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Deutsche Zusammenfassung

Die immer dichtere und schnellere Vernetzung von Rechnern und Rechenzentren über Hochgeschwindig-
keitsnetzwerke ermöglicht eine neue Art des wissenschaftlich verteilten Rechnens, bei der geographisch weit
auseinanderliegende Rechenkapazitäten zu einer Gesamtheit zusammengefasst werden können. Dieser so
entstehende virtuelle Superrechner, der selbst aus mehreren Grossrechnern besteht, kann dazu genutzt wer-
den Probleme zu berechnen, für die die einzelnen Grossrechner zu klein sind. Die Probleme, die numerisch
mit heutigen Rechenkapazitäten nicht lösbar sind, erstrecken sich durch sämtliche Gebiete der heutigen
Wissenschaft, angefangen von Astrophysik, Molekülphysik, Bioinformatik, Meteorologie, bis hin zur Zahlen-
theorie und Fluiddynamik um nur einige Gebiete zu nennen.

Je nach Art der Problemstellung und des Lösungsverfahrens gestalten sich solche “Meta-Berechnungen”
mehr oder weniger schwierig. Allgemein kann man sagen, dass solche Berechnungen um so schwerer und auch
um so uneffizienter werden, je mehr Kommunikation zwischen den einzelnen Prozessen (oder Prozessoren)
herrscht. Dies ist dadurch begründet, dass die Bandbreiten bzw. Latenzzeiten zwischen zwei Prozessoren
auf demselben Grossrechner oder Cluster um zwei bis vier Grössenordnungen höher bzw. niedriger liegen
als zwischen Prozessoren, welche hunderte von Kilometern entfernt liegen.

Dennoch bricht nunmehr eine Zeit an, in der es möglich ist Berechnungen auf solch virtuellen Su-
percomputern auch mit kommunikationsintensiven Programmen durchzuführen. Eine grosse Klasse von
kommunikations- und berechnungsintensiven Programmen ist diejenige, die die Lösung von Differentialglei-
chungen mithilfe von finiten Differenzen zum Inhalt hat. Gerade diese Klasse von Programmen und deren
Betrieb in einem virtuellen Superrechner wird in dieser vorliegenden Dissertation behandelt. Methoden zur
effizienteren Durchführung von solch verteilten Berechnungen werden entwickelt, analysiert und implemen-
tiert. Der Schwerpunkt liegt darin vorhandene, klassische Parallelisierungsalgorithmen zu analysieren und so
zu erweitern, dass sie vorhandene Informationen (z.B. verfügbar durch das Globus Toolkit) über Maschinen
und Netzwerke zur effizienteren Parallelisierung nutzen. Soweit wir wissen werden solche Zusatzinformatio-
nen kaum in relevanten Programmen genutzt, da der Grossteil aller Parallelisierungsalgorithmen implizit für
die Ausführung auf Grossrechnern oder Clustern entwickelt wurde.

Es sei noch angemerkt, dass die Leistungen aus der vorliegenden Dissertation, besonders Kapitel 7, mit
dem Gordon Bell Prize ausgezeichnet wurden. Ebenso sei angemerkt, dass zum Aufbau der weltgrössten
Grid Infrastrukur – des US TeraGrid – die Ergebnisse aus Kapitel 5 benutzt wurden [66, 20].

Nachdem wir im ersten Kapitel eine historische Zusammenfassung über dieses Gebiet geben (wobei
“historisch” nicht mehr als 7-10 Jahre bedeutet) und die ökonomische und wissenschaftliche Notwendigkeit
dieser Aufgabe erläutern, stellen wir in Kapitel 2 klassische Parallelisierungsalgorithmen vor sowie in Kapi-
tel 3 unsere Werkzeuge (d.h. Software), mit denen wir solche verteilten Rechnungen durchführen wollen.
Bevor wir uns im Kapitel 5 ins Abenteuer einer grossskalierten Berechnung mit vier Grossrechnern stürzen,
versuchen wir zunächst im Kapitel 4 die Effektivität solcher Berechnungen aufgrund eines einfachen Modells
vorherzusagen. Die Vielfalt der Probleme auf die wir in Kapitel 5 gestossen sind und die Erfahrungen, die
wir dort gesammelt haben analysieren wir in Kapitel 6 und schlagen neue Lösungswege vor. In Kapitel 7
gehen wir noch weiter und versuchen durch dynamische und adaptive Techniken der Tatsache Rechnung
zu tragen, dass sich die Intensität der charakteristischen Eigenschaften der Probleme (z.B. Bandbreite, ver-
schiedene numerische Algorithmen etc.) auch noch während der Programmlaufzeit ändern kann. Schliesslich
– in Kapitel 8 – implementieren wir die Strategien, die wir für sinnvoll halten, und zeigen in Kapitel 9
in welcher Weise sie unsere Ausgangssituation verbessert haben. Nachdem wir in Kapitel 10 kurz andere
Projekte auf diesem Gebiet vorstellen, schliessen wir mit einer Zusammenfassung der Ergebnisse und einem
Ausblick auf die Zukunft in Kapitel 11 unsere Arbeit ab.



Abstract

In order to face the rapidly increasing need for computational resources of various scientific and engineering
applications one has to think of new ways to make more efficient use of the worlds current computational
resources. In this respect, the growing speed of wide area networks made a new kind of distributed computing
possible: Metacomputing or (distributed) Grid computing. This is a rather new and uncharted field in
computational science. The rapidly increasing speed of networks even outperforms the average increase of
processor speed: Processor speeds double on average each 18 month whereas network bandwidths double
every 9 months. Due to this development of local and wide area networks Grid computing will certainly play
a key role in the future of parallel computing.

This type of distributed computing, however, distinguishes from the traditional parallel computing in
many ways since it has to deal with many problems not occurring in classical parallel computing. Those
problems are for example heterogeneity, authentication and slow networks to mention only a few. Some of
those problems, e.g. the allocation of distributed resources along with the providing of information about
these resources to the application have been already attacked by the Globus software.

Unfortunately, as far as we know, hardly any application or middle-ware software takes advantage of this
information, since most parallelizing algorithms for finite differencing codes are implicitly designed for single
supercomputer or cluster execution. We show that although it is possible to apply classical parallelizing
algorithms in a Grid environment, in most cases the observed efficiency of the executed code is very poor.

In this work we are closing this gap. In our thesis, we will

o show that an execution of classical parallel codes in Grid environments is possible but very slow

o analyze this situation of bad performance, nail down bottlenecks in communication, remove unnecessary
overhead and other reasons for low performance

o develop new and advanced algorithms for parallelisation that are aware of a Grid environment in order to
generelize the traditional parallelization schemes

o implement and test these new methods, replace and compare with the classical ones

o introduce dynamic strategies that automatically adapt the running code to the nature of the underlying
Grid environment

The higher the performance one can achieve for a single application by manual tuning for a Grid envi-
ronment, the lower the chance that those changes are widely applicable to other programs. In our analysis
as well as in our implementation we tried to keep the balance between high performance and generality.
None of our changes directly affect code on the application level which makes our algorithms applicable to
a whole class of real world applications.

The implementation of our work is done within the Cactus framework using the Globus toolkit, since we
think that these are the most reliable and advanced programming frameworks for supporting computations
in Grid environments. On the other hand, however, we tried to be as general as possible, i.e. all methods
and algorithms discussed in this thesis are independent of Cactus or Globus.

We start with a short introduction to Grid computing and explain its benefits for science and economics.
Furthermore, basic terms and notions that are relevant for this thesis are explained and extended from stan-
dard parallel computing to the usage in Grid environments. In Chapter 2 we give an overview about what
we call “traditional parallel computing”, in Chapter 3 we analyze the Grid awareness of MPI implemen-
tations, present some smaller scaled test runs and end with a description of general problems. Chapter 4
deals with a simple model to predict the performance of a distributed run in a Grid environment while in
Chapter 5 we present a first large scaled distributed run in a real Grid environment where we manually
applied novel techniques to improve the efficiency of the running code. These experiences can also be found



in the award winning paper Supporting Efficient Execution in Heterogeneous Distributed Computing Envi-
ronments with Cactus and Globus (presented at the Supercomuting Conference 2001). Since we have learned
much from those runs we will analyze and develop in Chapter 6 algorithms that automatically achieve the
configuration we adjusted manually in Chapter 5. Since some environment characteristics (e.g. bandwidth
or the used application code algorithm) may change in time we also developed dynamic strategies to adapt
to the current Grid environment, which we are investigating in Chapter 7, including adaptive compression,
adaptive selection of ghost zone sizes and dynamical load balancing. These two Chapters form the content
of the paper Grid Aware Paralellizing Algorithms. In the following Chapter 8 we discuss briefly the imple-
mentation of previously analyzed algorithms within the Cactus framework using the Globus toolkit, followed
by a presentation of the achieved results in Capter 9, a brief presentation of related work in this area in
Capter 10 and a discussion of possible future directions in this field in the last Chapter 11.

The achievements in this thesis, in particular those in Chapter 7 were awarded the Gordon Bell Prize
in the special category. Furthermore, our experiments in Chapter 5 significantly supported the building and
funding of the TeraGrid.
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Chapter 1

Grid Computing: Introduction,
History and Survey

1.1 Definitions: Metacomputing, Grid Computing

Grid computing is a very young and rather uncharted field in computational science [27]. It has
been a buzzword for the last two or three years along with terms like Metacomputing (coined
by Larry Smarr), distributed computing and others. Up to know we used these terms in a quite
undefined manner. This may reflect the fact that those terms are quite loosely defined throughout
the literature.

For the purposes of this thesis we will define the following to avoid confusion. The execution of
parallel codes across more than one supercomputer or cluster, connected by a LAN or a WAN will
be referred to as Metacomputing1. We regard Grid computing as a more general term, subsuming
Metacomputing amongst many other notions (like co-scheduling, resource brokering, migration,
remote visualization, peer to peer networks etc.).

In this thesis we are dealing with Metacomputing in the above sense. However, due to some
reasons the word Metacomputing is more and more replaced by the general word “Grid computing”
in current literature. Thus, except for this overview chapter, we will follow this way and will from
now on speak about “Grid computing” but we will mean “Metacomputing”. In cases where we
mean Grid computing in its most general sense we will mark it as such.

In this introduction we give a brief overview and explain the importance of this field in compu-
tational and other sciences.

1.2 Motivation

One goal of distributed computing is to numerically solve large problems which cannot be solved by
a single CPU or even by hand. Those problems are mainly related to physics (astrophysics, fluid dy-
namics, quantum mechanics), chemistry (chemical reaction flows, physical chemistry), engineering
(crash tests, air plane simulations) or biology/genome analysis [47].

In many cases it is true that the bigger the scale of the problem, the larger the computational
resource has to be in order to solve it. Like in the rest of this thesis we are using examples of
computational astrophysics (i.e. numerical relativity) as representatives for problems in computa-

1greek meta = between

1
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tional sciences. A typical problem in numerical relativity consists of calculating the time evolution
of celestial bodies, which can be neutron stars, boson stars, black holes, galaxies or even our solar
system. The requirements for a satisfactory computation of even one of those objects is immense
in terms of CPU power and memory.
Example A boson star calculation on a three dimensional computational grid2 of the size of 1283

grid points needs 2 GBytes of main memory. Doubling the resolution in every dimension increases
the memory need by a factor 8. A calculation of this problem on a 20483 grid therefore needs
8 TBytes of main memory. The worlds current largest computer, the ASCI3 White [8] at the
Lawrence Livermore National Laboratory in Livermore has 6 TBytes of main memory. While a
computational grid consisting of 20483 grid points may still not be accurate enough for a one or two
body problem in numerical relativity, it is ridiculously coarse for the computation of real interesting
and important things like the time evolution of our solar system.

This example shows the relation between the needs of computational sciences and what current
computational resources can handle. It is for sure that some time in the future there will be a
computer which satisfies our present needs, but in the meantime we can try to work around this
problem, and this is one point where Grid computing comes into place.

Grid computing can help to attack the problem of non-availability of big resources. One basic
idea is to coalesce resources at different administrative sites which can then form a bigger virtual
machine or a virtual supercomputer. Another but similar idea is to collect idle resources which do
not necessary have to be located at computational centers but may comprize private computational
resources like PCs at home. A famous project which set this idea into production is the seti@home
project [62] which allows any home PC connected to the internet to help analyze astrophysical
data, quasi as a screen saver.

But Grid computing does not only mean co-allocation of resources. In a more general sense it
is about a uniform treatment of distributed resources. By this we mean the fact that a code would
be able to run on different resources, and it would be irrelevant on which resource it is running on.
A “Grid-scheduler” (or “meta-scheduler”) would then decide which resource is to be used and the
code could even run sequentially on one resources after another if a single resource cannot meet
the conditions about how long the code wants to run, which is called migration. Migration and
relevant issues are studied by Lanfermann [42, 43].

In order to illustrate the above ideas better we describe a scenario of what an advanced stage
of a Grid environment could look like.

A scientific user is interested in solving a problem in computational science, let it be physics,
chemistry, biology, genetics or others. He/She writes a simple code to solve a very downsized
problem of the same kind on his/her laptop. This simple single processor sequential code will now
be plugged into a Grid computing framework (like the Cactus code) and committed into some
software repository. From a portal the user can specify the problem size he/she wants to compute
and the adequate amount of resources. The portal then contacts a resource broker, checks out
the code from the repository, compiles it on the given resources and submits it to the local queue
systems. After the run the user will be notified and the results are automatically sent to him/her.
The information where the code was being run is unknown (or let’s say it will be irrelevant) to the
user, like the information whether the code ran on one or more resources simultaneously, had to
migrate in the meantime or similar.

2Here, “grid” means a “computational grid”, a descrete set of points forming a grid. We distinguish it from the
other “Grid” by using lowercase spelling

3Advanced Simulation and Computing or Accelerated Strategic Computing Initiative
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All the ideas described in this section come along with many infrastructural and technical
problems. The details of those problems strongly depend on the nature of the application code,
in particular on the communication behavior. Codes like finite difference codes are usually very
communication intensive. This is the class of codes we are dealing with in this work.

1.2.1 Why Grid Computing?

Up to now we have described what Grid computing should be able to do, but in fact we are still
far away from this scenario. This thesis forms one link in the chain of enabling codes to be run in a
Grid environment. But still the question we need to answer is the following: Even if we have codes
that can run more or less efficiently in Grid environments, i.e. codes that can run simultaneously
on more resources, can migrate, and even if we can uniformly treat a set of distributed resources
using resource brokers or scheduler – does Grid computing give us any benefit in terms of time
and/or money?

One could argue that the amount of resources will not be increased by Grid computing and if
everybody can use any resource, nobody gets any benefit.

But the answer to the above question is yes and the simple reason is that we can say that we
make better use of the given resources. One can show that under simple assumptions – even taking
into account that a job which is split to run distributed across two or more resources runs less
efficient – the average response time (ART) which is the time between job submission and getting
the results can be significantly decreased in such Grid environments [21].

Metacomputing, i.e. the coalescence of multiple supercomputers or clusters to a virtual “mega-
computer” thus helps us in three basic scenarios:

• If the resources required for a calculation are not present at a single place or not accessible by
the user

• If the resources needed are present at a single place and accessible but not accessible within a
certain time

• If the resources needed are present and accessible within a certain time but too expensive

The last item will become important once Grid computing will be in the “production” phase.

1.3 Short history of Metacomputing

Attempts to execute codes across geographically separated computers dates back to the early 90’s.
In order to give the reader a idea on difficulties to run codes in a real Grid environment efficiently
– or run them at all – we review a few milestones from back in 1995 until today, starting with the
famous I-WAY experiment.

1.3.1 The I-WAY Experiment

The I-WAY (Information Wide Area Year) was a project in 1995 aimed at installing a high perfor-
mance ATM4 testbed between major supercomputing sites in the US. In order to demonstrate the
concept of Grid computing (in the broader sense) many Grid experiments on the I-WAY testbed

4Asynchronous Transfer Mode
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have been performed. One major experiment attempted to run a large scale scientific code as a
distributed simulation which was to be executed across many testbed sites. This experiment was
demonstrated at the supercomputing conference ’95 in San Diego [65].

The code to run was a parallel code using the message passing interface (MPI [69]). The most
known MPI implementation, Mpich, developed at the Argonne National Labs was in principle capa-
ble for heterogeneous setups as it is using sockets and TCP connections (besides shared memory)
for communication. However, it was not developed for parallel codes executed at this order of
magnitude.

Therefore researchers at the Argonne Labs implemented a special communication layer for the
Mpich implementation they called nexus [29]. Nexus is a communication protocol for uniformly
supporting intra- and inter-machine communication. Similar to future experiments of this kind the
setup consisted of an MPI application code on top of a Grid-aware MPI implementation [24].

After a long period of preparation (half a year and more) including thousands of person hours
of programmers, system administrators, site managers and PIs succeeded in performing first test
runs of this distributed code across multiple sites, including remote visualisation. However, a stable
demonstration of a running code between the sites (including mainly Argonne, NCSA, San Diego
and Pittsburgh) was not possible to present during the Supercomputing Conference. The main
reasons for this as seen from today seem to be the heterogeneity of the setup along with a (still)
slow network and problems which occur only at larger scales (limited number of file descriptors,
limited number of open sockets etc.) The codes that were used in this setup were not advanced
and tested enough to handle difficulties at that scale.

1.3.2 Supercomputing 98

The I-WAY experiment described in the previous section helped to gain much experience in this
field and gave major impacts for the development of software which specifically deals with problems
in Grid computing: Globus [26]. The Globus Metacomputing Toolkit was designed to provide basic
infrastructure information about Grid resources for applications running on top of it. It provides its
own IO system along with a huge collection of APIs. From a layer’s point of view it runs underneath
all software that is Grid aware and therefore also underneath distributed MPI implementations.
Such an MPI implementation has also been written and distributed along with the Mpich package.
Its name was Mpich-G. It used nexus as a communication layer and runs much more stable then
any previous distributed MPI implementation.

Globus is not thought to be a user level application although it provides features like a uniform
interface to batch systems (LSF, loadleveler, NQE, PBS etc.) and a security back-end which is
used by applications for authentication (called Grid-security-infrastructure, GSI), like ssh and ftp.
For more details about it see next section.

Three years after the I-WAY experiment this advanced and improved Mpich version was used
to make a new attempt to run a tightly coupled code across various geographically distributed
sites. The main three sites involved were the computing center of the Max-Planck-Institute in
Garching/Germany, the Konrad Zuse Institute in Berlin (ZIB) and the San Diego Supercomputing
Center (SDSC) each of them having T3Es deployed to be used in this demonstration [12].

Since the network between these three sites was rather slow, dedicated lines between Berlin
and San Diego and between Munich and Berlin have been booked. After again investing several
months of person hours to get software and dedicated lines in place it was possible to demonstrate
a distributed run on 32+32 processors between Munich and Berlin and for a shorter period a



1.3. SHORT HISTORY OF METACOMPUTING 5

distributed run across all three sites using 32+32+32=96 processors. It was originally planed to
have more than 32 processors per site involved, but the setup did not allow such configuration.
The reason for this is unknown up to now.

The efficiency (see Section 2.1) was very poor in the two machine case and extremely poor in
the three machine case (sometimes below 10%).

Going beyond the I-WAY experiment 1995 this experiment showed that meta-computing across
more than one or two supercomputers is definitely possible, but difficult to realize and still very
inefficient.

In this thesis an efficient demonstration of large scale distributed computing using tightly cou-
pled finite difference codes is demonstrated for the first time and will be discussed in the next
chapters.

1.3.3 Metacomputing Experiments at SC99

The series of metacomputing experiments continued at SC99 in Portland. This time, researchers
from Germany and the United Kingdom used machines from Japan, Germany, UK and the United
States, comprising a Hitachi SR8000 and three Cray T3Es. The network setup between these
machines had latencies ranging from 20 to 80 milliseconds and bandwidths’ ranging from 0.5 to 1.6
Mbit/s.

Three application codes were deployed for this experiment: A code performing analyzis of pulsar
data, a computational fluid dynamics code and a code for molecular dynamics. We take a closer
look at the latter one, since this is the class of codes we are dealing with in this thesis (namely a
finite difference code using domain decomposition methods and data exchange at the boundaries
of each processor).

The major problem when executing this code was, as expected, the slow communication speed
between machines in terms of latency and bandwidth. The researchers tackled this problem by
implementing smart tricks like latency hiding techniques and overcomeing bandwidth problems by
reducing the amount of data to be exchanged.

Latency hiding was implemented by a partial overlap of computation and communication and
also a partial overlap of communication in different directions (we discuss this in Section 6.4 in
more detail). The amount of data to send was reduced by checking each data exchange for its
actual relevance (i.e. could this data also be calculated locally). By this, the total amount of data
exchanged could be reduced by up to 60%. More details of these experiments can be found in [54].

However, all these changes were done on the application level, using a specific knowledge about
the scientific application and also specific knowledges about the science itself.

If codes have to be changed in this way for Grid environments it is clear that these optimisations
remain singular events. This thesis will show that optimizations can be achieved without changing
the application or without any specific knowledge about it.

1.3.4 Globus and OGSA

As outlined in the last Section, past Metacomputing experiments led to the development of the
Globus toolkit. This software was under rapid development in the last years. In the year 1997
the Globus toolkit was released in version 1.0. In the following we will briefly introduce its main
components.

GSI Grid Security Infrastructure. GSI is based on on public key encryption, X.509 certificates,
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and the Secure Sockets Layer (SSL) communication protocol. This includes a ”single sign-on”
for users to the Grid, secure communication and more.

Gatekeeper This is a deamon process running on every computer that offers Globus services. It
uses GSI for authentication and GRAM for job submission.

GRAM Globus Resource Allocation Manager. Used for submitting and monitoring remote jobs.
It comprises a client API (e.g. to start a job) as well as a “jobmanager” that runs as a service
on the remote machine. The jobmanager exchanges information with the client about the job
status (pending, active, running, done, failed). It is invoked by the gatekeeper (see above).
According to different queue systems like pbs, lsf etc. the appropriate jobmanagers are called
jobmanager-lsf, jobmanager-pbs etc.

DUROC Dynamically Updated Resource Co-allocator. As for GRAM, it consists of a client part
and a server running on the remote machines. DUROC is used for multi-machine requests. It
coordinates the startup (i.e. through a so-called DUROC Barrier) and enables inter machine
communication. For the submission of each job it uses GRAM.

MDS Monitoring and Discovery Service. An LDAP5 based service that helps quering and updating
information about various resources in the Grid.

GASS Globus Access to Secondary Storage. This is a simple API that provides file access services.
On the command line level and in conjunction with GRAM it can be used to stage executables
or access outputfiles from the remote machine.

The Globus toolkit verion 2.0 (referred to as GT2) was released early 2002. While staying
compatible with the previous version it improved a lot regarding the installation/maintaining pro-
cess. Also, many features have been added regarding data management issues, amongst other
improvements.

The persisting problem of today’s implementations of Grid environments like the DOE Science
Grid [67], GriPhyn [68] and others is the non-interoperability of such “non-standard” implementa-
tions. Most of those Grids have been built as a patchwork of various protocols and standards and
can be regarded as singular projects since they provide no standard interfaces for talking to other
Grids.

However, an already existing effort to define standars for services is currently under strong
development: Web Services. A Web Service can be regarded as a standardized interface to a
collection of network accessible operations. The basis of Web Services form XML6 documents
that are transported using protocols like SOAP7 which are sitting on top of lower level transport
protocols like http and ftp. Furthermore, there are standards for the description of a service (using
e.g. WSDL8) and mechanisms for service discovery and registration (WSIL9, UDDI10).

The Globus Toolkit can, in principle, be regarded as a software that provides Grid Services
(like GRAM, MDS etc.). This is where Web Services come into play. The Globus Toolkit as of
version 3 will adopt many mechanisms of Web Services (like WDSL etc.) to make Grid services

5Lightweight Directory Access Protocol
6eXtensable Markup Language
7Simple Object Access Protocol
8Web Service Description Language
9Web Services Inspection Language

10Universal Description, Discovery and Integration
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more standardized and inter-operable. The result of this effort will be the Open Grid Service
Architecture (OGSA) [28] that will come along with the GT3.

1.4 Other Grid Projects

Our thesis deals with a small part of the whole Grid effort, namely with distributed computations
in a Grid environment. In this section we cannot describe all projects dealing with Grid computing
in the broader sense, we will just introduce a few major ones.

1.4.1 Legion and Condor

When speaking of frameworks that focus on supporting and building Grid infrastructures in a very
general sense, the Legion project must be mentioned. Legion is often referred to as an Operating
System for the Grid [35]. Operating systems are user (and developer) interfaces to hardware and
low level software (like file systems, device drivers etc.). Key purposes of an operating system are
to unify the access to the underlying hardware and hide unneccessary complexity (e.g. different
file systems, different hard disk manufacturers) to the user or developer.

Following this picture Legion has been designed to provide a uniform access to various Grid
resources (machines, disk space, networks) and hide unneccessary details (heterogeneous networks
and machines) to the user. Thus, the user can log on to a virtual machine where the operating
system is Legion and the underlying hardware can be a broad collection of Grid resources.

The services Legion offers are ranging from process creation and control, interprocess commu-
nication, file system to security and resource management.

Rather than trying to harness any kind of computational resources in the Grid, Condor focusses
on idle workstations within a local area network [11]. A Condor job may travel and migrate
through a network of workstations and will always be executed on a currently idle workstation.
This migration and scheduling is completely managed by Condor. Instead of linking a code to the
standard C library, the user links against a Condor version of the C library that allows system calls
to be executed remotely. Only a “shadow” process runs on the local machine, acting as an agent
for the remotely executed program.

Condor-G

Condor-G is the marriage of technologies from the Condor project and the Globus project [30].
In fact, both frameworks have similar objectives but whereas Globus coallocates resources across
different domains, Condor coallocates resources within one administrative domain (e.g. the pool
of workstations in an institute). Both Condor and Globus provide mechanisms for job submission.
Within Condor-G, job submission is possible from either side: Condor can be used to submit to
Globus resources and a Condor pool of workstations may appear as a Globus resource (represented
by a jobmanager-condor).

1.4.2 Commercial Grid Projects

Since the purpose of Grid computing is not a solely academic one, commercial vendors of hard
and software are developing their own software for creating Grid environments. One well known
product is the SUN Grid Engine (SGE) [70] that allows the effective sharing of resources (mainly
CPU cycles, memory, storage) within one organization.
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IBM did not start a Grid effort on its own. It rather supports the installation and usage of
the Globus Toolkit for IBM computers and offers better documentation and commercial support.
IBM is also strongly involved in the development and implementation process of OGSA (see Sec-
tion 1.3.4).

Compaq (now Hewlett Packard) follows a similar way. Rather than developing their own Grid
software from scratch, they support the Globus software and participate in Grid projects like
GridLab [34].

1.4.3 More Aspects of Grid Computing

There are certainly many more aspects of Grid computing then the ones described in this chapter.
One broad field which belongs to Grid computing is peer to peer computing (p2p). p2p computing
became extremely popular with the file sharing program napster.

As opposed to many other Grid projects that focus on high performance computing (i.e. pro-
cessor power) p2p computing focuses on sharing storage space. Unlike other services (like web
services using a client/server model) this can be done in a way where every computer is both a
client and server, all computers are treated equally (hence peer to peer).

The sharing and co-allocation of mass storage systems in geographically distributed Grid envi-
ronments is addressed by e.g. the European Data Grid Project [61].

In this long list of various aspects of Grid computing we close this section with mentioning
things like remote visualisation and spawning. Remote visualisation describes the visualisation
of scientific data without moving large datasets to the local machine. Spawning describes the
submission of jobs that are created by currently running jobs (e.g. for data analysis; since this can
be done independently of the current calculation, it can be submitted to another resource).

1.5 Grid Computing and this Thesis

As can be seen from our brief overview, Grid computing is a very wide field comprising many
disciplines in scientific computing. This thesis can certainly cover only a small area of the whole
Grid effort which is roughly illustrated in Figure 1.1
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Figure 1.1: An overview of Grid computing and this Thesis. The entire Grid effort comprises
many areas in computer science. As outlined in this chapter, this thesis covers only a small fraction
of it.
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Chapter 2

Classical Parallel Computing

In this section we review basic notions of parallel computing for finite differencing codes on a regular
(cuboidical) computational grid1. We will introduce notions like ghost zones, domain decomposi-
tion, processor topologies etc. which are important throughout this thesis. Some of those notions
can also be found in [23].

2.1 Performance, Speedup and Efficiency

In this chapter we will define some basic terms used in parallel computing, which are used through-
out this work.

Definition

Floprate F Number of floating point operations per second of an executed parallel code.

Speedup S(n) The speedup on n processors is defined as the ratio between the floprate F1 on
one processor and the floprate Fnon n processors (even if the execution on one processor is
not practical):

S(n) =
Fn

F1

Efficiency Speedup divided by the number of processors:

E =
S(n)

n
.

For a more detailed discussion of these terms see [38].
According to Amdahl’s Law (see e.g. [23]) each program can be divided into a sequential and

a parallel part. By definition, the sequential part cannot be parallelized and as such prevents the
parallel code from achieving the maximal possible speedup (i.e. speedup of n on n processors).
However, there are other reasons why a code cannot reach the maximal speedup, namely when the
processors need to exchange data.
For the efficiency the following holds:
Assume that a given code has a neglectably small sequential part but the processors do spend time

1Again, note the lowercase spelling, denoting a mesh

11
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with data communication. When Tcomp denotes pure computation time of a code, i.e. the time
where the CPUs are performing pure computations and Ttot is the elapsed wall clock time, the
efficiency is given by

E =
Tcomp

Ttot
. (2.1)

For the proof one only has to take into account that the floprate is (per definition) proportional to
Tcomp and for the single processor case we assume Tcomp = Ttot.

While the definition of the floprate can be smoothly extended to heterogeneous Grid environ-
ments we already encounter problems when trying to extend the notion of speedup.

Example.

In a heterogeneous setup, we have 4 processors running the code at a single processor perfor-
mance of 100Mflop/s and 4 processors running at 250Mflop/s. The measured floprate for a single
distributed calculation across all 8 processors is measured as 1Gflop/s. How big is the speedup?
One could calculate it as 1000Mflop/s divided by 250Mflops yielding 4 – or one could even divide
1000Mflop/s by 100Mflop/s and thus achieve a speedup of 10 on 8 processors!

One clearly needs a more general definition of speedup then the one above. One finds more
generalized definitions for speedup throughout the literature [19, 44], but for us the following is the
most appropriate.

Definition.

Given k types of processors in a distributed run, each one occurring nk times. Let Fk be the
floprates of executing the code solely on the k’s type of processor. We define the generalized speedup
S(n) as

S(n) =
Ftot∑k

i=1
nk
n Fk

(2.2)

where n =
∑k

i=1 nK is the total number of processors and Ftot the observed total floprate of the
executed code. We claim that the following is true:

(1) For the single machine case where we only deal with one type of processor this new definition
falls back to the previous one.

(2) The speedup S(n) is always smaller or equal n.

(3) For a “perfectly scaling” code the speedup is n.

All statements can be easily verified if one assumes that the total floprate Ftot of the executed code
cannot exceed the sum of all single CPU performances, i.e.

Ftot ≤
k∑

i=1

niFi.

For our example above we obtain a speedup of 1000/175=5,7 which is a sensible (and unique)
number. With this general definition of speedup we can proceed to generalize the notion of efficiency
for Grid environments.
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Definition.

The generalized efficiency E is defined as the generalized speedup divided by the number of
processors,

E =
S(n)

n

Taking the above example we obtain an efficiency of 71%.

2.2 Finite Differencing Algorithms

The broad class of codes we are dealing with in this thesis are codes using finite differencing
algorithms. This is the most popular method for solving differential equations from many branches
of science like hydrodynamics, astrophysics, chemistry and many others. The type of the differential
equation does not matter, it can be of arbitrary order, a partial or an ordinary differential equations
(PDE or ODE) 2.

Again, to avoid any possible confusion we will make the following clear. In major parts of this
section, whenever we talk about the grid, we do not mean a set of computational resources but
the computational grid, namely the n−dimensional set of points on which a smooth function is
discretized (the grid function). The Grid, as a set of computational resources, will be written in
uppercase letters.

Each function is represented in memory as an n-dimensional array, where n is the dimension
of the function’s domain. All algebraic operations on these functions are then represented by
operations on the functions discretized points. We distinguish between point wise operations and
others. Most operations like adding, multiplying and integrating (in some cases) are point wise
operations, which means that the result of the operation for every single point does not depend
on the neighboring points in the n−dimensional index space. If this would be true for all kind
of operations we would call the code to be trivially parallel (and in that case do not need any
communication).

However, it is not true for codes using finite differencing. For a function f which is discretized
on a one dimensional grid (marking the x−direction) the x−derivative ∂xf of the function at the
point x0 would read

∂xf |x0 =
f(x0)− f(x0 −∆x)

∆x
. (2.3)

For a code which is executed on multiple processors it may happen that the point (x0 +∆x) lies on
another processor. In this case the value of this point hast to be sent from the neighbored processor
to the local processor and this is where most parallel overhead comes into place in this class of
codes.

In the following, to be able to illustrate things better, we use a two dimensional grid which means
that the domain of all (real or complex) functions is two dimensional. Everything we explain and
introduce in this thesis is generic n−dimensional though.

Given a set of discretized functions we perform calculations on. If we distribute those calcu-
lations across several processors we have to divide up the domain, i.e. the set of points. Fig. 2.1
shows an example where we divide up the domain on four processors. This domain decomposition

2A mathematical theorem states that every differential equation at any order can be rewritten as a system of first
order differential equations, and that is what is mostly done in finite difference codes.
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Figure 2.1: This figure illustrates a two dimensional computational grid. Every spot in this picture rep-
resents a value of a discretized function in the two dimensional (x,y) space. The dashed lines indicate the
domain decomposition for four processors

is not unique. The number of possibilities to distribute the domain across more processors grows
with the number of dimensions and the number of processors. A parallelizing algorithm written
for a single-machine execution would decompose the workload into equal parts, which is good for a
homogeneous environment but very inefficient for a Grid environment.

The n−tuple of numbers which specify the number of processors per dimension is known as the
processor topology. In Figure 2.1 where the dashed lines indicate a domain decomposition for four
processors we say that we have a 2 × 2 processor topology. Like the domain decomposition, the
processor topology even for the same number of processors is not unique. For four processors one
could also think of a 1× 4 or 4× 1 processor topology.

2.3 Ghost Zones

Points needed for calculations by a neighbored processor have to be send across the connecting
network to the local processor which usually happens in an MPI call. Since there may be many of
those points there will be many MPI calls. In order to avoid this one creates local buffers and copies
all points needed (usually the points of the whole “face”) into that buffer which is allocated on
the local processor. This buffer is called a ghost zone containing ghost points, because they appear
like real grid points for the application on the local processor but they in fact are not. Figure 2.2
illustrates this. Regular grid points are black whereas ghost points are white. This configuration is
good for a finite differencing code using a stencil size of 1 which means that for a proper calculation
(update) of a grid point it needs the values of the directly neighboring points in a given direction.
A code having a stencil size of two would need two neighboring points in a given direction. This
would require a ghost zone which is two points wide. We then speak of a ghost zone size of 2.
Whether a code has a stencil size of 1 or more depends solely on the numerical scheme used in
the finite differencing code and cannot be influenced by any parallelizing algorithms. Numerical
algorithms with higher accuracy tend to have a bigger stencil sizes.

Our illustrations always show two-dimensional discretized functions where the ghost zone is a
line of points. For a three dimensional computational grid it would be a plane of points, for a four
dimensional grid a cube of points etc.
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Figure 2.2: The ghost zone concept. A two dimensional grid distributed across two processors. The
processor “face” consists of four grid points which are copied into the corresponding ghost zone on the local
processor. The finite differencing code can loop through the computational grid on each local processor and
properly calculate all real grid points (black) whereas the ghost points cannot be updated. They rather have
to be sent from the neighboring processor.

2.4 The Cactus Framework

Writing a code that solves differential equations using domain decomposition methods, initial data
solvers, IO and the actual evolution code can be very time consuming. It would be very convenient
to have a modular framework where each of the above components (evolution code, driver code,
IO code etc) would be represented as a module so that the user could compose his/her numerical
code according to his/her needs. Such a framework exists and is called the Cactus Computational
Toolkit [6]. It has been developed at the Max-Planck-Institute for Gravitational Physics in coop-
eration with researchers world wide. The development of the Cactus code was also driven by the
need of keeping numerical physicists or engineers away from issues like parallel programming, MPI,
and other things which are not directly related to numerical sciences. The basic idea behind the
framework is to provide an easy but effective way to parallelize Fortran, C or C++ codes written
by numerical scientists.

The name Cactus comes from its design where a central flesh represents the core of the software
and various “thorns”, i.e. the above mentioned modules can be easily plugged in or out according
to the needs of the scientist. Since the flesh is a very generic code the thorns can be application
codes (finite difference codes written in C, C++ or Fortran) or driver thorns, which are providing
parallelizing algorithms, IO, checkpointing, visualization and other features. Since, as said above,
thorns can be plugged in and out it is possible to replace the parallelizing driver code with another
one without the need to change the application code. On the other end of the spectrum also
application thorns can be replaced without changing the driver thorns. In this sense the Cactus
code has to be seen as a complete framework, rather than as a simple library.

This opens a variety of possibilities for application programmers and also for driver code devel-
opers. Since this thesis is about new Grid aware parallelizing algorithms, the Cactus framework is
an ideal playground to quickly test and implement new algorithms with real world applications and
immediately compare with old codes. Current applications in the Cactus framework cover different
domains like astrophysics, climate models, computational fluid dynamics etc.
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2.5 Classical Uni Grid Parallelisation Schemes

The method of solving (partial) differential equations on a regular grid are called unigrid methods.
In this Section we will describe these classical unigrid algorithms which are used to parallelize codes
for a single machine or cluster execution. The implementation of these algorithms are currently
done by Cactus’ unigrid parallel driver thorn, which is called PUGH3. The way the parallelization
is done can be seen as representative for the big class of finite difference codes.

Currently the code supports the parallelization of finite difference codes on a regular grid, i.e.
all discretized functions have the shape of an n−dimensional cuboid.

PUGH divides up the entire computational grid into subgrids, each located on one processor.
The numerical code running on top of Cactus is completely unaware of all decompositions as it
always performs loops in every dimension from 1 to nx, ny, nz, ... and so forth. According to
the domain decomposition the values for the local nxs are changed by PUGH adequately without
explicitly notifying the application code.

One of the goals of this thesis is to generalize classical parallelizing algorithm to include the
efficient execution in a heterogeneous and dynamic Grid environment. In order to understand
those changes to the driver code we describe in this chapter PUGH’s parallelizing algorithm in
more detail. Like most other algorithms, it has been originally written for single machine or cluster
execution.

More precisely, the assumptions under which PUGH was written are the following:

• all processors are of same kind, in particular they run at the same speed

• all network interconnects between processors are of same kind

• bandwidth and latency between processors are sufficiently high or low respectively

• the network characteristics between processors do not change in time

2.5.1 Processor Topology

For a n-dimensional computational grid recall that the processor topology is an n-tuple of numbers

k1, k2, . . . , kn where
n∏

j=1
kj = N where N is the total number of processors.

Since all interconnects are regarded to have the same bandwidth/latency characteristics and to
be sufficiently fast, the goal of a topology creating algorithm is to distribute the processors more
or less equally across the dimensions.

Thus the input parameters for this algorithm are only the number of processors and the dimen-
sion:

3stands for Parallel UniGrid Hierachy



2.5. CLASSICAL UNI GRID PARALLELISATION SCHEMES 17

Algorithm: CreateTopology(nprocs, dim)
{

remaining = nprocs
for (k = 0 to dim)
{
procs[k] = IntegerRoot(remaining,k);
while (remaining not divisible by procs[k])

procs[k]- -
remaining /= procs[k]
}

return procs[k]
}

IntegerRoot() is a routine which returns the highest integer below a given integer root of an
integer.
Example Let the dimension be 3, the number of remaining processors 32. The InterRoot(32,3)
returns 3 since the third root of 32 is 3.1 and the highest integer below it is 3. As 32 is not divisible
by 3, the above algorithm decreases this number until 32 is divisible by it, which in this case is 2.
Therefore the first dimension gets 2 processors and for the remaining 2 dimensions 16 processors do
remain. IntegerRoot(16,2) now returns 4 (as the square root of 16 and since 16 is divisible by 4,
the second dimension gets 4 processors leaving again 4 processors for the last dimension, resulting
in a processor topology of 2× 4× 4.

The next table shows the processor topologies for 3 dimensions for some processor numbers.

N procs topology
1 1× 1× 1
2 1× 1× 2
4 1× 2× 2
8 2× 2× 2
16 2× 2× 4
32 2× 4× 4
64 4× 4× 4

This table clearly shows the intention of this processor topology generating algorithm: To
distribute the number of processors equally across the dimensions.

2.5.2 Processor Ordering

The processor topology in the last section calculated the number of processors per dimension but
it did not specify which particular processor – i.e. which particular MPI Rank, see 3.1 – is exactly
located where in the n−dimensional topology.

In classical parallel computing all processors are assumed to be of the same kind and thus the
particular processor number is not of importance.

To be able to exchange information between processors however, every processor is required to
know the rank of all of its neighbors. The fact of knowing all neighbors of all processors however,
determines a specific and unique mapping of processor ranks into the processor topology.
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Figure 2.3: The ordering of processor numbers (MPI Ranks) in a three dimensional setup. The ranks are
first counted up in the lowest dimension, here x, then in y and finally in the highest (z) dimension.

The way PUGH distributes the processors is therefore the simplest one can assume, starting
with processor 0 as the “first” processor in all dimensions, processor 1 as the second in the first
dimension etc. ending with processor N as being the last processor in all dimensions, where
N is the total number of processors. Figure 2.3 illustrates this for a three dimensional setup.
It is important to emphasize however that rearranging the processors (as long as the neighbor
information is regenerated) does not have any significance in standard parallel computing, since
every processor is regarded to have identical properties.

2.5.3 Domain Decomposition

After knowing how many processors are located in each dimension one has to distribute the workload
across these. As PUGH assumes that every processor runs at the same speed, the global grid size is
divided by the number of processors in each dimension. Thus every processor gets the same number
of points in each dimension, modulo points which remain because the total number of points per
dimension is not divisible by the number of processors in that dimension.

2.5.4 Ghost Zones and Synchronizing

As said in the previous section, the points of the computational grid are equally distributed across
the processors. However, as described in Section 2.2 we need to add a set of points to represent the
ghost zone. Thus every processor that has a neighbor in a given direction gets an additional row
of points. The (initial) ghost zone size is given by the stencil size of the finite differencing code.

The only information the application code has to provide to PUGH is when and which dis-
cretized function has to be “synchronized”. By this we mean to update the ghost points with real
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data from the neighbored processor. The application code then calls a function like sync(function)
which is provided by a driver code. The way PUGH is synchronizing functions is the following:

Algoritm: Synchronize()
{

int dim; [dimension of the grid]
for (k = 0 to dim)
{
while (processor has a neighbor in +dim or -dim)
{
copy real grid points into a send buffer
post an MPI Irecv
post an MPI Isend
}

post an MPI Wait for all directions in this dim
copy arrived data into the ghost zones
}

}

The code loops through all dimensions, checks whether there is a neighbor and posts asyn-
chronous MPI commands to initiate the communication and finalizes it with an MPI Wait() call.
Note that the synchronization is done dimension wise and the communications only overlap when
sending/recieving data in the positive or negative direction of a given dimension. Overlapping
communication in different directions will be discussed in Chapter 6.

2.6 Extensions and Replacements of PUGH

PUGH is a unigrid driver module (“thorn”) in Cactus, as described in the last sections. There are
several possible branches of extension for this module. One possible way is to replace it with a
parallel fixed mesh refinement (FMR) or even a parallel adaptive mesh refinement (AMR) driver.
Instead of using one global grid (that is distributed across the processors) these methods use more
levels (hierarchies) of grids with different resolutions which do not cover the whole domain, but
rather are form a sort of patches for specific regions. An FMR thorn for Cactus is currently under
development (“Carpet”) as well as a AMR thorns (using GrACE [53]).

An other possible branch of extension is to make the parallel driver Grid aware. First steps
have been taken by allowing a heterogenious grid point distribution in PUGH on a parameter file
entry basis [58]. The analysis and implementation of a whole range of Grid aware extensions are
the subject of this thesis.
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Chapter 3

Performing Distributed Runs

In this section we will perform and analyze some distributed runs using a Grid aware message
passing protocol. Before we can do that, we need to choose an adequate communication software
that will run underneath the application and driver code level. We will focus on the implementations
of the MPI standard and analyze their “Grid awareness”. After we have decided to choose an
implementation we will use it to perform some sample distributed runs and discuss major problems.

3.1 Message Passing Libraries

There are dozens of possibilities to communicate data among processes or processors. One could
use sockets, shared memory operations, TCP/IP to mention just a few. It certainly depends on
the underlying hardware which method is the optimal one.

However, a developer of parallel codes does certainly not want to deal with these issues. Instead,
he/she wants to use standardized message passing libraries that hide all unneccessary details of
underlying communication channels.

The most popular and most used message passing library is the Message Passing Interface,
MPI. There are many implementations of this library, but its basic functionality is defined by the
MPI Standard [69].

MPI provides basic communication operations between a pair of processors (point to point
operations) like MPI Send and MPI Recv (see the above algorithm). For a whole set of processors
MPI provides collective operations. The set of processors participating in such a collective operation
is called a communicator in MPI. Processors are numbered, and those numbers are called ranks.
For a basic introduction into MPI see [69].

Apart from MPI there is another known standard for communication among processors in a
parallel code which is called Parallel Virtual Machine, PVM [64]. For a discussion about the
differences between MPI and PVM see [33].

The way such message passing standards hide hardware communication details to the user, the
Cactus framework hides the message passing standard from the “user”. Which message passing
library is currently used depends solely on the driver thorn loaded.

21
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3.2 Grid aware MPI Implementations

The most known MPI implementation is the Mpich-package [37, 50]. Its development dates back to
the early 90’s where William Gropp and Ewing Lusk developed a free and portable implementation
of the MPI standard. The main two goals of this software and research project are to achieve
high performance and portability. As commonly known these two notions are often contradictory.
The way out of this problem was to create a so called abstract device interface, ADI, within the
Mpich package. According to various types of low level communication like sockets, shared memory,
Gigabit Ethernet, Myrinet, vendor’s MPI implementations, nexus etc. different devices have been
created within the Mpich package to support each of those communication channels. The decision
about what device will be selected happens at the time Mpich is installed (compiled). Switching
between devices on the fly is not possible.

The following table maps the different Mpich-devices to the underlying physical communication
networks.

p4 sockets
shmem shared memory
gm Myrinet
gamma Gigabit Ethernet
globus nexus
globus2 TCP/IP and vendor’s MPI

The gamma device has been developed by the University of Genova to support fast communi-
cations on clusters with fast or Gigabit Ethernet interconnect [32, 14]. For Gigabit Ethernet it is
able to achieve bandwidths of more than 120MB/s [15], which is close to the physical limit of what
a Gigabit Ethernet network can achieve. The gm device is to support Myricom’s Myrinet physical
interconnect.

In the following we give a brief overview about some Mpich devices and the possibility to use
it for Grid computing.

3.2.1 Mpich, p4 and shmem Device

The p4 device uses sockets, i.e. TCP/IP to pass messages between processors. Since this is a very
general and portable way of communication it can be installed and used on clusters, supercomputers,
collection of workstations and even collection of supercomputers.

As such it can be used for Grid computing. The downside of this general communication
channel – as pointed out earlier – is the performance. Since all communications, even on one
supercomputer, is done through sockets it will be orders of magnitude slower than other adequate
MPI implementations. For example, the vendor’s supplied MPI implementation on an Origin 2000
computer can achieve a bandwidth of more than 100MB/s, whereas the TCP bandwidth across a
Fast Ethernet interface cannot be faster than the physical Ethernet limit of 12,5 MB/s.

But the Mpich-p4 device is not as unqualified for Grid computing as it now seems. Another
device, namely the shared memory device shmem can help to use the p4 device in some Grid-like
environment. The shmem device as such cannot be used as a Grid aware implementation since
it exclusively performs communications via shared memory. In conjunction with the p4 device,
however, it can help to use shared memory for communications between processors within one
shared memory machine and to use sockets between machines since it is possible to install Mpich
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for the usage of more than one device. In order to achieve this, one has to specify it at the time
one configures the Mpich installation. The appropriate line should look like:
./configure -device=ch p4 -comm=shared

This can be used for running distributed jobs across a network of workstation with two or more
processors per workstation or even for a distributed run between two Origin 2000 machines (that
do have a shared memory). However, there are still problems which are left to the user to solve,
like authentication, handling different account names, directories and so forth which is not handled
by Mpich.

3.2.2 Mpich, Globus Device

The Globus device was one of the first MPI implementations that was specifically written for the
purpose of executing codes in a real Grid environment [25]. It does not directly use sockets but uses
the nexus communication library instead, which was also developed by researchers of the Argonne
National Labs [29]. Nexus itself uses different communication channels underneath like sockets or
vendor supplied communication libraries. The code which wants to use this implementation has to
be recompiled and linked also against the Globus libraries.

As the name says, Mpich-G uses Globus. What does this exactly mean, and what is the benefit
for the end user? Roughly, it means that the user has all features of the Globus toolkit at his/her
disposal. The main and most helpful features are:

• Authentication: Mpich-G uses Globus to authenticate. The user does not have to deal with
ssh-keys or rsh or other methods.

• Staging: the user can use Globus to stage executables.

• GASS1: can be used to (re-) direct standard output or standard error to the local machine
and/or stage executables or parameter files to the remote machine.

• GRAM2: is used to provide a uniform access to queue systems, using a standardized language
(resource specification language).

Mpich-G performed better than Mpich-p4 [12] but could not get as fast as the native MPI
implementation on a supercomputer. This led to the development of a new next generation device
which would use vendor’s supplied MPI (“VMPI”) on a machine where it is installed and TCP/IP
between machines. The device which is capable of this is the globus2 device.

3.2.3 Mpich, Globus2 Device

From the performance point of view a Grid aware MPI implementation should always use the
fastest communication channel available. It is almost impossible to implement a portable version
of such a code, but the Mpich-G2 developers applied the following trick: For wide area network
communication, they use TCP/IP. Instead of implementing fast communications for intra-machine
or intra-cluster communication on top of various physical connections they simply assumed the
existence of an already installed MPI implementation which makes use of fast connections under-
neath.

1Global Access to Secondary Storage
2Globus Resource Allocation Manager
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By this the selection of the fastest possible way for communication is mostly assured. On com-
mercial supercomputing systems (like SGI’s Origin 2000, IBM’s SP-2, Cray’s T3E etc.) it is almost
impossible to have a faster communication than the one performed by the MPI implementation
which is supplied by the vendor.

The problem of dealing with another MPI implementation within another MPI implementation
is a quite subtle one, leading to name clashes and other inconsistencies. The way around it is to
rename all MPI calls of a MPI application at compile time in order to be able to call VMPI routines
later.

In order to compile an MPI code to be used with Mpich-G2 it is not enough (as for most other
MPI implementations) to link against the appropriate libraries at the linking stage. The Mpich
distribution traditionally provides socalled mpicc scripts that take care about including and linking
but their usage was not mandatory. For Mpich-G2 it is. In the following we explain why. For every
user level initiated point to point MPI communication within an distributed job Mpich-G2 does
the following:

• Check whether the two processes that want to communicate are located on the same machine

• If not, use TCP/IP

• If yes, make a call to the vendor’s supplied MPI installation

Let’s consider for example an MPI Send() operation called by the user code. Let’s assume that the
two communication end points are located on the same machine. It is impossible now for Mpich-G2
to make another MPI Send() since that would conflict with the previous (user level) call.

This is where the mpicc script comes into place. Rather than simply calling a C or C++
compiler underneath with the appropriate linking and including flags it first goes through the code
and replaces every single MPI call by an MPQ call on the source code level. Thus the above conflict
can be solved.

The downside of this procedure however is that on some systems it is not possible to run
configure scripts using the above mentioned mpicc (or mpiCC or mpif90 etc.) as the appropriate
compiler (i.e. ./configure --with-cc=mpicc). On some systems those compilers would produce
executables which cannot be run without appropriate mpirun commands and as such would cause
the configure script to fail.

The first effective and large scale demonstration of this new MPI implementation was done in
April 2001 and is part of this thesis. It will be described in detail in Section 5.

3.2.4 PACX

Aside from Mpich-G2 there is another implementation using the same ways of communication
in a Grid environment: TCP/IP for inter- and VMPI for intra-machine communication. It is
called PACX (PArallel Computer eXtension) [31] and is developed and maintained at the High
Performance Computing Center (HLRS) in Stuttgart, Germany.

When a PACX job is run across more than one supercomputer, a daemon is running on each
computer as an additional MPI process responsible for the communication across the wide area
network. Mpich-G2 does not use this approach, it rather opens a socket for every single commu-
nication across the wide area network for every MPI process. The existence of such a “forwarding
node” has advantages and downsides. Given that a distributed job is supposed to run across a
setup including a supercomputer or cluster that has one front node with a public IP address and
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all compute nodes have private IP addresses. Having this additional MPI process running on the
front node makes it possible to use this machine in a distributed job. Mpich-G2 would not be able
to make use of such a machine. On the other hand, as we will see at the end of Chapter 4, having
multiple TCP streams across the same physical network can increase the total bandwidth (namely
the sum of bandwidths of all streams) by far.

Since PACX does not use Globus, the user has to deal with access to machines, authentication,
queue systems etc. himself/herself. It can be done by using remote or secure shell. This way
of starting the code seems rather copious and is per se not able to handle the following problem.
As an example we consider the Origin cluster at NCSA. The front cluster is modi4.ncsa.uiuc.edu
with a known IP address. After submitting the job into queues, however, the code will get started
on other machines of this origin cluster (balder, aegir, forseti etc.) whose IP address differs from
modi4’s IP address and is not known in advance. The question now is: How to contact the job from
outside if the IP address is not known in advance? The PACX solution is a so called server mode
startup (or a lately implemented Globus version of a distributed startup) where all processors have
to contact a central server over which IP address information is exchanged. The IP adress of the
server itself has to be know at startup.

3.2.5 LAM

Apart from Mpich another well-known free and portable MPI implementation is LAM3 [63]. For
communications it uses two major methods namely TCP/IP and shared memory. Like Mpich LAM
allows setups where those two kinds of communications can be mixed, i.e. it is possible to couple
several SMP machines for one distributed MPI job and LAM would use TCP for communication
between machines and shared memory for communication between processors on one SMP node.
As for Mpich p4, LAM-MPI needs to be specifically configured to use shared memory within an
SMP node. The correct configuration line is:
./configure --with-rpi=usysv.

3.2.6 Virtual Machine Interface: VMI

The Virtual Machine Interface [52] is more than an MPI implementation. It is rather a messaging
layer which provides MPI support among other things. It has been developed by Avneesh Pant
et al. at the National Center for Supercomputing Applications. VMI has been designed in a
very expendable and general manner. Figure 3.1 illustrates the structure of this messaging layer.
Drivers for various physical networks like Gigabit Ethernet, Myrinet etc. are provided for the
application code that performs communications through one single API. The application code can
dynamically load or unload those driver modules. Furthermore, VMI provides data stripping in
the case that more than one network is possible to be used and even fail overs (in the case that a
Gigabit Ethernet cable or a Myrinet switch gets damaged) and also compression modules can be
loaded dynamically. Apart form the direct usage through an API the application can use regular
MPI calls which themselves use the features of VMI.

The simultaneous usage of TCP/IP and e.g. Myrinet or Gigabit Ethernet makes an effective
usage of VMI for Grid computing possible. Jobs can be started as Globus jobs (taking care about
authentication) and VMI specific ’keys’ (set as environment variables within a Globus rsl script)
can be used to tell each VMI subjob that it belongs to a global and bigger MPI (or VMI) job. All

3Local Area Multicomputer
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Figure 3.1: The Virtual Machine Interface as a multi layered communication library for applications
supporting a variety of low level physical communication layers through one interface.

this is coded in a portable way which also supports execution across a heterogeneous setup.
VMI version 2.2 is installed on the titan cluster at NCSA (a 128 node [256 processors] Intel

IA64 cluster, the second fastest cluster in the world in November 20014).

3.2.7 PACX versus MPICH-G2

After the short overview of the “Grid awareness” of MPI implementations we have to choose one of
those to perform distributed runs. Two of them have been specifically written for supporting high
performance execution in a real Grid environment, namely PACX and Mpich-G2. Both variants
are designed to support native MPI (VMPI) whenever available and TCP/IP between machines in
a wide area network.

Also VMI should be mentioned which provides future pointing technologies and a variety of
useful and needed features for distributed Grid computing. However the software, at the time
this thesis is written, is still under development or at least in a testing phase. Furthermore, its
design applies more to clusters (connected by GigE or Myrinet which VMI can make use of) than
to supercomputers where we already have a fast MPI installation. Since clusters may replace
supercomputers VMI will certainly play an important role in the future, e.g. in the TeraGrid (see
Section 5).

We have chosen to use Mpich-G2 for several reasons. Roughly spoken the usage of Mpich-G2
is more convenient because of all benefits provided by the Globus usage underneath, namely

• authentication

• co-allocation services

• uniform access to queue systems
4The worlds fastest cluster according to the Top 500 list as of November 2001 is a self made cluster at the Sandia

National Laboratories, USA
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• Globus IO

With PACX the user has to handle problems like authentication and co-allocation himself. Mpich-
G2 does not have to deal with it, since this is done by Globus. Even the problem of not knowing
the IP address of a machine is solved without the need of user interaction.

Let us reconsider the problem from Section 3.2.4. A user wants to run a distributed job across
three machines. One machine is a multiprocessor machine with different IP addresses per node,
another machine is only the front end machine for another cluster of machines which the job is
eventually run on after submitting to a queue system. How can the subjobs contact each other
when the IP address of them is not known in advance?

PACX offers the following solution: The user has to start the job in a socalled “server mode”
which means that a daemon with a known public IP address is started along with the job. This IP
address is then known to the other subjobs and they now can exchange their contact information
using this server.

MPICH-G2 solves this problem without any additional user action. When a distributed job is
started using globusrun Mpich-G2 can obtain the IP address of every MPI process using Globus
(and Duroc) IO at the stage where all subjobs have started. The way this works is exactly the same
as for the PACX server startup case – but it happens automatically. The globusrun command
namely starts a https server on the local client. The contact information (IP address, port number
etc.) for the single Globus subjobs are distributed via environment variables which are set on the
machines where the job is finally started. This explains why the globusrun job itself must not be
killed until the entire job has finished. It also explains (now coming to the major downside of this
procedure) why a Globus job cannot be started from a machine or laptop with a private IP address
or behind a firewall.

PACX on the other hand does not need to have the complete Globus package installed and
deployed at all sites, which has usually to be done by root (it is also possible to install and deploy
Globus as a normal user, but experience showed that this is a very unhandy way of using Globus).

3.2.8 Running Parallel Codes with Mpich-G2

To run a distributed job (e.g. using Cactus) using Mpich-G2 we need the following:

• the Cactus source code, available at http://www.cactuscode.org

• Mpich-G2 installed for every architecture

• Globus installed for every architecture and deployed at every site one wants to run across

To configure and compile Cactus for distributed runs using Mpich-G2 one has to issue the fol-
lowing:

make <myname> MPI=MPICH MPICH DIR=<mpich-G2-dir> CC=<mpich-G2-dir>/bin/mpicc
LD=<mpich-G2-dir>/bin/mpiCC

Cactus and the mpicc compiling scripts take care about including and linking the appropriate
Globus libraries and include files (tested for Mpich version 1.2.1 and Globus version 1.1.4). Note
that it is indispensable to use the mpicc scripts for every code which calls MPI routines.

http://www.cactuscode.org
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After obtaining an executable one has to create a socalled rsl5 script which specifies the resources
one wants to use.

Befor starting the job the user has to get a proxy, i.e. an authentication ticket for the Grid
(comparable with a Kerberos ticket). To get this, the user has to type

tom@origin~% grid-proxy-init
Your identity: /C=US/O=Globus/OU=The National Computational Alliance/CN=Thomas Dramlitsch
Enter GRID pass phrase for this identity:
Creating proxy ................................................... Done
Your proxy is valid until Thu Sep 26 00:03:36 2002

and finally start the job using

tom@origin~% globusrun -f my_script.rsl

A sample script could look like this:

+
( &(resourceManagerContact="harpo.wustl.edu:2119/jobmanager-lsf")
(count=8)
(label="subjob washu")
(maxMemory=2000)
(project=paa)
(queue=8pe 4hr)
(jobtype=mpi)
(directory=/u1/thomasd)
(environment=(GLOBUS DUROC SUBJOB INDEX 1))
(executable=/u1/thomasd/cactus g2)
(arguments="test.par")
(stdout=out)
(stderr=err)
)
(&(resourceManagerContact="modi4.ncsa.uiuc.edu:2119/jobmanager-lsf")
(count=8)
(label="subjob ncsa")
(project=tro)
(jobtype=mpi)
(maxWallTime=60)
(environment=(GLOBUS DUROC SUBJOB INDEX 0))
(directory=/u/ac/tdramlit/Cactus/exe)
(executable=/u/ac/tdramlit/Cactus/exe/cactus g2)
(arguments="test.par -r")
(stdout=/u/ac/tdramlit/Cactus/exe/out.harpo)
(stderr=/u/ac/tdramlit/Cactus/exe/err.harpo)
)

5resource specification language
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Figure 3.2: The architecture of a distributed run using Cactus, Globus and Mpich-G2. A user must (at the
current development stage) have an RSL skript and executables in place. By either typing globusrun or call
globus duroc control job request() from a running code, a Duroc process gets created that (using Gram)
contacts the appropriate gatekeepres at each machine. Furthermore it starts a https server for information
interchange with the finally submitted job. Contact information for the https server are transmitted through
environment variables. In this architectural picture the implementations of the methods and algorithms
discussed in this thesis will take the form of a driver thorn.
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We will not go into the details of the Globus resource specification language which can be
found at [57], but we will explain two lines in this script which are important for the internals of
distributed computing with Mpich-G2.

The first important specification is (jobtype=mpi). This triggers the usage of the native VMPI
implementation on the machine in question. The requirement for this is that Mpich-G2 has been
configured and compiled for VMPI usage and the requirement for this is that the Globus installation
successfully built “MPI-flavored” libraries. Thus if one wants to use VMPI in a Mpich-G2 job one
has to take care of it at the time of the Globus installation.

If there is no VMPI on a machine available, or it cannot be used, the flag has to be set to
(jobtype=multiple). This triggers the usage of TCP for communications between CPUs even in
one subjob.

The second important specification is the environment variable GLOBUS DUROC SUBJOB-
INDEX. Its value has to be an different integer for each subjob starting at 0. This variable specifies
how the MPI ranks are distributed across the machines. The subjob with the GLOBUS DUROC-
SUBJOB INDEX 0 contains the global MPI rank 0, the other rank numbers are counted along
this index, i.e. the subjob with the highest index contains the highest MPI rank.

As mentioned before, we will use Mpich-G2 as a Grid aware MPI implementation for our
distributed runs since we think that it is the most capable implementation in respect of performance
and portability. Figure 3.2 illustrates the interaction between Cactus, Globus and Mpich-G2.

Up to now we did not discuss how all information can be acquired that is neccessary to compile
such an rsl script. At the current stage, all information has to be found out manually. This
concerns e.g. the type of batch system (e.g. jobmanager-lsf or jobmanager-pbs) the available
amount of memory on the machine or if there is a VMPI installation on that machine.

Finding out whether Mpich-G2 has been configured to use VMPI underneath is even harder.
To our knowledge, ther is no user level method to find out which intra-machine communication is
used by Mpich-G2.

However, several efforts are currently worked on to easy access these informations. As discussed
earlyer, Globus comes along with the MDS toolkit, an LDAP based server that collects information
about machines and networks. Each Globus enabled machine can register with such a server and
publish any kind of information to it (i.e. number of processors, memory, queue system and such).

A related PhD thesis(Lanfermann, 2002 [43]) designs a Grid Object Description Language
(GODLS) that generelizes and standardizes information about “objects” on the Grid. An ob-
ject can be anything that “lives on the Grid” e.g. a machine, a file, an operating system, a firewall
etc. An Application Information Server handles requests from running codes that look for Grid
objects with particular properties.

The above described problem of not knowing wheter to choose jobtype=multiple or jobtype=mpi
are thus solved by the Application Information Server.

3.2.9 Application Codes

The application code which we will run within Cactus is a code that calculates the time evolution
of objects in the general theory of relativity (i.e. neutron stars, boson stars, black holes or similar),
which is very communication intensive and represents the state of the art in this area. It solves
Einstein’s field equations of the general theory of relativity. More precisely it calculates the time
evolution of a given initial dataset. Exactly this code was used to obtain latest results in this area of
research [3, 4]. It uses finite differences to compute the time evolution of the fundamental quantity
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in general relativity namely the components of the metric tensor (along with other quantities).
The numerical method used here is a Iterative Crank Nicolson scheme using three iterations [16].
The initial data we use in our test runs is a set of “Brill-Lindquist black holes” [1] which is a
known analytical solution of Einstein’s equations. By an analytical solution we mean a set of
discretized functions which represent a known function (e.g. f = x + y/z), as opposed to initial
data sets that are obtained numerically by solving elliptic or other equations. Those calculations are
needed to extract gravitational waveforms of the calculated “cosmic events” in order to compare
it with waveforms still to be observed at large gravitational wave detectors [71, 2]. A match
between calculated and observed waveforms would finally confirm theory of general relativity. This
confirmation of Einstein’s theory is a major goal in theoretical physics.

Again, we strengthen the fact that we are not using test codes but real production codes. This is
very important since real production codes mostly have different communication and computation
characteristics than test or benchmark codes which mostly have simplified characteristics. By
focusing on production codes, the methods developed in this thesis can be brought back and
immediately used by the science community.

3.2.10 Testbeds and Certification Authorities

The Globus authentication scheme uses X509 certificates to identify a user on the Grid. Those
certificates are signed by a certification authority’s (CA) private key. To submit a job to a machine
where a Globus gatekeeper is running the user needs a local account and a certificate which is
signed by a CA which is trusted by the machine. The gatekeeper knows the CA’s public key and
can therefore verify the users authenticity.

The most known certification authority is the one that is run by the Globus developers themself
(ca@globus.org) but there are also others (Alliance certs used for the NPACI sites, DoE certificates
etc.).

For a testbed to perform distributed computations – like the ones in this thesis – the user needs

• A local account at every site

• A certificate signed by a certification authority accepted at every site.

A site can be a member of more than one testbed. For example the Origin 2000 at the Albert
Einstein Institute accepts Globus as well as Alliance and other certificates. The collection of sites
one has access to with a specific certificate can be called a virtual organization.

3.2.11 Co-Scheduling

In order to run codes efficiently across more sites they have to start up at the same time. For
bigger jobs this can only be achieved when the schedulers at both sites talk to each other. We call
this co-scheduling.

The only scheduling system which is used in production environments we currently know of
that could support a primitive kind of co-scheduling is the Maui scheduler [48] where it is possible
to schedule a job at an absolute time, e.g. from 3pm to 6pm on the 21st of June 2002. If the
batch system underneath is able to meet this condition the job will be submitted and started at
the requested time, if not then the submission did not succeed. Theoretically this is independent
of the fact whether this is a multi site job or not (In regular cases this kind of advanced reservation
is used to prepare demonstrations or for administrative work on the machine). A multi site request
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requiring multiple resources at the same time (e.g. 9am in two days) can be regarded as a primitive
form of co-scheduling. Unfortunately this does not properly interact with the Globus toolkit since
it does not support the usage of Maui schedulers (more precisely its resource specification language
does not contain commands to talk to the Maui scheduler).

Another batch and scheduling system which supports real co-scheduling even across remote
locations is the Load Sharing Facility (LSF) as of version 5.0 [46]. However, at the time writing
this thesis this software still was not released.

Thus, since currently there are no sophisticated systems which support co-scheduling with
Globus we have to restrict ourselves to the submission jobs without co-scheduling, meaning that it
can take a long time for both jobs to start. When a Globus job gets started by a queuing system
it waits in the so called duroc barrier() routine until every subjob starts up. A job sitting in the
duroc barrier() is considered by any queue system as a running job. Thus in the worst case one
job may already exceed its computing time while another is still sitting in the queue.

However, if the requested processor number is small, the job might start immediately at all/both
sites. This unfortunately restricts us to a rather small processor number. With the current load
in queue systems at supercomputing sites like SDSC, NCSA, WashU or others we are able to start
distributed runs with at most 8 processors per site on a more or less regular basis.

At some occasions however, like for Supercomputing Conference demos or for TeraGrid prepera-
tion runs (Chapter 5) we had the chance of running distributed jobs at a large scale. These singular
events helped us a lot to gain experience and on that basis we were able to develop and implement
techniques (Chapters 6 and 7) that we than tested at the previously described scale (∼8 processors
per site).

3.2.12 Example runs

Our main testbed comprizes the Origin 2000 at the Albert Einstein Institute in Potsdam, the
Origin cluster at NCSA, Blue Horizon at SDSC and another Origin 2000 at Washington University
in St. Louis (WashU). Recalling the co-scheduling problems described in the last section we found
that the chances to have a distributed job starting right away are very high for runs between
Potsdam and WashU (having up to 8 processors per site). Figure 3.3 shows the time evolution of
the total performance, measured in Mflop/s, of a distributed run across 16 processors, 8 located
in Potsdam, 8 in St. Louis. Taking into account that this run would perform at 1.4Gflop/s on
one origin it turns out that the performance achieved here is very poor (around 10% efficiency).
Other distributed runs we have executed show a very similar performance behavior. We ran exactly
the same application code across an origin at NCSA (8 processors) and Blue Horizon at SDSC (8
processors) and achieved a performance in the same order of magnitude, about 200Mflop/s. Given
the fact that Blue Horizon is about twice as fast as on origin 2000 (setting 70 and 140 Mflop/s for
the single CPU performance of the origin and Blue Horizon respectively) the speedup of this code
can be calculated using equation 2.2:

S(16) =
200

8
1670 + 8

16140
≈ 2

A speedup of 2 on 16 processors is equivalent to a efficiency of 12%. Although this is a very poor
number, we emphasize that we did not apply any special methods or enhancements to any part of
the software used for this. We also want to emphasize that these runs show that such a distributed
calculation with standard software is possible at all.
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Figure 3.3: The performance of a standard distributed run between origin.aei.mpg.de and chico.washu.edu,
both origin 2000 systems. The latency between the two systems is about 65ms with a bandwidth of less than
400kb/s. This graph shows a run across 8+8 processors. If one takes into account that the performance of
the same run on one processor would be about 1.4Gflop/s we achieve an efficiency of about 11% for this
distributed run of about 160 Mflop/s (and an efficiency of about 80% for the single machine run).

But we also see why distributed computing in a real heterogeneous Grid environment does not
belong to a scientists daily work: Apart form the practical problems described in the next section
the resulting performance does not justify the execution of codes in such an environment. Given
the efficiency of around 10% in the previously discussed runs it would be much more convenient
and efficient (as well as cheaper, faster) to run it on two processors of a local cluster with fast
interconnects.

It is a major goal of this thesis however to investigate possibilities and techniques to improve
the efficiency of such codes to bring distributed Grid computing closer to a scientists daily work.

3.3 Practical Problems in Grid Computing

In this section we very briefly describe general and practical problems when one wants to perform
distributed runs in heterogeneous environments.

Although one has to emphasize that the Globus toolkit addresses and solves many of those
structural problems there are still many practical and structural problems left which need to be
solved and are not addressed in this thesis. These problems include:
Lack of a common file system. In classical parallel computing on clusters or supercomputers we
have several file systems which can be accessed from every node and processor. On supercomputers
we mostly have a local fast data disk for storing runtime data and other mounted file systems
which can be commonly accessed. Many applications however require a common file system for
e.g. parallel IO, checkpointing, recombining etc. Another very related problem is that due to the
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lack of a common file system we have
Multiple software trees. Since we don’t have a common file space we have to maintain several
copies of the same software tree on each machine. Currently we don’t know of any tool which
is specifically designed to consistently maintain multiple copies of such a software tree. Similar
tools like CVS, rdist etc. do exist but turn out to be unsuitable for this problem. For example,
every little change which is made to some line in some source code would have to be committed
to CVS and then checked out on the other machines. Even if we successfully manage to keep a
consistent copy of our software on all machines it happens often that one forgets to compile on one
machine leading to another inconsistency. What we need here is a software that checks consistency
and recompiles on the “make” level, i.e. we need a kind of distributed make, which is currently
addressed by Feider [22].
Executables. From the above said it follows that it can easily occur that the executables in
question do not match for some reason. There is in principle no way to properly verify that
all executables on all sites are “the same” (since it may be a different operating system). This
phenomenon is completely unknown to classical parallel computing. In our test runs it happened
very often that the executables did not “match”, which results in the fact that the code simply
’hangs’.
Parameter files. The same goes for parameter files. Users change them quite often and this again
leads very easily to inconsistent parameters within the run. As being text files the consistency of
those can be checked.
Debugging. Debugging parallel programs is harder than debugging serial codes and debugging
programs in a Grid environment is even harder. While for the first problem a lot of software for
parallel debugging exists, there is currently no software to support “Grid-debugging”. The only
solution we know up to now is to simply attach to a running process using a standard debugger
like gdb or dbx (if one has access to the machine the code is actually executed).
Precisions and pointers. Different machines may have different ways of representing integers,
pointers or floating point numbers (as already mentioned in 6.1). For example a pointer on a 64
bit architecture is 8 bytes long while a pointer on a 32 bit architecture is only 4 bytes long. We
experienced many problems when running a mixed 64 and 32 bit code across two architectures.
Also one has to be very careful when sending integers in a Grid computing environment since they
may have different size on different systems (e.g. 8 bytes on a T3E while 4 bytes on an SGI origin).
Firewalls and private networks. Firewalls are the biggest enemy of Grid computing but they
do not completely prevent it. Mpich-G2 and Globus can be restricted to use a certain port range.
Due to security but also due to a lack of public IP addresses it often happens that only the front
node of a cluster has a public IP address while the compute nodes have a private one. Performing
distributed runs with such a system would require to install a “forwarding node” on the front node
where all communication with remote sites goes across.

All those and many other reasons may lead to the fact that a code runs in parallel on one
machine or cluster but does not properly run in a real Grid environment. These issues need to be
resolved, but are beyond the scope of this thesis.

3.4 Summary

In this chapter we shortly introduced MPI as a message passing library standard. For the purpose
of Grid computing runs we analyzed which implementation of the MPI standard fits best our needs.
After choosing Mpich-G2 as the best candidate to perform distributed runs in a Grid environment
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we performed some first test runs using real world applications. We saw that runs are possible,
though very low performing. Also, we experienced a couple of other problems related to executing
codes in a Grid environment, which are not addressed by this thesis.
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Chapter 4

Performance Analysis of Distributed
Computing

4.1 Motivation

In the last section we described how distributed Grid computing across multiple supercomputers
can be done. More important is the question whether this gives us any benefit at all, in other words
how good is the efficiency of the running code. To answer this question we now build and apply a
model which can predict the performance of a code (that is executed in such a Grid environment)
in advance. By Grid environment we mean – more specifically – a collection of supercomputers
(or clusters). The model used in this Chapter is very similar to the one developed by Ripeanu
[59]. However, it is not the goal of this Chapter to develop a new theoretical model, but rather use
existing models and current codes to learn and understand performance issues of distributed runs
in order be able to develop techniques for performance improvement on that basis.

Our motivation basically comprizes of the following issues. First, a predicted low performance
keeps the user from entering this territory of configureing and running those distributed jobs.
Second, modeling is informative and helps us to understand better all performance related issues
on all levels of hard and software. Third, having a (even rough) model we are able to identify
issues that are needed for an easy and effective execution of distributed codes on the Grid. These
information are important for future investments, i.e. what special characteristics should machines,
operating systems and networks have in order to support Grid computing.

4.2 Single Processor Performance

In this study we do not model the single processor performance. Of course it can be modeled using
many input parameters like local grid size, array sizes, cache size, cache line size, processor speed
etc. But this is not our goal. Instead, we simply use the single processor performance as an input
parameter to predict the Grid environment performance.

4.3 Single Machine Performance

For the class of codes which run within the Cactus framework we start with a simple model.
We introduce a simple model to predict the performance of a typical application running within
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the Cactus framework. This model makes the following assumptions:

• the workload on each CPU is exactly the same

• the code spends time solely with pure computation or communication

• network characteristics between pairs of processors are identical

• all processors finish their work at the same time

• all processors are dedicated (no competition with other processes)

Under those assumptions it is easy to compute the efficiency of an example code with known
characteristics. We choose an optimized version (application-level optimized) of a standard code
from numerical relativity (“benchADM”). We keep the problem size per processor constant and run
the code on different numbers of processors (1,2,4,8,16,32) on an origin 2000 system (modi4.ncsa.uiuc.edu).

From the assumptions above and using (2.1) we calculate the efficiency for running the code on
different processor numbers by dividing the time for a single CPU run Tsingle by the (wall clock)
time for an n−CPU run Ttotal.

In order to predict the efficiency for those runs we only have to know the pure computation
Tcomp time which is simply given by the single processor performance which again is given as an
input parameter. The communication time Tcomm is what we need to calculate.

To be able to do this we need to know the interconnect characteristics of the origin 2000 systems.
We found a bandwidth of 127MB/s and a latency of 10µs between processors using the mpptest
code [36].

Our single CPU code has a computational grid size of 603, performs 10 iterations and needs
12.86 seconds for it. We emphasize that the single CPU version of our code (i.e. the Cactus
code) does not contain any communication or parallelization overhead. This trick is commonly
used to improve the efficiency of a parallel code: Introducing parallelization overhead even to the
single processor code increases the numerator in equation 2.1 and thus the efficiency of the parallel
executed code.

The n CPU versions also have a local subgrid size of 603 per processor (ghost zones are omitted in
this model, see our assumptions) and the communication pattern corresponds to the one described
in sections 2.3 and 2.4.

The set of points which has to be sent to the neighbored processor contains in our case 60× 60
points. We send a group of six functions per iteration containing floating point data. The size of
a double precision floating point variable is 8 bytes long.

For a two processor run we thus have to send 60 × 60 × 6 × 8 × 10 = 1728 kb in total. To
compute Tcomm we have to take the latency of 10µs and the bandwidth of 127MB/s into account:

Tcomm =
1.728MB

127MB/s
+ 10 · 10µs

= 0.013606s + 0.00010s = 0.0137s

yielding an efficiency of

Eff =
Tcomp

Ttot
=

12.86− 0.0137
12.86

= 99.98%.

For more processors we have to take into account that the number of neighbors increases and along
with this the amount of data to exchange. The table below shows the results of our calculations.
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Figure 4.1: The efficiency of an executed parallel code on a SGI origin 2000 computer system. The dotted
line shows the efficiency as calculated by our model whereas the solid line represents the real performance
as we have measured it.

N procs topology efficiency
1 1× 1× 1 100 %
2 1× 1× 2 99.9
4 1× 2× 2 99.7
8 2× 2× 2 99.6
16 2× 2× 4 99.5
32 2× 4× 4 99.4
64 4× 4× 4 99.3
128 4× 4× 8 99.3
256 4× 8× 8 99.3

Since we assume that all connections between processors are identical the growing number of
processors does neither influence the bandwidth nor the latency. Only the number of neighbors
changes with higher processor number and reaches its maximum at 64 processors where it can
happen that one processor has to send data to all its six neighbors. Then, according to our model
the efficiency cannot get worse than in the 64 processor case, namely 99,3%.

Let’s compare those numbers to the ones we have measured on a 48 CPU origin 2000 at NCSA
(modi4). Figure 4.1 shows the big mismatch between reality and prediction. We repeated the
measurements 10 times to obtain a statistical error of about 2% for each value which means that
we must have made a systematical error in our model. We now have to go step by step through
our assumptions and check whether and how this assumption is close to reality.
1. Identical workload on CPUs is true for our runs because we specifically instructed our code
to maintain a constant load per processor (normally one specifies the global problem size rather
than the local one and in that case the load among processors is not exactly the same) apart from
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the fact that processors located on the boundary of the computational grid have one fewer ghost
zones. For a 603 sized subgrid however one additional ghost zone increases the workload by 1.6%.
2. The code solely computes or communicates. This is also true for our code since it is not
doing any time consuming IO or other things (like collective operations, file output etc.).
3. Network characteristics between pairs of processors are identical. This can be tested
at least to a certain degree. We obtained a bandwidth of 127MB/s between two processors on the
origin. We can also measure the bi-sectional bandwidth including more CPUs (The bi-sectional
bandwidth includes the simultanious data transmission in both directions). As before we are using
the mpptest program [36] which is coming along with the Mpich distribution. We run the code
on 32 processors telling it to perform pingpong tests between the first and the last 16 processors
simultaneously. However, we still obtain a bandwidth of about 124MB/s.
4. All processors are used dedicated. We ran our code in a busy environment so this point
is definitely not true. In the system we used (Origin 2000) any user can log in and out to every
node and start jobs anytime. Even if loging in is not permitted the operating system may swap
processes from node to node and such disturb the computation. Combined with the fact that we
assume that
5. all processors finish their work at the same time we at least know one reason why we are
not observing the predicted efficiency.

However, it is possible to check whether point 4. and 5. is responsible for the observed discrep-
ancy. We will redo the runs and use a dedicated machine. Furthermore we can tell the operating
system not to swap MPI processes during execution (on Origin 2000 systems this is possible by
setting appropriate environment variables, e.g. MPI DSM MUSTRUN).

We used the so called dedicated queues on the origin cluster system at NCSA. We ran the code
on 64 CPUs and measured an efficiency of more than 97%. We did not perform this run 10 or
more times to estimate the statistical error but if we simply assume a 2% error taken from our
previous measurements we see that the error intervals of the theoretical and measured efficiency
are overlapping.

To summarize we can claim that our parallel model is useful if applied to dediccated systems.

4.4 Grid Environment Performance

As for the single machine performance model we need to make assumptions about the Grid envi-
ronment. For now, we assume the following:

• The code we are dealing with is load balanced. We assume – similar to the single machine
case – that a neglectably short time is spent with catching up with other processors. We thus
either deal with identical supercomputers or with a perfectly balanced code.

• Networks are ideal. We neither share the network with other users nor it changes its
characteristics in time (In later Chapters, we will consider this effect seperately, allowing
networks to vary in time). If a supercomputer in a Grid computing setup is connected to more
than one other supercomputer the network traffic does not interact. Also, the total bandwidth
from one supercomputer to another is independent of the number of TCP connections.

• The latency time for sending a message over wide area networks with in the Grid computing
environment is half of the IP round trip time (RTT). The RTT can be measured using the
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UNIX ping command. By this we also neglect all overhead due to buffer allocation, buffer
copy and similar.

• We allow ghost zone sizes for intra- and inter-machine communication to differ. In regular
cases the ghost zone size for intra machine communication is the same as the stencil size of
the numerical code.

• the time a processor needs to catch up to others is not taken into consideration.

• For the single machine performance we deploy our model from the previous section.

Having said this, we proceed the same way as in the single machine case namely by calculating
the computation and communication time using known input parameters (like bandwidth between
machines etc).

Let n be the total number of processors, g the ghost zones size for inter machine communication
(divided by the stencil size), ts the sequential time needed for one iteration on a given CPU, L the
latency between machines (in seconds), sn the number of synchronizations per iteration called by
the application code and D the total amount of data which is send from one machine to another.
Let further be B the bandwidth between machines.

If our setup includes more than one machine it is clear that the slowest wide area network link
determines the efficiency of the distributed calculation.

Since we know that efficiency is according to 2.1

E =
Tcomp

Ttot
=

Tcomp

Tcomp + Tcomm
(4.1)

We need to calculate Tcomp and Tcomm. According to our assumptions we get

Tcomp = ts (4.2)

and
Tcomm =

snL

g
+

D

B
. (4.3)

Note that

• B and L are determined by the wide area network

• sn is determined by the application code

• D is determined by the application code and the driver code

• and g is determined by the driver code.

For the overall efficiency we therefore get

E =
ts

ts + snL
g + D

B

. (4.4)

The number of processors or machines does not occur in this formula but it is hidden in D, the
total amount of data send over the WAN. Unfortunately we have to calculate it from case to case
manually since it depends on the processor topology and the machine topology which again depends
on the driver code.
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4.5 Example Runs

We now take a look at the distributed run we performed in Section 3.2.12. We used a real production
code for our runs which is used in current numerical sciences. It synchronizes 7 variables three times
per iteration which sets sn = 21. For a single CPU execution we measured 2.31 seconds per iteration
(using a grid size which corresponds to the subgrid size per processor in a distributed run) which
makes ts = 2.31.

In order to calculate D we need to know how many grid functions each variable contains, the
processor topology and the global grid size. It turns out that the code synchronizes 19 grid functions
(grouped into 7 variables).

The global grid size was the three dimensional grid 120×60×60, the processor topology 2×2×4.
The total amount of grid points sent with each grid function over the network is thus 120× 60 and
the total amount of data is

D = 120× 60︸ ︷︷ ︸
gridpoints

× 8︸︷︷︸
double precision

× 19︸︷︷︸
number of gridfunctions

× 3︸︷︷︸
per iteration

= 3283200bytes. (4.5)

We measured the TCP bandwidth B with a classical ftp transfer and got transfer rates around
320kb/s. The latency L as measured by the ping program is about 65ms. The communication
time therefore is given by

Tcomm = 21× 0.065s +
3283200bytes

320000bytes
s

= 11.62s. (4.6)

For the efficiency we finally get

E =
Tcomp

Tcomp + Tcomm
=

2.31
2.31 + 11.62

= 0.165 ≈ 17%. (4.7)

With this number we are quite close at the measured efficiency of 9% in Section 3.2.12. However,
to see if this is just a coincidence we need to calculate the error intervals for both the measured
and the predicted efficiency value.

Since we permanently monitor the performance of the running code we may calculate the
relative error of the floprate out of the values from Figure 3.3. We get an error of about 3% for
the mean value of the performance, i.e. (162± 5)Mflop/s. Assuming the single CPU performance
of 112Mflop/s is error free we thus obtain a measured Efficiency of

EM = (9± 0.3)%. (4.8)

We now want to calculate the error of the theoretically predicted value. In order to calculate the
relative error of the theoretical efficiency ET we need to sum up the relative errors of the bandwidth
and latency (assuming an error of 0 for the other quantities).

For a single stream we can estimate the statistical error for the bandwidth between the two end
points to 320 ± 20 MB/s which corresponds to a relative error of about 6%. Adding the latency
error of about 2% we end up with 8% so we can say about our theoretical efficiency

ET = (16.5± 1.3)%. (4.9)

So we get a theoretical efficiency of (16.5 ± 1.3) % as opposed to a measured one of (9 ± 0.3)%.
The error intervals do not overlap which means that our model is not predicting the right value at
all. Therefore, we – again – have to review our initial assumptions and check their validity.
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Figure 4.2: Theoretical Efficiency according to our model depending on the bandwidth and latency. A
latency of less than 20 milliseconds combined with a bandwidth of more than 8MB/s already can result in
an efficiency of more than 85%. Since the usage of multiple ghost zones decreases the latency in our model
(i.e. a ghost size of 2 halfes the latency) one achieves significantly better performance improvements at high
bandwidth rates when using multiple ghost zones than at low bandwidth rates.

Load balanced code. We used a regular domain decomposition across a homogeneous setup
(both were equipped with the same processor type, MIPS R1000). The processors in the middle
of the computational grid have one additional grid point (because of two ghost zones) but we still
think this is neglectable.
Time for processors to catch up is not taken into consideration here but surely plays an
important role. One cannot expect that all communications take exactly the same time. Since one
processor cannot continue to perform calculations without its neighbors data, the slowest processor
(or the slowest connection) holds up the entire calculation. We think that this fact has an important
impact on the efficiency so that the predicted efficiency should be much lower!
Networks are ideal. Today’s wide area networks are of course everything else than ideal. We
measured the bandwidth between the two supercomputers using single streams. However today’s
physical networks do not necessarily share the bandwidth for multiple links between the same pair
of IP addresses. The above calculation used (due to Mpich-G2) 8 simultaneous streams.

We measured the bandwidth of 8 simultaneous streams (due to firewall issues, we had to use
ssh with no encryption) between origin.aei.mpg.de and harpo.wustl.edu. Surprisingly it turns out
that each stream still achieved a throughput of about 290MB/s resulting in an overall transfer rate
of 2.3MB/s. Putting this value into our model we get an theoretical efficiency of 45%.

Unfortunately this is not true for all links. Rerunning the same test across a completely different
network (i.e. between uranus.haiti.cs.uni-potsdam.de and origin.aei.mpg.de) we rather see a more
familiar behavior: A single stream has a throughput rate of 1,35MB/s and four simultaneous
streams have about 360kb/s each. As a conclusion one can say that the behavior of multiple TCP
streams strongly depends on the type of physical networks underneath, maybe the number of hops
and other things that hardly be predicted.

The reason we observe a value of 9% which is about a factor 4 lower than 45% (taking the
multiple stream behaviour into account) this must be – as in the single machine case – due to the
fact that processors are not dedicated. However, these hold-up times are hard to predict.
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4.6 Summary and Conclusion

In this chapter we have tried to predict the performance of a parallel code ran in a Grid environment
by using simple input parameters like bandwidth, latencies, single processor speed etc. However,
we saw that already in the single machine case the theoretically predicted value deviated strongly
from the measured value. After setting up a better (or say more artificial) environment, e.g. a
dedicated machine with specific operating system flags and environment variables, we obtained
values which are close to the predicted one.

For the Grid environment performance we calculated the communication time using a simple
model and saw that the predicted value is rather close to the measured one. An error calculation
however showed that this match is just a coincidence. Reviewing our assumptions we found that
multiple TCP streams can result in a full range of bandwidths’ depending on the type of physical
networks underneath.

Thus the prediction of the performance of a distributed code in a general Grid requires two
things: The detailed understanding of all physical wide area networks involved and dedicated
machines.

Modeling the performance is a useful and informative way to get closer to the core of the
problem of low effeciency of codes ran in a grid environment.

Since it is clear, however, that it is hardly possible to fully understand all details of networks,
operating systems and hardware, we have to conclude that modeling the performance of a parallel
code in a Grid envrionment cannot predict the exact value. We thus need a more phenomenological
treatment for future experiments.



Chapter 5

Large Scale Distributed Computing

After having described the general setup of distributed computations with Cactus and Globus,
analyzed the performance behavior and other things we now describe an example run which we
performed in April 2001. Since this run is – according to our knowledge – the biggest distributed
run of a tightly coupled code ever performed in a real Grid environment. In future chapters we will
take what we learned from this exeriment and on that basis we will analyze and design new methods
and techniques for parallel computing. This is one reason why we will describe this experiment in
detail. Furthermore these experiments were used to justify the funding of the DTF proposal.

5.1 DTF – Distributed Tera Flop Computing

Since the late nineties Grid computing was realized to be a forward-looking technology, many
proposals have been written and funded to build a suitable Grid infrastructure backbone consisting
of software and hardware components in many parts of the world.

One of the most prominent proposals to date was the so called DTF proposal which was sub-
mitted in may 2001 to the National Science Foundation (NSF). The proposal was written by major
supercomputing sites in the United States that are members of the Partnership for Advanced Com-
putational Infrastructure (PACI), which comprise the biggest supercomputing centers in the US
like the San Diego Supercomputing Center (SDSC), the National Center for Supercomputing Ap-
plications (NCSA), California Institute of Technology (CalTech), Argonne National Labs (ANL)
and others. It was funded for more than $50 million a few months later in 2001. This made it
possible to build a national wide (and unique in the world) infrastructure to support execution
of distributed applications on high-speed networks and systems which geographically cover major
parts of the US. It consists mainly of exceptionally high speed wide area network connections
and is now called the TeraGrid [66]. Figure 5.1 shows the planned network infrastructure of the
TeraGrid which at the time of writing this thesis was still not ready for use.

As for every project of this kind, the public funding has to be justified. We were invited to
perform experiments to show the feasibility of such wide area distributed computation and the
results of our work are presented in this chapter.
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Figure 5.1: The TeraGrid. This probably world wide unique Grid infrastructure – mainly consisting of
networks and high speed clusters – is currently being build to support distributed execution of codes in the
teraflop range. The results obtained in this chapter of the thesis were used to justify to support the funding
of the TeraGrid.

5.2 General Setup

Since the distributed runs described in this chapter were done for the preparation of the TeraGrid
one can see the location of the machines used here by taking a look at figure 5.1. The back bone
of the TeraGrid network architecture will be upgraded to a 40 Gbit/s link (!) form the University
of Illinois (UIUC) to the San Diego Supercomputing Center (SDSC) also connecting the Argonne
National Labs and the California Institute of Technology, among others. Our test runs were done
using machines at NCSA and SDSC.

5.2.1 Machines

We had four supercomputers at our disposal. We begin with the description of the smallest one,
an Origin 2000 equipped with 128 R10000 CPUs running at 250MHz, followed by another one of
exactly the same kind and yet another one of the same kind but equipped with twice as many
processors. This set of machines is located at the NCSA. In addition to this a fourth machine,
Blue Horizon, located in San Diego was deployed for our test runs. This IBM SP-2 computer was
equipped with more than 1100 Power-3 processors running at 375 MHz and thus we had the chance
to perform a distributed run across more than 1500 processors, see Figure 5.2.

5.2.2 Network

When we use the word network we consider every physical communication layer that we used in
this setup to perform MPI communications. The range of latencies and bandwidths values for a
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Figure 5.2: The machine topology in the DTF demonstration runs. We had four machines of different
size and type connected by different types of networks namely OC12 and Gigabit Ethernet (GigE). The
theoretical limit for the bandwidth of the physical network is 125MB/s for GigE and 622Mbit/s for OC12.
While for GigE we achieved almost 100MB/s we only had 2.5MB/s real application bandwidth for the OC12
network.

single distributed MPI run across the whole setup includes up to four orders of magnitude!
Let us begin with the description of the slowest network namely the wide area network between

NCSA and SDSC. Although this is physically an OC12 Network having a theoretical bandwidth of
622 Mb/s at the physical transport layer, we performed some bandwidth tests using the mpptest
program [36]. For a single TCP connection we only achieved a bisectional bandwidth of about 2.5
MB/s. We did not measure the TCP performance for parallel streams. The latency between the
two supercomputing sites was determined to be 36ms.

The next faster level of networks we are using in this test run is the local area network between
machines at NCSA. The local physical network between the origins consists of an Fast Ethernet
(FE) and Gigabit Ethernet (GE) network. Since the TCP implementation under IRIX and the
network card drivers are fairly fast, we could achieve an MPI performance of almost 100MB/s
between machines at NCSA using GE. Even faster than this is the network between two nodes on
Blue Horizon which – after a switch upgrade in January 2001 [13] increased to more than 400MB/s
with a latency of 17 µs, both measured in MPI communication. The latency for intra machine
communication on the origins is even below 10 µs and the bandwidth is around 120 MB/s [51]. See
the summary in the following table.

Network type bandwidth latency
Intra machine Blue Horizon 420MB/s 17 µs
Intra machine origin 2000 120MB/s 10 µs
GigE between origins 98MB/s ??
OC12 between NCSA and SDSC 2,5MB/s 72ms

5.3 Code Characteristics

The application code we used to run across this huge setup was a numerical Fortran code computing
the time evolution of gravitational fields in the general theory of Relativity. The evolution code
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calculated the equations in the socalled ADM formulation (see [49]) using the “staggered leapfrog”
method [55]. This code has been used as the standard code for problems in numerical relativity
throughout decades. In principle we could take any other numerical code running in the Cactus
framework. However, we would like to mention that this code has been optimized on the application
level. This means in particular that the synchronizations (and thus the communication) has been
reduced to a bare minimum. Note that it is solely determined by the application programmer
how many synchronizations have to be done. This code synchronizes six grid functions of double
precision floating point data and as such sends 8× 6 = 48 bytes per ghost point to the neighboring
processor. It also has been optimized for single processor performance by rewriting the Fortran
code to make better use of the memory cache.

5.4 Remarks about General Problems

In this big setup we are already confronted with most major problems in Grid computing:

• multiple authentication

• co-allocation

• co-scheduling

• variety of networks in different quality

• different operating systems

• processors running at different speed

The Globus and Mpich-G2 packages offer solutions to some of the above problems like e.g. the
first two items whereas co-scheduling is a still open problem. Currently, in our setup, co-scheduling
was done by picking up the phone and talking to the side administrators of all sites involved.

As we will see in the next chapter the performance of a distributed run across this setup yields
a very low performance. It is a major goal of this chapter to learn from this experiment where the
communication bottlenecks are located.

5.5 Observed Performance

As outlined in Section 2.1 we will use the terms speedup and efficiency to measure performance
using equation 2.2. We have two different types of processors to deal with and in order to calculate
the speedup and efficiency we need the single floprate of the two types as well as the total floprate.

In order to get the single floprates Fk we scaled down the problem size to fit on one CPU. Then
we used hardware counters on both systems, i.e. hpmcount on Blue Horizon and perfex on the
SGI systems. We measured 168 on the R10000 processors and 306 on the Power-3, respectively1.

1These floprates include the so called “multiply-adds”: It was found that an operation which contained a multi-
plication followed by an addition was (by some hardware counters) counted as one floating point operation (but is
clearly two operations). The perfex tool on IRIX systems does not include those multiply-adds while the hpmcount

tool on AIX systems does. It even counts the number of those operations so that we could extrapolate the real
floprate for the SGI systems as well.
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Measuring the total floprate of a distributed running code is harder. We did this by using timers
printing out the duration for the last 10 iterations to a local file measured in wall clock time, using
the MPI Wtime() call. Since we know the characteristics of our code we know that the number of
floating point operations increases linearly with the problem size. We therefore can calculate the
number of flops per grid point and therefore the total number of executed floating point operations
for an arbitrary large computational grid. We calculated that the code executes 780 flops per grid
point per iteration. The total floprate of the running code could then be measured as gridsize
×780× 10 iterations divided by the time needed for 10 iterations.

For a grid consisting of nx × ny × nz =842.940.000 points we therefore have 842.940.000 ×
780× 10 = 6.574 Tflops to be executed. As said above, each processor took the time for every 10
iterations. The current floprate for those 10 iterations was then calculated as 6.574 Tflops divided
by the maximum of each processors measured time which was 155 seconds in the best case. The
floprate was thus determined to

F =
6.574 · 1012flops

155s
= 42Gflop/s.

The “expected” floprate can be calculated as the sum of the single processor floprates on all
machines namely 480∗168+1020∗306 Mflop/s = 393 Gflop/s and hence we obtain an efficiency of

E =
42
393

= 11%.

Note that this Floprate can be achieved on the 256 CPU SGI alone!

5.6 Manual Adjustments

Since the above quoted efficiency is less than satisfactory we will now try to improve the efficiency
by manually adjusting parameters on the driver level of our code (without modifying the application
code).

5.6.1 Processor Topology

As we have seen in Section 2.5.1 classical parallelizing codes like PUGH try to distribute processors
equally among the dimensions. For 1500 processors the topology would yield 10 × 10 × 15 for
three dimensions. This can or cannot be an adequate processor topology since it depends on the
grid size and shape where wide area network communications take place. As we will see later (in
Section 6.2.2) we need to “line up” all machines in the dimension where the computational grid
has the most number of points. Since, again, PUGH always (unintentionally) lines up the machine
in the highest dimension we chose the computational grid to have its longest dimension to be the
z-dimension. In this case we were lucky: The z-dimension already had the most number of grid
points. However, the shape and size of the computational grid is solely defined by the scientists
needs.

Thus we chose a computational grid stretched in the z-direction. We also found (without any
theoretical calculations that would justify this choice) that a processor topology of 5 × 12 × 25
seems to be adequate for this computational grid size and machine topology. This is possible in
PUGH by specifying the desired processor topology in the parameter file which is read at startup
time.
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For this topology we now can calculate the amount of data to be sent over the wide area network.
Since our global grid size was chosen to be 350× 720 in the x− y-plane we had a local grid size of
70× 70 in the x− y-plane on each processor. Since we know that every grid point is sending 6× 8
bytes per iteration we have to send 5× 12× 70× 70× 6× 8 ≈ 14MB across the WAN. Assuming
the maximal possible bandwidth of an OC12 as being 77MB/s and 1.7 seconds for one iteration we
theoretically cannot expect the code’s efficiency to be better than 90% since it takes 0.18 seconds
for communication.

5.6.2 Load Balancing

From test runs on single processors we saw that the IBM Power-3 processor is about twice as fast
as the R1000 processor, so we had to rebalance our code in a way that the local grid size in x and y
direction was the same on each processor but differed in the z-direction. We chose to give 135 grid
points in the z-direction to a ’Blue Horizon’ processor whereas 75 grid points to a Origin processor.
As in the processor topology case this is possible by specifying it in the parameter file at startup2.

In addition to that we also chose to give all processors that are involved in wide area network
communication less work than their “colleagues”. By this we achieve a partial overlap of compu-
tation and communication since those processors (they are 2× 5× 12 = 120 to be exact) can send
their data before others have finished their work and thus are performing communication while
others keep computing. We gave 60 grid points (instead of 75) to the SGI processors at the WAN
boundary and 100 (instead of 135) to the Power-3 processors, i.e. roughly about 20% in both
cases. Again, this choice is completely empirical, without theoretical justification. In the following
chapters we will design algorithms that automatically choose the “right” numbers.

5.6.3 Ghost Zones

Recalling the way the synchronization between processors is done (see Section 2.3) one can apply
the following trick: For a code which has a stencil size of 1 we increase the ghost zone size to e.g.
10. By this choice we need to send 10 times more data, but in our current setup, we need to do it
only every 10th iteration. In other words, instead of sending 10 small messages we coalesce them
into a single big one and send it every 10 iterations (and we do not change the total amount of
data). The advantage of this procedure is the following. In our setup we have to deal with a latency
of about 36ms which adds up to 0.36 seconds in 10 iteration. Sending one big message however we
only have to deal with a 10 times smaller latency, i.e. 0.036 seconds. Apart from network latency
one also saves time used for buffer copying, memory allocation (leading to cache misses) etc.

By doing this we are trading the latency of sending a message against CPU power: The addi-
tional ghost zones have to be calculated by the local CPU.

We now have only 120 processors that are involved in wide area network communication and
thus we should give them more ghost zones. Unfortunately, the current implementation of our code
only allows a consistent ghost zone size in each dimension. There is, however, no numerical or other
reason which forbids different ghost sizes on different processors even in the same dimension or even
on the same processor. Thus we could only increase the ghost zone size for the entire dimension.
Since we knew that all TCP traffic will occur in the z-direction of our computational grid we chose
to increase the number of ghost zones in the highest dimension to 10. However, this also means
that we have 10 ghost zones at places where it is not needed (e.g. in intra-machine communications

2The implementation of this parameter file based loadbalancing was done by Matei Ripeanu
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where the latency is about 10 µs). This can obviously be improved with more and better work,
which we will discuss in the next chapters. Again, this number is not justified by any theoretical
study, it is entirely empirical.

5.6.4 Compression

Another trick we applied before sending data over the wide are network was to compress the data.
We used the compress() routine which is shipped with zlib version 1.1.3 [18] to compress the send
buffer and decompress() to decompress it on the receiver side. The compression factor and the
time needed to compress strongly depends on the type of data we are compressing, i.e. the type
and shape of the floating point functions. We expect noisy and irregular functions to compress
much worse than smooth, regular functions. Our code calculated the evolution of gravitational
waves, which have a smooth and also periodic nature and therefore the compression rate was very
high (better than 1/10 of the original size).

Like in the ghost zones case our code was not sophisticated enough to apply compression only
at places where needed, so we applied it to any communication going on in the z-direction. This
involves compression/decompression of data which is sent over very fast intra-machine networks
(e.g. 420MB/s within blue horizon) and as such cannot considered to be optimal. We will resolv
this issue in coming chapters.

5.7 Observed Performance II

After manually applying all techniques described in the last sections we had the opportunity of
running the code a few more times. It happens that our improvements drastically improved the
efficiency of our distributed run. We can quote efficiency numbers of 88% on 1140 (involving two
machines, blue horizon (1020) and aegir (120)) CPUs and 63% on 1500 CPUs.

Of course it would be a very interesting scientific question which single technique exactly led
to which performance improvement. Unfortunately, due to the lack of time and we were not able
to perform single large scaled runs with every change in the driver layer separately.

5.8 Discussion of Results

The set of DTF runs has shown us two basic things. We now know that (a) large scale distributed
computing is actually possible. Remember that all previous attempts (known to us) to run tightly
coupled MPI codes across several supercomputers involved a far smaller setup. Furthermore we
learned that (b) manual tuning, not necessarily on the application code level, can improve the
performance of such a code drastically.

Up to now we did not exactly specify what we mean by “manual tuning”. By this we mean
any change applied to the code using the knowledge of the setup before starting the code, mostly
achieved by setting parameters in the parameterfile.

It is clear that all those improvements and adjustments are not the scientist’s responsibility. It
rather would be ideal if all techniques which have been applied in the DTF run would be made by
the driver code automatically, without user interaction.

Setting the adequate processor topology, ghost zone, load balance in the parameter file is a very
error-prone process. For an n-machine run we need to have n consistent parameter files. Even
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within one parameter file it is very cumbersome (as one can imagine) to specify the exact load for
each of the 1500 processors.

This however leads us to the question about the exact values we specified for various adjustments
(e.g. 10 for the number of ghost zones). Recall that we manually set those values on a gut level but
this is not possible from within a running code. How do we solve that problem? One possibility
would be to calculate the optimal ghost zone size using measured input parameters like bandwidth
and latency. However, since the performance models we have at hand are too imprecise we rather
choose the following method: The running driver code should simply test possible values while
monitoring the performance and stick to the value which gives the maximum performance. This
procedure has even an additional advantage: Since the network quality is not independent in time
but rather can change during code execution we do need such dynamic techniques to adapt a
running code efficiently to the runtime environment.

From the things said above we should now be able to formulate a wish list for a new smart algo-
rithm for parallel codes running in a Grid environment that therefore should contain the following
considerations:

load balance: Divide the whole domain into sub domains for each processor such that the hetero-
geneous setup (in particular different processor speeds) is taken into account. No processor
should need to wait for any other, no processor should hold up others.

processor topology: Minimize communication over the wide area network by calculating the
optimal processor topology according to the number of processors on each machine and the
shape of the computational grid.

latency hiding: The driver code should optimally coalesce groups of smaller messages into larger
ones when and where needed. This deals with latencies in wide area networks (in our case
implemented using multiple ghost zones, as discussed before).

apply selective compression: The code should optimally compress data which will be sent over
slow communication channels. Since compression rates and times differ for different kinds of
data functions, each data function should be considered separately. For example, periodic,
wave-like functions compress much faster and better than irregular, noisy functions. Intra-
machine communication should usually not require data compression.

dynamically adaptive: These issues in principle all depend on properties which can change with
time: compression rates, compression times (calculated functions change in time, competing
traffic may change the network bandwidth), latency effects (frequency of synchronization can
change with time), load on a processor (and therefore its effective power), etc. This requires
the code to continuously adapt and determine the best configuration.

dimension independent: The code should be dimension-independent, i.e. it should be able
to deal with 2-dimensional discretized functions as well as with n-dimensional and should
calculate the optimal configuration for each dimension.

single-machine as a special case: The implementation of the new algorithms should generalize
the previous algorithms in the sense that it contains the special case where the number of
machines is one and should then automatically reduce to a classical parallelizing scheme
without compression/latency/load balancing techniques.
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minimize overhead: Since additional code will be executed along with the numerical calculations
in order to make adaptations on the fly it will introduce additional computational and com-
munication overhead. The goal here is to minimize in particular the communication overhead,
i.e. exchange information between processors only if and where really needed.

properly interact with other Grid-technologies: The design should be general enough in or-
der to smoothly interact with other Grid-technologies (like e.g. migration [43] or similar).

application does not change: The application itself, i.e. the numerical code (written in Fortran,
C, or C++) should not need to be affected and can remain unchanged.

communication overlap: If one processor waits for data from a specific direction it could still
keep doing sensible work like initiate other communications, copy buffers, do calculations or
similar.

In the next chapter we will analyze and investigate the possibilities of implementing algorithms
which fulfill the requirements of our list.
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Chapter 6

Adaptive Strategies for Performance
Improvement

The last chapter has shown what kind of problems one faces when running tightly coupled parallel
codes in a real Grid environment. The performance of such codes gets very poor unless one
specifically tries to adapt the code to the environment. Three major reasons can be blamed for
bad performance:

• load imbalance

• high latency

• low bandwidth

• non-dedicated environment

While we can’t deal with the last issue, in this chapter we will try to analyze the situation and
suggest algorithms and concepts to improve the performance by trying to reduce the effects of the
first three items listed above. The first item can be treated by redistributing all data according to
processor speeds to find an optimal (but static) load balance. High latency often leads to problems
when message sizes are small and the number of messages is large, so we should always aim at
achieving the opposite namely having few but bigger messages in the case of high latency. If the
bandwidth is low we have to try to send as little data as possible. As mentioned before the amount
of data which has to be exchanged between machines is not uniquely determined by the application.
As already seen in the last chapter, one method to reduce the amount of data (send in a specific
direction) is to choose an adequate processor topology.

Our code therefore has to adapt itself to the environment, i.e. to the machines, processor power
and networks. As opposed to the next chapter, we will discuss how the code initially adapts to the
environment. Dynamic strategies, where the code keeps adapting throughout the evolution will be
discussed in the next chapter.

But before we begin to discuss processor topologies we like to say a few words about testsuites.

6.1 Testsuites

Our goal is to analyze and improve all algorithms on the driver level of a parallel code, not on
the application level. This does not only mean that the application remains unchanged but it also

55



56 CHAPTER 6. ADAPTIVE STRATEGIES FOR PERFORMANCE IMPROVEMENT

256
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Figure 6.1: A simple example of a two dimensional computational grid distributed on two machines having
8+16 processors. The thick line marks the border between machines. The longer that line, the more data
has to be sent over a possibly slow network.

means that the results of the calculations of the application code need to remain exactly the same
as before. All our changes to the driver code must not change the numerical results. They should
be the same no matter if the code is run on a single CPU on a laptop, cluster, supercomputer or
on multiple supercomputers.

For this purpose many parallel applications come along with a so called testsuite to check the
correctness of the results. This testsuite compares stored data of previous runs (which it assumes
to be correct) with data just produced in a (e.g. multi-machine) run.

Unfortunately when dealing with floating point numbers, the results cannot be exactly the same
on different machines. The reason for this is that different architectures may have different formats
to represent floating point data in memory. Since every floating point operation produces roundoff
errors the result of a floating point operation can differ on different architectures although the input
data was identical.

An appropriate testsuite therefore compares the results omitting the last two digits in a floating
point number. We then say that the numbers are the same up to machine precision.

Although all issues discussed in this and the following chapters are treated in a implementation
independent manner we anticipate a realisation within the Cactus framework and as such every
time we replace driver routines we run a set of testsuites (coming along with different application
thorns) to make sure that our changes/improvements did not affect the numerical results.

6.2 Processor Topology

Figure 6.1 gives a simple idea about the situation we are facing. It is our goal to reduce the amount
of data which is sent over the wide area network. Looking at Figure 6.1 we see that this turns into
finding the processor topology where the “thick line” in Figure 6.1 gets a minimal length. This
“line” is a plane-like object in the three dimensional case, a solid body in the four dimensional case
etc.
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Thus we have to find an algorithm which tries to minimize the communication by minimizing
the size of the “faces” between processors (i.e. lines in the 2D case, planes in the 3D case, cuboids
in the 4D case etc.). Before we do this we have to take one step back and take a look at single
machine topologies to have a basis for multi-machine topologies.

6.2.1 Single Machine Topology

Problem. A three dimensional computational grid of size 256 × 512 × 128 has to be divided up
on 128 processors in a way that the communication is minimized, i.e. the sum of the areas of the
planes between processors become minimal.

The solution to this problem is quite straightforward and can be solved by the following (known)
algorithm:

Algorithm: Create3DTopology(nprocs, dim, gridsize[])
{

/* nprocs: total number of processors
dim: dimension of the grid
gridsize: array containing the number of points in each dim */
for (i = 1 to gridsize x)

for (j = 1 to gridsize y)
for (k = 1 to gridsize z)

if (i*j*k == nprocs)
compute sum of areas between procs
if area < minarea

minarea = area ; save i,j,k
}

This procedure represents a so called “brute-force” method: It simply loops through all decom-
positions, checks if the product equals the given processor number and calculates the areas of the
processor faces, always recording the topology associated with the smallest area.
Example
For a three dimensional computational grid of size 128×32×64 decomposed on 64 CPUs the above
algorithm yields a processor topology of 8× 2× 4. Recall that the old algorithm from Section 2.5.1
would calculate a topology of 4×4×4. One clearly sees that our new algorithm puts more processors
to longer dimensions which was our goal.

This algorithm works fine, but since we cannot restrict ourselves to three dimensional computa-
tional grids we have to extend the above algorithm to arbitrary dimensions. Using this brute force
method it means that we have to loop through all possible decompositions in N dimensions.

Therefore we propose to replace the three for loops with a general loop through a N -dimensional
cuboid. We implemented this, and as a result we get a code which does in principle what we want.

Unfortunately, this code gets very slow with increasing processor numbers and dimensions. For
processor numbers > 1000 and dimensions > 4 the calculation can take hours, which makes the
code unusable.

Thus we need to profile our code to see what the most time consuming part is. For a brute-force
algorithm it is not surprising that the code spends most of its time to loop through topologies that
are no real decompositions (its product does not yield the total number of processors) rather than
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with calculating the areas once a valid topology is found. For example, if the total number of
processors is 8 and the dimension is 4, our code loops through all decompositions:

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1

...
1 2 1 1
2 2 1 1
3 2 1 1
4 2 1 1
5 2 1 1

...
8 8 8 6
8 8 8 7
8 8 8 8

which is too many. We rather have to think of a loop that automatically stops increasing the
processor number of the current dimension if the current product of CPUs in all dimensions is
bigger than the total number of processors, meaning that the loop should look at least like

1 1 1 1
2 1 1 1
3 1 1 1
4 1 1 1
5 1 1 1

...
1 2 1 1
2 2 1 1
3 2 1 1
4 2 1 1
1 3 1 1
2 3 1 1
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...
1 1 1 4
2 1 1 4
1 2 1 4
1 1 2 4
1 1 1 5
1 1 1 6
1 1 1 7
1 1 1 8.

As can be seen this loop skips “really stupid” decompositions like 8× 8× 2× 6 for 8 processors
in total as opposed to our previous version. This significantly decreases the combinations to check
for. Therefore we have to find a way to generate such a loop. To achieve this, we developed the
following algorithm:

Algorithm: CreateNDTopology(nprocs, dim, gridsize)
{
int topol[dim]; /* the decomposition */

while (loop)
{

product =
dim∏
k=1

topol[k]

if (product == nprocs)
{

calculate area
if (area < minarea)

minarea = area; save topol[]
}

for(k=0;k<=dim;k++)
{

topol[k]++

product =
dim∏
k=1

topol[k]

if (product > nprocs)
topol[k]=1 ; continue

else
break

}

product =
dim∏
k=1

topol[k]

if (product == 1)
exit loop /* we arrived at 1× 1× ...× 1× 1 again! */

}
}
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Figure 6.2: This picture is to illustrate how our algorithm loops through possible decompositions in two
dimensions for 16 processors. The allowed decompositions are the ones which hit the curve y = 16/x. The
black vertical lines represent the way of our loop which always crosses the curve and therefore no allowed
decomposition is omitted. The figure also shows how the loop is reduced as compared to the initial brute
force method.

The topol[] array represents the possible decompositions. The algorithm starts with an infinite
loop. First we calculate the product of all indices to check if this is a decomposition. If yes, we
calculate the n− 1 dimensional “volume” of the processor faces. If this is smaller than the current
minimum the index-array will be saved. Now we increase the first index of our topol[] array by
1 and again calculate the product. If the product is bigger than the total number of processors
we reset this index to 1 and continue with the next index. Otherwise the loop continues. If the
product becomes 1 again it means that we already looped through all possible combinations and
ended at 1× 1× 1...1× 1 again.

Now it remains to investigate whether our algorithm really gives us the optimal result. By
optimal we mean the decomposition where the sum of areas of the processor boundaries will be
minimal. In order to do this we recapitulate again the idea of creating the loop over all dimensions.
Figure 6.2 illustrates in a two dimensional example all possible and not possible decompositions for
16 processors. All allowed decompositions are the ones that are located on the curve y = 128/x.
Instead of looping through all possible pairs of numbers in two dimensions our algorithm loops just
as far as we cross the curve in Figure 6.2. For this example, it shows that our algorithm does not
omit any allowed decompositions.

Theorem
Our Algorithm from page 60 gives the optimal processor topology.

Proof
We proof it by induction. Our graphical example (see again Figure 6.2) showes that the first

claim is true for D = 2 (or alternatively we may even consider that our assumption holds for
D = 1).
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Suppose that the algorithm finds the optimal processor topology for an arbitrary dimension
D. This means that it loops through all possible decompositions, starting from < N1, 12, . . . , 1D >
to < 11, 12, . . . , ND > and finds the optimal one, (e.g. < n1, n2, . . . , nD >). Suppose now that we
deal with D + 1 dimensions. The above decomposition, as being the optimal one in D dimensions
could be also interpreted as the optimal one in D + 1 dimensions where the last dimension is fixed
to nD+1 = 1. Now, note that the last dimension gets increased when the decomposition looks
like < 11, 12, . . . , ND, 1D+1 >. Now the algorithm finds again the optimal decompostion in D + 1
dimensions, this time under the condition that the last dimension is kept fixed to nD+1 = 2. This
is being repeated N times. The restriction that the last dimension is always fixed to some value
cancels now, since the loop has already gone through all values. It follows that if the algorithm
finds the optimal processor topology in D dimensions, it also finds it in D + 1 dimensions. Since
we know that it is true for D = 2 we proofed it for an arbitrary dimension by induction.

�

This algorithm is fast enough for our purposes. For example, to calculate the optimal proces-
sor topology for a six dimensional grid on 2500 processors it takes 0.8 seconds on a Pentium-III
processor.

Another interesting question is the scaling behavior of our algorithm. If N is the total number
of processors and D the dimension then the pure brute force method clearly scales like O(ND).

For the scaling behavior of our new algorithm we have to take into consideration that the
number of elements the loop goes through is exactly the number of elements under the curve in
Figure 6.2. For the two dimensional case it is quite easy to calculate. If N is the total number of
processors then the curve is parametrized by

f(x) =
N

x
. (6.1)

The area A under the curve is then given by the integral

A =
∫ N

1
f(x) = ln(x)|N1 = ln(N). (6.2)

For the same problem in D dimensions we have to calculate the D − 1 dimensional integral of the
function implicitly given by

N =
D∏

k=1

xk,

where xk is the number of processors in the kth dimension. Solving for x1 we get

f(x1) =
N

D∏
k=2

xk

(6.3)

and thus we have to calculate the integral

<N,...,N>∫
<1,...,1>

N
D−1∏
k=2

xk

dDx = (ln(N))D−1, (6.4)

using Fubini’s theorem. Our algorithm thus scales like O(ln(N)D−1).



62 CHAPTER 6. ADAPTIVE STRATEGIES FOR PERFORMANCE IMPROVEMENT

�

Summary The goal of this subsection was to develop a processor topology algorithm to reduce
the communication in single machine execution. We started by taking a known 3D-algorithm and
extended it to n-dimensions. After learning that the n-dimensional version performes very slow
(due to the brute-force nature of the original 3D algorithm) we analyzed bottlenecks and developed
a better approach. Our final algorithm scales like O(ln(N)D−1), as opposed to O(ND) for the
original 3D algorithm (where D is the dimension and N the total number of processors).

6.2.2 Multi machine topology

Since we now have an algorithm that always minimizes the communication between processors in
a single machine setup we have to take a look at our original problem again. Looking at figure 6.1
we observe the following: Even if we have minimized the area of the processor “faces” it does not
prevent us from ending up with the situation illustrated in the right picture of figure 6.1. This is
not surprising, since we did not take the machine layout into account, namely which processor is
located on which machine, how many processors does a machine have, how many machines do we
have in total etc.

Before solving the problem for the multi-machine case we first need to obtain this information.
On the MPI level we only have the possibility of calling MPI Comm size which only reports the
total number of processors (on all machines). We thus have to exploit higher (or lower?) level
information services to get this information. However, since this problem is clearly depending on
the particular implementation (or the particular service) we will discuss this in Chapter 8.

Assuming we have this information, how do we create a topology which fits to the actual
machine layout? We know that we first have to minimize the wide area network communication
and then the intra machine communication. Taking again a look at Figure 6.1 we realize that the
smallest faces – slices through an n−dimensional cuboid with the smallest n-1-dimensional area –
are always the ones which are orthogonal to the longest dimension of the computational grid. By
longest dimension we mean the dimension with the most number of grid points.

The proof of this fact is quite easy since the area of such a slice is the product of all grid points
in all dimensions but the one it is orthogonal to. Since we chose the longest dimension to be the
one orthogonal to the slice any other (orthogonal) slice would have a bigger area. Thus we need to
“line up” the machines in the longest dimension.

The “inner” topology of a subjob should be determined using our single machine algorithm we
have developed. We don’t want any “edges” between processors belonging to different machines
like in Figure 6.3. Since we rather want the machine boundaries to be “flat” (to minimize its area)
it follows that the number of processors in all but the longest dimension (the one the machines are
“lined up” in) should be the same for all subjobs (machines) to maintain consistency. Furthermore it
follows that the smallest subjob, i.e. the machine with the fewest processors determines the overall
topology. In order to calculate the global processor topology we therefore first have to calculate
the inner topology of the smallest subjob. For constructing an optimal processor topology in the
multi-machine case we propose the following Grid aware processor topology algorithm (“GAPTA”),
which consists of the following steps:

(1) Obtain the job-layout, i.e. how many processors are distributed on how many machines.

(2) Find out which dimension contains the largest number of grid points.
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Figure 6.3: This picture illustrates the situation when classical parallelizing algorithms are used for a multi
machine code execution. This situation will also occur if the number of processors on each subjob are not
multiples of the smallest subjob. The thick line marks again the wide area network boundary. The code
could basically run without problems in such a configuration but the amount of communication increases
as compared to a “regular” processor number and we will not be able to apply adapted ghost zone sizes for
intra- and inter-machine communication (see next chapter).

(3) Divide up the grid in this longest dimension across the machines into imaginary subgrids for
each subjob. The more processors a subjob has, the bigger its subgrid.

(4) Find the subjob with the smallest number of processors.

(5) Use the algorithm from Section 6.2.1 to find the optimal processor topology for this smallest
subjob in its sub-domain.

(6) Set the global number of processors for all but the longest dimension according to the topology
in the smallest subjob.

(7) To get the number of processors for the longest dimension divide the total number of processors
successively by the number of processors in each other dimension.

(8) The overall processor topology is now determined for the entire job.

The implementation of this algorithm is straightforward. As input we need the size of the global
grid, the number of machines, the number of processors on each machine and the dimension. The
output then consists of the number of processors in each dimension namely the processor topology.
Example. For a three dimensional grid of the shape 128 × 256 × 64 we calculate the processor
topology when running on 4 machines using 64,128,128 and 256 processors using

a) the classical algorithm from the last section and Section 2.5.1

b) the full Grid aware topology algorithm we just developed.

For all three algorithms we will additionally calculate the amount of data which will be sent across
the wide area network every time a function will be synchronized.

The algorithm from Section 2.5.1 does not take the machine topology and not even the shape
of the grid into account. The only input parameters are the total number of processors and the
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dimension (2D, 3D, 4D. . . etc.) of the problem. It gives us a decomposition of 8 × 8 × 9 trying
to distribute the numbers of processors equally across the dimensions. If we calculate the amount
of data sent across the wide area network every iteration we assume that every grid point sends
10×8 bytes (10 functions consisting of floating point numbers) to its neighbor. Since this algorithm
(always) lines up the machines in the highest dimension and one slice through the third dimension
contains 128 × 256 grid points the amount of data sent across the WAN can be estimated to
128 × 256 × 8 × 10 × 3 ≈ 8MB (× 3 for 3 wide area connections between 4 machines). In fact it
is even more since this decomposition does not respect machine boundaries which means that the
boundaries between machines are not planes but may contain edges (see Figure 6.3).

Our single machine algorithm from the last section won’t do any better. It yields a topology of
9× 16× 4 taking the shape of the global grid into account, but not the machine topology.

We now apply GAPTA according to the outline previously discussed:

(1) We have a job-layout consisting of 4 machines ordered with 64, 128, 128 and 256 processors
respectively.

(2) The longest dimension (the dimension with the most number of grid points) is the second
(containing 256 grid points).

(3) Those 256 grid points have to be divided up across the machines according to the number
of processors in each machine. Thus the grid point distribution across the four machines
in this second (longest) dimension is taken to be 28:57:57:114 (according to 64:128:128:256
processors).

(4) The first subjob is the smallest with 64 processors.

(5) The subdomain for this subjob is 128×28×64 (using the subgrid size from (3)). Applying the
single machine algorithm of Section 6.2.1 the processor topology on this subjob is determined
to be 8× 2× 4.

(6) Since we said that the number of processors in all but the longest dimension have to be the
same on all machines, the global topology then must be 8 ×X × 4, where the number X of
processors in the second direction is still to be found.

(7) This number X is then the total number of processors 64 + 128 + 128 + 256 = 576 divided by
the product of the number of processors in all other directions namely X = 576/(8× 4) = 18.

(8) The global topology is now determined to 8× 18× 4.

Thus our algorithm gives us a topology of 8× 18× 4 and chooses to line up the machines in the
second dimension. A slice through the second dimension contains 64×128 grid points and since there
are no “edges” the amount of data which has to be send across the WAN is 64× 128× 8× 10× 3 ≈
2 MB as compared to 8MB when using the other algorithms.

6.2.3 Processor Ordering

As opposed to considerations for classical parallel computing (like in Section 2.5.1) the mapping
of processor ranks into the processor topology is of particular importance. Our goal was to “line
up” the machines in the longest dimension. But what does it mean in practice? It means that
every processor is aware or “knows” which processor is located to his left, right, top, bottom etc.
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Figure 6.4: Numbering of MPI ranks in a distributed job when using Mpich-G2. Since we want to
line up the machines in the longest dimension and we know in which manner Mpich-G2 constructs the global
ranks we have to distribute the ranks in a way that counts the longest dimension last.

Since within MPI processors are uniquely identified by their MPI rank it means that we need to
specifically map the MPI ranks into their place in the n-dimensional topology. This information
then needs to be passed to other driver routines which are setting up coordinate grid functions
and other things depending on the particular topology. We stress again that within a modular
framework the numerical Fortran code does not need to be aware of processor topologies, ordering
or similar.

Before we try to do this we need to find out how the local MPI Ranks on each machine are
mapped to the global MPI Ranks in the Grid computing environment. Unfortunately this is im-
plementation dependent. However, since we decided to use Mpich-G2 we will describe (and later
implement) how Mpich-G2 assigns MPI ranks within a global job. Recall that Mpich-G2 uses (or
is able to use) the local VMPI1 and as such all processors within a subjob have their own ’lo-
cal’ MPI COMM WORLDS and therefore ’local’ MPI ranks. It is Mpich-G2’s job to hide these
local ranks and “worlds” and create a global MPI COMM WORLD. For this purpose it uses the
$GLOBUS DUROC SUBJOB INDEX environment variable to perform this mapping. The processor with
the global rank 0 is the one with the local rank 0 and the subjob index 0. If the subjob with the
index 0 has N processors the global N + 1 rank is the processor with the local rank 0 in the job
with the index 1 and so forth.

This again leads us to the question of how to order the machines themselves. For example, if
a distributed setup includes three machines A, B and C with fast wide area networks between (A
and B) and (B and C) but a slow network between (A and C) it makes sense to have a machine
order of the type A-B-C and not C-A-B. With the information we just learned about Mpich-G2 it
turns out to that the user needs to assign the $GLOBUS DUROC SUBJOB INDEX to every machine. In
our case it would be A:0, B:1 and C:2. However, as said above this maybe completely different in
different implementations.

Our original goal was to line up the machines along the dimension with the most number of
grid points. With the above knowledge at hand we are now able to perform the processor mapping.
Let < N1, N2, . . . , Nn > be the given processor topology for N processors in n dimensions. The

1Vendor’s MPI, or native MPI
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naivest way of processor ordering (used in PUGH) would be the following: Rank 0 would be the
first processor in all dimensions. Rank 1 would be the second processor in the first dimension
(and still the first in the other dimensions), rank N1 would be the first processor in the first and
third dimension and the second processor in the second dimension and so forth, ending with the
(N − 1)th processor to be last processor in all dimensions. Combined with our knowledge about
how Mpich-G2 distributes the global processor ranks we find that this way of mapping the ranks
into the topology always lines the machines up in the highest dimension. This is not what we want
since this would require the computational grid to always have the most number of grid points in
the highest dimension.

In order to achieve our goal we rather use the following algorithm:

Algorithm: Compose(dim,topol[],longest dim,rank)
{
int idim, position[];
for(idim = 0; idim < dim; idim++)
{

if(idim == longest dim and longest dim != dim-1)
idim++; /* omit the longest dimenstion for now */

position[idim] = rank modulo topol[idim];
rank /= topol[idim];
}

if(longest dim != dim-1)
{

position[longest dim] = rank modulo topol[longest dim];
rank /= topol[longest dim];

}
return position[];
}

As input parameters this algorithm needs aside from the dimension dim and the given pro-
cessor topology topol[] the rank of a processor and returns the position[] of this rank in the
n−dimensional processor topology. The result is illustrated by Figure 6.4. By this algorithm
it is always guaranteed that the wide area connections are located between the right groups of
processors.

6.2.4 Discussion

The algorithms developed in this section compute an optimal processor topology for a finite differ-
encing code which is run on multiple machines, a Grid aware processor topology algorithm (GAPTA).
Optimal means that the amount of data exchange is simultaneously minimized for the wide area
network and the intra-machine communication. For “regular” processor numbers it leads to a con-
figuration which significantly decreases the traffic across the wide area network between machines.
By “regular” processor numbers we mean in particular that the numbers of processors on each ma-
chine should be divisible. More precisely we mean that the number of processors in every subjob
needs to be divisible by the number of processors in the smallest subjob. Otherwise our algorithms
would not work and we would have to fall back to the classical scheme again. Figure 6.3 shows
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what may happen in this case. The boundaries between machines do not form a flat plane anymore
but rather an irregular area. Roughly we see several ways to deal with this situation:

• abandon processors on some machines to make the numbers divisible

• setup a trivial topology: line up all processors in the longest dimension

• do not allow such a job layout

• do nothing

In order to give up processors on some machines one would have to develop an algorithm that
calculates which machine should abandon which processor in order to keep this loss of resources
minimal. This information would need to be propagated to all other routines which is not feasible
in a modular framework since the total number of processors cannot be changed during runtime
on the MPI level.

The “trivial” topology can always be achieved easily and looks e.g. for a five dimensional com-
putational grid like 1×1×N×1×1 where the longest dimension would be the third. The advantage
here is that this topology is always possible. The disadvantage is however a very ineffective intra-
machine topology which, in the wost case could maximize the intra-machine communication (and
as such the redundant computation of ghost zones).

The option to simply not allow such a configuration is in our opinion the one to choose. The
question arises whether our code has to deal with such a problem at all or does it rather has to
be solved at some higher level, either by the user or by a portal or resource broker or similar.
Currently we feel that the divisibility of the processor numbers is not too restricting since most
queue systems on most supercomputers or clusters allow a maximum processor number which is a
power of two and as such is always divisible by another (smaller) power of two.

The option to do nothing is also valid as long as we do not try to specify a different number
of ghost zones for inter- and intra-machine communication (see chapter 2.3). As illustrated by
Figure 6.3 the machine boundary is not a plane and thus the ghost zone size cannot be changed
consistently without changing it also for intra-machine communication where it is not needed.

6.3 Domain decomposition, Load Balance

Regular domain decomposition methods of computational grids are extensively studied in the single
machine or cluster case (see e.g. [56])

For codes which are executed in a real Grid computing environment however, the requirements
for a proper load balancing and domain decomposition are quite different and are often the key to
achieve a high efficiency. The machine setup in [7] used 480 R10000 processors and 1020 Power-3
processors to calculate a set of differential equations on a three dimensional computational grid.
Given the fact that the Power-3 processors are about as twice as fast in respect of floating point
performance an equally distributed load would cause 1020 processors to idle half of their time. But
since they represent 4/5 of the computational power, the total efficiency would not exceed 3/5 =
60% even for an ideal case of no communication and parallelization overhead.

In Section 6.2.2 we have seen how the processors are arranged, i.e. which processor has which
neighbor, but we did not specify how big the part of the computational domain for each processor
is. In order to construct a suitable domain decomposition we first want to analyze the situation. We
have one single MPI job which consists of one or more subjobs. The total number of processors is
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Figure 6.5: The domain decomposition of a three dimensional computational grid for a 320×320×160 grid.
We have 256 processors distributed equally on two machines. The processor topology here is calculated to
8× 8× 4. Since the second machine is about twice as fast as the first, it gets twice as much grid points. The
thick line again marks the machine boundary.

the sum of all processors in the subjobs. Further we assume that we have one type of processor per
subjob. From Section 6.2.2 we know that the processor topology is done in a way that each subjob-
set of processors forms an n-dimensional cuboid and that the neighbored subjob is always located
in the dimension with the highest number of grid points (the “longest” dimension). Figure 6.5
illustrates this in three dimensions.

Taking these facts into account, the way of calculating the adequate domain decomposition
is the following: The entire computational domain can be divided into slabs (see Figure 6.5) of
processors in the longest dimension. Each slab is uniquely located on one machine or subjob. The
local processor speed now determines the “thickness” of the slab in the longest dimension.

This can be compared with a situation where n painters have to paint a wall but every painter
works at a different speed, and all painters have to finish at the same time. The way of assigning
parts of the wall’s area A of adequate sizes to the painters is the following. The speed Sk, Sj of any
pair of painters and their parts of the wall Ak, Aj should naturally be proportional:

Ak

Aj
=

Sk

Sj

Since the sum
∑n

k=1 Ak = A and the speeds Sk are known the above system can be solved for every
Ak.

The same way we are calculating the distribution of grid points across the machines. Each
subjob runs a test loop to measure floating point performance. The speeds of the machines (or
subjobs) are the inverse of the time which is taken by the getrusage() call.

Example: Consider a distributed run across 256 processors and two machines [Here, we already
anticipate an implementation of most algorithms we discussed up to now. For a more detailed dis-
cussion of implementation issues see Chapter 8.], between SDSC and NCSA. We use two machines,
an Origin 2000 with R10000 processors and ’blue horizon’ an IBM SP equipped with Power3-
processors. The global three dimensional grid size is 320× 320× 160. The processor topology was
calculated to be 8× 8× 4, the subjobs are lined up in the first dimension. The floating point loop
takes 2.41 seconds on the IBM SP and 4.40 seconds on the Origin subjob. The domain decompo-
sition then contains 41 × 42 grid points on every processor in the y and z directions and the grid
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Figure 6.6: The final domain decomposition. This picture is similar to Figure 6.5 but has got a small
correction in respect of the distribution of the workload. The slab of processors which are located at the
wide area network boundary gets less workload than its colleagues in the inner regions of a machine. Thus
they can already exchange data while the others are still computing

point distribution across the processors in the x direction looks like: 28+28+28+26+52+52+52+54
which means that blue horizon calculates about twice as much data than the Origin. Of course,
since the number of grid points always has to be integer, it changes slightly the number of grid
points on the last processor of the subjob (i.e. 26 and 54).

The domain decomposition for a distributed run as illustrated in Figure 6.5 seems to be “almost
perfect”. But still, since we are not living in a perfect world we have to take communication issues
into account. It is obvious that only the processors that are located at the wide area network
boundary are hold up by a slow connection and thus hold up others.

It thus would be a good idea to let those processors without wide area network connections still
keep doing computations while the others are waiting for the data from the other machines. This
can be achieved by giving the inner processors a slightly bigger workload than the WAN processors,
see Figure 6.6. By this we already achieve a partial overlap of communication and computation. In
our big distributed run [7] (see also Section 5) we intuitively gave those processors 20% less work
and redistributed it to the others.

To estimate the amount of reduced workload for those inner boundary processors we unfortu-
nately need data which we do not have at our disposal in the initial phase of our code where we
set up all those things described here like load balance and topology. We would need to know the
total amount of communication time per iteration but this is solely determined by the applications
running within Cactus. We don’t even know what the pure computation time for one iteration is
since we have no information about which code is calculating what (using which algorithm) within
the evolution loop. In order to be able to deal with this kind of problems we need to deploy adaptive
and dynamical techniques which will be discussed in chapter 7.

For a first simple implementation (see Chapter 8) we code the amount of work to be redistributed
to a fixed value of 20%.
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6.4 Overlap of Communications in Different Dimensions

Let us recall how the updating of the ghost zones (the synchronization of grid functions) is done.
As described in Section 2.5.4 the data communication happens sequentially using a loop through
all dimensions. [For the following it is important to distinguish dimension and direction. Every
dimension has two directions (call it positive and negative).] An asynchronous MPI Isend and
MPI Irecv call is posted in every direction of a given dimension and finally a MPI Wait is posted
for both directions of the given dimension. Once the data in both directions has arrived it is copied
from the receive buffers into the ghost zones (by a memcpy() call or similar).

This algorithm clearly treats all dimensions and directions identically. At this point it is quite
natural to break this loop and treat different directions according to the nature of the underlying
physical network. From our topology setup procedure we now know if there could be a slow network
(e.g. a WAN) in a given direction or not. Let’s call these directions WAN-directions.

For example we could replace the algorithm in 2.5.4 with the following, improved one:

Algorithm: SynchronizeII()
{

if (one direction is a WAN-direction)
{

copy the data into buffers for this WAN-direction
post an MPI Isend and Irecv for this WAN-direction
for (all other directions)

post Isends and Irecvs
for (all directions)
{

if (MPI Test > 0 in this dir)
copy data from buffers into the ghosts

}
}

else
use old algorithm form Section 2.5.4

}

As opposed to the classical algorithm this one first tries to identify whether there is a connection
with a WAN in some direction (from what we have said in the last sections follows that it can’t
be more than 2). If such a direction exists the code sends the data in this direction first using an
asynchronous MPI call and also posts an MPI Irecv for the expected data from the neighbor in
the WAN-direction. Without waiting for that data it now loops through all remaining directions
posting again asynchronous sends and receives. After this is done the code permanently tests all
directions for incoming data and copies it from the receive-buffer into the ghost zones if it has
arrived. If there is no WAN-direction, the old algorithm can be used.

It is quite obvious that this procedure can save time as compared to the old one since intra-
and inter-machine communication do overlap. In principle we now would have to analyze or at
least estimate the performance benefit we gain by making this change to our code. For this we
first implemented a test version of this idea. However, since we always deal with real production
applications, we have to perform a small reality check. Specifically we mean that we need to run this
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Figure 6.7: This figure shows a simple two dimensional computational grid divided up on four processors.
The code has a stencil size of 1. The stencil is illustrated as a set of red lines in this picture. In order to
update the grid point in the middle of the stencil it needs the values of all points which are covered by the
stencil, which in this case also includes the diagonal points.

algorithm within the testsuites of those applications. Unfortunately we realize that some testsuites
fail!

In order to understand why they fail we should take a look at Figure 6.7. The point (in the
middle of the stencil in this figure) needs the information of all neighboring points and as such also
the ones in the diagonal. This happens e.g. in finite differencing codes that need to take a cross
derivative like

∂2f

∂x∂y
.

Looking again at Figure 6.7 one realizes that those points in the diagonal are located on processors
which do not “face” each other. The question now is how the information of that point propagates
to the other one since our synchronizing mechanism only exchanges information between processors
that do face each other.

The answer is that this point gets synced “for free” if and only if the communications in (here)
x and y direction do not overlap. To get a clearer idea of what we mean we illustrate this in
Figure 6.8 in more detail.

The point in the upper right corner of processor 0 needs to be synced with the ghost point
belonging to the processor to its right and to the processor above it. Suppose that we first synchro-
nize in the x direction. In that case the upper right point of processor 0 updates the corresponding
ghost point on its right neighbor. Once this information has arrived we synchronize all processors
in the y direction. It is now important to understand that this previously updated ghost point
on processor 1 now itself updates a ghost point on processor 2. This freshly updated ghost point
now corresponds to the real grid point from the processor 0 which lies diagonal to processor 2.
In the case that we don’t wait for a synchronization in one direction to be finished but do these
communications in parallel that diagonal ghost point never gets updated.

There are now several possibilities to proceed

• check if the application code has a stencil which uses points in the diagonal. Overlap com-
munications in different directions if not, otherwise don’t overlap

• overlap all communications and in addition send the “corner” point to its diagonal neighbor
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Figure 6.8: As shown in Figure 6.7 one also has to synchronize a ghost point in the “diagonal” direction.
There are two possible ways of transferring this information. One way is to synchronize processors in the
non-diagonal direction sequentially as indicated by the red arrows. The other way, indicated by the dotted
black arrow is to synchronize this point directly which means to initiate a communication with that processor
which lies in the diagonal line.

in a separate MPI call

• don’t do overlapping

About the first possibility: It seems quite hard, if not impossible to check whether a running
application code would need this point or not. At least to our understanding there is no way to
check for that.

The second possibility is – as opposed to the first – possible to implement. Unfortunately things
might get complicated in higher dimensions. In two dimensions there is one corner point that has
to be send separately to one processor. In three dimensions we have a row of points which need
to be sent to three processors. In four dimension we have a plane of corner points which need to
be sent to five processors. This would involve five more WAN communications (in the Mpich-G2
and PACX case using TCP/IP) sending a rather small amount of data. When taking possibly high
latencies into account this procedure seems not feasible apart from the fact that the implementation
is not trivial.

What remains is the third possibility not to overlap the communications in different dimensions.
For now it is the option we choose but compared to our old method from Section 2.5.4 we can
still maintain full overlapping of communications in different directions in the same dimension.
Recall that the communications itself (i.e. the MPI Isend/Irecv calls) are already overlapping in
Section 2.5.4, but the sequential MPI Wait operations prevent the code from taking advantage of
it.

Thus the only thing which could be implemented is to replace the MPI Waits with a MPI Test
loop across both directions of a dimension which yields the following
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Algorithm: SynchronizeIII()
{

for (all dimensions)
{

for (all directions in this dim)
post an MPI Isend and Irecv

for (all directions in this dim)
{

if (MPI Test[dir] > 0 )
copy data from buffer [dir] into ghost zones

}
}

}

This algorithm can be seen as a compromise between our old algorithm from Section 2.5.4 and
the fully dimension-overlapping algorithm from the last section. The communications in different
directions in one and the same dimension now fully overlap. If one direction is a WAN direction
while the other is not, the data of the latter one naturally arrives first. Thus the code can copy
the data from the receive buffer into the ghost zones while the other side arrives. This algorithm
passes the testsuites.

6.5 Overlap of Computation and Communication

In Section 6.3 we already studied a possibility to achieve an overlap between computation and
communication. This overlap was an overlap involving several processors. Here we examine pos-
sibilities how to achieve such overlap on the same processor. The requirement is simply that the
processor should calculate, i.e. loop through (parts of) the computational grid while data is being
exchanged with neighbored processors at the same time.

In principle there are several methods to implement this and here we discuss two of them.

6.5.1 Method #1

Let us recall what the structure of a finite difference code running within the Cactus framework
is. On every local processor we have one or more n-dimensional arrays which represent values of
discretized functions. In order to calculate the evolution of such a function (to update the grid
points) the application code performs an n−dimensional loop through that array and after that it
requests a synchronization of all functions it took derivatives from.
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Evolution routine(nx,ny,nz)
{

do i=2,nx-1
do j=2,ny-1

do k=2,nz-1
array1(i,j,k) = (array2(i,j+1,k)-array2(i,j,k))/2 + ...

end do
end do

end do
synchronize(array1, array2,..)

}

The above routine represents a typical evolution routine in numerical sciences. The idea is
now to achieve full overlap of communication and computation by splitting the (Fortran) loop into
smaller subloops. Ghost data which is already calculated can be sent to the neighbored processor,
without waiting for it and the loop can proceed to calculate the next chunk. This can be achieved
by changing the application in the following way: Instead of looping from 1 to nx (or from 2 to
nx-1 etc.) all applications should loop from from[1] to a to[1] where from[] and to[] are indices
representing the local sizes of the grid on each processor.

The routine would then look like:

Evolution routine(from[],to[])
{

do i=from[0]+1,to[1]-1
do j=from[1]+1,to[1]-1

do k=from[2]+1,to[2]-1
array1(i,j,k) = (array2(i,j+1,k)-array2(i,j,k))/2 + ...

end do
end do

end do
synchronize(array1, array2,..)

}

Suppose a slow network connection underlies all communications in the y-direction. To perform
the overlap, we need to split the main evolution loop into several blocks. The number of blocks
(nblocks) can be left as an external parameter. Thus, the main evolution loop could look like:
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Figure 6.9: One method to achieve an overlap between computation and communication. The horizontal
arrows indicate communication while the vertical ones in the same color represent the part of the compu-
tational loop which is performed at the same time. Since the data is only needed in the next iteration the
communications for these data rows can overlap.

Evolution loop(int nblocks)
{

ind dim; [dimension of the grid]
int split;
for(i=0;i¡dim;i++)

from[i] = 0; /* to[]=nx,ny,nz etc.. */
split=to[1]/nblocks
to[1]=split;
for(i=0;i<nblocks;i++)
{

Evolution routine(from[],to[]);
from[1] = to[1]+1
to[1]+=split
}

}

Note that the synchronize() function will now only send data according to the from[] and
to[] arrays. It does not wait for the sends/receives to complete until the data is needed (i.e. in
the next iteration).

Figure 6.9 illustrates this procedure. While sending one set of already computed ghost points
we can already calculate the next set by which we achieve a full overlap of computation and
communication.
Discussion. Up to here it seems that the proposed overlap of computation and communication
is quite feasible and easy to implement. Unfortunately this method of overlapping has a major
downside and also the implementation is not that easy. In Section 5.6.3 we already brought forward
the argument that coalescing small messages into bigger ones helps to hide the latency of the wide
area network from the application code. If we implement the method discussed here then we are
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practically doing the opposite: We are cutting messages into smaller pieces and thus increase the
effect of high latency. However, this may or may not lead to a decreased communication time. It
depends on whether the evolution of the single parts of the grid takes longer than the latency of the
network. If yes, this procedure is beneficial, if not we lose efficiency. Apart form this we introduce
more overhead by introducing more buffer copying and thus increasing the chance for cache misses.
Furthermore we have to investigate what requirements the Fortran, C, or C++ code has to fulfill
in order to interact smoothly with this technique and not causing its testsuite to fail.

Assume an application routine which looks like this:

Evolution routine (Fortran, C, or C++)
{

do i=1,nx
do j=1,ny

do k=1,nz
function1(i,j,k) = ...

end do
end do

end do
synchronize(function1, function2,..)
do i=1,nx

do j=1,ny
do k=1,nz

function1(i,j,k) = ...
end do

end do
end do
}

Our goal is still to implement all discussed techniques and algorithms within a modular frame-
work (like Cactus) and as such we do not change the application code. For the above example it
would not be possible to implement our overlapping technique in this way since the correct values
of function1 and function2 are needed for the second loop but they did not arrive yet since did not
wait for them in the previous synchronization call.

However, there is one way to get it all working by requiring the application modules only to
have one n-dimensional loop per scheduled evolution bin. Every additional loop which is performed
to calculate variables which need the ghost zones has to be scheduled in an additional evolution
bin such that our overlapping technique can work.
Summary. The technique described above requires application codes to be rewritten and as such
does not seem to be worth to implement. Furthermore it is not clear whether this overlap leads to
a performance benefit or not since it depends on the ratio of computing time and network latency.

6.5.2 Method #2

The last method introduced had the disadvantage that latency effects may get increased since
bigger messages are divided up into smaller ones. A way out of this is the next method which
will be introduced in the following. It does not split messages but nevertheless achieves an overlap
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between computation and communication.
Suppose that the applications are not calculating their loops from 1 to nx but from a field

from[] to another index field to[] like in the previously discussed method. Suppose further that
a slow network connection is associated with communications in the z-direction. The parallel code
could then set from[0]=from[1]=1, from[2]=nz-ghost z where ghost z is the ghost zone size in
the z-direction. Further we set to[0]=nx, to[1]=ny, to[2]=nz. If now the evolution routine is
called with those parameters it loops through all ghost points and calculates the updated values
which could be sent to the neighbored processor using an asynchronous send. Then one could set
from[0]=from[1]=1, from[2]=1 and to[0]=nx, to[1]=ny, to[2]=nz-ghost z and call again the
evolution loop which would compute the rest of the array while data with the neighbored processor
is exchanged.

Although this method does not have the disadvantage of increasing latency effects it still requires
the application code to be coded in a special manner as already needed in method #1. While not
impossible, it still would require a lot of work to adapt all existing applications to be able to use
this technique.

6.6 More Methods to Improve Performance

The methods discussed in this section deal with the reduction of the amount of data to communicate.

6.6.1 Using Single Precision

One way of immediately reducing the amount of all communications by a factor two is to use single
precision. Recall that numerical codes are mostly exchanging floating point data. As we know a
floating point representation can be in single or double precision (according to the number of the so
called ’fraction’ and ’exponent’ bits in the IEEE standard for floating point representation) where
single precision uses only 4 bytes as opposed to 8 bytes for double precision.

However, performing numerical calculations in single precision may or may not be a suitable
choice for the numerical problem. For numerical relativity for example the usage of double precision
is indispensable. A simulation of colliding neutron stars in single precision would not be possible
because the stars would disappear in the noise (due to the low precision) before they would collide.

6.6.2 Omitting Messages

Bal et al. [10] suggest to simply omit messages. We know for sure that this will break our testsuites,
but going one step down, we could ask what weaker conditions we could require the code to fulfill.
The answer to this question is quite difficult as we don’t want to (and cannot) deal with issues on
the application level.

However, we emphasize that for many branches of numerical sciences it is hard enough to obtain
a code that can perform a long time stable calculation. Omitting messages is not a very helpful
option and no numerical scientist would seriously consider doing it.

Moreover, the way to measure and rate this deviation differs from application to application and
would even require to (manually) compare the run with a – previously done – fully synchronized
one.

These contemplations already show us that it will be virtually impossible to implement an
automatic decision mechanism on the driver level of a parallel code that switches message dropping
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on/off.
It thus remains the possibility to manually specify a parameter where the scientist can decide

whether he/she allowes message dropping in a distributed run. This seems to be the most sensible
way (if at all) since only the scientist itself can decide about the trade off between faster code
execution and precision.



Chapter 7

Dynamic Strategies for Performance
Improvement

In the last chapter we investigated various possibilities, algorithms and techniques to deal with Grid
computing related problems like load imbalance, different network qualities between processors and
similar. However, the nature of the Grid is not only a distributed and heterogeneous one but also
a dynamic one.

The term dynamic not only refers to the fast changing quality of networks but also to many
other building blocks of the Grid. Machines can come up or shut down, the load on the machines
can change in time, scheduling systems can change their configuration and even the running code
itself can change its algorithms, change the type of data which is calculated and thus also the
requirements in respect of computational and communicational resources needed.

An important goal of an application running in a Grid environment is to be able to deal with
all those changes and adapt itself as well as possible to the changing environment. In this thesis
we can only deal with a small fraction of all possible changes a running code could adapt to.

Since our goal is to achieve a high performance we now discuss techniques to deal with changing
network properties like latency and bandwidth as well as changing loads on machines while a
distributed code is running. Changes of the Grid that affect queuing systems or even entire machines
(coming up or shutting down) are treated in related works [42, 43].

Another important point is that the application scientists does not need to know any of these
details – the application itself should adapt autonomously to changing conditions.

In this chapter we discuss various techniques we have developed for real codes and production
computing environments to address the issues of changing conditions and automatic adaption.

As seen in Chapter 5 there are possibilities to deal with a low bandwidth and a high latency:
Compression and the usage of multiple ghost zones.

7.1 Compression

We have learned from Section 5.6.4 that data compression prior to send operations may speed up
the communication. This gave us an enormous performance benefit since the compression factor
of the data we used in those runs was very high. In the general case this may or may not be an
adequate option, since it strongly depends on the compression ratio of the dataset and the time
it takes to compress. If the time it takes to compress a chunk of data is smaller than the time
one saves by sending a smaller package then compression makes sense. The two most important
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notions are thus compression time and compression rate (or factor).

7.1.1 Compression Algorithms

Both compression time and compression rate depend crucially on the compression algorithm which
is being used. Among all compressing algorithms nowadays the JPEG1 algorithm seems to be the
most known. It is used to compress two dimensional graphical data. In a slightly modified version
this algorithm is also used to compress video and sound data where the resulting format is called
MPEG2 (e.g. MPEG layer 3, better known as mp3).

Looking at the compression ratios by comparing e.g. the sizes of an uncompressed image format
(e.g. GIF3) with the size of the corresponding JPEG image or by comparing the size of a mp3 file
with the size of the same file on an audio CD one realizes compression factors of 10 and more.

However, for our purposes these algorithms are not really suitable. Apart from the fact that
they specifically have been developed to compress graphics and sound data (and we deal with
floating point data) they are unsuitable because they belong to so called lossy algorithms which
means that compressing and uncompressing a dataset does not necessarily reproduce the original,
uncompressed dataset. For some scientific problems, however, lossy compressoin may be adequate
(e.g. visualisation), but for solving PDEs it is unacceptable.

Therefore we rather need a lossless compression algorithm which is specifically developed to
compress floating point data. However, as far as we know, no such code exists up to now, but there
is is a whole range of codes supporting lossless compression such as zip, bzip2, arj, gzip,
compress and others. They all use variants of either the Huffman or the Lempel-Ziv algorithm.
For implementation reasons, however (without comparing the properties of the above algorithms)
we decide to choose the deflate() algorithm from the zlib [18] package. Mainly there are two
reasons for this: First, to achieve a short compression time we need a code that compresses data
which lies in memory. Second, since we want to use it in Grid computing, we need a portable code.
Both conditions are met by this package which we already used in Chapter 5.

However, our techniques are rather independent of the compression library used. In future
implementations we may use other compression schemes.

7.1.2 Compression Time vs Compression Factor

The goal of this section is to predict under which circumstances compression makes sense. It is
not possible however to calculate this for the most general case since compression time as well as
the factor depend on a rich variety of things like the local processor speed, the type of data, the
amount of data, the algorithm and other things. Thus we will try to make a good choice by selecting
“typical” and fixed values for the above quantities. We choose three typical datasets in numerical
relativity: a black hole, a wave pulse, and a two-black-hole dataset. All datasets are solutions
of Einstein’s equations. We also choose a fixed grid and ghost zone size as well as the deflate
algorithm introduced in the last section. For the processor type we choose an Intel Pentium II and
the IBM Power-3.

We use a simple formula to calculate the time for data transmission:

ttotal = tcmpr +
message size× compr factor

bandwidth
(7.1)

1Joint Photographic Experts Group
2Motion Picture Experts Group
3Graphics Interchange Format
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Figure 7.1: When does compression make sense? The total communication time is plotted on the
y-axis, while we vary the bandwidth on the x-axis. The thick solid line represents communication times
without compression, which naturally is the same for any kind of dataset. The point where this line crosses
another one marks the point where compression does not make sense any more because it takes more time
to compress than one saves during the transmission.

where tcompr is the time needed for compression. If there is no compression, tcmpr is zero while
compr factor is one. For the message size a typical value of ∼ 235kb, (as in the DTF run) is
used. Latency is not taken into account because our goal is not to calculate absolute values for
the communication time, we rather compare communication time for our three datasets with and
without compression. Note that latency would just be an addend in eq. 7.1, which “cancels out”.
For a fixed dataset, data size and algorithm we have a fixed compression ratio (for our datasets, the
compression ratio did not significantly change with the message size, not shown here). In this case
the communication time solely depends on the bandwidth. Plotting the time against the bandwidth
in Figure 7.1 we immediately can read off the critical bandwidth, under which compression still
makes sense. In formula 7.1 it appears like this point depends on the message size, but in principle
it does not because the compression time grows almost linearly with the message size (not shown
here). Conclusion: Compression makes better sense at low bandwidth rates, high processor speeds
and high compression ratios.

7.1.3 Overlap of Compression and Communication

The last section implicitly used the fact that the data transmission and the compression operation do
not overlap. We discussed a similar situation in Section 6.5 where computation and communication
overlapped. The procedure would be very similar. We cut the whole dataset into pieces, and start
compressing the first chunk. While posting an asynchronous send for it we compress the second one
and so forth. The question whether this gives us a performance benefit or not strongly depends on
the relation between compression time and bandwidth. It would only make sense to use this option
in the case that compressing a chunk takes less time than sending it, otherwise we just increase
latency effects.
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7.1.4 Compression of Incremental Data

In the case that given floating point datasets do not compress very well (e.g. the data is very noisy),
i.e. it does not give us a benefit, one could apply the following trick: Like in backup procedures of
storage systems one could – instead of sending the dataset itself – send the difference between the
current dataset and the one in the last synchronization process. Without compression the amount
of data remains the same, but if the evolution of the dataset is sufficiently slow (which should be
the case for high resolved datasets) this incremental dataset should be close to zero and as such
should compress very well.

However, in some cases incremental data is sent even without explicit implementation in the
driver code. It happens on the application level! Suppose our numerical code solves a system of
first order partial differential equations of the following kind:

γ̇(x, t) = K(x, t) (7.2)

K̇(x, t) =
∂

∂x
γ(x, t) (7.3)

(these could be Einstein’s field equations in a one dimensional form). A spatial derivative is taken
from the function γ so this function is clearly the one which needs to be synchronized, i.e. parts of
its data have to be exchanged through the ghost zones. Suppose a discretization scheme does the
following

γ(t + ∆t, x) = ∆tK(x, t) + γ(t, x) (7.4)

K(t + ∆t, x) = ∆t
γ(x + ∆x)− γ(x)

∆x
+ K(x, t) (7.5)

and updates equation (7.4) on the even time steps (iterations) while equation (7.5) on the odd
time steps (we call this scheme “staggered leapfrog”, the odd time steps are called the staggered
time steps). The application code now has two choices: It may synchronize γ before updating
equation (7.5) or K before updating equation (7.4). Some codes choose to do the latter. Recall
that K is the time derivative of γ so that we achieve an exchange of incremental data on the
application level.

This phenomenon is very interesting since the functions γ and K may have completely different
shapes and as such a totally different compression behavior4.

It is hard, if not impossible to predict which function compresses better. The only solution is
to simply test, on the fly during code execution which method (incremental or normal exchange)
gives better compression rates and as such better performance.

7.1.5 An Adaptive Compression Algorithm

As the previous subsection has shown, compression ratios and times can vary as much as network
quality, depending strongly on the type of data, processor speed, resolution etc. It almost seems
to be impossible to make an intelligent decision about compressing or not for this variety of cases.

Taking into account however that the compression times and ratios do not change very fast
in time (for most of our test datasets) one could monitor the code performance, test wise switch
compression on/off, keep monitoring the performance for an iteration interval yet to be specified
and compare with the previously achieved performance. If it results in a performance benefit, leave

4This leads us to the question about whether there is a minimal information which needs to be exchanged
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compression state as is, otherwise revert to the old state. Of course this only makes sense under
the assumption that the compression ratios and times as well as the network bandwidth do not
change within this monitoring interval.

To introduce compression the synchronizing algorithm from chapter 6.4 would then look like:

Algorithm: SynchronizeIV()
{

for (all dimensions)
{

for (all directions in this dim)
if (compression=yes)

compress Sendbuffer
post an MPI Isend and Irecv

for (all directions in this dim)
{

if (MPI Test[dir] > 0 )
{

Size = MPI GetCount
if (Size > uncompressed Size)

uncompress receive buffer
copy data from buffer [dir] into ghost zones
}

}
}

}

It is worthwhile to note that the peer processor does not have to know whether a message comes
in compressed or not. The processor on the receive side simply posts an asynchronous MPI Irecv
with the known size of the uncompressed message. After the message arrived it compares the
received message size with the expected one. If it is smaller the processor can assume compression
and decompress the message.

From our investigation in the previous section, especially from figure 7.1 we know that for very
fast intra-machine connections of up to 100MB/s compression almost never makes sense. We thus
never try to compress data over those connections and restrict ourselves to wide area network
connections. This is possible since – as outlined in Section 6.2.2 we know where those connections
occur and where not.

The algorithm to apply adaptive compression then looks like the one described below. Note
that two basic parameters are free to choose: The monitoring interval, i.e. the time (or iteration-)
interval the code is accumulating performance data. This interval should not be too short since
our algorithm is designed to react to systematical changes in performance, not statistical changes,
that occur every iteration. The other free parameter is the interval at which the whole algorithm
is repeated. This depends on empirical data about how fast network performance may change. We
think that a value of 200 is a good place to start. The algorithm below will be called every iteration
by the main evolution routine.
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Algorithm: Adaptive compression(int iteration))
{

int mon int /* monitor interval */
int rep int /* interval the algorithm is repeated */
int k
/* compression is off initially */
k = (iteration modulo rep int) / mon int
switch(k)
{

case 0:
start timer(time prev)
break;

case 1:
stop timer(time prev)
break;

case 2:
change compressio flag()
start timer(time now)
break;

case 3:
stop timer(time now)
if(time prev < time now)

compression flag = 0; /* no compression */
else

compression flag = 1; /* compression */
break;

}
}

After mon int iterations the performance benefit of compression is checked again. However, as
we have seen in the previous Section it strongly depends on the type of data whether compression
makes sense or not. Since within one numerical calculation more than one type of data (more
than one discretized function) it would be much more advantageous to run the above algorithm
separately across every synchronized dataset.

Additionally, the algorithm should test incremental compression and the overlap of compres-
sion and communication. For each dataset we have to find out the best combination of compres-
sion/overlap/incremental or no compression and stick to the configuration that brings the best
performance.

It is worthwhile to mention that (unlike the choice about whether to compress at all or not) in
the incremental compression and overlap case the peer processor needs to know whether the data is
e.g. an incremental data or not. This leads to additional communication and a more complicated
code, that we did not implement within this thesis.
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Figure 7.2: From all possibilities using compression a smart algorithm should pick the one with maximal
performance.

7.2 Dynamically Applying the Adaption

We saw in the last section that the procedure we propose includes two free parameters that are
statically set (or read in from a parameter file) initially. For example, we choose to repeat this
algorithm every 300 iterations. We may claim that we then are able to dynamically react to network
bandwidth changes, but we always have to wait to the next 200th iteration.

It should be possible, however, to constantly monitor the bandwidth and therefore immediately
react on a sudden change. To do this, we have all data we need: We know how many bytes we
send across the network and we measure how long it takes, thus we permanently know the current
bandwidth. Then, we don’t repeat things every 200 iterations but rather every time the bandwidth
drops or increases significantly. However this again introduces a bunch of new parameters to choose:
Over how many iterations we want to average the bandwidth (there will be some noise) and what
is the threshold number (e.g. in percent) that makes a bandwidth change “significant”?

7.3 Performance Monitoring

In order to be able to implement the procedure described in the last section a history of performance
numbers has to be maintained and based on these statistics, the driver code should be able to make
decisions on whether or not changing the compression state.

One choice for those performance numbers could be the total wall clock time spent in the
communication routine measured by e.g. MPI Wtime(). Unfortunately this is not representative
for the entire code. It may well happen that our routine spends less time in communication but
the overall performance of the code gets worse.

This problem can be solved by deploying a more professional solution, namely to use the soft-
ware package PAPI [45] to obtain detailed performance statistics for the running code on the fly.
PAPI provides a machine independent Performance API (hence the name), which allows the driver
to obtain the required metrics. The main quantity we are interested in is the current floprate.
All decisions made during runtime to improve the performance should be based on this number.
However, we still don’t always do this, even if PAPI is installed. This is because we then could not
try compression of all datasets simultaneously, since the overall effect may cancel out. In this case
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we thus stick to measure the communication time for each dataset.
General remark about performance monitoring. Due to the dynamic nature of wide area
networks the performance of a code may change rapidly, even if there is no adaption (see e.g.
Figure 3.3). It thus may happen that this “natural noise” influences the decision of the adaptive
elements of the driver code in a wrong way. This is a serious problem. We observed that this problem
gets better with higher number of processors (when the data stream saturates the network). In
order to get rid of this noise we need to monitor and average the performance over a longer time
interval. This however limits adaption, which is supposed to react to changes in the environment.
To keep this balance is a still unresolved issue. Currently the lentgh of the interval can be set as a
parameter in our implementation.

7.4 Adaptive Latency Hiding Algorithm

We have seen that increasing the ghost zone size reduces latency effects. Sending 50 messages per
iteration at a latency of 50ms yields an additional latency overhead of 2,5 secons per iteration.
Having 5 ghost zones reduces this time to half a second.

In Section 5 we increased the ghost zone size to 10 in order to minimize these latency effects.
This number may have been too high as its choice was not based on theoretical considerations.

In this Section we introduce an algorithm that tries to determine the “optimal” ghost zone size
for a given application.

The code that we have run in the DTF performed one send operation per iteration. Current
codes used for latest scientific calculations perform up to 50 synchronization operations per itera-
tion. Calculating the optimal ghost zone size for a given environment and a given code seems to
be even much more demanding than to predict the benefit of compression.

Thus, following the ideas of the last sections it seems natural to proceed the same way, i.e.
to change the ghost zone size during code execution and settle down to a number where the
performance is maximized.

However, there are several differences compared to adaptive compression:

(1) Compression can be either on or off. The ghost zone size however covers a one dimensional
parameter range and as such it will take more time and overhead to find out the optimal
number.

(2) The decision about the number of ghost zones cannot be made processor-wise. The peer
processor always have to have the same number of ghost zones.

(3) Furthermore the number of ghost zones has to be consistent across the whole plane (see Fig-
ure 7.3).

(4) Changing the number of ghost zones introduces additional communication overhead since the
ghost points have to be filled with data from the neighbored processor.

(5) Increasing the number of ghost zones leads to the need of more memory and increased CPU
usage.

One of the requirements for algorithms and implementations to find the optimal number of ghost
zones is that the communication produced by the change of ghost zones has to be as little as possible,
namely the communication produced by keeping consistent ghost sizes and the communication
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Figure 7.3: Ghost zones have to be consistent across the plane they form (thick line). In this example all
grey marked processors have to have the same ghost zone number in positive y-direction (and as such have
to exchange additional information in order to make consistent decisions about changing their ghost zone
size.

produced by filling new ghost zones with data from the neighbored processor [This is even needed
for functions which are normally not involved in synchronization processes to keep the number of
ghost zones consistent through all discretized functions]. As pointed out in the above list additional
communication is needed to keep the ghost zone size consistent in the whole plane. This overhead
should also be minimal.

Since the network quality and also the code characteristics can change in time the adaptation
should not be called only once at the beginning. It rather should try to continuously adapt itself
to the environment. However, since we know that a communication overhead is involved in this
adaptation process we don’t want to call it too often. The length of the period should thus be
limited by the ratio between the benefit this adaptation provides and the additional communication
on the other hand. We leave it as a parameter and the user can specify him/herself how often the
adaptation code should be called.

The following algorithm iteratively increases the number of ghostzones until a performance im-
provement is no longer achieved. As for our adaptive compression algorithm, we set the monitoring
interval M to be a free parameter, as well as the number of iterations R at which this procedure is
repeated.

(1) code starts up

(2) start timer

(3) code runs for M iterations

(4) stop timer
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(5) increase ghost size by one stencil size

(6) start timer

(7) code runs for M iterations

(8) stop timer

(9) compare performance;

(10) if improved goto (5)

(11) if worse decrease ghost size by one stencil size and finish adaptation

This algorithm could be called again after R iterations with the difference that it tries to go
down with the ghost zone size instead of up. After R more iterations, it again tries to go up and
so forth.

For our test runs (see Chapter 9) we used the values R = 300 and M = 20.
Again, we stress that all these techniques do not change the application code or affect the

application scientists work in any way (well, except that the execution should be faster).

7.4.1 Discussion

We have proposed two similar algorithms to adapt a running code to the Grid environment. Keeping
overlap and incremental compression aside, the first algorithm tries to find out the best compression
state (on/off) on a per processor and per dataset basis. The adaptation can therefore be very quick
and effective since the set of parameters contains two elements (on and off) and no significant
computation or communication overhead is involved.

Using the same algorithm for finding the optimal ghost zone size can take much longer since the
parameter space is an endless discrete set of points. Moreover it causes additional communication
overhead and as such should not be called too often. However, we will see that for our testruns this
communication overhead is neglectable (less than 2% of the total execution time, see next Section).

7.5 Dynamical Load Balancing

7.5.1 Motivation

There can be many reasons to implement a dynamic way of balancing the load between processors
and/or machines even for finite difference codes on a regular computational grid. It is unlikely that
– when running in regular batch systems – the running job will have to share CPUs with other
processes, but the requirements of the code itself can change. This can occur when the evolution
code switches to another algorithm, calls an analysis routine or even uses adaptive meshes and
nested grids.

Another reason for doing it could also be that the static load balancing fails for some reason.
Imagine the floating point test loop which is used to achieve the initial static load balance is
written in C but the main evolution routine is written in Fortran or maybe C++. Suppose further
that the code has been compiled with different optimization flags for C and Fortran compilers on
all machines that are involved in a distributed run [it is user’s responsibility to choose the correct
optimization flags for various compilers on various machines]. If on machine A Fortran optimization
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flags are used while C optimization flags are not, and on machine B it occurs to be the other way
around, the initial load balancing routine will clearly fail. There is no (easy) way to check if the
main evolution routine is written in Fortran, C or C++ and apart from that it can change in time,
as explained above.

Apart from pure CPU power related issues we already used load rebalancing for another purpose,
namely in Section 6.5 where we gave CPUs which were involved in wide area network communication
less workload, not because they are slower but because they are busy with communication. The
rebalance, as outlined in Section 6.5 was hard coded to be 20% less but a proper rebalancing
mechanism needs to know the exact value and that can be only obtained by dynamically monitoring
the communication behavior.

7.5.2 Basic Requirements

In order to be able to implement a proper dynamical load balancing algorithm we have to investigate
the following questions.

How to find out an imbalance. This item rather refers to the question how we want to define
a load imbalance. In a parallel code processors never exactly finish at the same time.

How to rebalance. This question has similar characteristics as the issue about how increase the
ghost zone size. This cannot happen on a per processor basis since also here a consistency
has to be preserved.

How big is the overhead. Again this situation is similar to the scenario of adapting ghost zones
dynamically. The overhead will certainly depend on how strong the imbalance will be since
data has to be copied around the place.

How often to rebalance. This depends on the previous items.

The first item is closely related to the second one. We certainly do not want – nor are able to
– take care of imbalances between every single pair of processors. The coarsest assumption is (as
in Section 6.3) to assume that the processor speed is the same within one subjob so that the load
balancing always would look like in Figure 6.5. However, as we already have seen in Section 6.5
it makes sense to remap the workload even within one subjob, achieving a domain decomposition
which gives processors even within one subjob different workloads (see Figure 6.6). For the purpose
of dynamical load balancing we want to stick to this “slab-wise” balancing.

7.5.3 Monitoring

The question about how to define a load imbalance is closely related to the question about which
performance numbers we can access during runtime. Within a modular code framework it is possible
to obtain detailed timing information. However, they may not be detailed enough to base e.g. load
balancing decisions upon them. For example it is a priori not possible to exactly determine the
total time a modular code spends with communication. The reason for this is that it is unknown
which lower leveled communication protocol is used. Some of them cause the processor to be in
a “spin-wait” state when waiting for data and thus accumulating CPU time. The behavior of the
processor during communication can even change within one MPI implementation, e.g. Mpich-G2
(it uses different ’flavors’, see [40]).

Our monitoring strategy will assume the following:
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(1) Most communications will be initiated by our driver code. Communications initiated by other
modules will be regarded as neglectable.

(2) We will measure the time a whole processor slab waits for his left and right neighbor in the
highest dimension. Since we don’t know the underlying communication code we will always
use wall clock time.

(3) The difference between the total wall clock time for one iteration and the communication time
in our driver code will be assumed to be a measure for the processor speed.

(4) The ratio between the above quoted times is regarded as the efficiency of the current slab (see
eq. 2.1). If the efficiency differs more than a certain value (still to be chosen) between any
pair of slabs, a load rebalance will be initiated.

The “slab wise” instrumentation of the code is necessary to achieve domain decompositions like
in Figure 6.6, which was achieved at that time by a static and hard coded method which does not
necessarily meet the requirements of the Grid environment. If we design a proper dynamical load
balancing scheme, a domain decomposition similar to Figure 6.6 should be achieved automatically.

7.5.4 Strategy for Dynamical Load Balancing

Since we now defined a set of numbers to operate with we can design a dynamical load balancing
scheme. Under the assumptions of the last Section we calculate the efficiency of every slab by
dividing computation time by total run time. If there is a difference of more than say 10% between
a pair of slabs we will rebalance.

The rebalancing algorithm will first – similar to what we have done in Section 6.3 – calculate the
“processor speeds” which are represented as the reciprocal value of the computation time. Then
for each pair of neighboring slabs the difference of the communication times (i.e. the time one
slab waited for the other) is calculated. According to this time and the processor speed it can be
calculated how many grid points have to be “shifted” to the faster processor in order to achieve a
good load balance between this pair of slabs.

We will simulate this algorithm with a simple Perl script which begins with an initial equally
distributed workload of 100 grid points and fixed processor speeds. From those speeds it can
calculate the computation time and also the time difference to the neighboring slab. The simulation
calculates the grid point distribution for a one dimensional grid. However, as pointed out before,
we only redistribute the workload in the longest and as such this can be regarded as representative
for arbitrary dimensions.

The results of this simulation can be seen in the following table. The first number represents
the processor speed (which is now fixed in time). The higher this number the faster the processor
(e.g. MHz). The next rows are the initial grid point distribution, the evolution time in seconds,
assuming that the processors need 10000/speed seconds per grid point, the time every processor
waited for its right neighbor and the resulting load balance. Communication times between slabs
are not taken into account. Shifting the grid points between pairs of slabs does not necessary mean
that the total amount of grid points remains constant. We calculate the number of grid points
which is missing or which is supernumerary and distributes this number across the slabs according
to the local speeds (i.e. in the same manner as in Section 6.3).

For a proper load balancing under these conditions our algorithm should yield a grid point
distribution which is directly proportional to the processor speeds. The simulation of this algorithm
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shows that this is far away of being true:

Processors I II III IV V VI
Processor speed 200 130 100 130 100 200
Initial grid Size 100 100 100 100 100 100
Evolution in seconds 5000 7692 10000 7692 10000 5000
Wait time in seconds -2692 -2307 2307 -2307 5000 0
New grid size 144 123 72 123 45 90

This is not surprising since we only tried to achieve a proper load balancing between single
pairs of slabs and as such it does not give us a perfect load balancing for the whole configuration.
However, if we repeat this algorithm n times, where n is the number of slabs we get the following
picture:

Processors I II III IV V VI
Processor speed 200 130 100 130 100 200
Initial grid distribution 100 100 100 100 100 100
Evolution in seconds 5000 7692 10000 7692 10000 5000
Wait time in seconds -2692 -2307 2307 -2307 5000 0
Current grid distribution 144 123 72 123 45 90
wait time in seconds -2307 2307 -2307 5000 0 0
current grid distribution 196 97 98 62 48 96
wait time in seconds 2307 -2307 5000 0 0 0
current grid distribution 165 137 55 72 55 111
wait time in seconds -2307 5000 0 0 0 0
current grid distribution 216 75 58 75 58 116
wait time in seconds 5000 0 0 0 0 0
current grid distribution 139 90 69 90 69 139
wait time in seconds 0 0 0 0 0 0

Since the algorithm begins to redistribute the load of the slab with the highest index it is
clear that one has to apply it n times in order to achieve a proper load balancing between every
subjob. Looking at the final grid point distribution we unfortunately realize that four grid points
are missing. We will discuss that later. Applying this algorithm n times does not mean that we
have to redistribute the real data n times. We rather redistribute the load virtually in every step
and keep all needed values (like processor speed, communication times etc.) constant. After we
have done this n times we redistribute the load, including all communication costs.

7.5.5 Dynamical Load Balancing and Communication

Following the scenario in Section 6.5 we want to see what happens if we introduce a slow network
connection between a pair of slabs. In our above example using 6 slabs we do this by constantly
adding 300 seconds wait time between the third and the fourth slab. After applying our algorithm
six times we end up with the following grid point distribution:
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Processors I II III IV V VI
Processor speed 200 130 100 130 100 200
Initial grid Distribution 100 100 100 100 100 100
Final grid Distribution 150 97 55 71 75 150
Distr. without communication 139 90 69 90 69 139
wait time in seconds 0 0 0 0 0 0

We can see that our algorithm nicely distributes the workload such that still no processor (slab)
has to wait for its neighbor. It happens in a way that we already anticipated in Section 6.5 namely
that the processor slabs that are involved in inter machine communication get a smaller workload!

7.5.6 Summary and Discussion

We have designed an algorithm for a dynamical load rebalancing and we have shown that it always
leads to a load distribution where no processor slab has to wait for another. Apart from imbalances
which are caused by different computation times (caused by different processor speeds, different
computations or similar) it can also cure imbalances caused by slow communication channels. As
such it achieves a partial overlap of computation and communication. Load imbalance is here
defined as an imbalance between slabs of processors and therefore this algorithm cannot resolve im-
balances within one slab. Furthermore this algorithm is based upon reliable performance numbers,
e.g. what amount of time does the code spend with computing and what amount of time does it
spend in communication. In a modular framework those numbers are not necessarily available.

Although the algorithm tries to keep the total number of grid points constant it happens that
due to roundoff errors a small number of grid points (small means fewer than the number of slabs)
are missing or are supernumerary. Since the constancy of the number of grid points is essential
they have to be distributed across the slabs and therefore lead to a deviation from a perfect load
balance.

7.6 Putting it all Together

From experimental physics we know that one always has to vary only one parameter when per-
forming measurements. In our case it means that we cannot perform adaptive compression and
adaptive selection of ghost zone sizes at the same time as both decisions (compression on/off and
number of ghost zones) are based on the resulting performance. Since load rebalance also changes
the performance all three adaptive techniques have to be applied successively. Load balancing also
takes communication into account and thus it should not be based on non-optimal communication
schemes (wrong number of ghost zones, no compression etc.), which means that this should be
called after a compression and ghost zone adaption have been performed.

Thus we decided to choose an overall adaptation scheme which could look like the following:

• Code starts up

• Apply initial (static) load balance algorithm

• Apply adaptive compression algorithm from Section 7.1.5

• Apply adaptive latency hiding algorithm from Section 7.4 finish adaptation
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• Apply dynamical load balancing from Section 7.5

• Repeat everything every R iterations

A still open question is how often this procedure can or have to be repeated. R =300 iterations
could be adequate for some applications or environments but not for all. We leave it as a parameter
for now.

7.7 Summary and Discussion

This section dealt with adaptive and dynamic strategies to improve the efficiency of a running
distributed code in a real Grid environment. The assumptions we made are very general. The
algorithms of this chapter (together with the static ones of previous chapters) can deal with a
mixture of slow and fast inter-processor connections within one distributed run as well as with a
mixture of fast and slow processors. Both, the network quality and the speed of the processor
(trigged by e.g. using different algorithms) can even change during runtime since our algorithms
are applied again and again.

All techniques and algorithms discussed in this Chapter can be implemented in a way that the
application code does is not affected. Moreover the application scientist does not need to know any
of the underlying mechanisms.

The slow and fast network mixture as well as the mixture of different processor types cannot
be too complex though. We always try to achieve a job layout as discussed in Section 6.2.2. For
other layouts we currently do not have a suitable algorithm for adaptive load balance and ghost
zone sizes (our adaptive compression method can be realized in every topology). We also assume
that we always have access to any kind of performance numbers within a running code. As pointed
out earlier this could be difficult within a modular framework.

The changing ghost zone sizes as well as rebalancing has to cause communication overhead –
regardless of the implementation – as information has to be exchanged between processors and
machines.

It thus remains to see if the benefits of the algorithms we designed in this chapter outnumber
the additional communication (and computation) overhead. This is implementation dependent and
will be treated in the following two chapters, where we implemented most of the methods described
here.
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Chapter 8

Implementation within a Modular
Framework using Cactus and Globus

After we have extensively discussed methods and algorithms which help us to achieve a decent per-
formance for distributed finite differencing codes in a Grid environment we now have to implement
them into a suitable framework. Most ideas were discussed in a very general way which did not
involve any special restriction to any underlying software. All issues treated in Chapters 6 and 7
are solely restricted to the problem of parallelizing finite difference codes on a regular grid (apart
from Section 6.2.3, where we discussed the processor ordering of Mpich-G2). However, based also
on the considerations in Chapter 2 we now want to discuss (and perform) a possible implementation
of the most algorithms discussed in the last chapters.

8.1 Implemented Techniques/Methods

More precisely we implemented the Grid aware topology generating method “GAPTA” (from Sec-
tion 6.2.1 and Section 6.2.2), the statical loadbalancing (Section 6.3 and Section 6.5), adaptive
compression (Section 7.1) as well as the adaptive ghostzone algorithm (Section 7.4).

Furthermore, we implemented a test version of a code that performs dynamical loadbalancing
according to our design in Section 7.5. It is a test version because it (at the current stage) changes
the numerical results, so can’t be used in production runs. For details see next Chapter.

8.2 Why Cactus and Globus?

One major goal of a proper implementation is that the implemented code should be widely appli-
cable. Concerning the choice of Cactus and Globus as higher-ranking software frameworks, there
are two basic sub-issues that were driving our choice towards these two toolkits. First, software
projects in the Grid Computing field cannot be singular projects. Grid Computing is essentially
about sharing resources and as such any software that claims to run in Grid environments must take
care about other existing software and about de-facto standards concernig hardware and software.
Also, we want to avoid redundant work by avoiding the implementation of techniques and services
that already are implemented. In this respect it is important that we base our work on the Globus
toolkit. The Globus toolkit laid a solid foundation of low level Grid services that became a world
wide de-facto standard. Ignoring Globus would on one hand increase the implementation work and
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also reduce the applicability of this work by far.
The other issue that is important for achieving a high applicability is the requirement that

it can be applied to existing applications. This means in particular, that existing applications
should not be rewritten. We thus need a parallel computing framework that supports a proper and
transparent distinction of application code and parallel driver code. To our knowledge only the
Cactus framework meets these requirements. Moreover, many scientific applications are already
running within this framework. These applications are by no means test codes or demonstration
codes. They are production codes used to produce latest scientific results [4]. These production
codes can immediately take advantage of all techniques and methods we have implemented.

8.3 More Requirements for an Implementation

Following the arguments of the last section, we will list a few more items that we think are important
for implementation. Unlike many publications in computer science where the ideas and methods
that are being designed in papers or theses are only partly implemented or run only on very few
platforms (or even just on one, namely the own laptop) it is a major goal of this thesis to make
all methods, techniques and algorithms that were developed in the last chapters available to the
numerical science community.

In particular we pay special attention to the following issues

Portability Almost needless to mention because of the heterogeneous nature of the Grid. In order
to achieve this (combined with performance issues) we choose C for implementation and in
particular we strictly stick to the ANSI standard (C++ supports object oriented programming
but the resulting code is often platform and even compiler dependent).

Make use of current Grid resources Since many testbeds are being deployed nowadays ([34,
5]) the implementation should be able to make use of it.

Extendability Since the code which will be developed does not cover all possibilities and not even
all algorithms discussed in this thesis, it should be written in a general way and provide hooks
for possible future extensions.

Modularity For testing and evaluating it would be convenient to quickly replace the new routines
with old ones or change the application running on top. In order to achieve this the code
should be implemented within a modular framework.

8.4 Cactus Thorn Concept, Function Overloading

In Sections 2.4 and 2.5 we already introduced Cactus as a framework for finite difference codes.
The modules in this code which can be plugged in and out are called thorns. Cactus differentiates
between driver thorns and application thorns. Driver thorns take care of parallelization, output,
visualization, streaming, monitoring etc. The Cactus “flesh” itself provides a core API for the
application thorns which can be overloaded by any application thorn. It is thus possible to replace
one driver thorn with another without changing the application as long as it provides the same
API.
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The “standard” thorn which provides and overloads basic functions for parallelization is called
PUGH which provides function synchronization, processor topology calculations, load distribution
and all other features connected with parallelization issues.

Following this concept we wrote a thorn, called PUGH G1 which overloads, provides or extends
most parallelization functions formerly provided by PUGH.

8.5 Thorn PUGH G

Our thorn has defined C structures that hold all information about parallelism: the global size of
the grid, the local sizes of the grid (on each processor), the processor topology, the ghostzones, the
domain decomposition etc. The application code does not have any knowledge about parallelism,
except the fact that it is required to provide information when and which grid function has to be
synchronized. This is done by a CCTK SyncGroup() call that is overloaded by PUGH G, along with
other overloaded functions.

8.6 Implementation Issues

The implementation of the single machine topology from Section 6.2.1 is straightforward and gives
a very fast code. For example, to calculate the optimal processor topology for a six dimensional
grid it takes 0.3 seconds on an EV6/7 alpha processor.

For the multi-machine topology in Section 6.2.2 however we need to exploit higher level informa-
tion services to get the information about the job- or machine-layout, namely how many processors
are deployed on how many machines. Without this information we cannot proceed. It is the kind
of information which is provided by Duroc [17].

Duroc works below the MPI level (which means that Mpich-G2 uses Duroc, if it is installed)
which in principle means that it is active and can be used even before MPI Init(). The task of
Duroc is to submit multi-request jobs to the machines (using GRAM) and continuously check the
status of those subjobs. Its API even offers the possibility to dynamically submit or kill subjobs out
of a running code. This can be used for jobs to spawn off subtasks to or even completely migrate to
other machines. Furthermore it offers send/receive operations for communication among processors
and machines independent of the MPI communication. For our purposes it is enough to query this
information at the time the parallel setup of a distributed computation is done. For this Duroc offers
a library call named globus duroc runtime inter subjob structure(). It returns an allocated
array containing the number of machines the job is currently running on.

Unfortunately this routine cannot be called on every processor. Duroc defines ranks for the
processors in each subjob starting from 0 to the number of processors in this subjob. Only one
processor per subjob can call the above library function, namely the one with the Duroc subjob
rank 0.

Together with the globus duroc runtime intra subjob size() which gives us the number
of processors on the calling subjob and Duroc provided send/receive calls we can distribute this
information to every processor so that finally the job layout is known to every processor. By
job layout we mean an array containing the number of processors per machine (or per subjob
respectively).

1G stands for Grid
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Figure 8.1: The architecture of thorn PUGH G All information about parallelization is stored in
a central structure. The information mainly depends on the actual processor topology that is calculated
initially, the domain decomposition and the number of ghostzones. It is solely used by the synchronizing
routine. Duroc provides basic information about the machine topology to Mpich-G2 and the topolgy routine.
The routine for dynamically changing the ghostzone size uses PAPI, if installed. Arrows represent the flow
of information.
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We have also implemented a routine for static load balancing following the method and assump-
tions in Section 6.3. For this we measured the elapsed CPU (not wall clock) time for the following
routine:

double x=3.1415926,y=3.1415926;
double z=0;
for (i=0.0 ; i < 50000000.0 ; i+= 1.0)

{ z+=x*y+(i/1000);}

One interesting pitfall here is that a loop like this as such cannot be used as a benchmark if the
value of z is not used later on as “smart” compilers with high optimization flags turned on simply
remove this loop and the measured CPU time (taken by the getrusage() call) is (almost) zero.
We thus have to take the value of z as a return value or print it out to /dev/null.

To implement adaptive compression we followed the methods introduced in Section 7.1.5 and
used the zlib library as in Section 5.6.4. As mentioned in that Section a numerical calculation deals
often with a variety of datasets which can have very different compression properties. The Cactus
framework coalesces datasets (functions) with similar properties into groups. Those groups can be
for instance components of a vector or tensor. Our implementation of the adaptive compression
algorithm monitors the performance change for the compression of every single group which makes
the algorithm more sensitive.

The most tricky part of the implementation of the discussed methods in this thesis is given by
the adaptive ghost zone algorithm. Simply changing the local subgrid size on each processor is by
far not enough. The data has to be kept consistent. Within Cactus, all grid functions are bundled
into groups and allocated in one chunk the procedure for changing the ghost zone size of one slab
is implemented as follows:

• loop through all allocated grid functions

• store the data of the function in a buffer

• change the local subgrid size according to the new size of the ghost zones

• copy the data back from the buffer into the newly allocated array

• if the ghost zone size increased, fill the zone with data from the neighbored processor

While the copying of the old data into the new array is quite fast (i.e. it takes far less time
than the time needed for one evolution iteration) the time consuming part is to fill the new ghost
zones with real data from the neighbored processor if the new ghost size is bigger than the old
one, see Figure 8.2. The procedure to refill the ghost zone does not have to be coded since it
exactly corresponds to the procedure of synchronizing functions for which we already have routines.
However, even functions that did not need communication (like coordinate functions or similar)
have now to be synchronized since all allocated grid functions need proper data in the ghost zone
area.

8.6.1 Performance Monitoring Issues

As already pointed out in Section 7.3 we have two basic choices to monitor the performance of a
running code. An always possible choice is to measure the wall clock time of communication and
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Figure 8.2: Dynamical change of ghost zone sizes. In the most general case the ghost zones on one
processor can change in both directions. The saved values of the grid function have to be copied into the
right place in the newly allocated array.

for this we use the MPI Wtime() call, assuming that the code spends the rest of its time with useful
computation.

Another much better choice is the usage of PAPI. It offers various performance monitoring
functions ranging from the amount of cache misses, performed integer operations, elapsed rtime to
the amount of performed floating point operations (flops) which we are interested in. We use the
PAPI flops() call to get the current floprate of the code (= number of floating point operations
since the last call of this function divided by the elapsed wall clock time).

For both methods – wall clock time and floprate – we need to exchange the information among
processors in order to keep consistency for the decision of the ghost zone size. Also, we want to
minimize the additional communication associated with the exchange of this information. The
information needs always to be consistent across a slab of processors as shown in Figure 7.3. To
minimize the overhead we created new MPI communicators containing exactly one such slab (see.
Figure 8.3). We did not average performance numbers across an entire subjob since one subjob,
in the most general case, can be connected to two other subjobs involving two – maybe totally
different – wide area network connections. Every time we want to average performance numbers
we call an MPI Reduce() on the communicator of the slab and thus keep this communication fast.
Unfortunately those performance numbers also have to be averaged between two slabs on the same
wide area connection. In order to also keep this communication fast we restrict this averaging to
one processor on each slab. Note that at the time of performing this implementation Mpich-G2
coming with version 1.2.1 of the Mpich package did not support topology aware collective operations
(“collops”) on the MPI level. Later versions are to support this, among other features [39].

A last remark concerns a typical problem of a completely heterogeneous setup. We have written
our code so that PAPI is being used if PAPI is installed on the system. A problem occurs when
it is installed and can be used on some systems, not on all. This requires the implementation to
perform additional steps in order to make sure to maintain consistency. We decided to use PAPI
for the performance monitoring if at least one machine per wide area network has PAPI installed.
In this case we only use those performance numbers.
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Local MPI Communicators (collective operations)

point to point communication

Figure 8.3: Topology Aware Communication. The exchange of information about performance only
affects the pair of slabs communicating across the WAN with each other. In order to achieve a topology
aware scheme for those communication we created MPI communicators for each slab (grey colored in this
picture) and use MPI collective operations within it. The communication between the slabs is done through
one pair of processors using MPI point to point operations.

8.6.2 Usage on Clusters

The design as well as the implementation of the ideas and algorithms of this thesis have been
developed and written to specifically support efficient execution of parallel codes on multiple su-
percomputers. In conjunction with the Globus toolkit our code localizes communication bottlenecks
(in terms of wide area network connections) and tries to apply techniques to deal with high latency
and low bandwidth to those bottlenecks. This only works under the condition that there are only
some of those bottlenecks.

Having said this it is obvious that this code cannot result in a very high performance benefit
when executed on a slow connection cluster where we have communication bottlenecks all over the
place. However, if the cluster has more processors on one node one can do the following.

Suppose the cluster has 2 CPUs per node. We can assume that the communication between
those CPUs is fast, whereas the rest is slow (meaning at least one order of magnitude). Having
N processors in a run we thus can setup a topology of 1 × 2 × N/2 where the last dimension is
the longest one. Then we can try to apply our adaptive techniques to every communication but
the communication between processors on one node (see Figure 8.4). The downside of this method
however is the fact that the overall topology is always the above one which does not necessarily
minimize the overall communication. It may also happen that the total amount of communication
across TCP/IP is bigger than the amount of shared memory communication which cannot be
considered as beneficial.

8.7 Restrictions and Limitations

Although we have implemented our techniques in a very general way we made some basic assump-
tions about the Grid environment. In this section we review and discuss briefly the restrictions
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TCP/IP

shared
memory

Figure 8.4: Possible Topology on two Node SMPs. When trying to apply the methods developed in
this thesis to a cluster of two node SMP machines one could think of the above topology. Compression and
latency hiding techniques then would be applied to all communications between the nodes (using TCP).

and limitations of our implementation. Most of it has been already hinted in previous Sections and
Chapters.

• Only Globus and Mpich-G2 supported. Currently our software runs solely on top of these
packages. However, we presently rely on the Globus toolkit primarily at one point, namely
when we determine the job-layout. Mpich-G2 is only implicitly assumed in order to be able
to arrange the machine order.

• One type of processor per subjob. Our implementation expects to have the same type of
processors throughout the subjob as every CPU in the same slab is given the same load.
Of course this could be refined in future but would also enormously complicate the general
setup. Due to the fact that supercomputing systems are quite expensive they can be bought
piece wise. This often leads to a heterogenous processor equipment in a single supercomputer.
Vendors try to resolve this problem by shipping batch systems that can specifically request
a processor type. In conjunction with our code this would lead to several subjobs within
one supercomputer. The trade off which is made here is load balance against communication
speed as the different processor types would communicate through TCP/IP.

• Divisible number of processors per subjob. We already extensively discussed that issue in
Section 6.2.4. The processor number on subjob X should always be a multiple of the processor
number on subjob Y (or vice versa). Since we mostly deal with processor numbers that are
a power of two we do not feel that this is a major restriction.

• Cache effects are not considered. The single processor performance of a code is usually very
cache sensitive. In our case this may lead to a strong dependency of the performance on the
shape and size of the local subgrid on each processor (this was also found in [59]). Changing
ghost zone sizes also changes the local subgrid and as such may effect the local performance.
This in turn may lead to decisions that are not related to communication issues.

• No adaptive meshes. At the current stage our code does not support adaptive mesh refinement.
While not impossible, it may significantly increase the complexity of this problem and as such
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we leave it for future research.

• Intra machine communications are considered neglectable. We implicitly used this
assumption throughout our studies. Our code has been designed to deal with a few slow
communication channels within one distributed run. This is done under the assumption that
all other communication channels are neglectably fast. It is thus not convenient to use our
implementation on a loosely coupled set of workstations (see previous Section).

• Networks characteristics change only slow. Another implicit assumption which is being
made is that the network characteristics do not change during two intervals our code is
monitoring the performance. If this is not the case, wrong decisions are taken by our code. The
monitoring interval however, can be manually tuned in our implementation [as a parameter
file entry].
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Chapter 9

Results

After having implemented various ideas of previous chapters we now will investigate in detail what
effect our techniques have on performance improvement.

9.1 General Remarks

In this section we will comment on the way we tested our code. Originally, we designed it for
large scale distributed runs as demonstrated in Chapter 5. However, we did not have 4 dedicated
supercomputers at hand for our test runs. At the current stage there is no way to smoothly co-
schedule runs across two sites. We strongly believe that this will be possible in the future, but for
now it is a major drawback to test our code for large scale calculations.

9.1.1 Firewalls

Many sites begin to build firewalls around their HPC facilities. Without having at least one open
TCP port window, distributed runs are impossible. Many firewall sites do have this window, they
allow any connection within a certain range, e.g. between port numbers 10000-10100. The Globus
toolkit and also Mpich-G2 allow to specify this allowed TCP port range via an environment variable.
However, if all involved sites have different allowed port ranges, things become difficult to manage,
although distributed runs work in principle.

9.1.2 Software Versions

Having two independent executables in place that are to form a unity in a distributed run can
be problematic. They are built from software on various levels (e.g. operating system, Globus,
Mpich, Cactus framework, thorns). Some software can be installed in user space, some not (e.g.
operating system include files and libraries, Globus gatekeeper services etc.). Since the Globus
software undergoes a rapid development it happens that different sites have different versions of
Globus installations making it difficult to support distributed computing. There are two possible
solutions: Installing parts of the Globus software in user space to ensure a consistent software tree
or – if we are dealing with the identical platforms – compiling and linking statically on one platform
and shifting the executable to the other.
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9.1.3 Reference Testbeds

From the restrictions described above it follows that to test our code for real distributed runs we
have to restrict ourselves to the cases where we have working executables and our code starts up
on all machines immediately. By this we are in most cases restricted to two machines and a small
number of processors (meaning about 8 processors or less per machine).

In order to test our implementation in different setups, we chose the following pair of machines
to execute our testruns on:

9.1.4 Setup A

modi4.ncsa.uiuc.edu ←→ origin.aei.mpg.de This two-machine-testbed has the following pro-
perties. The bandwidth between these is about 350kb/s and the latency is about 60ms. They are
supercomputers having the same operating system but are equipped with different processors.
While the origin.aei.mpg.de has 32 R10000 processors running at 195MHz, the other site is
equipped with processors running at 250MHz. Note that modi4.ncsa.uiuc.edu is only the front
machine to a whole cluster of Origin 2000 supercomputers. At the NCSA site we submit our jobs
to the LSF queue system (using the Globus jobmanager-lsf) whereas on the other site we don’t use
a batchsystem but rather submit using the so-called fork-gatekeeper (or Globus jobmanager-fork).

Both systems have a vendor’s supplied MPI version installed and Mpich-G2 is configured to
use this native MPI for any MPI data transmission within one machine. Both sites have PAPI
installations in place, so that some of our decision routines are based on PAPI hardware counters
(i.e. the current floprate). We were able to start up to 8+8 processors for a distributed run.

9.1.5 Setup B

tg32-0.ncsa.uiuc.edu ←→ fs0.das2.cs.vu.nl This testbed exhibits different properties (as
compared to the testbed above). First, these machines are not supercomputers but (linux) clusters
having the Portable Batch System installed (PBS). They both have a front node (listed above) with
a Globus jobmanager-pbs running on it. Jobs are submitted to this front node and distributed to
the compute notes by PBS. As opposed to the Origin systems there are no vendor’s supplied
MPI installations which means that the communication among the cluster nodes is using TCP/IP
(compare Section 3.2.3 on page 23).

The cluster interconnect consists of a Fast Ethernet network. Another difference between this
and our first testbed is the fact that there are no hardware counters that could be used by the
PAPI interface in order to get runtime performance data. Our decision routines are in this case
solely based on pure wall clock time. The cluster on the NCSA site had 4 nodes which we had at
our disposal. We could start distributed runs up to 4+8 processors across the sites.

9.1.6 Reproducability and Bandwidth

Since it is the purpose of this chapter to study the performance improvement of various techniques
we discussed in this thesis, we performed a series of runs with different configurations in order to
see the possible impact of various techniques. However, since the runs are not done all at the same
time, but rather in a time range of days or even weeks, one cannot expect that the same run always
shows the same performance. This is, as we have shown in previous chapters, not only depending
on the actual bandwidth (competing traffic, bandwidth per stream etc.) but also on the issue “how
dedicated” the system is.
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Figure 9.1: Field dynamics of two applications. For testing our code we use two different applications,
having different computation and communication patterns as well as different dynamics, type of datasets
and other characteristics (like memory demand, time for one iteration etc). Both applicaiions however are
finite differencing codes solving differential equations on a regular mesh.

However, we measured the bandwidth between sites using regular ftp transfers. While we did
not specifically look at the actual value of the bandwidth we tried to exclude bandwidth effects on
comparison runs by measuring the bandwidth immediately after and before the run. We did not
see a significant bandwidth change during our comparison runs.

9.1.7 Applications

As we stated earlier, our code can be applied to any application running within the Cactus frame-
work. We picked two different applications with different computation and communication patterns.
One application calculates the time evolution of a gravitational field, the other calculates the time
evolution of a massive scalar field. Figure 9.1 shows how the dynamics of those fields look. Both
codes solve a system of partial differential equations, but are using totally different algorithms. The
scalar field code for example synchronizes 12 grid functions per iteration, the gravitational field
code 27. We executed the gravitational field application on setup A and the scalar field code on
setup B.

9.2 Topology

Here we discuss the influence of the processor topology on the performance of distributed runs.

9.2.1 Setup A

8+8 processor run: Let’s first discuss the NCSA-AEI run. A very often used shape of the
computational grid is the so-called “bitant” mode: The x-dimension is twice as big as the other
dimensions. As a result our code creates a topology that produces only half of the communication
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Figure 9.2: The influence of an adequate processor topology on the performance. While the
upper curve shows the floprate of a run with a topology created by our algorithm, the lower curve shows the
same run using a classical non Grid aware topology scheme. The right diagram was a 8+8 run while the left
diagram shows a 6+12 processor run. Both runs were executed across two Origin 2000 systems, calculating
the evolution of a black hole. Figure 9.3 explains why we gain a performance improvement here: The total
amount of communicated data is twice as big.

during the run as compared to a non-Grid aware algorithm (see right diagram in Figure 9.2). The
performance improvement we gained by this is about 50% in terms of floprate.

12+6 processor run: We also performed a 12+6 run between those two sites. While our code
generates a 3× 3× 2 topology, the classical code generates a 2× 3× 3 topology. Our code produces
plane machine boundaries, while the machine boundaries created by the classical code are irregular
and as such generate much more traffic, see Figure 9.3. The performance improvement in this case
is documented in the left diagram of Figure 9.2.

9.2.2 Setup B

For the testruns between the GridLab and TeraGrid clusters we did not have PAPI at hand1. Our
code therefore used wall clock time as a decision base and we use the total execution time as the
appropriate metric to measure the benefit of our techniques. Since the total execution time is just
measured as one number per run, we performed several (usually three) runs and compared the
average time of our different setups. Moreover, we calculated the standard error of the mean value
to verify that the differences are significant; The execution time dropped by 22%, see Figure 9.4.

As for the other application it means that our Grid aware topology reduces the amount of data
transfers between machines.

There might be special cases, however, that lead classical topology algorithms to the same result
as our Grid aware algorithm (GAPTA). But even if we deal with a cubical grid and have the same
number of processors at each site we do not need to end up with a satisfying topology. There are

1PAPI requires special patches to be applied to the linux kernel
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Figure 9.3: These figures represent the topologies for a 12+6 processor run between two machines. The
thick line marks the machine boundaries. Our Grid aware algorithm (GAPTA) creates regular and plane
machine boundaries as seen in the left figure. The topology in the right figure, as calculated by the classical
algorithm, yields an irregular machine boundary which generates about twice as much traffic. The amount
of exchanged data is proportional to the area that is surrounded by the thick line in this figure. Taking the
same load on each processor into account, it is evident that this area is twice as large in the right case that
is produced by the traditional algorithm.
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Figure 9.4: Effect of an adequate topology on the total execution time of the distributed code.
This figure shows the execution time of the scalar field application with and without our Grid aware topology
algorithm. The reduction of the execution time is more than 20%. The error intervals of the mean value of
our runs (see diagram) do not overlap which means that we can consider this difference as significant.
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additional constraints on the number of processors (and the dimensions) so that these cases can
be regarded as exceptional. For example a code with a cubical grid executed on two machines
with the same number of processors would have the same processor topology with both algorithms.
Doubling the number of processor on one machine or adding another machine or doubling the
length of one dimension of the grid (mesh) leads immediately to significant differences.

9.3 Loadbalancing

Our statical loadbalancing algorithm, as discussed in Section 6.3 (on page 67) measures the proces-
sor speed on the local machine and compares it with the speeds of the other machines. According
to those numbers it performs a statical rebalance of the workload before the actual calculations
begin.

In both our testbeds we deal with machines that are equipped with processors and other hard-
ware that runs at a different speed. However, in setup B we deal with processors that run at the
same speed so that our techniques do not give us any improvement. We focus on setup A.

The Origin 2000 in Potsdam has processors on board that run at 195 MHz while the ones at
NCSA run at 250MHz. Our algorithm identified the heterogeneity of the setup:

INFO (PUGH_G): Running distributed across 2 machines.
INFO (PUGH_G): Processor distribution across machines is: 8 + 8
INFO (PUGH_G): testing floating point speed on local processor ....
INFO (PUGH_G): floating-point routine took: 8.72 seconds
INFO (PUGH_G): PAPI: floating-point routine made 28.7 MFlop/s
INFO (PUGH_G): subjob 0 needed 8.72 seconds
INFO (PUGH_G): subjob 1 needed 6.80 seconds
INFO (PUGH_G): grid-point distribution per subjob in the longest dimension: 88 112
INFO (PUGH_G): grid-point distribution in the longest dimension: 52 35 44 69

The workload between the two machines is distributed according the local processor speed.
Recall that in our design and from the experiences we made in Chapter 5 we decided to give
processors at the machine boundary less work than other processors. In this case our algorihmt
yields the above shown distribution: 52 35 44 69. Recall that traditional algorithms would give
us 50 50 50 50.

The rebalance of the load thus can give us an additional performance benefit. Figure 9.5 shows
that this is really true. Even if the performance of the single runs is quite noisy, the performance
gain by rebalancing is significant as can be seen in this figure.

For the scalar field application and the cluster testbed we do not expect any performance benefit,
since the two clusters have processors on board that do run at the same speed. Our initial load
balancing algorithm divides up the load to equal parts between the machines as it would be done
by an algorithm that is not aware of different processor speeds.

9.4 Compression

The benefit of compression strongly depends on the type (smoothness, periodicity) of data that
is exchanged between sites. In order to illustrate this we show the influence of data compression
on the performance for different datasets. In our first application, we calculated the evolution of
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Figure 9.5: The influence of a proper loadbalancing on the floprate of a running code between two systems
that run at different speed even if the speed difference is “only” 195MHz as compared to 250MHz. The
performance is rather noisy in both cases but the difference is significant. Our test loop took 8.72 seconds
on one machine and 6.80 seconds on the other yielding a grid point distribution of 88 to 122 in the longest
dimension (instead of 100 to 100).

plane gravitational waves, this dataset compresses very well, i.e. the performance increases almost
by a factor two. However, the compression ratio depends on many things (where are the machine
boundaries, what is the resolution, the grid size etc.) and may even change in time. We want
to show the effect of compression in two other cases, namely in the case of a black hole (where
compression does not seem to have any effect, see Figure 9.6) and the evolution of a massive scalar
field, where compression has a moderate effect (see Figure 9.7). The scalar field code synchronizes
four functions in total. In two cases the compression did not change the communication time, in
one case it became worse, and in one case it improved. Thus, the alorithmt decided to maintain
compression for one function out of four. By this, the communication time was reduced by 25%.

In the case of our scalar field application, compression led to a moderate reduction of the total
execution time by about 30%.

9.5 Ghostzones

According to our two different setups, the decision about the number of ghostzones is based on
two different metrics. For setup B (the Origin-Origin setup using PAPI) the current floprate is the
basis for decision, for the second one it is the pure communication time.

9.5.1 Scalar Field Simulation

Our code consistently chose a ghostzone size of 4 in three runs. As for compression and topology
issues, we can claim that this, again, reduced the computation time by a significant amount, see
Figure 9.8.
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Figure 9.6: Effect of compression on a 8+8 black hole (left) and 8+8 gravitational wave run. In
both figures we see the performance of the numerical algorithm that calculates the evolution of gravitational
fields, but uses different initial datasets. The code evolves up to iteration 70, then compression is turned on.
In the case of gravitational waves (right) it improves the performance almost by a factor 2. In the left case
(black holes) compression led to a reduction of communication time by about 12% (not seen here). We see
a slight performance improvement after interation 70. However, this benefit seems to get lost in the noise so
we can’t claim that this improvement is significant.
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Figure 9.7: Comparison of compression vs. no compression for the scalar field application running
across two clusters (8+12 processors). The bandwidth was about 480kbyte/s. Switching on compression
prior to data transfer leads to a reduction of the execution time. Even since compression led to a reduction
of communication time for two out of four datasets, the overall effect on the execution time is a reduction
by 35%.
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Figure 9.8: The total execution time of the scalar field code in setup B with different number of ghostzones.
Our algorithm consistently chose a ghostsize of 4 for this particular setup. The total execution time reduced
by 10%. The chosen ghostzone proved to be consistent in this series of testruns.

9.5.2 Gravitational Field Code

For the black hole application the decision base is the current floprate, since we are able to use
performance counters on the systems we are running on. As disscussed earlier, our algorithm
increases successively the ghost zone size at the machine boundaries until no significant performance
improvement (in terms of floprate) is achieved. However, we cannot claim that the choice of an
adequate ghost zone size follows a consistent pattern. Figure 9.9 for example shows two identical
runs with different datasets, performed at different times. In the left diagram, where we see a big
effect of compression, our algorithm chose a ghostsize of 12, which is too big. One can ask why the
ghost size keeps increasing when the overall performance goes slightly down between iteration 100
and 200. The answer is that the decision base for the choice of ghost zone sizes is the performance
measured solely at processors at the machine boundary, not the overall performance (this is needed
in cases where there are more machines involved and as such we could have different sizes of
ghostzones between machines).

The right image in Figure 9.9 demonstrates what may happen in a real Grid environment:
Around iteration 150 the performance significantly drops by more than 100 MFlop/s. We don’t
know the reason for this. It may be the result of a sudden drop of bandwidth (somebody started
an ftp transfer) or a temporary overload of the machine, swapping of the operating system or other
things.

9.6 Reaching Single Machine Performance

We now compare the total execution time or floprate respectively to the execution time or floprate
that we obtain at single machine (or single cluster) execution. Figure 9.10 compares the performance
improvements of all techniques we have applied. The total execution time is about half as long as
for the “standard” run. The performance of the run with all methods applied is very close to the
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Figure 9.9: Two examples of the same application code in the same setup, but with different initial datasets.
We see a black hole (right) and a plane gravitational wave evolution code (left) across the 2-Origin-setup
(8+8 processors). After switching on compression, the ghostzone size increases to 2 in the right case and to
12 (!) in the left case.

single cluster performance using 12 processors. Compared to the single cluster execution (set to
100% efficiency) we can quote efficiencies of 40% for the standard run, 52% for a run including the
new topology, 76% including compression and 86% including all techniques.

We also performed another run between origin.aei.mpg.de and harpo.wustl.edu. The application
code was the same as for the other Origin-Origin runs, we used 8+8 processors in total. Figure 9.11
compares the performance with the “standard” performance (achieved by the standard code) and
the performance from single machine execution. Due to the heterogeneous setup (i.e. the two
machines ran at different speed) we performed single machine runs on both machines and took
the average performance of both in order to be able to compare against the performance of the
distributed run.

9.6.1 Single Machine Tests

To test the logic of our implementation it could be sufficient to run a test code in an environment
which simulates a Grid environment in the following sense. Recall that MPICH-G2 uses vendor’s MPI
routines within one subjob and TCP/IP for the communication between subjobs. A simple test
environment would therefore comprise two subjobs running on the same machine where our code
meets the “real” Grid situation of mixed slow and fast communication since the communication
between subjobs goes across (in this case) a 100Mbit Fast Ethernet interface using TCP/IP.

Our test here comprises thus a 16 processor run on an Origin 2000 machine, using two subjobs
on the same machine, each with 8 processors.

Figure 9.12 compares runs using the old and new algorithms. One can see that both runs start
at about the same floprate, around 1100 Mflops/s, as seen in Figure 9.12. While the performance
of the code running with conventional static parallelizing algorithms stays more or less constant
(within some noise) our adaption algorithm first tries to switch on data compression between the two
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Figure 9.10: In this diagram we compare the performance improvements we achieve with our techniques
with single machine or single cluster execution. For the first four bars we executed the scalar field code
distributed across two clusters in the US and the Netherlands with 4+8=12 processors. For the single
cluster run we executed that code on the latter cluster using 12 processors. Assuming a 100% efficiency for
the single cluster run, the distributed run using traditional parallelizing algorithms runs at 40% efficiency
whereas the code using our algorithm reaches 86% efficiency.
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Figure 9.11: This figure compares another two transatlantic runs, this time between origin.aei.mpg.de and
harpo.wustl.edu. Due to a proper loadbalancing, the code starts up at a performance rate that is already
50% better than the standard run. Applying compression and adaptive ghost zones (up to iteration 120)
again improves the performance up to 550 MFlop/s. The performance of the single machine execution is
also shown.
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Figure 9.12: Single processor run with two subjobs: The upper curve shows a run using the new algorithms
and the lower curve shows a standard run. Although in this case compression does not provide a performance
benefit, increasing the number of ghost zones results in a performance improvement by 20%. In this run,
the initial ghost zone size was one, and the final ghost zone size was three. Since latency is not a factor here
(we have a latency of about 1ms for connections across the local Fast Ethernet interface), we suspect cache
effects to account for this.

subjobs. TCP/IP performance tests across the local interface showed us that more than 40MB/s
is possible, which is quite fast (i.e. faster than the critical bandwidth, compare Figure 7.1), and so
we see (at around iteration 45 in Figure 9.12) a significant performance loss since the additional
CPU time needed for compressing and decompressing dominates over the benefit of smaller data
packages. The decision routines of our driver code recognize this degradation and switch off data
compression and the performance of the code returns to the original value. Then our algorithm
starts to increase the ghost zone size between the two subjobs. It is surprising that this leads to
a significant increase of performance since the latency in this case is around 1ms. This speedup
could be also influenced by cache effects since extra ghostzones change the local sub grid size.

9.6.2 Large Scale Distributed Runs

The problem of the runs of the last sections was that we couldn’t test our codes and algorithms in
an environment similar to the one in Chapter 5.

The results presented in this section use a similar setup to that used in Section 5, running
between Origin 2000 machines at NCSA in Illinois, USA and a SP2 machine at SDSC in California,
USA. For those previous DTF runs we used a manually tuned code, with optimizations specially
applied at the application level, which we described in detail in Chapter 5.

The results of these test runs can be seen in Figure 9.13. The left figure shows the efficiency
change in time of a 256 processor run between NCSA and SDSC. To create this graph we assumed
that the Cactus code solely performs all communications within our driver thorn (we did not execute
comparison runs with the standard code). The right figure shows a 16 processor run namely the
same run we performed in the last two subsections (but across different machines). Comparing this
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Figure 9.13: The efficiency of a larger scaled distributed run across 256 processors on two different sites.
The picture is very similar to our previous example of a transatlantic run as seen in the right diagram which
shows the Floprate of a smaller run (16 CPUs) between SDSC and NCSA with and without all algorithms
we implemented. Due to a proper loadbalancing and better topology the adaptive code starts with a much
better performance at the beginning (around 400 MFlop/s as compared to around 200 MFlop/s).

Figure with Figure 9.11 we see that the initial performance difference of the old and new code is
bigger here. The reason for this is that the Power-3 processor (used on the SDSC side) is about
twice as fast as the R10000 processor and thus a proper load balancing has a much bigger effect.

9.6.3 Cluster Runs

We also implemented a test code of an algorithm we designed in Section 8.6.2 (on page 101) which
supports the execution on a collection of workstations with two CPUs as discussed in Section 8.6.2.
As mentioned in Section 3.2.1 the Mpich package supports a mixed shared memory and TCP
communication when properly configured (i.e. having compiled in both devices shmem and p4).
However, at the time we conducted these experiments the current Mpich version 1.2.3 has some
(known) problems with this mixture which makes it unuseable for our test runs.

The LAM package [63] can also be configured to support shmem as well as TCP communication
within one execution2.

Our test runs were done using a collection of dual-xeon workstations with a 100Mbit/s full
duplex (switched) network. Test runs showed that we can increase the efficiency from about 50%
to about 75% mainly due to compression. The ghost zone adaption algorithm, surprisingly, always
yielded a size of 1.

2Note it has to be configured with --with-rpi=sysv
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Figure 9.14: These two curves show a run with (a) statical loadbalance (upper curve) and (b)
dynamical rebalance at iteration=30 (lower curve). As discussed in the text, the intensity of
the dynamical rebalance depends on a parameter. If the value of this parameter is not optimal,
dynamical loadbalance achieves worse results than static loadbalance.

9.7 Experiments with Dynamical Loadbalancing

Implementing a fully dynamical loadbalance code means mainly two things: First, it means to
implement a code that calculates the new loadbalance according to Section 7.5 and secondly one
needs a code that actually shifts data accordingly from processor to processor. For this thesis, we
only implemented the first part. For applications that calculate e.g. N -body problems this might
be easy, for finite differencing codes the implementaiton is rather difficult. Nevertheless, it can be
implemented in a way that does not affect the application.

Note that our statical loadbalancing algorithm does not need to shift workload from processor
to processor since at the stage the balancing is done no numerical data has been calculated yet.

Our major motivation for dynamical loadbalance is to see if our statical loadbalancing is appro-
priate enough, since it is based on testloops, not on the performance of the actual application. Also,
we introduced a slight disbalance between processors at the machine boundary and others to over-
lap communication and computation (see Section 6.5). We expected this to happen automatically
in our dynamical loadbalancing strategy from Section 7.5.

From our experiments we now see that in real runs with production applications the following
problem can occur. If a code runs below 50% efficiency, our algorithm can lead to negative loads,
especially for the processors at the machine boundary: Since our algorithm tries to compensate
the waiting time for a processor by lesser workload negative workloads occur if the waiting time is
longer than its computation time.

One way to work around this is to introduce a parameter that steers the intensity of the
rebalance. This could be for example a parameter p that reduces the local processor speed, that
we use in our calculations to rebalance. For example if we want our algorithm to compensate only
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half of the waiting time by computation time we would set the parameter to p = 1/2.
The question whether the dynamical loadbalance verifies our assumptions that we made for

statical loadbalancing strongly depends on this parameter. The value of this parameter that leads
to similar results as statical loadbalancing however depends on other things, like global grid size,
total number of processors, shape of the grid and maybe other factors. Up to now, we don’t know
how to estimate or even calculate the “optimal” value for this parameter. If this value is not
optimal, static loadbalancing might even be better than dynamic, as shown in Figure 9.14.

In that run we used a computational grid that is stretched in some (e.g. the second) dimen-
sion, having 200 grid points and ran it across a homogeneous setup (using 4+4 processors) but
with slow connections between the machines (350kb/s bandwidth, 60ms latency). After collecting
runtime data for about 30 iterations, our dynamical load balancing algorithm chose to distribute
the gridpoints along the second dimension as follows: 32 27 23 19 20 22 26 31 (Note that an
unbalanced code would look like 25 25 25 25 25 25 25 25). We see that this is already very
close to the distribution we simulated in the table on page 92. However, this distribution strongly
depends on the choice of the parameter described above.
Overhead Introduced by Dynamical Adaptions Up to now we did not investigate how big
the introduced overhead of all adaptation techniques is. Recall that all performance numbers of
the last sections did not take the communication overhead into account that is produced by our
code. Since Cactus has build-in timers for every scheduled routine (measuring wall clock time as
well as CPU time) we can easily read off the produced overhead by reading off the elapsed wall
clock time of our scheduled routine.

In the cluster tests from the last Section for example it did not take more than 1.6 seconds
which is less than 1% of the total execution time. Also for the other runs we observed an overhead
of the same order of magnitude (around 1% of the total run time).

For the transatlantic runs we have a similar relation. In 200 iterations the time needed for pure
adaption was 48 seconds out of a total time of 2157 seconds which corresponds to 2%. The adaption
finished at iteration 120. Assuming that the evolution goes over several thousand iterations (like
in real production runs) and the process repeats every 500 iterations the average overhead of the
adaption becomes neglectably small.

9.8 Discussion

In the previous Sections we discussed examples of test runs where our code significantly improved
the performance. However, our code can not guarantee a performance improvement in any case.

Multi machine processor topology algorithm We can prove that our algorithm for creating
a multi-machine topology (see Section 6.2.2) always minimizes the total amount of data which
is being transferred over the wide are network. We cannot guarantee that it also minimizes the
transfer time. Why could this happen? In Chapter 4 we saw that multiple streams may increase the
total bandwidth between machines. Our algorithm however, after minimizing the inter machine
data transfer, minimizes the amount of intra machine data exchange instead of maximizing the
number of TCP/IP streams between machines. There is a priori no reason why this could not be
implemented, except for the fact that it depends on the distributed MPI implementation whether
multiple streams are used; Mpich-G used a forwarding node (i.e. only one stream) while Mpich-G2
does not. We leave it for future projects.
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Static load balancing The weakness of static load balancing has already been discussed in
our Section about dynamical loadbalancing. Initial test loops may not be representative for the
application and the overlap of computation and communication cannot be optimal with a fixed
value.

Compression Our adaptive algorithm only changes the compression state if and only if our
counters report a performance improvement and as such can, in principle, never impair the perfor-
mance. However, the monitored performance metric may have improved due to a sudden bandwidth
increase. Whether this effect can be avoided by continuously monitoring the bandwidth remains
questionable. However, since we periodically apply our techniques a “wrong” decision can be
reverted in the next adaption process.

Multiple ghostzones The same holds true multiple ghostzones, although we believe that the
optimal number of ghost zones mainly depends on latency issues, that do not change that quick.
However, since our overall performance is our decision base for the number of ghostzones, the
decision made here can be also “wrong”.

Dynamical loadbalancing As we have seen, there are certain limits for dynamical loadbal-
ancing, especially when one wants to achieve an overlap between computation and communication.
The intensity of rebalancing can be steered by a parameter, that has to be set to an appropriate
value from case to case. We believe that an appropriate value leads to a significant performance
improvement due to a balanced code, but the value has to be found automatically, since it can’t
be the user’s responsability. However, at this stage, we don’t know of any way to do that.

Cluster Runs We have shown that even on a loosely coupled set of workstations one can achieve
a performance improvement when one has e.g. two CPUs on one node using fast communication
(like shared memory) among them. However, our implementation is not general enough to support
this kind of topology on an arbitrary set of two (or more) processor PCs. The problem is to identify
this configuration at startup time. Recall that for the major class of our runs we use the Globus
toolkit to identify the machine topology which is not possible in this case. Either we install Globus
on every single node (which is not practical) or configure a smart batch system on top of the cluster
to work with Globus (and LAM or Mpich) in a way that each subjob is exactly located on one
node if this is possible at all.

9.9 Summary and Conclusion

We have seen that distributed runs executed in real Grid environments face a variety of issues that
lead to low performance of the executed code. The design and implementation of our algorithms
attacked many of those issues. We could show that for many cases the performance of distributed
codes could be much improved, sometimes even close to single machine performance.

It is hard to predict which of our discussed technique has what effect on a running code. Our
autonomic routines however apply techniques in a way that the performance cannot be impaired:
If a technique caused a performance drop, the decision is reverted.

We believe that in a real Grid environment whose properties change in an unpredictive manner
this autonomic way of adapting a running code is the best method to achieve optimal performance.



Chapter 10

Related Work

In this chapter we will sketch the work of other authors which is related to our work. Related
means that those studies also deal with the execution of codes in a distributed Grid environment.

As already outlined in the introduction there are many research projects that are dealing with
the development of software for Grid computing on all levels.

However, we don’t know of any effort to try to optimize the execution at the level between
communication layer and application. We will introduce two projects that focus on optimizations
on the application level and the message passing layer.

10.1 The Albatross Project

The albatross project was initiated by dutch computing centers to study the execution of parallel
codes on wide area network clusters. The testbed comprised four clusters distributed across the
Netherlands where the number of nodes ranged from 24 to 128. The clusters were connected by a
(dedicated) 6Mbit/s line [9].

The goal of this project was to develop programming models to support efficient execution of
codes on this testbed.

Apart from aplication level optimizations, a special MPI library MagPIe [41] that is based on
Mpich and supports effective collective operations within such a distributed cluster environment
was developed.

The MagPIe library focussed on optimized collective MPI operations, like MPI Bcast, MPI Reduce,
MPI Gather etc.

As mentioned in the introduction, existing parallel applications have been optimized for wide
area cluster execution [10]. The authors could show that by manual tuning many parallel applica-
tions can improve their performance by far.

This coincides with our experiences in Chapter 5. However, our manual tunings in Chapter 5
did not effect the numerical result. The researchers in the Albatross project simply dropped some
messages that were supposed to be sent over the WAN (we also discussed this in Section 6.6.2).
Moreover, those changes were done on the application level for specific applications.

Our approach in this thesis is different. We apply changes for efficient execution in general Grid
environments to a whole class of applications and without changing the application itself.

The researchers in the Albatross project applied Grid-awareness to the MPI and to the appli-
cation level. In this thesis we took another way: We made the code between the MPI and the
application level Grid aware.
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Making an MPI implementation Grid aware has the advantage that it can be used by a huge
class of codes. The major downside, however, is that the performance benefit will be rather low
since too little is known about the communication patterns that are finally used.

Making a specific application Grid-aware has the advantage of achieving a high performance
since the communication patterns are well known. Unfortunately this has to be done for any
application seperately.

In this thesis we tried to keep the balance between those two extremes. By making all code
between those two levels Grid aware which achieve a fairly good performance of a whole class of
parallel codes.

10.2 Metacomputing at MRCCS and HLRS

As already described in Section 1.3.3, the Manchester Research Center for Computational Science
(MRCCS) and the HochLeistungsRechenzentrum Stuttgart (HLRS) worked together on an efficient
execution of parallel codes in a Grid environment. On the message passing level, a special MPI
implementation, PACX was developed, which we introduced in Section 3.2.4.

Also, manual optimizations were done at some sample applications codes from computational
fluid dynamics and data processing, including latency hiding techniques and computation/com-
munication overlap. As for the Albatross project, those optimizations were done manually and
specifically depending on the application code.



Chapter 11

Conclustions and Directions for
Future Research

In order to recognize the rapid development in the field of Grid computing let us compare the
situation in 1998 (at the Supercomputing Conference) with the possibilities we have today.

11.1 From Supercomputing 98 to now

At SC 98 we saw that Metacomputing is possible but hard to realize and inefficient in performance.
It took many months and person hours to prepare a single run, including machine setup, network
setup, manual adaption of software components on all levels and other things. The resulting
distributed run was done over a highly homogeneous setup (solely T3Es) and did not use more
than 32+32+32 processors with an extremely low efficiency.

In April/May 2000 we could improve this situation by far. In only three weeks of work, involving
only a few (< 3) persons it was possible to run a benchmark optimized application code efficiently
across 1500 processors and a heterogeneous setup.

At SC 2001 we were able to run an non-optimized production code across 256 processors in a
heterogeneous setup that automatically adapts itself to the environment and dynamically increases
its efficiency by a factor 3-4. There was (except for compiling, parameter file preparation etc.)
almost no preparation time.

11.2 Contribution of this Thesis

The rapid development described in the last section was possible due to many improvements of
software packages on all levels. The main representatives of those software packages on those
different levels are Globus, Mpich-G2 and Cactus. This thesis mainly analyzed and implemented
“Grid-awareness” of software between the MPI and the application level, as extensively discussed
in Chapters 6 and 7. The major results and contributions of this thesis can be summarized as
follows.

Large scale Grid computing is possible The last major attempt (before writing this thesis)
to run a tightly coupled scientific code across multiple supercomputers was done at SC 1998
(see Section 1.3.2). Recall that the total number of processors did not exceed 96 and in most
attempts was only 64. In Section 5 we demonstrated for the first time that there is virtually
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no limit to the number of processors and machines and even to the heterogeneity of the setup.
To our knowledge this was the biggest distributed execution of a parallel code ever done.

Large scale Grid computing can be made efficient We also demonstrated that by manual
tuning (load balance, compression etc.) such a code can be executed with a decent perfor-
mance.

Optimal performance can be automatically achieved In Section 8 we implemented a code
that applies many performance optimizing techniques (like load balancing, compression, op-
timal processor topologies etc.) according to information about network and machines.

No user interaction is required for efficient execution Our implementation applies many tech-
niques that are completely hidden to the end user. We get all information that is needed to
apply our techniques from services like Globus or from runtime measurements of processor
speed, network speed etc.

Besides this, we also consequently use and test software that has been developed for Grid
computing in real application scenarios. Due to our consequent usage of available Grid software
we also gave useful feedback (especially in Chapter 5) for the development of those packages and
also to the development of hardware infrastructures like the Teragrid.

11.3 Future Directions and Scenarios

Although we have taken an important step in this thesis, both by demonstrating that wide area
distributed computing can indeed be performed efficiently in a flexible framework like Cactus,
supporting multiple simulation codes with little or no changes, and allowing the computation to
adapt to the current Grid environment, there is much work to be done to enhance and improve
both the algorithms and their implementation. Not only that, but there is much to be done before
such techniques will be widely used by the various applications communities.

11.3.1 Algorithms and Implementations

We discussed and analyzed far more techniques and algorithms than we implemented in the end.
Some of those are not worth to be implemented for several (previously discussed) reasons.

The general principle should be to move from static algorithms to dynamic ones. The most
urgent issue seems to be the implementation of our dynamical load balancing algorithm. Also,
the design and implementation of an algorithm that maximizes the number of streams between
machines will surely give a further performance improvement.

11.3.2 Networks and Testbeds

Besides reliable software components, fast networks and functional testbeds are required for effi-
cient Grid computing. Since the importance of Grid computing has been recognized by federal
institutions in Europe and the United States, millions of Dollars and Euros have been invested to
build testbeds and testbed infrastructures.

In the United States the TeraGrid is currently about to be installed. Although still not fully
functional it will provide a total computational power of more than 10 Tflop/s distributed across
major supercomputing sites in the country. The network back bone connecting most sites will be
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a 40Gbit/s link. Recall that this bandwidth is already higher than the memory bandwidth of a
today’s common memory chip (e.g. DRDRAM, having a peak bandwidth of about 10GBit/s).

However, in times where the regular bandwidth of wide area networks catches up to the memory
bandwidth this picture will dramatically change. Scenarios that today appear wild and crazy will
then belong to the daily work of numerical and computational scientists.

It is the goal of todays fundamental research to be prepared for those days. It is also one major
goal of this thesis that could only cover a minor part of this entire enterprise.

Another important project which helps us to explore the capability of Grid computing and
prepare things for the future is the GridLab [34] project. It is the biggest Grid project in Europe
funded by the European Commission. Various supercomuting centers spread across entire Europe
(from Hungary to Wales) are building a testbed and software components that will fully meet all
conditions of production Grid computing in the near future.

The GridLab testbed at the current stage already provides fairly advanced features like

• Uniform access to a variety of resources. Every single user can access any resource just using
his/her X500 certificate. The “access” comprises ssh, ftp, and a uniform access to batch
systems.

• Centralized accounts. The user only needs to apply for an account at one central institution.
The distribution of the account and account information happens automatically.

• Dynamically updated testbed status information. All testbed machines continuously report
their status and configuration (including hardware, queues and batch system status) to one
or more ldap servers. Those servers can be queried by any program or application.

11.3.3 Users and Portals

The above described testbed infrastructure offers all information needed by applications and lower
level software components to be fully functional in a dynamic Grid environment.

However, the end user does not want to care about the details of a Grid environment at all.
The requirements for a user that wants to run his/her applications in a real Grid environment
should be minimal. More precisely, running a Grid application should not be more complicated
than running a parallel application on a single parallel system. This is still not the case by far.
Up to now, most of the following issues are still a manual process: Finding resources, co-allocate
them, get the software on it, configure with the appropriate (machine specific) flags, compile, write
scripts for submission etc.

Even if software components for all the above problems are currently under development (in
the GridLab project and elsewhere) the user does not want to get familiar to a whole bunch of
software packages.

We thus need software that provides all benefits of Grid enviroments to the end user but – in
principle – fully takes over and automatize the above described issues.

Users need a single access point to log in to that uses all those other components but hides
unrelevant details from the user. The development of such a Portal is a major effort within the
GridLab project [60].

We now see that we are quite close to the scenario we have described in Section 1.2. We also
see that the realisation of such a scenario cannot be done by a single person or group but only
by the whole computational science and user community in a global and collaborative way where
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finally many software building blocks will fit consistently together to form the GRID. In this thesis
we have studied and implemented one of those building blocks.
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[3] M. Alcubierre, G. Allen, B. Brügmann, T. Dramlitsch, J.A. Font, P. Papadopoulos, E. Sei-
del, N. Stergioulas, W.-M. Suen, R. Takahashi, and M. Tobias. Towards a stable numerical
evolution of strongly gravitating systems: The conformal treatments. 1999. gr-qc/0003071.
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