Comparing MPI Passive Target Synchronization
Schemes on a Non-Cache-Coherent
Shared-Memory Processor

Steffen Christgau(® Bettina Schnor?

"Supercomputing Department
Zuse Institute Berlin

2Operating Systems and Distributed Systems
Institute for Computer Science, University of Potsdam

28th PARS Workshop, Berlin, Germany, March 22 2019

B



Motivation: Distributed Hash Table (DHT)

¢ hash table as cache for computational results in MPI application
¢ large amount of data — distribute across processes — DHT

local DHT part local DHT part local DHT part DHT

rank 0 rank 1 ..{ rankn -1
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Motivation: Distributed Hash Table (DHT)

¢ hash table as cache for computational results in MPI application
¢ large amount of data — distribute across processes — DHT

rank n — 1

e accessing distributed data:

S. Christgau (Zuse Institute)

hash function returns arbitrary process and address
difficult to program with two-sided message passing
MPI passive target one-sided communication to the rescue
synchronization required
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Research Platform

¢ nCC NUMA many-core research system: Intel SCC

m 48 Pentium cores with L1/2 caches, mesh network
= no HW cache coherence
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Research Platform

* nCC NUMA many-core research system: Intel SCC

m 48 Pentium cores with L1/2 caches, mesh network
= no HW cache coherence

Likely Exascale Architectures

(Low Capacity, High Bandwidth)

(High Capacty,
Low Bandwidth)
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Communicaton coherent

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

e From “Abstract Machine Models and Proxy
Architectures for Exascale Computing Rev 1.1,’

(William Gropp. MPI: The Once and Future King. EuroMPI 2016 Keynote, Edinburg)
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Research Platform

¢ nCC NUMA many-core research system: Intel SCC

m 48 Pentium cores with L1/2 caches, mesh network
= no HW cache coherence

Likely Exascale Architectures

(Low Capacity, High Bandwidth)

(High Capacty,
Low Bandwidth)

Integrated NIC - Note: not fully cache
for Off-Chip
Communication coherent

Figure 2.1: Abstract Machine Model of an exascale Node Architecture

e From “Abstract Machine Models and Proxy
Architectures for Exascale Computing Rev 1.1,’

(William Gropp. MPI: The Once and Future King. EuroMPI 2016 Keynote, Edinburg)

e This talk: comparison of synchronization schemes for MPI passive
target OSC
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Outline

MPI Passive Target One-Sided Communication

Synchronization Schemes

Experimental Evaluation

Summary
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MPI Passive Target One-Sided Communication
origin process target process

MPI_WIN_LOCK(TYPE, target, win)

RMA operations window

MPI_WIN_UNLOCK(target, win)
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MPI Passive Target One-Sided Communication
origin process target process

MPI_WIN_LOCK(TYPE, target, win)

RMA operations window

MPI_WIN_UNLOCK(target, win)

e Operations guaranteed to be finished only after UNLOCK.

m Standard defines LOCK as start of accesses only — epoch start
® Other processes may proceed after (exclusive) LOCK as well.
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MPI Passive Target One-Sided Communication
origin process target process

MPI_WIN_LOCK(TYPE, target, win)

RMA operations window

MPI_WIN_UNLOCK(target, win)

e Operations guaranteed to be finished only after UNLOCK.

m Standard defines LOCK as start of accesses only — epoch start
® Other processes may proceed after (exclusive) LOCK as well.

e Two lock types

EXCLUSIVE accesses protected against concurrent access on window site
SHARED no concurrent accesses protected by EXCLUSIVE lock

¢ Implementor’s freedom: LOCK may block (or not)
* LOCKALL operation: SHARED lock on all processes
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Using Synchronization for DHT
o for DHT: write with EXCLUSIVE lock, read with SHARED lock

DHT_write DHT_read

LOCK(win, target, EXCLUSIVE) LOCK(win, target, SHARED)
PUT(win, target, data) GET(win, target, &data)
UNLOCK(win, target) UNLOCK(win, target)

¢ desired behavior: writers get precedence — fresh data for readers

® not enforceable through MPI standard
= implementation may support such behavoir (via INFO_KEY, e.g.)
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GBH: Best Effort Locks

o Design by Gerstenberger, Besta, and Hoefler for Cray XC
super-computers, fully supports MPI passive target API

* RDMA-accessible data: centralized global counter, distributed local
counters, but single polling resource

machine word size

global ’Iockallcounter| excl. counter ‘

local rank n — 1 ’ shared counter |exc|. bit‘

. ’ shared counter |exc|. bit‘

rank 0’ shared counter |exc|. bit‘
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GBH: Best Effort Locks

o Design by Gerstenberger, Besta, and Hoefler for Cray XC
super-computers, fully supports MPI passive target API

* RDMA-accessible data: centralized global counter, distributed local
counters, but single polling resource

machine word size

global ’Iockallcounter| excl. counter ‘

local rank n — 1 ’ shared counter |exc|. bit‘

. ’ shared counter |exc|. bit‘

rank 0’ shared counter |exc|. bit‘

* best effort: try to acquire lock, step-back if conflict detected (with
exponentially increasing back-off)

* No precedence of arriving process type.

S. Christgau (Zuse Institute) Comparing MPI Passive Target Synchronization Schemes PARS 2019 6/14



MCS-WP: Locks with Writer Precedence

¢ based on classical paper by Mellor-Crummey and Scott (MCS)

state and queues for readers and writers per lock

locally allocated (distributed) queue items used for spinning

one MCS-WP lock per window/process
ordered writer precedence, no support for LOCKALL

blocked =0 | @-}—{ blocked =1 | @—| blocked=1 |

>
g
[ lock Lo lock L4 lock Lp
_E p — Writer queue - writer queue - writer queue
o - reader queue - reader queue - reader queue
e - state - state - state
(%]
window window window
rank 0 rank 1 rank n
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Message-based Synchronization

e used in MPICH (CH3 device)
o default behavoir: actions deferred to end of access epoch

m |ock acquisition by control message at end of epoch
= no message if no RMA operations — LOCK + UNLOCK = NO-OP

origin target
MPI_WIN_LOCK
RMA operations MPI middleware

MPI_WIN_UNLOCK

lock + ops + unlock msgs.r
(or nothing)
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e can be switched to immediate messaging

m force message in LOCK call
® wait for reply (lock-granted message) in UNLOCK

origin target
acquire lock msg
MPI_WIN_LOCK
RMA operations MPI middleware
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Message-based Synchronization

e used in MPICH (CH3 device)
o default behavoir: actions deferred to end of access epoch

m |ock acquisition by control message at end of epoch
= no message if no RMA operations — LOCK + UNLOCK = NO-OP

e can be switched to immediate messaging

m force message in LOCK call
® wait for reply (lock-granted message) in UNLOCK

e serialization of messages at target process

® no precedence of either process type
® processing in target’ MPI middleware

origin target

MPI_WIN_LOCK acquire lock msg
RMA Ope_rations MPI middleware
MPI_WIN_UNLOCK ops + unlock msgs.

lock + ops + unlock msgs.r
(or nothing)
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Implementation

¢ Implementation based on RCKMPI
m SCC-tuned MPICH derivate, exploits hardware’s message passing features
® completely message-based communication and synchronization
(inherited from CH3)
e GBH and MCS-WP implemented based on OSC modifications
® data strutures allocated in shared memory
m uncached memory accesses
B OSC modification: shared memory with SW-based coherence for
communication
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Microbenchmark

e assess latency of synchronization for different lock type mixes
* no communication involved
m different communication implementations — unfair comparison
®m measure pure synchronization overhead only
e perform tight loop of LOCK/UNLOCK operations
m choose between shared and exclusive lock according to given ratio —
vary share of writers/readers
B measure time t; per iteration
collect all t; from all n processes, report median
® evaluate median latency for increasing process count
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Benchmark Results: only shared accesses/locks

latency / us

e RCKMPI (immediate) slow although tuned message-transfer
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e constant latency for GBH — single increment

¢ list management overhead for MCS-WP
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Benchmark Results: exclusive accesses/locks only

latency / us
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e backoff is essential for GBH performance

e consistent performance for MCS-WP
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Evaluation for DHT

o 1 writer + 47 concurrent readers access same window (DHT portion)
e measure time for writer to store k € {32,512,2048} bytes
e compare GBH with back-off and MCS-WP

~
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| 136.4

89.7

time for PUT / us
51.7

3.1.4

512B
2048B
23.

32B |90.6

GBH+back-off MCS-WP

e GBH puts more stress on single memory controller, MCS-WP benefits
from completely distributed synchronization data
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Summary

¢ Successfully applied algorithms for RMA- and coherent shared
memory systems on non-cache-cohrent one

¢ Superior performance compared to tuned message-based approach
e Distribution of synchronization data is critical.

Questions!?
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