Threshold-based Fall Detection on Smart Phones

Sebastian Fudickar, Alexander Lindemann, Bettina Schnor

Potsdam University Institute of Computer Science Operating Systems and Distributed Systems

HEALTHINF 2014, 5.3.2014

Outline

- The Kompass Project
- Threshold-Based Fall Detection
- Evaluation for Android-Smartphones
- Demo

Frame 2 of 17

The Kompass Project - started 2008

Kompass supports seniors and their caretakers:

- 1 Appointment reminder,
- 2 Fall detection with alarm call,
- 3 monitoring of seniors suffering from dementia with alarm call

Cooperation with the nursing home Florencehort, LAFIM, in Stahnsdorf

Kompass Requirements

- easy-to-use: Caretakers should be supported ⇒ no additional technical devices, but alarm call to their office mobiles
- easy-to-use: Input of appointments via PC
- Low operational costs and easy to install (i.e. no extra constructional costs are required).

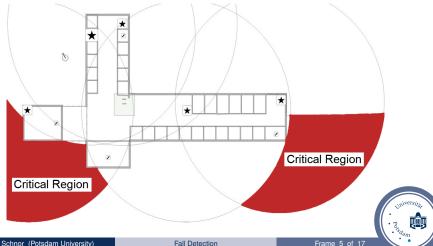
 \implies Seniors get a smartphone with Wi-Fi, the \implies Kompass-Assistent

Kompass Requirements

- easy-to-use: Caretakers should be supported ⇒ no additional technical devices, but alarm call to their office mobiles
- easy-to-use: Input of appointments via PC
- Low operational costs and easy to install (i.e. no extra constructional costs are required).

- \Longrightarrow Seniors get a smartphone with Wi-Fi, the
- \implies Kompass–Assistent.

Kompass Requirements


- easy-to-use: Caretakers should be supported ⇒ no additional technical devices, but alarm call to their office mobiles
- easy-to-use: Input of appointments via PC
- Low operational costs and easy to install (i.e. no extra constructional costs are required).

- \Longrightarrow Seniors get a smartphone with Wi-Fi, the
- \implies Kompass–Assistent.

Monitoring/Localization

- 6 Wi-Fi Router
- Lokalization based on the Received Signal Strength (RSS)

Differences to existing systems: German Red Cross 🕂

Alarm center acts 365/24:

- Alarm Buttom
- - \Longrightarrow no active fall detection

Alternative Solutions

Smart Cameras for Fall Detection:

- restricted to dedicated areas (garden?)
- blind spots?
- costs,
- privacy?

Sensor mats:

- restricted to dedicated areas (garden?)
- stability?, hygiene?
- costs

Frame 7 of 17

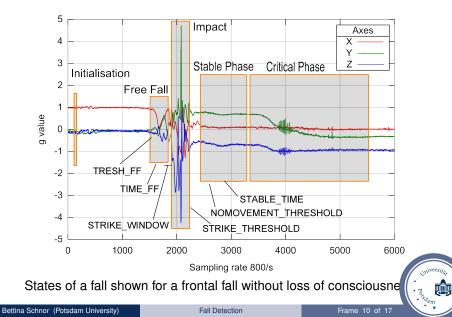
Kompass Approach

Smartphone:

- 1 (almost) at hand
- 2 modern smartphones are equipped with a tri-axial accelerometer
- Iocalization indoor (Wi-Fi based) and Outdoor (GPS) possible
 enables an alarm call with information about the fall position:
 "Mrs. Smith is fallen outside in the garden."

Frame 8 of 17

Kompass Fall Detection: First Approach



Self-made device: Efficient Mobile Unit (EMU)

- first experiments with the tri-axial accelerometer ADXL345 from Analog Devices
- Sampling-Rate up to 800 Hz
- threshold-based fall detection algorithm proposed by Jia from Analog Devices
- $\blacksquare \text{ in-hardware preprocessing} \Longrightarrow \text{energy savings}$

Kompass Fall Detection

Fall Detection on Android-Smartphones

Differences:

- 1 Sampling Rate of Android-Smartphones:
 - Sony Ericsson Xperia Arc ca. 80Hz
 - HTC Evo 3D ca. 50Hz
- 2 no in-hardware preprocessing

Research questions:

- Are the accelerometers in standard smartphones good enough for fall detection?
- 2 What about energy consumption? \implies Usability

Fall Detection on Android-Smartphones

Differences:

- 1 Sampling Rate of Android-Smartphones:
 - Sony Ericsson Xperia Arc ca. 80Hz
 - HTC Evo 3D ca. 50Hz
- 2 no in-hardware preprocessing

Research questions:

- 1 Are the accelerometers in standard smartphones *good* enough for fall detection?
- 2 What about energy consumption? \Longrightarrow Usability

Simulator

- Optimizing of the threshold parameters of the fall detection algorithm with/without free fall phase
- 2 Evaluation:

 $Sensitivity = \frac{TruePositives}{Number of all falls}$

3 Evaluation:

Activities of Daily Life (ADLs)

 $Specificity = \frac{TrueNegatives}{Number of all ADLs}$

Trace-driven simulation: Falls and ADLs were gathered with EMU devices

Recording of 84 falls of probands in the age of 20-30 years

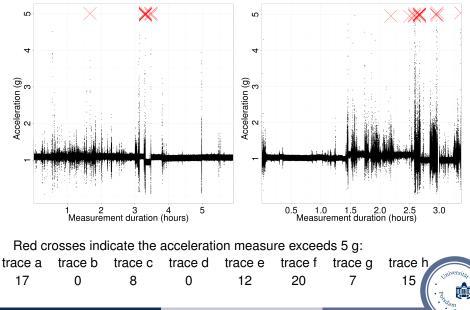
Sebastian Fudickar, Christian Karth, Philipp Mahr, Bettina Schnor: Fall-Detection Simulator for Accelerometers with in-Hardware Preprocessing, 5th Workshop on "Affect and Behaviour Related Assistance", held in conjunction with PETRA 2012, Heraklion Greece, 2012.

Result: Influence of Sampling Rate

Classification:

- **1 normal falls:** cover falls where the proband moves again.
- 2 critical falls: describe falls where the proband does not move after the impact for at least 5 seconds and loss of consciousness is assumed.

Sampling rate	with free fall detection			without free fall detection		
	normal	critical	sum	normal	critical	sum
800 Hz	29	49	78 (92%)	35	48	83 (99%)
400 Hz	32	47	79 (94%)	37	46	83 (99%)
200 Hz	29	49	78 (92%)	34	48	82 (98%)
100 Hz	28	51	79 (94%)	34	48	82 (98%)
50 Hz	28	49	77 (92%)	34	49	83 (99%)
correct value	36	48	84	36	48	84


 \implies The algorithm **without** free fall detection and with our parameter settings detects 83 of 84 falls in our fall set (99 %).

Recording of ADLs:

- 9 seniors from Florencehort in Stahnsdorf
- in the age of 70 up to 95 years
- smartphone was worn in a fanny pack (bum bag)
- altogether about 41 h ADLs recorded

Example of two ADL records (acceleration in g):

Confusion matrix for fall detection algorithm (without freefall detection) at 50 Hz

	Detected as Falls	Detected as ADL
Falls	83	1
ADLs	0	all

Bettina Schnor (Potsdam University)

Energy Consumption?

Runtime

with fall detection: 20 h

Runtime

with fall detection and standard use of smartphone: 12 h

Tobias Gimpel, Bachelor Thesis

Fall Detection

Demo

Demo-Mode: Smartphone rings if fall detected.

Frame 19 of 17