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Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application

• large amount of data→ distribute across processes→ DHT
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• accessing distributed data:

hash function returns arbitrary process and address

difficult to program with two-sided message passing

MPI passive target one-sided communication to the rescue

synchronization required
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Motivation: nCC Systems

• Future many-cores may not provide (global) cache coherence.

Intel Knights Landing: coherent multi-socket systems not feasible

HPE "The Machine", EuroServer: coherence islands
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Research Platform

• nCC many-core research system: Intel SCC

48 Pentium cores with L1/2 caches

no HW cache coherence
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• This talk: design of synchronization on nCC platform.
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MPI One-Sided Communication

• process memory exposed via windows

• access to windows with window object (handle)
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• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations

typical RMA operations: PUT, GET, . . .

explicit synchronization required
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MPI Passive Target Synchronization

• locks as means for synchronization, used by origins only
• no participation of targets in synchronization (passive targets)

• usage similar to shared memory locks

1. acquire lock for target window WIN_LOCK(win, rank, ...)
2. perform operations PUT(win, rank, ...)
3. release lock WIN_UNLOCK(win, rank)

MPI defines two lock types:

shared concurrent accesses on target window allowed
exclusive prevent concurrent accesses on same target window
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Distributed Hash Table with MPI OSC
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DHT_write
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PUT(window_obj, target, data)

UNLOCK(window_obj, target)
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Synchronization for the DHT

• observation: high latency for synchronization in SCC’s MPI

previous work (PASA 2016): 5x lower latency with shared

memory and uncached accesses instead of messages

synchronization semantics undefined by MPI:

"much freedom for implementors"
• assumption: (far) more DHT reads than writes

Readers & Writers Synchronization (Courtois et al.) advantageous

writer precedence→ recent data for readers

→ design of MPI passive target synchronization scheme

with R&W semantics for SCC
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Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window
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lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue
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rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1
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Synchronization Operations

• according to Mellor-Crummey/Scott

• processes enter either list of readers or writers

Readers
start_read blocks as long as writers are active or waiting,

allows multiple active readers

end_read wake first waiting writer if no active reader left

Writers
start_write blocks when readers are active

end_write wake up next writer (if any) or all waiting readers
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R&W Synchronization inside MPI Library

MPI_Win_lock(type, target_rank, win_obj)
{
entry = alloc_list_entry();

win_obj.entry[target_rank] = entry;
win_obj.entry[target_rank].lock_type = type;

if (type == SHARED)
start_read(win_obj.lock[target_rank], entry);

else
start_write(win_obj.lock[target_rank], entry);

}

unlock operation straight forward
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Data Placement

synchronization data located in shared memory

• danger of contention on memory interface

• speedup of memory-bound application with different

synchronization data locations:
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sp
e

e
d

u
p

number of MPI processes

distributed
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controller 0

• bring spinning object close to process/core→ allocate list entry

in closest memory controller→ local uncached spinning
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Discussion

design characteristics:

• concurrent window access: one lock per window and process
• per-window Readers & Writers semantic
• contention avoidance: spin on local object only
• truly passive: no participation of the remote process in
synchronization operations and communication
Christgau, Schnor: Exploring One-Sided Communication and Synchronization on a non-Cache-Coherent Many-Core

Architecture. Concurrency and Computation: Practice and Experience. 2017
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Summary and Outlook

Summary

• presented design for implementing MPI passive target

synchronization on nCC many-core

• applied concepts from Mellor-Crummey/Scott to nCC processor

• distributed data structures critical

Future Work

• implement the presented scheme

• evaluate performance by comparison against message-based

implementation and other designs

Questions!?
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