the vendor via DANE. Therefore, the according
TLSA record which stores, for example the hash value of the
vendor’s public key, is also queried from the DNS server (Step
2 in Figure 1). This approach simplifies key revocation. In
case of a private key disclosure, an update of the TLSA record
would stop clients trusting an attacker using the compromised
certificate.

B. Manifest Validation

In Step 4 of Figure 1 the manifest is downloaded. This
manifest includes information to verify the integrity of the
manifest (via signature) and the update (via digest). In MUP
and SUIT the integrity of the manifest is verified by the IoT
device with previously installed trust anchors. Since these
trust anchors are usually installed with the last update IoT
devices have no way to verify that the signing certificate has
not been revoked in the meantime. Our proposal is that the
Update Server checks that the signature was created by a still
valid key. Therefore, the vendor is required to publish the
current public key via DNS. We define the following DNS-
Scheme: Key material will be stored under a subdomain like
keystore.vendordomain.tld. This subdomain has a record for each
public key used by the vendor. The used record names are key
IDs uniquely identifying each key. Furthermore, a CNAME
with a predefined name, here main must exist, pointing to the
current valid public key. Of course, every other naming scheme
on which Vendor and Update Server have agreed is possible.

Since the Update Server also needs to know the signature
algorithm, the manifest is extended by a KeyInfo structure
containing the following fields:

o KeyID: to identify the public key and to derive the FQDN

for retrieving the public key

e Algorithm: the algorithm used to create signature

 KeyType: the type of public key
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Figure 1. Flow between the Vendor Firmware Server and the Update Server
(edge device)

o Keycurve: the elliptic curve used

The values used for those fields correspond to the IANA
COSE registries [16].

The Update Server uses the information from the KeyInfo
structure to verify that the key specified by the manifest is
the same key as the main CNAME refers to. For this, the
Update Server retrieves the corresponding DNS record (see
Step 6 in Figure 1). In our current implementation, we use
IPSECKEY records to store the public keys. Alternatively
text records or TLSA could be used to store public keys.
However, IPSECKEY records have the advantage of using
base64 encoding which reduces the key size by 66% compared
to the hexadecimal representation used by TLSA. When the
Update Server successfully validated the signature of the
manifest (see Step 7 in Figure 1), the update protocol is
resumed. Otherwise, the Update Process fails in this early
stage without any energy consuming on the IoT device. In
Step 8 the manifest is extended with a signature of the update
server as described in MUP[9]. The IoT device will only accept
updates that contain valid signatures from the vendor and the
update server. The IoT device verifies these signatures with
information of a local trust anchor.

C. Key Rollover

Here we show how to secure a key rollover with the above
defined DNS scheme. For this process, we propose the Vendor
Key Rollover Manifest shown in Table I. Figure 2 describes
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Table I
VENDOR KEY ROLLOVER MANIFEST

Vendor Key Rollover Manifest

field description

App ID unique identifier for the app for which the public

key is updated

version the version of the app the key rollover is applied

new KeyInfo KeyInfo structure for the new public key

public key the public key to be added to the trust anchor

old KeyInfo KeyInfo structure for the old public key

vendor signature signature of the vendor with the old key pair over

the fields above

Manifest Extension

IoT device nonce a nonce generated by the IoT device to protect

against replay attacks

update server signature | signature of the update server over all fields above
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Figure 2. Flow between Vendor and Update Server for a Key Rollover

the communication between the Update Server and the Vendor
Server in case of a vendor key rollover.

When a Key Rollover Manifest is published, the Update
Server initiates a TLS encrypted connection, which is also
secured via DANE as previously described in Step 1-3 in
Figure 1. The Update Server downloads the Vendor Key
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Rollover Manifest (Step 4 in Figure 2). Next the Update
Server parses the KeyInfo structs of the new and old public
key (Step 5&7). It retrieves both public keys from the DNS-
Server (Step 6&8). In Step 9 it verifies that the proposed new
key is equal to the one, that the main CNAME is pointing
to. The signature of the manifest is also verified in this step
using the old public key. Compared to Figure 1 there is only
one additional communication with the DNS server. This is
necessary to retrieve the DNS record for the new key. Finally,
the Update Server extends the manifiest by a nonce which
was generated by the IoT device and signs all fields (see the
Manifest Extension in Table I). The nonce is created by the
IoT device on request by the Update Server to prevent replay
attacks. The IoT device then receives the completed manifest
from the Update Server, checks the nonce and both signatures
(vendor and Update Server signature) with the public keys
from its local trust anchor. If all verifications are successful,
the IoT device installs the new public key in its trust anchor.

D. Security Discussion

The Update Server needs information like KeyId and Algorithm
from the KeyInfo structure to validate the manifest. Therefore,
this is included in the manifest. If an attacker takes over the
vendor server, (s)he also controls and may manipulate the
manifest. Hence, the signature validation of the Update Server
is susceptible to a substitution attack: Two different manifests
could theoretically have the same signature computed under
different curves. The attacker may then specify a different
curve in the keyInfo field. This is also described in the security
considerations of RFC 8152. The probability for two valid
manifests to produce the same signature using different elliptic
curves is highly unlikely. Furthermore, there is a second wall
of defense on the IoT device. The manifest validation done by
the IoT device is not susceptible to this attack since it does
not use the algorithm specified in the manifest. It uses the
algorithm specified in its local trust anchor.

III. IMPLEMENTATION

To validate our approach and estimate the implementation
effort, we extended the MYNO Update Protocol (MUP). The
MYNO-Framework is written in Python and uses the requests
library to download manifests and firmware images. The
Python libraries requests and urllib3 still do not support DANE
functionality. The urllib3 library uses either the SSLContext
provided by the Python implementation or pyopenssl. Both
CPython, which is Python’s reference implementation, and
pyopenssl use the C OpenSSL library in the end which provides
the ability to DANE enable a given SSLContext. Additionally,
the corresponding TLSA-Records must be downloaded and
added to the SSLContext.

Figure 3 shows our implementation via pyopenssl including
all modified libraries. For the requests and urllib3 library we
implemented options to enable and disable DANE support.
The CFFI bindings of the library cryptography were also
extended to provide python bindings for the necessary OpenSSL
methods. Pyopenssl in turn was extended to DANE enable the
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Figure 3. Integration of DANE Validation into MUP and Python

Table 11
IMPLEMENTATION EFFORT IN LOC

Library Added LoC
requests 7
urllib3 incl. secdns 328
pyopenssl 9
cryptography 8
dnspython 0
MUP-DANE 193

SSLContext if required. The TLSA record, which is added to
the SSLContext in pyopenssl, is retrieved in urllib3.

To secure DNSSEC’s last mile the DNSSEC verification is
not done by the DNS resolver but done on the edge device.
We implemented this in a new secdns module within urlib3 as
seen in Figure 3. This needed 328 lines of code (see Table II).

Further, the MYNO-Framework was extended by a MUP-
DANE module which includes the extended manifest down-
loader, the querying of the IPSECKEY records (public keys)
and the verification of manifests (193 lines of code). All other
modifications were minor changes within the Python libraries
to make the OpenSSL DANE enabling functionality known.

We tested our implementation extensively. The MYNO-
Framework including our MUP-DANE extension was installed
on a Raspberry Pi 4, which was used as an edge-device. As IoT
device the nRF52840-DK with Contiki-NG was used. Our im-
plementation and the ontology of the IoT device were extended
with the key rollover functionality. More implementation details
are given in [17]. The update process and key rollovers were
tested with the domain mup.dnssec-uni-potsdam.de. The testing
of the update process and key rollovers were combined with
DNSSEC ZSK and KSK key rollovers and TLSA/IPSECKEY
record updates.

IV. DISCUSSION

Compared to other approaches like CAA and OCSP our
proposal relies on a single source of truth, i.e. the domain name
system. Instead of maintaining revocation lists or certificate
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root stores on the device the vendor only needs to maintain
the relevant domain records.

It is well-known that the dissemination of DNSSEC is
only slowly increasing and could be much further. Since
using DANE without DNSSEC is not recommended, we want
to discuss the experiences and typical prejudices regarding
DNSsec:

1) DNSsec is a performance Kkiller.
2) DNSsec management is too complicated.
3) DNSsec increases the risk of DDOS.

DNSSEC signed zones are about three times larger [18] and
depend on the key size. Verisign for example, moved from
a 1024-Bit to a 2048-Bit key and “The size of the root zone
file jumped from 1.6 to 2.1 MB.”! This is not exhausting our
Internet infrastructure. Signing of zones up to 100 000 records
happens within 1 minute on current hardware [18]. Further,
the signature checks are distributed by design. Currently, there
are 1372 of 1487 Top-Level-Domains signed, which shows the
deployment status of DNSSEC?.

No doubt, DNSSEC needs some training effort. But the
management tools have significantly improved over the last
15 years [19].

In case of an incident a short TTL for the IPSECKEY and
TLSA records is important, to ensure fast propagation of the
updated records.

There still remains the problem with (unnecessary) open
DNS resolvers which can potentially be misused in a reflection
and amplification DDOS attack [20, 21]. Compared to DNS,
DNSSEC returns a significantly larger response message since
the records include the signatures. This is beneficial for the
attacker. But again, the problem is not DNSSEC but the
misconfiguration of the DNS server.

V. CONCLUSION

The firmware update of IoT devices is typically done via
TLS encrypted communication. But the trustworthiness of PKIs
is not always given and other approaches have to be considered.
We propose to secure the firmware update process by integrating
the validation of public keys with DNSSEC/DANE. Further,
we demonstrate how DNSSEC and IPSECKEY records can be
used to establish a key rollover process. This allows fast key
revocation, since only the DNS records have to be updated
with the new key material. This avoids the known overhead of
certificate revocation lists and the related privacy issues.

We implemented a prototype of the DNSSEC/DANE-based
approach for the MUP protocol, but it can be easily integrated
with any other SUIT-conform update protocol. We showed that
our approach works well for IoT devices in an edge computing
architecture. But it also works for cloud based deployments,
in which the IoT device itself is connected to the Internet and
DNSSEC/DANE capable. In the cloud scenario, the task of
the Update Server is done directly by the IoT device.

"Verisign Blog
Zhttps://stats.research.icann.org/dns/tld_report/
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The proposed DNS scheme can be easily scaled up for
multiple different firmwares by including the App-ID in the
FQDN. This keeps the zone for each app/firmware small and
easily manageable via nsupdate.
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