
Comparing MPI Passive Target Synchronization

Schemes on a Non-Cache-Coherent

Shared-Memory Processor

Steffen Christgau1,(2) Bettina Schnor2

1
Supercomputing Department

Zuse Institute Berlin

2
Operating Systems and Distributed Systems

Institute for Computer Science, University of Potsdam

28th PARS Workshop, Berlin, Germany, March 22 2019



Motivation: Distributed Hash Table (DHT)

• hash table as cache for computational results inMPI application
• large amount of data→ distribute across processes→ DHT

rank 0

local DHT part

rank 1

local DHT part

rank n − 1

local DHT part

...

DHT

• accessing distributed data:
hash function returns arbitrary process and address

difficult to program with two-sided message passingMPI passive target one-sided communication to the rescuesynchronization required
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Research Platform

• nCC NUMA many-core research system: Intel SCC
48 Pentium cores with L1/2 caches, mesh networkno HW cache coherence
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• This talk: comparison of synchronization schemes for MPI passive
target OSC
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Figure 2.1: Abstract Machine Model of an exascale Node Architecture

2.1 Overarching Abstract Machine Model

We begin with a single model that highlights the anticipated key hardware architectural features that may
support exascale computing. Figure 2.1 pictorially presents this as a single model, while the next subsections
describe several emerging technology themes that characterize more specific hardware design choices by com-
mercial vendors. In Section 2.2, we describe the most plausible set of realizations of the single model that are
viable candidates for future supercomputing architectures.

2.1.1 Processor

It is likely that future exascale machines will feature heterogeneous nodes composed of a collection of more
than a single type of processing element. The so-called fat cores that are found in many contemporary desktop
and server processors characterized by deep pipelines, multiple levels of the memory hierarchy, instruction-level
parallelism and other architectural features that prioritize serial performance and tolerate expensive memory
accesses. This class of core is often optimized to run a small number of hardware threads with an emphasis on
e�cient execution of system services, system runtime, or an operating system.

The alternative type of core that we expect to see in future processors is a thin core that features a less
complex design in order to use less power and physical die space. By utilizing a much higher count of the thinner
cores a processor will be able to provide high performance if a greater degree of parallelism is available in the
algorithm being executed.

Application programmers will therefore need to consider the uses of each class of core; a fat core will
provide the highest performance and energy e�ciency for algorithms where little parallelism is available or
the code features complex branching schemes leading to thread divergence, while a thin core will provide the
highest aggregate processor performance and energy e�ciency where parallelism can be exploited, branching is
minimized and memory access patterns are coalesced.

2.1.2 On-Chip Memory

The need for more memory capacity and bandwidth is pushing node architectures to provide larger memories
on or integrated into CPU packages. This memory can be formulated as a cache if it is fast enough or,
alternatively, can be a new level of the memory system architecture. Additionally, scratchpad memories (SPMs)
are an alternate way for cache to ensure a low latency access to data. SPMs have been shown to be more energy-
e�cient, have faster access time, and take up less area than traditional hardware cache [14]. Going forward,
on-chip SPMs will be more prevalent and programmers will be able to configure the on-chip memory as cache
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(William Gropp. MPI: The Once and Future King. EuroMPI 2016 Keynote, Edinburg)
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MPI Passive Target One-Sided Communication

target process

window

origin process
MPI_WIN_LOCK(TYPE, target, win)

RMA operations

MPI_WIN_UNLOCK(target, win)

• Operations guaranteed to be finished only after UNLOCK.
Standard defines LOCK as start of accesses only→ epoch start
Other processes may proceed after (exclusive) LOCK as well.

• Two lock types
EXCLUSIVE accesses protected against concurrent access on window site

SHARED no concurrent accesses protected by EXCLUSIVE lock

• Implementor’s freedom: LOCKmay block (or not)
• LOCKALL operation: SHARED lock on all processes
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Using Synchronization for DHT

• for DHT: write with EXCLUSIVE lock, read with SHARED lock

DHT_write

LOCK(win, target, EXCLUSIVE)

PUT(win, target, data)

UNLOCK(win, target)

DHT_read

LOCK(win, target, SHARED)

GET(win, target, &data)

UNLOCK(win, target)

• desired behavior: writers get precedence→ fresh data for readers

not enforceable through MPI standard

implementation may support such behavoir (via INFO_KEY, e.g.)
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GBH: Best Effort Locks

• Design by Gerstenberger, Besta, and Hoefler for Cray XC
super-computers, fully supports MPI passive target API

• RDMA-accessible data: centralized global counter, distributed local
counters, but single polling resource

machine word size

global
local

lockall counter excl. counter

rank 0 shared counter excl. bit

. . . shared counter excl. bit

rank n − 1 shared counter excl. bit

• best effort: try to acquire lock, step-back if conflict detected (with
exponentially increasing back-off)

• No precedence of arriving process type.
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MCS-WP: Locks with Writer Precedence

• based on classical paper by Mellor-Crummey and Scott (MCS)

• state and queues for readers and writers per lock

• locally allocated (distributed) queue items used for spinning
• one MCS-WP lock per window/process

• ordered writer precedence, no support for LOCKALL

rank 0

window

lock L0
– writer queue

– reader queue

– state

blocked = 0

rank 1

window

lock L1
– writer queue

– reader queue

– state

blocked = 1

rank n

window

lock Ln
– writer queue
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– state

blocked = 1
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Message-based Synchronization

• used in MPICH (CH3 device)

• default behavoir: actions deferred to end of access epoch
lock acquisition by control message at end of epochno message if no RMA operations→ LOCK + UNLOCK = NO-OP

• can be switched to immediate messaging
force message in LOCK call
wait for reply (lock-grantedmessage) in UNLOCK

• serialization of messages at target process
no precedence of either process type

processing in target’ MPI middleware

target
MPI middleware

origin
MPI_WIN_LOCK
RMA operations

MPI_WIN_UNLOCK
lock + ops + unlock msgs.

(or nothing)
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Implementation

• Implementation based on RCKMPI
SCC-tuned MPICH derivate, exploits hardware’s message passing features

completely message-based communication and synchronization

(inherited from CH3)

• GBH and MCS-WP implemented based on OSC modifications
data strutures allocated in shared memory

uncached memory accesses

OSC modification: shared memory with SW-based coherence for

communication
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Microbenchmark

• assess latency of synchronization for different lock type mixes

• no communication involved
different communication implementations→ unfair comparison

measure pure synchronization overhead only

• perform tight loop of LOCK/UNLOCK operations
choose between shared and exclusive lock according to given ratio→
vary share of writers/readers

measure time ti per iteration
collect all ti from all n processes, report median
evaluate median latency for increasing process count
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Benchmark Results: only shared accesses/locks
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• RCKMPI (immediate) slow although tuned message-transfer

• constant latency for GBH→ single increment

• list management overhead for MCS-WP
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Benchmark Results: exclusive accesses/locks only
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• backoff is essential for GBH performance

• consistent performance for MCS-WP
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Evaluation for DHT

• 1 writer + 47 concurrent readers access same window (DHT portion)

• measure time for writer to store k ∈ {32, 512, 2048} bytes
• compare GBH with back-off and MCS-WP
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• GBH puts more stress on single memory controller, MCS-WP benefits
from completely distributed synchronization data
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Summary

• Successfully applied algorithms for RMA- and coherent shared
memory systems on non-cache-cohrent one

• Superior performance compared to tuned message-based approach

• Distribution of synchronization data is critical.

Questions!?
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