
Design of MPI Passive Target
Synchronization for a Non-Cache-
Coherent Many-Core Processor

27th PARS Workshop, Hagen, Germany, May 5 2017

Steffen Christgau, Bettina Schnor

Operating Systems and Distributed Systems
Institute for Computer Science
University of Potsdam, Germany

Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application

• large amount of data→ distribute across processes→ DHT

rank 0

local

DHT part

rank 1

local

DHT part

rank n − 1

local

DHT part

...

DHT

• accessing distributed data:

hash function returns arbitrary process and address

difficult to program with two-sided message passing

MPI passive target one-sided communication to the rescue

synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 1 / 14

Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application
• large amount of data→ distribute across processes→ DHT

rank 0

local

DHT part

rank 1

local

DHT part

rank n − 1

local

DHT part

...

DHT

• accessing distributed data:

hash function returns arbitrary process and address

difficult to program with two-sided message passing

MPI passive target one-sided communication to the rescue

synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 1 / 14

Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application
• large amount of data→ distribute across processes→ DHT

rank 0

local

DHT part

rank 1

local

DHT part

rank n − 1

local

DHT part

...

DHT

• accessing distributed data:

hash function returns arbitrary process and address

difficult to program with two-sided message passing

MPI passive target one-sided communication to the rescue

synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 1 / 14

Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application
• large amount of data→ distribute across processes→ DHT

rank 0

local

DHT part

rank 1

local

DHT part

rank n − 1

local

DHT part

...

DHT

• accessing distributed data:

hash function returns arbitrary process and address

difficult to program with two-sided message passing

MPI passive target one-sided communication to the rescue

synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 1 / 14

Motivation: nCC Systems

• Future many-cores may not provide (global) cache coherence.

Intel Knights Landing: coherent multi-socket systems not feasible

HPE "The Machine", EuroServer: coherence islands

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 2 / 14

Motivation: nCC Systems

• Future many-cores may not provide (global) cache coherence.
Intel Knights Landing: coherent multi-socket systems not feasible

HPE "The Machine", EuroServer: coherence islands

https://www.extremetech.com/wp-content/uploads/2016/04/KnightsLanding.png

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 2 / 14

https://www.extremetech.com/wp-content/uploads/2016/04/KnightsLanding.png

Motivation: nCC Systems

• Future many-cores may not provide (global) cache coherence.
Intel Knights Landing: coherent multi-socket systems not feasible

HPE "The Machine", EuroServer: coherence islands

https://regmedia.co.uk/2016/11/22/the_machine_universal_memory_pool_access.jpg

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 2 / 14

https://regmedia.co.uk/2016/11/22/the_machine_universal_memory_pool_access.jpg

Research Platform

• nCC many-core research system: Intel SCC

48 Pentium cores with L1/2 caches

no HW cache coherence

MC 0 MC 1

MC 2 MC 3

L2$

L2$

Core

Core

MIU MPB

R Tile

• This talk: design of synchronization on nCC platform.

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 3 / 14

Research Platform

• nCC many-core research system: Intel SCC

48 Pentium cores with L1/2 caches

no HW cache coherence

MC 0 MC 1

MC 2 MC 3

L2$

L2$

Core

Core

MIU MPB

R Tile

• This talk: design of synchronization on nCC platform.

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 3 / 14

Agenda

MPI Passive Target One-Sided Communication

Design for Passive Target Synchronization on the SCC

Data Structures and Algorithms

Data Placement

Outlook and Future Work

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 4 / 14

MPI One-Sided Communication

• process memory exposed via windows

• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT

(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations

typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows

• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations

typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations
typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations
typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations

target processes are addressed by operations
typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations

typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations
typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI One-Sided Communication

• process memory exposed via windows
• access to windows with window object (handle)

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT
(window) (window) (window)

window object window object window object

• key concept: only one communication partner issues
communication operations

origin processes issue communication operations
target processes are addressed by operations
typical RMA operations: PUT, GET, . . .

explicit synchronization required

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 5 / 14

MPI Passive Target Synchronization

• locks as means for synchronization, used by origins only
• no participation of targets in synchronization (passive targets)

• usage similar to shared memory locks

1. acquire lock for target window WIN_LOCK(win, rank, ...)
2. perform operations PUT(win, rank, ...)
3. release lock WIN_UNLOCK(win, rank)

MPI defines two lock types:

shared concurrent accesses on target window allowed
exclusive prevent concurrent accesses on same target window

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 6 / 14

MPI Passive Target Synchronization

• locks as means for synchronization, used by origins only
• no participation of targets in synchronization (passive targets)

• usage similar to shared memory locks

1. acquire lock for target window WIN_LOCK(win, rank, ...)
2. perform operations PUT(win, rank, ...)
3. release lock WIN_UNLOCK(win, rank)

MPI defines two lock types:

shared concurrent accesses on target window allowed
exclusive prevent concurrent accesses on same target window

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 6 / 14

MPI Passive Target Synchronization

• locks as means for synchronization, used by origins only
• no participation of targets in synchronization (passive targets)

• usage similar to shared memory locks

1. acquire lock for target window WIN_LOCK(win, rank, ...)
2. perform operations PUT(win, rank, ...)
3. release lock WIN_UNLOCK(win, rank)

MPI defines two lock types:

shared concurrent accesses on target window allowed
exclusive prevent concurrent accesses on same target window

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 6 / 14

Distributed Hash Table with MPI OSC

rank 0

local DHT part

window object

(window)

rank 1

local DHT part

window object

(window)

rank n − 1

local DHT part

window object

(window)

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT

DHT_read
LOCK(window_obj, target, SHARED)

GET(window_obj, target, &data)

UNLOCK(window_obj, target)

DHT_write
LOCK(window_obj, target, EXCLUSIVE)

PUT(window_obj, target, data)

UNLOCK(window_obj, target)

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 7 / 14

Distributed Hash Table with MPI OSC

rank 0

local DHT part

window object

(window)

rank 1

local DHT part

window object

(window)

rank n − 1

local DHT part

window object

(window)

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT

DHT_read
LOCK(window_obj, target, SHARED)

GET(window_obj, target, &data)

UNLOCK(window_obj, target)

DHT_write
LOCK(window_obj, target, EXCLUSIVE)

PUT(window_obj, target, data)

UNLOCK(window_obj, target)

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 7 / 14

Distributed Hash Table with MPI OSC

rank 0

local DHT part

window object

(window)

rank 1

local DHT part

window object

(window)

rank n − 1

local DHT part

window object

(window)

...p
r
o
c
e
s
s
’
a
d
d
r
e
s
s
s
p
a
c
e

DHT

DHT_read
LOCK(window_obj, target, SHARED)

GET(window_obj, target, &data)

UNLOCK(window_obj, target)

DHT_write
LOCK(window_obj, target, EXCLUSIVE)

PUT(window_obj, target, data)

UNLOCK(window_obj, target)

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 7 / 14

Synchronization for the DHT

• observation: high latency for synchronization in SCC’s MPI

previous work (PASA 2016): 5x lower latency with shared

memory and uncached accesses instead of messages

synchronization semantics undefined by MPI:

"much freedom for implementors"
• assumption: (far) more DHT reads than writes

Readers & Writers Synchronization (Courtois et al.) advantageous

writer precedence→ recent data for readers

→ design of MPI passive target synchronization scheme

with R&W semantics for SCC

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 8 / 14

Synchronization for the DHT

• observation: high latency for synchronization in SCC’s MPI

previous work (PASA 2016): 5x lower latency with shared

memory and uncached accesses instead of messages

synchronization semantics undefined by MPI:

"much freedom for implementors"

• assumption: (far) more DHT reads than writes

Readers & Writers Synchronization (Courtois et al.) advantageous

writer precedence→ recent data for readers

→ design of MPI passive target synchronization scheme

with R&W semantics for SCC

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 8 / 14

Synchronization for the DHT

• observation: high latency for synchronization in SCC’s MPI

previous work (PASA 2016): 5x lower latency with shared

memory and uncached accesses instead of messages

synchronization semantics undefined by MPI:

"much freedom for implementors"
• assumption: (far) more DHT reads than writes

Readers & Writers Synchronization (Courtois et al.) advantageous

writer precedence→ recent data for readers

→ design of MPI passive target synchronization scheme

with R&W semantics for SCC

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 8 / 14

Synchronization for the DHT

• observation: high latency for synchronization in SCC’s MPI

previous work (PASA 2016): 5x lower latency with shared

memory and uncached accesses instead of messages

synchronization semantics undefined by MPI:

"much freedom for implementors"
• assumption: (far) more DHT reads than writes

Readers & Writers Synchronization (Courtois et al.) advantageous

writer precedence→ recent data for readers

→ design of MPI passive target synchronization scheme

with R&W semantics for SCC

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 8 / 14

Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window

rank 0

window

lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue

– state

rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1

sh
ar
ed
m
em
or
y

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 9 / 14

Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window

rank 0

window

lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue

– state

rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1

sh
ar
ed
m
em
or
y

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 9 / 14

Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window

rank 0

window

lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue

– state

rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1

sh
ar
ed
m
em
or
y

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 9 / 14

Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window

rank 0

window

lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue

– state

rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1

sh
ar
ed
m
em
or
y

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 9 / 14

Data Structures for Synchronization

use lock data structure as proposed by Mellor-Crummey/Scott (’91)

• distributed lists of waiting readers and writers

no centralized object to spin on (avoid memory contention)

instead: per-process list entry for spinning

• state variable: counts active/interested readers/writers

• one lock variable per process and window

rank 0

window

lock L0
– writer queue

– reader queue

– state

rank 1

window

lock L1
– writer queue

– reader queue

– state

rank 2

window

lock L2
– writer queue

– reader queue

– state

blocked = 0 blocked = 1 blocked = 1

sh
ar
ed
m
em
or
y

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 9 / 14

Synchronization Operations

• according to Mellor-Crummey/Scott

• processes enter either list of readers or writers

Readers
start_read blocks as long as writers are active or waiting,

allows multiple active readers

end_read wake first waiting writer if no active reader left

Writers
start_write blocks when readers are active

end_write wake up next writer (if any) or all waiting readers

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 10 / 14

Synchronization Operations

• according to Mellor-Crummey/Scott

• processes enter either list of readers or writers

Readers
start_read blocks as long as writers are active or waiting,

allows multiple active readers

end_read wake first waiting writer if no active reader left

Writers
start_write blocks when readers are active

end_write wake up next writer (if any) or all waiting readers

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 10 / 14

Synchronization Operations

• according to Mellor-Crummey/Scott

• processes enter either list of readers or writers

Readers
start_read blocks as long as writers are active or waiting,

allows multiple active readers

end_read wake first waiting writer if no active reader left

Writers
start_write blocks when readers are active

end_write wake up next writer (if any) or all waiting readers

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 10 / 14

Synchronization Operations

• according to Mellor-Crummey/Scott

• processes enter either list of readers or writers

Readers
start_read blocks as long as writers are active or waiting,

allows multiple active readers

end_read wake first waiting writer if no active reader left

Writers
start_write blocks when readers are active

end_write wake up next writer (if any) or all waiting readers

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 10 / 14

R&W Synchronization inside MPI Library

MPI_Win_lock(type, target_rank, win_obj)
{
entry = alloc_list_entry();

win_obj.entry[target_rank] = entry;
win_obj.entry[target_rank].lock_type = type;

if (type == SHARED)
start_read(win_obj.lock[target_rank], entry);

else
start_write(win_obj.lock[target_rank], entry);

}

unlock operation straight forward

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 11 / 14

R&W Synchronization inside MPI Library

MPI_Win_lock(type, target_rank, win_obj)
{
entry = alloc_list_entry();

win_obj.entry[target_rank] = entry;
win_obj.entry[target_rank].lock_type = type;

if (type == SHARED)
start_read(win_obj.lock[target_rank], entry);

else
start_write(win_obj.lock[target_rank], entry);

}

unlock operation straight forward

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 11 / 14

Data Placement

synchronization data located in shared memory

• danger of contention on memory interface

• speedup of memory-bound application with different

synchronization data locations:

 0

 16

 32

 48

 0 4 8 12 16 20 24 28 32 36 40 44 48

sp
e

e
d

u
p

number of MPI processes

distributed
controller 3
controller 2
controller 1
controller 0

• bring spinning object close to process/core→ allocate list entry

in closest memory controller→ local uncached spinning

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 12 / 14

Data Placement

synchronization data located in shared memory

• danger of contention on memory interface

• speedup of memory-bound application with different

synchronization data locations:

 0

 16

 32

 48

 0 4 8 12 16 20 24 28 32 36 40 44 48

sp
e

e
d

u
p

number of MPI processes

distributed
controller 3
controller 2
controller 1
controller 0

• bring spinning object close to process/core→ allocate list entry

in closest memory controller→ local uncached spinning

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 12 / 14

Data Placement

synchronization data located in shared memory

• danger of contention on memory interface

• speedup of memory-bound application with different

synchronization data locations:

 0

 16

 32

 48

 0 4 8 12 16 20 24 28 32 36 40 44 48

sp
e

e
d

u
p

number of MPI processes

distributed
controller 3
controller 2
controller 1
controller 0

• bring spinning object close to process/core→ allocate list entry

in closest memory controller→ local uncached spinning

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 12 / 14

Discussion

design characteristics:

• concurrent window access: one lock per window and process
• per-window Readers & Writers semantic
• contention avoidance: spin on local object only
• truly passive: no participation of the remote process in
synchronization operations and communication
Christgau, Schnor: Exploring One-Sided Communication and Synchronization on a non-Cache-Coherent Many-Core

Architecture. Concurrency and Computation: Practice and Experience. 2017

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 13 / 14

Summary and Outlook

Summary

• presented design for implementing MPI passive target

synchronization on nCC many-core

• applied concepts from Mellor-Crummey/Scott to nCC processor

• distributed data structures critical

Future Work

• implement the presented scheme

• evaluate performance by comparison against message-based

implementation and other designs

Questions!?

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 14 / 14

Summary and Outlook

Summary

• presented design for implementing MPI passive target

synchronization on nCC many-core

• applied concepts from Mellor-Crummey/Scott to nCC processor

• distributed data structures critical

Future Work

• implement the presented scheme

• evaluate performance by comparison against message-based

implementation and other designs

Questions!?

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 14 / 14

Summary and Outlook

Summary

• presented design for implementing MPI passive target

synchronization on nCC many-core

• applied concepts from Mellor-Crummey/Scott to nCC processor

• distributed data structures critical

Future Work

• implement the presented scheme

• evaluate performance by comparison against message-based

implementation and other designs

Questions!?

PARS 2017 S. Christgau (U Potsdam): MPI Passive Target Synchronization 14 / 14

	MPI Passive Target One-Sided Communication
	Design for Passive Target Synchronization on the SCC
	Data Structures and Algorithms
	Data Placement

	Outlook and Future Work

