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Motivation
• Will future many-core systems provide hardware cache

coherence?

Not always→ coherence islands in nCC systems

• nCC many-core research system: Intel SCC
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48 Pentium cores with L1/2 caches, no HW cache coherence
memory subsystem allows creation of shared memory

• previous research: focus on message passing (used MPB)

• new approach: use shared memory on nCC CPU for one-sidedcommunication andmanage cache coherence in software
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MPI One-Sided Communication
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Requirements for Software-Managed Cache Coherence

target/exposure start: write window data back to RAM

origin/access start: invalidate cached window data

origin/access end: write window data back to RAM

target/exposure end: invalidate cached window data
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Implementation on the SCC: SCOSCo
• conventional cacheable/uncacheable memory types unsuited

• new memory type on SCC

L1-cacheable, cache lines marked with special bit

new instruction: invalidate marked cache lines in few cycles

configurable L1 behavior: write-back or write-through

write-combine buffer

• use new memory type + write-through for window

• requirement 1: write window data back to RAM

→ write-through cache configuration for window
• requirement 2: invalidate cached data

→ issue fast invalidate instruction
• but: SCC’s write-through has uncached memory performance

use write-back configuration as substitute

for benchmarks: ensure cache miss on write
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Experimental Results: 3D FFT
• MPI implementation of NPB-FT

origins only PUT→ window gets updated correctly

assume similar performance as working write-through memory
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Wishful Thinking for Fast OSC on nCC Systems
Recommendations for Future Systems
potentials for further improvements

• slow flush to RAM

• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
• remote cache invalidation by address range (for PUTs)
→more explicit control over caches for software
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• wasteful invalidation

desireable beneficial hardware features in future nCC systems:
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• wasteful invalidation

desireable beneficial hardware features in future nCC systems:

• flushable write-combine buffer for write-through memory
• address range-based cache invalidation (for GETs)
GET(..., buf, len)

local cache window/RAM
1.) invalidate

2.) memcpy
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Summary
• demonstrated implementation for software-based cache

coherence on nCC many-core CPU

• shared memory approach outperforms message-based solution

4–5x less communication time (40–45% app. speedup) for FFT

• identified beneficial features for future systems

local and remote address-based cache invalidation

Thanks for your attention!
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