
Software-Managed Cache Coherence forfast One-Sided Communication
PMAM@PPoPP, Barcelona, Spain, March 12 2016
Steffen Christgau, Bettina Schnor
Operating Systems and Distributed SystemsInsititute for Computer ScienceUniversity of Potsdam, Germany



Motivation
• Will future many-core systems provide hardware cache

coherence?

Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MC

48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 1 / 6



Motivation
• Will future many-core systems provide hardware cache

coherence? Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MC

48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 1 / 6



Motivation
• Will future many-core systems provide hardware cache

coherence? Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MC

48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 1 / 6



Motivation
• Will future many-core systems provide hardware cache

coherence? Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MC

48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 1 / 6



Motivation
• Will future many-core systems provide hardware cache

coherence? Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC

Tile

L2

L2 Core

Core

MPBMIUR

MC

MC

MC

48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software
PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 1 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure start

exposure end

access start

access enda
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure start

exposure end

access start

access end

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure end

access start

access end

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure start

access start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure start

exposure endaccess end

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure start

access start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure start

exposure end

access start

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



MPI One-Sided Communication
origin target

window
(exposed by target)

RAM

GET

PUT

exposure startaccess start

access end

a
c
c
e
s
s
e
p
o
c
h

e
x
p
o
s
u
r
e
e
p
o
c
h

cache cache

modify window dataoutdated copy

flush exposure startaccess start

GET

current data

outdated

copy

invalidate

PUT
flush

outdated copy

access end

current data

outdated

copy

invalidate access window data
exposure end

Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 2 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window

• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction

• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 3 / 6



Experimental Results: 3D FFT
• MPI implementation of NPB-FT

origins only PUT→ window gets updated correctly

assume similar performance as working write-through memory

r
u
n
ti
m
e
/
s

 0

 5

 10

 15

 20

tw
o-

sid
.

de
f.O

SC

SCOSCo

bookkeep.
local FFT

comm.
transpose

barriers

class S

 0

 5

 10

 15

 20

 25

tw
o-

sid
.

de
f.O

SC

SCOSCo

class W

 0

 50

 100

 150

 200

 250

 300

 350

 400

tw
o-

sid

de
f.O

SC

SCOSCo

class A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

tw
o-

sid

de
f.O

SC

SCOSCo

class B

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 4 / 6



Experimental Results: 3D FFT
• MPI implementation of NPB-FT

origins only PUT→ window gets updated correctly

assume similar performance as working write-through memory

r
u
n
ti
m
e
/
s

 0

 5

 10

 15

 20

tw
o-

sid
.

de
f.O

SC

SCOSCo

bookkeep.
local FFT

comm.
transpose

barriers

class S

 0

 5

 10

 15

 20

 25

tw
o-

sid
.

de
f.O

SC

SCOSCo

class W

 0

 50

 100

 150

 200

 250

 300

 350

 400

tw
o-

sid

de
f.O

SC

SCOSCo

class A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

tw
o-

sid

de
f.O

SC

SCOSCo

class B

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 4 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

slow performance of working write-through memory (?)

(full) cache flush slow anyway

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

removes all window data (not only modified)

affects other cached data of same type

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
alternative: address range-based flush of modified cache lines

• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
GET(..., buf, len)

local cache window/RAM
1.) invalidate

2.) memcpy

• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)

PUT(..., dst, len)

window/RAM remote cache

invalidate

memcpy

→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 5 / 6



Summary
• demonstrated implementation for software-based cache

coherence on nCC many-core CPU

• shared memory approach outperforms message-based solution

4–5x less communication time (40–45% app. speedup) for FFT

• identified beneficial features for future systems

local and remote address-based cache invalidation

Thanks for your attention!

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 6 / 6



Summary
• demonstrated implementation for software-based cache

coherence on nCC many-core CPU

• shared memory approach outperforms message-based solution

4–5x less communication time (40–45% app. speedup) for FFT

• identified beneficial features for future systems

local and remote address-based cache invalidation

Thanks for your attention!

PMAM 2016 S. Christgau (U Potsdam): SW-Managed Cache Coherence for fast OSC 6 / 6


