salbnet: A Self-Adapting Load Balancing Network

Jörg Jung
University of Potsdam
Institute for Computer Science
Operating Systems and Distributed Systems
February 2014
Outline

1 Introduction 3
2 Credit based SLB 5
3 salbnet Implementation 8
4 Measurements and Evaluation 10
5 Conclusions and Future Work 16
1 Introduction

Dispatcher based Server Load Balancing (SLB): scalable, flexible and fault tolerance services
Motivation

Measurements in [Zinke and Schnor 2013] show the influence of weights.

Sophisticated algorithms are required for heterogenous workloads and heterogenous back end servers of ISPs:

Self-adapting credit based SLB algorithms for better performance.

Simulations in [Lehmann et al. 2008] show the advantages of the credit based SLB algorithms.

→ Efficient implementation for credit based SLB required.

→ Measurements to compare traditional and credit based SLB algorithms:
 Weighted Round Robin (WRR) and Dynamic Pressure Relieve (DPR).
2

Credit based SLB

Application independent *implicit* metrics are used to calculate *credits*

Back end server *push* credits to the LB

Credits represent the number of connections
Reporting Algorithms:
Dynamic Pressure Relieve (DPR) and DPR-Quantize (DPR-Q)

→ Reporting credits based on the (amount of processed) credit metric (data)
Credit Metric: TCP Backlog
salbnet Implementation

salbd implements metric collecting and credit reporting (runs on the LB and the back end servers)

LVS scheduler module implements the credits scheduling

libnetmsg implements network abstraction for sending messages over Ethernet and InfiniBand

libnethook hooks into (socket) system calls in back end servers
Dispatcher

- salbd (Server)
- libnetmsg
- libc
- librdmacm

LVS scheduler

TCP/UDP

IP

IB CM

Verbs

librdmacm

RDMA

libnetmsg

libnethook

libc

Server

- salbd (Client)
- libnetmsg
- librdmacm
- libc

httpd/named

LD_PRELOAD

Shared Memory

User space

Kernel space

TCP/UDP

IP

IPoIB

IB CM

Verbs

IB CM

Verbs

ioctl()
4 Measurements and Evaluation

Dispatcher based SLB scenario: two armed, NAT based and using route path with heterogeneous hardware and homogeneous software versions

3 heterogenous back end servers require weights for the traditional WRR algorithm
4 Measurements and Evaluation

Workload: Reduced Wikipedia Traces

Number of requests from the first ten minutes of the (filtered and reduced) Wikipedia trace from 12. November 2007 (available from [Pierre 2010])

<table>
<thead>
<tr>
<th>Factor</th>
<th>Requests</th>
<th>Mean req/s</th>
<th>Max req/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{32}$</td>
<td>49,532</td>
<td>82.55</td>
<td>91</td>
</tr>
<tr>
<td>$\frac{1}{16}$</td>
<td>99,063</td>
<td>165.12</td>
<td>183</td>
</tr>
<tr>
<td>$\frac{1}{8}$</td>
<td>198,125</td>
<td>330.21</td>
<td>366</td>
</tr>
<tr>
<td>1</td>
<td>1,584,996</td>
<td>2,641.66</td>
<td>2,925</td>
</tr>
</tbody>
</table>
Results: (First) Response Time

- **Factor $\frac{1}{32}$**
 - WRR
 - DPR
 - DPR-Q

- **Factor $\frac{1}{16}$**
 - WRR
 - DPR
 - DPR-Q

- **Factor $\frac{1}{8}$**
 - WRR
 - DPR
 - DPR-Q

Normalized (First) Response Time
Results: (Request) Errors

<table>
<thead>
<tr>
<th>Factor</th>
<th>WRR</th>
<th>DPR</th>
<th>DPR-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{1}{32}$</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>$\frac{1}{16}$</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>$\frac{1}{8}$</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Normalized (Request) Error
Measurement Metrics

(First) Response Time, (Request) Errors and Duration are combined into single \textit{lower is better} penalty values

\textit{SLB ISP Penalty} p_{ISP} used for comparison

\[
p_{ISP} = \left(\frac{\text{response}_{\text{mean}}}{\text{response}_{\text{max}}} \right) \times \left(\frac{\text{request_error}_{\text{mean}}}{\text{requests}_{\text{total}}} \right)
\]
Results: SLB Penalty

Factor $\frac{1}{32}$

Factor $\frac{1}{16}$

Factor $\frac{1}{8}$

SLB ISP Penalty
Conclusions and Future Work

salbnet implementation for *credit* based SLB introduced

Previous simulations are confirmed:

- DPR and DPR-Q outperform traditional WRR

DPR-Q variant is slightly better than DPR, for higher workloads

Next step: salbnet and DNS, without InfiniBand and RDMA