#### Policy Anomaly Detection for Distributed IPv6 Firewalls

Claas Lorenz and Bettina Schnor



Potsdam University Institute for Computer Science Operating Systems and Distributed Systems

Colmar, 2015-07-20

#### Outline

#### 1 Motivation

- 2 Challenges and Approach
- 3 Runtime Measurements
- 4 Conclusion and Future Work







Figure: Share of IPv6 requests for Google services<sup>1</sup>.

<sup>1</sup>cf. [Goo15]

Claas Lorenz and Bettina Schnor

Policy Anomaly Detection for Distributed IPv6 Firewalls

# Motivation

- Why IPv6?
  - Steady growth of the IPv6 share
  - Internet of Things works only with enough addresses (estimated: 100 trillion entities<sup>2</sup>)
- Often historically grown firewall policies
- Manual migration from IPv4 to IPv6 is challenging for large firewall instances
- IDSv6 project<sup>3</sup>:
  - ft6: Tests firewalls for RFC conformity
  - ad6: Finds policy anomalies firewall and network configurations





# Challenges for Formal Verification

- Goal is the detection of the anomalies:
  - cyclicity

```
ip6tables -- POUTPUT DROP
ip6tables -- AOUTPUT -- pudp -- jACCEPT
ip6tables -- AOUTPUT -- ptcp -- jOUTPUT
```

- unreachability
- shadowing
- cross-path
- Extension of the formalism of Jeffrey and Samak<sup>4</sup>
- Larger base header with IPv6 (320 vs. 104 bits) → enlarges search space
- Extension header chains of arbitrary length<sup>5</sup>



## Formal Integration - Summary

- Encoding of the firewall rules and the network as Kripke Structure
- Transformation to SAT
- Problem encodings for two additional anomalies: shadowing, cross-path
- For details please refer our paper



# Runtime Measurements - Methodology

- Quantification and scalability estimation
- Synthetic network and firewall topology
- Inspired by our campus' network
- No anomalies inherited (→ worst-case runtime anticipated)
- Processing was single threaded
- Two independent phases with two parameters each:
  - Building phase: First Use vs. Reuse
  - Solving phase: MiniSAT vs. Clasp
- Measurement environment:

| CPU     | Intel i7-3630QM | Cores  | 4       |
|---------|-----------------|--------|---------|
| Freq    | 2.4GHz          | RAM    | 8GB     |
| OS      | Arch Linux      | Kernel | v3.16.2 |
| Python  | v3.4.1          | Redis  | v2.8.17 |
| MiniSAT | v2.2.0          | Clasp  | v3.0.3  |



### **Runtime Measurements - Results**



- Runtime is superlinear but subquadratic
- $f(x) = ax^2 + bx + c$  with
  - x is the number of rules
  - $a \approx 0.0002$ ,  $b \approx -0.06$  and  $c \approx 3.54$  (Building, First Use)
  - $a \approx 0.0004$ ,  $b \approx -0.04$  and  $c \approx 2.85$  (Solving, Clasp)
- Longest total runtime of ~37,2 minutes
- Memory usage was linear

#### Conclusion

Extensions of the formalism of Jeffrey and Samak for:

- Shadowing and cross-path detection
- IPv6 base headers
- Extension header chains
- Runtime does not behave exponential but low quadratic
  - ightarrow acceptable for the migration scenario



# Future Work

- Performance improvement by:
  - Native interfaces for the solver
  - Parallelization
  - Learning from intermediate results
- Expressiveness: Stateful firewalls, VPN-tunnels, etc.
- Applicability for SDN?



# Thank you for your attention!



#### Literature I

[BE06] Philippe Biondi and Arnaud Ebalard. Scapy and IPv6 networking. Talking Slides from http://www.secdev.org/conf/scapy-IPv6\_HITB06.pdf, 2006.

[Goo15] Google IPv6 - Statistics. https://www.google.com/intl/en/ipv6/statistics.html, 2015.

[HFD12] Kai Hwang, Geoffrey C. Fox, and Jack J. Dongarra. Distributed and Cloud Computing - From Parallel Processing to the Internet of Things. Elsevier, 2012.

[IDS13] IPv6 Intrusion Detection System - Attack prevention and validated protection of IPv6 networks. http://www.idsv6.de/de/index.html, 2013.

Frame 13 of 14

## Literature II

[JS09] Alan Jeffrey and Taghrid Samak. Model Checking Firewall Policy Configurations. In POLICY, pages 60–67. IEEE Computer Society, 2009.



Claas Lorenz and Bettina Schnor Policy Anomaly Detection for Distributed IPv6 Firewalls