
HPC Benchmark Game: Comparing programming
languages regarding energy-efficiency for

applications from the HPC field

Max Lübke1[0000−0008−9773−3038], Dorian Stoll1, Bettina
Schnor1[0000−0001−7369−8057], and Stefan Petri2[0000−0002−4379−4643]

1 University of Potsdam, Institute of Computer Science, An der Bahn 2, 14476
Potsdam, Germany {max.luebke,dorian.stoll}@uni-potsdam.de,

schnor@cs.uni-potsdam.de
2 Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz

Association, P.O. Box 6012 03, D-14412 Potsdam, Germany,
stefan.petri@pik-potsdam.de

Abstract. This paper presents a benchmark suite for the HPC field,
called the HPC Benchmark Game which allows comparing program-
ming languages and compilers regarding their runtime performance and
energy-efficiency. We started with 3 compiled languages (C, C++ and
Fortran) and Julia which is a just-in-time compiled language. Julia has
native support for threads, distributed computing, and GPU offloading,
which makes it a promising candidate for HPC. For each language, we
picked one benchmark as reference and re-implemented it for the other
languages. This paper describes our guidelines for the re-implementation.
Further, we demonstrate the benefit of the Benchmark Suite through
measurements on a 128-core node. The results help an HPC programmer
to decide which languages and compilers are recommended on a system
for energy-efficiency. The presented results show that HPC developers
still have to invest some effort to find an energy-efficient implementation
of their algorithm on modern multicore architectures.

Keywords: Energy Efficiency · HPC · Programming Languages.

1 Introduction

To raise awareness for energy efficiency in High Performance Computing (HPC),
the Green500 list 3 ranks installed hardware by Gigaflops per Watt.

Here, we focus on the software side and investigate the influence of the selec-
tion of a programming language on the energy efficiency of an implementation.
Our study is inspired by the research of Pereira et al. [7], which investigated the
correlation between runtime and energy efficiency for 10 benchmarks from the
Computer Language Benchmarks Game (CLBG)4. The results of their study

3 https://top500.org/lists/green500/
4 https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

https://top500.org/lists/green500/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html

2 M. Lübke et al.

demonstrated that the fastest programming language, C, unsurprisingly, was
also the most energy-efficient implementation for the selected benchmarks [7].
Expansion of their research to the educational examples provided by the Rosetta
Code [8]5 considered more than 20 programming languages. However, most of
them are hardly relevant for high-performance computing (HPC), like for ex-
ample Ada, Erlang, PHP, or Lua. Conversely, Julia is missing as a self-branded
high-performance language with a growing number of users. With native sup-
port for threads, distributed computing, and GPU offloading, Julia appears as a
promising candidate for HPC applications. However, it does just-in-time (JIT)
compilation for a virtual machine, which can lead to additional overhead com-
pared to languages which are pre-compiled into native machine code.

Furthermore, the majority of the CLBG benchmarks are not representative in
terms of HPC. For instance, there are benchmarks that merely allocate memory
or concatenate strings. The lack of compute-bound benchmarks hardly allows
drawing conclusions about the energy efficiency of programming languages in
the HPC context. To fill this gap, we initiate the HPC Benchmark Game with a
focus on HPC-relevant languages and benchmarks. Since it is not the language
syntax and semantics that are relevant for the runtime and energy demand
of an application, but the language universe consisting of compilers, runtime
environment, and available libraries for parallelization, we aim to investigate
different research questions. Observing the rising popularity of Julia in the HPC
community, we want to clarify how far an interpreter based language can compete
with a natively-compiled language (RQ 1) in terms of energy efficiency. Further
we investigate the impact of the utilized compiler (RQ 2), and finally, facing
modern NUMA manycores, also the impact of the hardware architecture and the
impact of over-threading (RQ 3). The parameter space is huge, therefore we
restrict us to these RQs. Here, we do not consider the relation between memory
and energy consumption. It was already shown that for compiled languages the
energy consumption of the processor dominates by 89 % [8]. Furthermore, the
impact of vector instruction widths and the impact of platform-specific OpenMP
thread mappings are not considered. We also do not include the influence of
different problem sizes on over-threading here.

With those parameters in mind, we laid a starting point with four HPC-
relevant programming languages: C, C++, Fortran and Julia. We do not consider
Python, since Pereira et al. have already shown the inefficiency of pure Python
(rank 26 of 27 languages [8]). And while most Python programs depend on li-
braries written in C or C++, and despite its popularity, the Python interpreter
produces significant overhead. For each language, we have chosen a represen-
tative benchmark written by a programmer with experiences in this language.
These reference benchmarks were re-implemented in the other languages under
consideration.

The contributions of this paper are: (1) Proposing a benchmark suite that en-
ables the comparison of programming languages and compilers regarding runtime

5 http://rosettacode.org/

http://rosettacode.org/

HPC Benchmark Game 3

and energy efficiency for applications from the HPC field6. (2) Demonstrating
the usage of the benchmark suite by presenting runtime and energy consump-
tion results on a 128-core compute node. This gives us the means to answer the
research questions RQ 1 - RQ 3.

2 Related Work

Since energy is an important resource in our modern society, researchers started
to also take the energy demand of applications into account [11,10,12,7,6,8,4].
Already a quarter of a century ago in 2001, Valluri and John [11] evaluated how
the existing compiler optimizations -O1 to -O4 influence energy consumption.

An early work in the HPC field investigated the runtime behavior and energy
demand for the OpenMP implementation of the data-intensive NAS benchmark
Datacube (DC), written in C, on two hardware platforms, a 12-core and a 16-core
machine [10]. They varied the number of OpenMP threads and also investigated
the influence of compilers. Their most interesting result is the negative impact of
over-threading on runtime and energy. The best runtime and energy efficiency is
achieved always by not using all possible cores. The authors explain this behavior
with the rising excessive data movements throughout the memory hierarchy
which occur when the number of threads is increased. Hence, to benefit from
parallelization, the degree of parallelism which is used has to fit to the given
algorithm, architecture and problem size.

The Computer Language Benchmark Games is a collection of 13 synthetic
benchmarks which are rarely representative for HPC applications (an exception
may be the n-body problem), and the submitted implementations differ greatly in
their quality and their optimization effort: “Some of these programs are high-level
and some are handwritten vector instructions.” (see CLBG webpage) This also
applies regarding parallelization which is not done in a uniform manner: some
use vector instructions, some use multithreading and others run only sequential.
Therefore, we have selected algorithms for the HPC Benchmark Game which
come from the HPC field, and which we parallelized using the same approach.

In 2017, a team of researchers published results taking 10 benchmarks from
the CLBG suite to compare runtime, energy, and memory consumption [7] for
27 programming languages. They followed the CLBG instructions for compiler
versions and options7. As expected, the compiled languages performed much
better regarding runtime and energy efficiency than the interpreted languages.
For example, on average, compiled languages consumed 120 J to execute the
solutions, while for interpreted languages this value was 2365 J which means
about 20 times higher. Later, the group extended their investigations to appli-
cations from the Rosetta Code repository [8] with similar results. While so far
the energy was estimated in software using an energy model based on RAPL,
in [4] the group selected 14 programming languages and compared their prior
6 The benchmark suite is published as open-source [5].
7 A discussion of the results can also be found on the CLBG webpage: https://

benchmarksgame-team.pages.debian.net/benchmarksgame/energy-efficiency.html

https://benchmarksgame-team.pages.debian.net/benchmarksgame/energy-efficiency.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/energy-efficiency.html

4 M. Lübke et al.

results against energy measurements with a special hardware device. The au-
thors conclude that no significant differences are obtained in the rankings based
on hardware measurements and based on software estimations. In contrast, our
HPC benchmark game reflects the special conditions from the HPC field by
considering only languages important for HPC, different benchmarks, as well as
different compiler versions installed on the HPC cluster, and also the degree of
parallelism.

In 2013, Yuki and Rajopadhye presented a high-level model of power con-
sumption. They derive that when idle power is comparable to the dynamic power
consumption, using dynamic voltage and frequency scaling (DVFS) to trade
speed with energy efficiency is not possible. Furthermore, optimizing for per-
formance is also beneficial for the energy consumption [12]. While the work of
Pereira et al. shows that on average there is a strong correlation between runtime
and energy consumption (see Table 5 in [8]), some studies come to the result that
faster programs are not always the ones that consume less energy [10,6]. There
remains the influence of the chosen algorithm and the selected data structures
within the implementation.

3 HPC Benchmark Game

To compare programming languages, identical algorithms must be implemented
in each language. An ideal benchmark would be a real-world application, how-
ever, the effort required to translate large, real-world applications into multiple
languages is time-consuming and often impractical. Therefore, this study uses al-
gorithms, like for example FFT, and computation patterns that are widely used
in HPC applications. The selection criteria for the benchmarks were: (1) The
benchmark must be based on a non-trivial mathematical algorithm (no string
or memory manipulation only). (2) The benchmark must be parallelized with
shared memory only. (3) The benchmark must be less than 2000 lines of code.

For each of the four programming languages, we selected a benchmark with
a given implementation from an experienced programmer in that language. This
benchmark then had to be ported to the other three languages.

The representative C benchmark is the Cellular Automaton (CA) which is a
simple 9-point stencil application, based on Conway’s Game of Life, implemented
by a PhD student of our group8.

For C++, we choose TUG9 from the geoscience field, which solves diffusion
problems on uniform grids with an alternating direction implicit method. The
time step is divided into two half-steps. In each, a tridiagonal system is solved
for each grid row and column using the Thomas algorithm (a form of Gaussian
elimination). Due to its sequential nature (backward and forward substitution),
SIMD operations and parallelization are not possible while solving the tridi-
agonal system. Instead, parallelization is achieved by using multiple threads to
construct and solve these linear systems independently for each row and column.
8 https://www.cs.uni-potsdam.de/bs/research/labsCa.html
9 https://git.gfz-potsdam.de/naaice/tug

https://www.cs.uni-potsdam.de/bs/research/labsCa.html
https://git.gfz-potsdam.de/naaice/tug

HPC Benchmark Game 5

The NAS Parallel Benchmarks10 were the source of the Fortran reference
benchmark. We selected the Fast Fourier Transformation written in Fortran.
We removed the internal validation algorithm. Instead, the result is written to
stdout for offline validation.

Lastly, we selected the SRAD implementation from the JuliaParallel group as
reference implementation in Julia11. SRAD belongs to the Rodinia Suite of the
University of Virginia which consists of 23 HPC benchmarks originally written
in C. SRAD is a diffusion method for ultrasonic and radar imaging applications
based on partial differential equations and is used to remove locally correlated
noise. An overview of the selected benchmarks is given in Table 1.

Table 1. Overview of the selected benchmarks.

Benchmark Original Impl. LOC Data type
Cellular Automaton C99 297 Integer
TUG C++17 1515 Floating-point
NAS FT Fortran 90 694 Floating-Point
Rodinia SRAD Julia 112 Floating-point

The reimplementation was conducted in an idiomatic manner, whereby lan-
guage-specific features were utilized and no approach akin to “C with a C++
compiler” was employed. Additionally, several changes have been made to ensure
consistent results across implementations, e.g. standardizing the random number
generator to rand for integers resp. drand48 for floats for all implementations [9].

For C++, the versatile and fast Eigen12 library is used for matrix and vec-
tor operations. By default, Eigen and the Julia runtime have bounds checking
enabled, which is disabled to achieve comparable performance to the C and For-
tran implementations by compiling with -DNDEBUG or using @inbounds macros
in Julia. For C, plain arrays are used.

To speed up the loading of the just-in-time compiled Julia code, we created
a precompiled package for each benchmark. Additionally, the PackageCompiler
package was used to create a bundled executable or “app”. In the following, we
refer to these types as julia-pkg and julia-app respectively.

Like the original reference implementations, for parallelization, we used Open-
MP for C, C++, and Fortran. In case of Julia, we used macros from the FLoops13

package, since the Base.Threads module does not provide complex operations
such as shared variable reduction.

To validate the correctness of the implementations, all outputs of the bench-
mark implementations were compared to the output of the reference implemen-
tation.

10 https://www.nas.nasa.gov/software/npb.html
11 https://github.com/JuliaParallel/rodinia
12 https://eigen.tuxfamily.org/
13 https://github.com/JuliaFolds2/FLoops.jl

https://www.nas.nasa.gov/software/npb.html
https://github.com/JuliaParallel/rodinia
https://eigen.tuxfamily.org/
https://github.com/JuliaFolds2/FLoops.jl

6 M. Lübke et al.

4 Experiments and Results

This section presents the outcomes of our experiments on an HPC cluster node.
The measured metrics are runtime and energy consumption. Furthermore, the
influence of the different compilers available on the HPC system is examined.

4.1 Description of the Testbed

Each compute node has two AMD EPYC 9554 “Genoa” CPUs, i.e. 2*64 CPU
cores per node, in “zen4” architecture, with 3.1GHz base clock and up to 3.75 GHz
turbo clock. There are 6GB RAM per core, thus a total of 768 GB DDR5 RAM
at 4800MT/s per node. 8 cores share a 32MB Level-3 cache, and 16 cores share 3
memory channels. The zen4 cores have two 256-bit vector units (AVX2). These
can be combined and used as one 512-bit vector unit (AVX512). The oper-
ating system is “Red Hat Enterprise Linux 8.6 (Ootpa)” with kernel 4.18.0-
372.32.1.el8_6.x86_64. Since we are interested in the impact of the software
universe regarding energy efficiency, we did not investigate energy savings by
frequency scaling [2] and used the default installed Linux governor.

We use four different compiler suites. Two generations of Intel compilers are
most widely used on the PIK HPC cluster. Since the testbed has AMD processors
installed, we also use the AMD Optimizing Compilers (AOCC). For comparison
and as a baseline, we added the GNU compiler suite. For each compiler suite,
the “highest” available platform-specific optimization settings are listed below:

1. Intel Compiler Classic oneAPI 2023.2.0: icc/icpc/ifort identify themselves
as version 2021.10.0. These are based on Intel’s proprietary technology. They
can generate code only for AVX2 platforms, thus the common options are
-O3 -ipo -march=core-avx2 -mtune=core-avx2 -DNDEBUG -qopenmp

2. Intel oneAPI 2024.2.1: icx/icpx/ifx identify themselves as version 2024.2.1
and are based on LLVM. Since the Fortran compiler ifx cannot optimize for
the zen4 platform, the common options are -O3 -flto -march=core-avx2
-mtune=core-avx2 -DNDEBUG -qopenmp

3. AOCC version 4.2.0: aocc-clang/clang++/flang identify themselves as
version 16.0.3, and are like the new Intel compiler suite based on LLVM; -O3
-flto -march=znver4 -mtune=znver4 -DNDEBUG -fopenmp

4. The GNU Compiler Collection version 14.1.0: gcc/g++/gfortran; compil-
ing with -O3 -flto -march=znver4 -mtune=znver4 -DNDEBUG -fopenmp

Further we use Julia version 1.11.0 with option -C znver4 -O3 –check-bounds="no".
Power consumption and runtime were measured using the EMA framework [1].

EMA reads RAPL counters and reports the power consumption in micro joules.
On the AMD CPUs of the testbed, only the core and package domains are
available, while there is no report for the dram domain. Thus, only the power
consumption of the entire CPU is reported which is a lower estimate for the real
energy consumption.

To keep the parameter space for this study manageable, we show only results
of runs where all 128 cores of one compute node are used. At runtime, we specify

HPC Benchmark Game 7

the number of threads and set the per-thread stack size to 1.5 GB, which is
necessary for local array variables in Fortran procedures. Further, “spread” is
specified as thread affinity, in an attempt to spread the threads evenly across
the memory access channels of the hardware. Each experiment is repeated 5
times, with a cool-down interval of 60 seconds before each run.

4.2 Compiled and Julia implementations (RQ 1)

The first thing to notice in Figure 1 is that energy consumption depends roughly
linear on run time for the selected HPC benchmarks. For the TUG benchmark,
we observe a deviation where the gcc and g++ experiments show a longer run-
time, but a similar energy consumption as the faster icpx and ifort runs. And
while gcc, g++ and aocc-clang++ yield similar runtimes for TUG, the aocc-
clang++ version consumes more energy.

The second thing is that the native-compiled implementations are generally
much faster and also much more energy-efficient than the implementations in
Julia. Although we tried to eliminate the JIT compilation overhead by creating
an app, there was an increase in runtime and power consumption in three out of
four benchmarks compared to Julia’s packaged approach. Thus, combined with
the long compilation times caused by building an app, there is no observable
advantage to using the julia-app approach over julia-pkg.

Figure 2 zooms into the same results for the Cellular Automaton and the
SRAD benchmarks without Julia to better show the differences between the
native-compiled implementations. This closer look reveals that there is a gap
between the fastest and most energy-efficient implementations and the midfield.
While the fastest implementations are always also the most energy-efficient ones,
there are several slower implementations with different energy behaviors, e.g.
compare the results of the SRAD C++ implementations (g++ versus icpx).

4.3 Runtime Results for Compiled Languages

Figure 3 shows the median runtime of the four benchmarks for the native-
compiled languages and the considered compilers.

For the Cellular Automaton, the fastest and most energy-efficient implemen-
tation is the original reference implementation in C compiled with the newer
Intel compiler (icx). In case of NAS FT, the original reference implementation
in Fortran is slower than the C implementation (with icc and icx) and the C++
implementation (with icpx). For SRAD, the situation is similar, where the older
Intel compiler (icc) beats the new one with 2.2 seconds versus 2.8 seconds. Fi-
nally, the original C++ implementation of TUG performs best with the two Intel
compilers (icpc, icpx), but the Fortran implementation is comparably fast (again
with the two Intel compilers ifort and ifx). The fastest and most energy-efficient
implementations for each of the four benchmarks are listed in Table 2 and show
that C is dominant in terms of performance.

8 M. Lübke et al.

0 100 200 300 400
0

20

40

60

80

100

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

Cellular Automaton

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang
julia-app
julia-pkg0 20 40 60 80
0

5

10

15

20

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

NAS FT

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang
julia-app
julia-pkg

0 50 100 150
0

10

20

30

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

SRAD

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang
julia-app
julia-pkg0 20 40 60 80 100 120 140 160
0

10

20

30

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

TUG

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang
julia-app
julia-pkg

Fig. 1. Scatterplots of energy consumption vs. runtime. For each of the 4 benchmarks,
results of 5 repeated measurements are shown.

0 5 10 15 20 25
0

5

10

15

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

Cellular Automaton

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang

0 2 4 6 8 10 12 14 16
0

2

4

6

Runtime (s)

E
ne

rg
y

U
sa

ge
(k

J)

SRAD

gcc
icc
icx
aocc-clang
g++
icpc
icpx
aocc-clang++
gfortran
ifort
ifx
aocc-flang

Fig. 2. Scatterplots of energy consumption vs. runtime for Cellular Automaton and
SRAD, for the native-compiled implementations only.

4.4 The Impact of the Compiler (RQ 2)

The impact of the compiler is highly application dependent. Figure 4 shows the
runtimes for each benchmark, normalized to the fastest combination of language
and compiler.

We see different trends for SRAD and CA versus NAS-FT and TUG. While
some SRAD and CA implementations are more than four times slower, the vari-
ance of the NAS-FT and TUG measurements is much smaller, and the slowdown

HPC Benchmark Game 9

 0

 5

 10

 15

 20

 25

 30

gcc icc icx

aocc-clang
g++

icpc
icpx

aocc-clang++

gfortra
n ifort ifx

aocc-fla
ng

C C++ Fortran

ru
nt

im
e

[s
ec

]

compiler suite and language

CA
 0

 10

 20

 30

 40

 50

 60

gcc icc icx

aocc-clang
g++

icpc
icpx

aocc-clang++

gfortra
n ifort ifx

aocc-fla
ng

C C++ Fortran

ru
nt

im
e

[s
ec

]

compiler suite and language

NAS-FT

 0

 2

 4

 6

 8

 10

 12

 14

 16

gcc icc icx

aocc-clang
g++

icpc
icpx

aocc-clang++

gfortra
n ifort ifx

aocc-fla
ng

C C++ Fortran

ru
nt

im
e

[s
ec

]

compiler suite and language

Rodinia-SRAD
 0

 20

 40

 60

 80

 100

 120

 140

gcc icc icx

aocc-clang
g++

icpc
icpx

aocc-clang++

gfortra
n ifort ifx

aocc-fla
ng

C C++ Fortran

ru
nt

im
e

[s
ec

]

compiler suite and language

TUG

Fig. 3. Runtimes of the four benchmarks for the native-compiled implementations.

Table 2. Fastest and most energy-efficient implementations.

Benchmark Winner
CA C/icx
NAS FT C/icx, C/icc, C++/icpx
SRAD C/icc, C/icx
TUG C++/icpc, C++/icpx, Fortran/ifort, Fortran/ifx

 1

 2

 3

 4

 5

 6

 7

gcc icc icx

aocc-clang
g++

icpc
icpx

aocc-clang++

gfortra
n ifort ifx

aocc-fla
ng

C C++ Fortran

no
rm

al
iz

e
d

ru
nt

im
e

compiler suite and language

Rodinia-SRAD
CA

NAS-FT
TUG

Fig. 4. Runtimes for the native-compiled implementations of the four benchmarks,
each benchmark normalized to its fastest combination of language and compiler.

is almost always less than two (exceptions are the aocc-clang++ NAS-FT run
and the aocc-flang TUG run).

10 M. Lübke et al.

In the code generated by the GNU and AOCC compilers, we find both AVX2
and AVX512 instructions. In our measurements, the AVX2 optimization imple-
mented in the Intel compilers for both C and C++ yields better performance
than the “zen4” optimization provided by GNU and AMD compilers.

Across all benchmarks, we also observe that the choice of compiler can have
a more significant impact on performance than the choice of the programming
language itself. For example, in the Cellular Automaton benchmark, while C
implementations consistently had the fastest execution times compared to their
C++ and Fortran counterparts, the slowest C implementation (gcc, 13.6 seconds)
had a runtime comparable to the fastest Fortran execution (ifx, 14 seconds). For
NAS-FT, the runtimes achieved by the Fortran compilers appeared to be consis-
tently stable. Given NAS-FT’s popularity as a Fortran benchmark, it is plausible
that compiler developers prioritize it for Fortran compiler optimizations. For C
and C++, however, the performance results are highly dependent on the specific
compiler used. While the fastest C and Fortran compilers yielded comparable
results for SRAD, switching to the GNU compiler resulted in a significant run-
time slowdown, by a factor of 4.3 for C and 6.8 for Fortran. Similarly, using the
AMD Fortran compiler for TUG resulted in 2.3 times longer runs.

4.5 The Impact of Hardware / Over-Threading (RQ 3)

All results presented so far used all 128 cores of the node. Since over-threading is
a known problem [10], we also investigated this problem for the four benchmarks
on the given architecture. All implementations are parallelized by adding simple
OpenMP pragmas before the loop that shall be parallelized. We did not provide
any compiler hints for load distribution.

Table 3. Scaling results for TUG for 1 up to 128 Threads showing medians.

Threads 1 2 4 8 16 32 64 128
Runtime [s] 174 122 87 70 62 59.1 58.9 59.6
Energy [kJ] 56 40 29 23 21 21 22 25

While we observed runtime improvements for CA, SRAD and NAS-FT, this
was not the case for TUG (see Table 3). The runtime decreases up to 64 threads,
but then even increases again. This over-threading effect goes along with a higher
energy consumption (25 kJ for 128 threads versus 22 kJ for 64 threads). When
only 32 threads instead of 128 are used, a comparable runtime is achieved, but
more than 17 % energy can be saved. That illustrates that the effort for finding
an optimal mapping of the application also pays out in energy efficiency.

4.6 Ranking of Languages across all Benchmarks

Inspired by Table 4 in [8], we compute a global ranking over all 4 benchmarks.
First, we normalize the runtimes for each benchmark against the runtime of the
fastest language-compiler combination (as for Fig. 4). Then we use the geometric

HPC Benchmark Game 11

mean to average the normalized runtimes over all benchmarks [3] In this way,
every benchmark has the same weight in the global result. We proceed in the
same way with energy.

The global results are shown in Table 4. Across all benchmarks, the analysis
shows that no single programming language can be declared the overall winner.
In fact, it is worth noting that the top five and bottom two language-compiler
combinations are identical, regardless of whether runtime or energy consumption
is considered. Table 4 confirms our observation that the compiler may have a
more significant impact on performance results than the choice of programming
language itself. While C is the winner with the icx compiler, it is beaten by
Fortran and C++ when the GNU or AMD C compiler is used. Investigation
whether platform-specific OpenMP thread mappings contribute to the observed
performance characteristics is beyond the scope of this paper.

Table 4. Ranking of global results.

Normalized Runtime Normalized Energy
C/icx 1.20 C/icx 1.20
C/icc 1.32 C/icc 1.37
Fortran/ifx 1.73 Fortran/ifx 1.51
Fortran/ifort 1.85 Fortran/ifort 1.60
C++/icpx 1.89 C++/icpx 1.81
C++/g++ 2.11 C/gcc 1.85
C/gcc 2.21 C++/g++ 2.11
C/aocc-clang 2.26 C/aocc-clang 2.14
C++/aocc-clang++ 2.26 C++/aocc-clang++ 2.14
C++/icpc 2.36 Fortran/aocc-flang 2.15
Fortran/aocc-flang 2.45 Fortran/gfortran 2.26
Fortran/gfortran 2.86 C++/icpc 2.30
Julia/pkg 13.32 Julia/pkg 10.66
Julia/app 13.74 Julia/app 11.23

5 Conclusion

We presented the HPC Benchmark Game to compare the popular programming
languages C, C++, Fortran and the more recent Julia regarding energy efficiency.
The majority of the benchmarks are related to the authors’ working fields, but
this set can be extended. The presented results on a 128-core node confirm a
positive correlation between runtime and energy consumption. Hence, optimizing
for speed also reduces the energy consumption. Further, Julia cannot compete
with the native-compiled languages for the HPC benchmarks. But the world of
applications and compilers remains complex and colorful: First, the impact of
the compiler significantly depends on the application and on the target platform,
and further the influence of the compiler may be much higher than the influence
of the chosen language. We find no single “winner” compiler, and thus want

12 M. Lübke et al.

to make users aware that it pays out to try different combinations for their
production environment. Further, we show the negative effect of over-threading
on energy-efficiency.

Acknowledgments. The authors gratefully acknowledge the Ministry of Research,
Science and Culture (MWFK) of Land Brandenburg for supporting this project by
providing resources on the high performance computer system at the Potsdam Institute
for Climate Impact Research. Furthermore, the authors thank Klemens Kittan for his
technical support.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Christgau, S., et al.: On the Usability and Energy Efficiency of High-Level Synthe-
sis for FPGA-based Network-Attached Accelerators. In: 2025 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). pp. 886–
895. Milano, Italy (2025). https://doi.org/10.1109/IPDPSW66978.2025.00139

2. Fan, K., et al.: SYnergy: Fine-grained Energy-Efficient Heterogeneous Computing
for Scalable Energy Saving. In: SC ’23. ACM (2023). https://doi.org/10.1145/
3581784.3607055

3. Fleming, P.J., Wallace, J.J.: How not to lie with statistics: the correct way to
summarize benchmark results. Commun. ACM 29(3), 218–221 (1986). https://
doi.org/10.1145/5666.5673

4. Gordillo, A., et al.: Programming languages ranking based on energy mea-
surements. Software Quality Journal 32(4) (2024). https://doi.org/10.1007/
s11219-024-09690-4

5. Lübke, M., et al.: HPC Benchmark Game Source Code and Results (PECS 2025).
[code] Zenodo (2025). https://doi.org/10.5281/zenodo.15785010

6. Oliveira, W., et al.: A study on the energy consumption of Android app develop-
ment approaches. In: IEEE/ACM 14th International Conference on Mining Soft-
ware Repositories. pp. 42–52 (2017). https://doi.org/10.1109/MSR.2017.66

7. Pereira, R., et al.: Energy efficiency across programming languages: How do en-
ergy, time, and memory relate? In: Proceedings of the 10th ACM SIGPLAN In-
ternational Conference on Software Language Engineering. pp. 256–267 (2017).
https://doi.org/10.1145/3136014.3136031

8. Pereira, R., et al.: Ranking programming languages by energy efficiency. Science of
Computer Programming 205 (2021). https://doi.org/10.1016/j.scico.2021.102609

9. Stoll, D.: Performance und Energiebedarf von HPC-Anwendungen in Abhängigkeit
von der gewählten Programmiersprache. Project Report, University of Potsdam
(2024), https://www.cs.uni-potsdam.de/bs/teaching/docs/lectures/2024/stoll.pdf

10. Trefethen, A.E., Thiyagalingam, J.: Energy-aware software: Challenges, oppor-
tunities and strategies. Journal of Computational Science 4(6), 444–449 (2013).
https://doi.org/10.1016/j.jocs.2013.01.005

11. Valluri, M., John, L.K.: Is Compiling for Performance — Compiling for Power?,
pp. 101–115 (2001). https://doi.org/10.1007/978-1-4757-3337-2_6

12. Yuki, T., Rajopadhye, S.: Folklore Confirmed: Compiling for Speed = Compiling
for Energy. In: Languages and Compilers for Parallel Computing. pp. 169–184
(2014). https://doi.org/10.1007/978-3-319-09967-5_10

https://doi.org/10.1109/IPDPSW66978.2025.00139
https://doi.org/10.1109/IPDPSW66978.2025.00139
https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1145/3581784.3607055
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/5666.5673
https://doi.org/10.1145/5666.5673
https://doi.org/10.1007/s11219-024-09690-4
https://doi.org/10.1007/s11219-024-09690-4
https://doi.org/10.1007/s11219-024-09690-4
https://doi.org/10.1007/s11219-024-09690-4
https://doi.org/10.5281/zenodo.15785010
https://doi.org/10.5281/zenodo.15785010
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.1109/MSR.2017.66
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1145/3136014.3136031
https://doi.org/10.1016/j.scico.2021.102609
https://doi.org/10.1016/j.scico.2021.102609
https://www.cs.uni-potsdam.de/bs/teaching/docs/lectures/2024/stoll.pdf
https://doi.org/10.1016/j.jocs.2013.01.005
https://doi.org/10.1016/j.jocs.2013.01.005
https://doi.org/10.1007/978-1-4757-3337-2_6
https://doi.org/10.1007/978-1-4757-3337-2_6
https://doi.org/10.1007/978-3-319-09967-5_10
https://doi.org/10.1007/978-3-319-09967-5_10

	HPC Benchmark Game: Comparing programming languages regarding energy-efficiency for applications from the HPC field

