
NOMADIC M IGRATION – A SERVICE ENVIRONMENT FOR

AUTONOMIC COMPUTING ON THE GRID

von

GerdLanfermann

vorgelegt der

Mathematisch-NaturwissenschaftlichenFakulẗat
derUniversiẗatPotsdam

im November2002

zurErlangungdesAkademischenGrades
DoktorderNaturwissenschaften

– Dr. rer. nat.–

angefertigtam

Max-Planck-Institutfür Gravitationsphysik, Potsdam
Albert-Einstein-Institut

und

FachbereichInformatik,UniversiẗatPotsdam

Gutachter:

ProfessorDr. BettinaSchnor
Professor Dr. EdwardSeidel

ProfessorDr. IanFoster

2

Abstract

In recent years, therehasbeena dramatic increasein available compute capacities. However,
these “Grid resources”arerarelyaccessiblein a continuousstream, but rather appearscatteredacross
variousmachinetypes,platformsandoperatingsystems,whicharecoupledby networksof �uctu ating
bandwidth.

It becomesincreasingly dif�cul t for scientiststo exploit availableresourcesfor their applications.
Webelievethatintelligent, self-governing applicationsshould beableto selectresourcesin adynamic
and heterogeneousenvironment: Migrating applications determine a resource when old capacities
are usedup. Spawning simulations launch algorithms on external machines to speed up the main
execution. Applications arerestarted assoonasa failure is detected. All these actions canbe taken
without humaninteraction.

A distributed compute environmentpossessesan intrinsic unreliability. Any application that in-
teracts with suchan environment must be able to copewith its failing components: deteriorating
networks, crashing machines, failing software. We construct a reliableservice infrastructure by en-
dowing a service environmentwith a peer-to-peertopology. This “Grid PeerServices” infrastructure
accommodateshigh-level serviceslike migration andspawning, aswell asfundamentalservicesfor
application launching, �le transfer andresourceselection. It utili zesexisting Grid technology wher-
ever possible to accomplishits tasks. An ApplicationInformationServer actasa generic information
registry to all participantsin a serviceenvironment.

Theserviceenvironment thatwe developed,allowsapplications e.g.to senda relocationrequests
to a migration server. The server selects a new computer based on the transmittedresource require-
ments. It transferstheapplication'scheckpoint andbinary to thenew host andresumesthesimulation.
Although theGrid's underlying resourcesubstrateis not continuous,we achieve persistentcomputa-
tions on Grids by relocating the application. We show with our real-world examples that e.g. a
traditional genomeanalysisprogramcanbeeasilymodi�ed to perform self-determinedmigrationsin
this service environment.

Contents

1 Intr oduction and Overview 2

2 Using Computational Grids 5
2.1 Introduction to Grid Computing . 5
2.2 Advanced Grid UsageScenarios . 6

2.2.1 NomadicMigration . 6
2.2.2 Application Spawning . 8
2.2.3 SimulationPrototyping . 9

2.3 Characteristics of a Grid Environment . 10
2.3.1 NetworksandReliability . 11
2.3.2 Grid HardwareEnvironments . 12
2.3.3 Grid SoftwareEnvironments . 12
2.3.4 Client Applications . 12
2.3.5 Discussion – Probabilistic Reliability . 14

2.4 Implementing Scenarios – ThesisObjectives . 14

3 Grid Computing Envir onmentsand RelatedWork 17
3.1 Resource ManagementandMonitoring . 17

3.1.1 TheGlobusToolkit . 17
3.1.2 CondorClassi�edAdvertisement . 19
3.1.3 BatchSubmissionSystems. 19

3.2 Application Monitoring . 20
3.2.1 PAPI, SvPabloandPACE . 20
3.2.2 Network WeatherService . 20

3.3 High-Level Grid Environments. 20
3.3.1 Condor . 20
3.3.2 SunGrid Engine . 20
3.3.3 LoadSharing Facility . 21
3.3.4 TENT andSymphony . 21
3.3.5 Harness, Javelin andCharlotte . 21

3.4 TheCactusCodeFramework . 21
3.5 ObjectDescription . 22

3.5.1 Symphony . 22
3.5.2 GrADSoft . 22
3.5.3 CIM andCIM Application Management Model 23

3.6 Grid Research Initi atives . 23
3.7 Discussion . 24

iii

iv Tableof Contents

4 Grid Peer Services 25
4.1 A History of Services . 25
4.2 WebServiceModel . 26
4.3 Peer-To-PeerService Model . 27

4.3.1 A P2PExample:Gnutella . 27
4.3.2 A P2PCharacterization . 28
4.3.3 Why P2P? . 28

4.4 TheConcept of Grid PeerServices . 29
4.5 WebServiceTechnology . 30

4.5.1 WSDL, UDDI andWSFL . 30
4.5.2 OpenGrid Services Architecture . 30

4.6 WebServiceEncoding andTransport . 31
4.6.1 XML-RPC . 32
4.6.2 SOAP . 33
4.6.3 HTTP . 34
4.6.4 XML-RPC vs. SOAPandCORBA . 34

4.7 Discussion . 35

5 Grid Object Description Language 37
5.1 Motivation for Grid Objects . 37
5.2 De�nition of Grid Objects . 39
5.3 ServicePro�le . 39
5.4 File Pro�les . 41
5.5 Machine Pro�les . 43
5.6 ResourcePro�le . 44
5.7 Grid Objects . 45
5.8 SpecialGrid Objects . 46

5.8.1 Grid File Object . 46
5.8.2 Grid ResourceObject. 46
5.8.3 Grid Network Object . 47

5.9 Grid Object Examples. 47
5.9.1 Machine Constellations . 47
5.9.2 Grid Service Objects . 48
5.9.3 Grid File Objects:SingleFile on a SingleMachine 49
5.9.4 Grid File Objects:Multipl e Fileson a SingleMachine 49
5.9.5 Grid File Objects:Multipl e FilesacrossMultiple Machines 49
5.9.6 Grid ResourceObjects: Application Requirements 50
5.9.7 Grid ResourceObjects: ResourceIdenti�cation andEvaluation 50
5.9.8 DynamicObjectComposition . 52

5.10 FutureResearch . 53
5.11 Discussion– OGSA, GODsLandGPS. 54

6 The RequestHandler 57
6.1 Request Handling RequirementsandStrategies: . 57
6.2 Request Handling within theCactusCodeFramework 58
6.3 Request Handling - Operation Modes . 59
6.4 Request Envelope . 59

6.4.1 Request Source . 60

v

6.4.2 RequestTarget . 60
6.4.3 RequestProperties . 61

6.5 RequestContent . 61
6.6 RequestHandling States . 62

6.6.1 RequestCommunication Channels . 62
6.6.2 Incoming RPCMessages. 62
6.6.3 Outgoing RPCMessages . 65
6.6.4 RequestExpiration . 66

6.7 RequestHandler Design . 67
6.7.1 RequestHandler API . 67
6.7.2 ExampleRPCroutines . 67

6.8 FutureWork . 68

7 AIS and Fundamental Grid Peer Services 69
7.1 Application InformationServer . 70

7.1.1 PrimaryAIS . 70
7.1.2 Personal AIS . 72
7.1.3 AIS interface . 72
7.1.4 RelatedInformationDirectories . 74

7.2 Grid PingService . 74
7.2.1 PingInterface. 74
7.2.2 Application Monitoring andFirewall Detection 74

7.3 Grid File Server . 75
7.3.1 GFSInterface. 75
7.3.2 SupportedInfrastructure . 76

7.4 Grid ShellService. 77
7.4.1 GSSInterface. 77
7.4.2 JobSubmission . 78

7.5 Grid ResourceService . 80
7.5.1 Grid ResourceBase. 80
7.5.2 Grid ResourceManual . 81
7.5.3 Grid ResourceMDS . 81

8 High-Level Grid Migra tion Services 83
8.1 Grid Migration Service . 83

8.1.1 Migration Client Application . 84
8.1.2 GMSInterface . 85
8.1.3 Migration Server . 88
8.1.4 Execution Grammar . 92
8.1.5 StartupandFault Toleranceof theGMS . 92
8.1.6 Migration Failures . 93

8.2 Grid Spawn Service. 94
8.2.1 Grid Spawn Interface . 94
8.2.2 TheSpawn Process. 95

8.3 Grid ServiceMonitor . 95
8.4 Discussion andFutureResearch . 96

8.4.1 Fault Tolerance for AutonomicApplications 97
8.4.2 Authentication andSecurity . 97

vi Tableof Contents

8.4.3 Application Intelligence . 97
8.4.4 UsingAdvanced Grid Infrastructure . 97
8.4.5 ServiceFlow Control . 98

9 Grid Migrati on and Spawning Experiments 99
9.1 Summarizing Migration andSpawn Infrastructure 99
9.2 CactusMigration Clients . 99

9.2.1 Migration andSpawn Capabilities for a CactusClient 100
9.2.2 ScalarWave Simulation . 101
9.2.3 NumericalRelativity Simulation . 101

9.3 GenomeAnalysis Migration Client . 102
9.3.1 TheMaximumLikelihood Algorithm . 102
9.3.2 Adding Migration Capabilities in GAxMl 102

9.4 CactusMigration Experiments . 104
9.4.1 Migration ComparisonExperiments . 104
9.4.2 EGrid Migration Experiments . 107
9.4.3 PingService Monitor . 108
9.4.4 AutomaticRecovery . 109

9.5 CactusSpawn Experiments . 109
9.6 GAxMl Migration Experiments . 113

9.6.1 GAxMl Migration . 113
9.6.2 GAxMl Visualization on Grids . 114
9.6.3 GAxMl Summary . 115

9.7 Positioning of Grid PeerServices . 115

10 Summary of Resultsand Futur e Research 117
10.1 Grid InfrastructureDevelopment . 117
10.2 Contribution of this Thesis . 117
10.3 FutureWork . 118

A GODsL Toolkit 119
A.1 Toolkit Functionality . 119
A.2 Toolkit ProgrammingExample . 119
A.3 Download . 119

B Grid Peer Service Testbed 122

List of Figures

1.1 Grid PeerService Layers . 2

2.1 Advanced Scenarios: NomadicMigration . 7
2.2 Advanced Scenarios: Application Spawning . 9
2.3 Advanced Scenarios: SimulationPrototyping . 10
2.4 Grid PeerService Topology . 16

4.1 WebServiceCommunication . 26
4.2 WebServiceComponents . 27
4.3 Evolution of theWebServiceModel . 29

5.1 Functional Overlapin Legacy Applications . 39
5.2 Grid ObjectStructure . 46
5.3 GODsLExample: Network of Workstations . 47
5.4 GODsLExample: Meta-computer . 48
5.5 GODsLExample: Proprietary ServiceDescription 49
5.6 GODsLExample: Machine Access. 50
5.7 GODsLExample: Migration Service . 51
5.8 GODsLExample: SingleFile, SingleMachine . 52
5.9 GODsLExample: DistributedFiles,SingleMachine 53
5.10 Resource Evaluation with Grid Objects. 54
5.11 DynamicGrid ObjectComposition . 54

6.1 RequestHandler LayerDiagram . 58
6.2 CactusFramework: Multiple-ServiceExecutables 59
6.3 RequestCommunicationLayer . 60
6.4 RequestCommunicationChannel . 63
6.5 RequestStateDiagram . 65

7.1 Application InformationServer . 71
7.2 Hierarchical AIS Structure . 72
7.3 Grid PingService- Communication . 75
7.4 Grid File Service - Communication . 76
7.5 Grid File Service - TransferRates . 77
7.6 Grid ShellService- Metacomputing . 79
7.7 Grid ResourceServer - MDS Interface . 82

8.1 Grid Migration Server: Client Communication . 85
8.2 AutomaticApplicationRecovery . 86
8.3 Migration StateDiagram . 90
8.4 Grid Migration Server: StartupCommunication . 93
8.5 ServiceMonitor with Auto-Restart . 96

9.1 Origin ReferenceMigration . 105

vii

viii List of Figures

9.2 Comparison of Execution Procedures . 105
9.3 Migration Transfer Comparison, SmallCheckpoints 106
9.4 Migration Transfer Comparison, LargeCheckpoints 106
9.5 Migration Transfer Speedup . 107
9.6 Migration Timing for theEGrid . 108
9.7 Grid PingStatistics . 109
9.8 Automatic SimulationRecovery . 110
9.9 Comparing Spawning to Internal Execution . 111
9.10 Spawn TimeAdvantage,SmallSimulation . 112
9.11 Spawn TimeAdvantage,LargeSimulation . 113
9.12 HostTopologyfor theGenomeAnalysis Migration 113
9.13 Timing of a GenomeAnalysisMigration . 114
9.14 Grid Visualizationfor a GenomeAnalysis Migration 115
9.15 Positioning of Grid PeerServices . 116

List of Tables

7.1 Application InformationServer: WebService Interface 73
7.2 Grid Ping: WebService Interface. 74
7.3 Grid File Server: WebServiceInterface . 76
7.4 Grid ShellServer: WebService Interface. 78
7.5 Grid ResourceServer: WebServiceInterface . 80

8.1 Grid Migration Server: WebServiceInterface . 87
8.2 Grid Spawn Server: WebService Interface. 94

A.1 GODsL-Tk Routines . 120

B.1 TestbedMachines . 122

ix

Acknowledgments

I would like to thank my advisor, Professor Edward Seidel, for his guidanceand encouragement
through the pastyears(andtwo degrees). I am truly fortunateto have beenoneof his students;he
gave metheintellectualfreedom to de�ne thepathof my researchin PhysicsandComputerScience.
He providedmewith thesupport to completethis work.

I would like to thankProfessor BettinaSchnorfor the valuable insights and inputs for a computer
science “quereinsteiger” like me. I have greatly bene�ted from the discussions with her and her
researchgroup.

My gratitude to Professor Ian Foster, who served on my thesis committee. He supported a research
stayat theUniversityof Chicago, which becamea source of ideas for this work.

I alsowish to thank Dr. Gabrielle Allen for heradvice andsupport during my experiments. Special
thanks go to my colleagueThomasDramlitsch, our local Globusguru.

Importantwerethevaluablediscussionswith themembersof theCactusGroupandtheGridLabteam
at the Albert EinsteinInstitute, in particular Tom Goodale, Jason Novotny, David Rideout, Thomas
Radke, Kashif Rasul,Michael RusselandOliver Wehrens. I have bene�ted from many conversations
with Dave Angulo at theUniversityof Chicago andAndreMerzky at theKonradZuseInstitute.

Thiswork wassupported by theEU-GridLabproject,theGrADSproject andtheMax PlanckInstitute
for Gravitational Physics,Albert EinsteinInstitute.Computing Resourcesandtechnical support have
been providedby AEI, NCSA, University of Potsdam andtheEuropeanGrid. I'm grateful for theuse
of their resources.

1

Chapter 1

Intr oduction and Overview

Nomadictribes move their entire possessions to a new dwelling, whena new habitat promisesmore
ef�cient hunting andgathering. We believe that applications on a Grid canoperatewith similar au-
tonomy, whenthey seek out new compute capacitiesoncetheold resourcesareusedup or whenthey
restart on a new hostif theprevioushardwarefails.

Suchamigration technology mustbeintelligent, failureproof andit mustrespect theheterogene-
ity of multi-organizational Grids. It involvestaskslike resource monitoring, application andservice
discovery, aswell as�le transfersof arbitrary size. Theobjective of this thesisis thedesign andim-
plementationof a generic, fault-tolerantservice infrastructure that allows self-determinedoperations
like migration on heterogeneousGrids.

We start in Chapter2 with a brief introduction to Grid computing, foll owed by a presentation
of threeadvanced casestudiesto highlight the potential of autonomic computing on Grids. Two of
theseexamples, which are motivated by previous prototypes [4, 60], migration and spawning, are
implemented in this work. We continue the chapter with an analysis of the characteristics of a Grid
environment. Basedon our experiences [9], we focus on the heterogeneity of the different Grid
componentsand the intrinsic unreliability in Grids. We concludeChapter 2 by outlining the aims
of this thesis. Existing Grid technology and related research is reviewed in Chapter 3. Wherever
possible,we usetheexisting infrastructure in our service infrastructure.

{

Grid File
Service

Grid Resource
Service

Grid Shell
Service

Grid Ping
Service

Service
Grid Migration Grid Spawn

Service

A
pp

lic
at

io
n

In
fo

rm
at

io
n

S
er

vi
ce

High-level
Services:

Fundamental
Services:

{

Machine Architecture

Globus GRAM Globus File Transfer Condor

Operating Systems Network Capacities
Disk CapacitiesCompute CapacitiesMemory Capacities

CPU Architecture

GPS Communication

Visualization Authorization & Authentication
GSI Sun Grid Engine LSF LoadLeveler PBS

Environment:
Hardware

Software

G
rid

 In
fr

as
tr

uc
tu

re

Environment:

Proprietary Communication,
Encoding and Content XML encoded GODsL Content

Batch Submission Systems Resource Management

Client Level: Grid Enabled Application

G
rid

 P
ee

r
S

er
vi

ce
s

(G
P

S
)

Figure1.1: Thelayerdiagramgivesanoverview of thework in this thesisandoutlinestheembedding of the
Grid PeerServices(GPS)betweenuserapplication andGrid infrastructure. High-level servicesarebuilt from
fundamentalservices,which useexisting Grid technology. Redundant deploymentof servicespreventssingle
points of failure.GPScommunicationcontent is expressedthroughGrid Objects(GODsL).

Basedon our analysis of the Grid characteristics, we proposein Chapter4 a pseudo-reliable
service infrastructureby combining thewebservicemodelwith apeer-to-peer topology [61]. Wecall

2

3

this fusion of these two service paradigmsin a Grid environment the Grid Peer Service model. In
Chapter 5, we motivatea generic informationmodelthatallowsa precisecharacterizationof objects
on a Grid, e.g.�les on machines,servicesin applications,compute requirements of simulations. We
usethisGrid Object Description Language[62] to integrateexisting Grid technologyaswell aslegacy
applicationsinto our service environment.

Theservicecomponentsof our infrastructurearebuilt aroundaclient-serverframework, explained
in Chapter 6, wherewe implemented a requesthandler to experimentwith differenterrorpropagation
strategiesandthin-client design. In Chapter7 we introduceour implementation of fundamentalser-
vices, as illustratedin Figure 1.1. They allow us to construct the compound migration andspawn
services. Theseservices are treatedin Chapter 8, with special emphasis on failure strategies and
reliableclient startup.

In Chapter 9 we demonstratethe capabilities of the migration andspawn service by migrating,
auto-recovering andspawning real-world simulations in the �eld of numerical relativity [6, 1] and
genomeanalysis[63]. Bothapplicationshavelargerequirementsfor memory, processorsandcompute
time. We concludethis thesiswith a summaryandanoutlook on futureprojectsin Chapter 10.

Chapter 2

UsingComputational Grids

Computational simulationshave alwayscomplementedtheoretical andexperimental research. In the
future, more disciplines than ever before rely on computational approachesto verify and validate
scienti�c results: Weatherforecasting, genomeanalysisand�nancial risk managementarejust a few
of themany �elds which increasingly depend on high performancecomputing.

However, scopeandaccuracy of these computations arelimited by the computational hardware.
In quite a few situations, theselimits canbe overcome by using multiple networked computers or
by deploying intelligent programsthat seekout andacquire new resourcesif their current compute
capacity provesinsuf�cient.

We begin this chapter with anoverview of Grid computing in Section2.1. We continuewith the
introduction of threeadvancedGrid case studies in Section2.2,which portray thepotential power of
global Grids. In Section 2.3 we confront the reader with the severeproblemsthat aredeeply rooted
in global, heterogeneousGrids: We examine its characteristics, highlight the software andhardware
aspectsandanalyze the problems imposed by unreliable networks. We concludethechapter in Sec-
tion 2.4 with the objective of this thesis: based on our analysis, we proposea service topology and
an informationmodelto create a service infrastructure which operatesfault-tolerantly andinterfaces
with theubiquitous,legacy Grid middlewarein heterogeneousGrids.

2.1 Intr oduction to Grid Computing

Grid computing originatedwithin the scienti�c andtechnical computing segmentanddescribesthe
ability to accessandusedistributedcomputer resourcesindependently of scale, hardwareandsoft-
ware.Theterm“Grid” wasinspired by theanalogy to power grids [39], which give people access to
electricity, while thelocation of theelectric powersourceis farawayandusually completely unimpor-
tantto theconsumer. Thepower sourcescanbeof differenttype,burning coalor gasor usingnuclear
fuel, andof different capacity. All of thesecharacteristicsarecompletely hiddento theconsumer, who
only experiencestheelectric power, whichhecantapoutof sockets,usingcommodity equipmentlike
plugsandcables.

While theadvantagesof computing gridsareobvious,no exactde�ni tion of “the Grid” exists. An
early de�niti on reveals the similarities to the Power Grid analogy [36]: “A computational grid is a
hardware or software infrastructure that providesdependable, consistent,pervasiveand inexpensive
accessto high-endcomputational capabilities.” Thecurrent trendseemsto have droppedthe “high-
end” andpromotes Gridsfor every hardwarelevel andtype.

Grid computing hasbeenabuzzwordoverthelastyearsandcomputer scienceinstituteshavetaken
great effort in providing software packagesto createa Grid infrastructure. TheGrid “hype” hasbeen
ampli�ed by industrial companies like IBM andSUN moving in andpicking up on this trend. Still
the numberof applications, which utilize Grids acrossmultiple organizations remains small. With
thewealthof moreor lessuseful Grid infrastructure in place, it is crucial to establish theapplication
asthetruedriving forceof Grid development.It is importantto keep focusedon possible application
scenariosasacommongoalfor bothapplicationprogrammersandcomputer scientists.Thereforewe

5

6 CHAPTER2. USINGCOMPUTATIONAL GRIDS

describe a number of thesescenarios,which arebasedon our personal experiencewith large scale
simulation in the�eld of numerical relativity.

2.2 AdvancedGrid UsageScenarios

This section describesthree advancedGrid usage scenarios. Turning theminto reality wasthe main
motivation for conducting the researchpresentedin this thesis. Two of thesecasestudieshave been
carried out andareanddescribed in Chapter 9. Early Grid computing experimentslike using two or
moresupercomputersasasinglevirtual machine, calleda “meta-computer” , datebackto evenbefore
1992,whenSmarrandCatlettoutlinedsuchanapproach[84]. This thesis focuseson a differenttype
of meta-computing: we areconcernedwith the autonomic execution of (parallel) programsacross
various machines [9, 60], which we term“Nomadic Migration” .

2.2.1 NomadicMigration

NomadicMigration de�nes theself-controlled andautomatic relocation of largeapplicationsto pro-
vide fasteror moreef�cient codeexecution. Nomadicillustratesthe low frequency of this eventand
theself-containedoperation of theapplication: It is anapplication-initiatedandself-determinedpro-
cessin a serviceenvironment. It handleslarge, parallel simulationsbut is not intendedto beusedasa
fastreacting load-balancingsystem.

Migration andits strategieswerewell studied in thecontext of cycle-stealing clustersin themid
90s(seefor example[73, 81,15]). Themotivation for migration in theseenvironments andon Grids
hasmoreor lessremainedthesame:

� Administrative reasons: The compute requirementsof an application goesway beyond the
queue time limits offered at a compute center.

� Performancereasons: A “better” computecapacity becomesavailableduring theexecution and
a higher throughput is achievedif thejob is relocated.

In this thesis we go beyond thescope of a migrating within a singlecluster or anintra-Gridmachine
pool, but relocate across global Grids. The next paragraph illustrates the advantagesof automatic
migration over manual transfer of applications.

Traditional Job Management: Many large scalesimulations have compute time requirements
which go way beyond thequeuetime limits offered at supercomputing centers. Thereareevencases
wherethe application's runtime cannot bepredictedat the startof the simulation. Therequirements
for otherresourceslike memoryor disk space may alsochange during the courseof the simulation,
sometimesexceeding thesupply.

If a useris confronted with resourcedemands by his applications thatexceedthecurrent setting,
but he wantsto continue the simulation anyway, hehasto relocate to a machineor batch queuethat
providesthe required resources.Theuserengagesin a tediousprocessof instructing theapplication
to checkpoint, securing the checkpoint �les andarchiving themif necessary. If the simulation can
only becontinuedon anotherhost,thecheckpoint �le needsto betransferred. After deriving thenew
resource requirementsthe simulation is resubmitted to the queuing system. At all steps, the user's
involvementmakestheprocessproneto failure:

1. Checkpoint �les canbe erased by disk quota expiration if the userdoesnot move the datain
time.

2.2. ADVANCEDGRID USAGESCENARIOS 7

Figure2.1: “Nomadic Migration” describestheprocessof interruptingalarge-scaleapplication andcontinuing
it ona differentmachinethrough thetransferof checkpoints.

2. Resource requirementshave to be correctly analyzed,or the job will be rejectedfrom the re-
source managementsystem. This may happen either at submission time or – even worse–
during runtime.

3. Conservative resourceestimates leadto longer waiting timesin thequeue.

4. Theresearcheris required to rememberusernamesandpasswordsaswell astheinterfacesto a
wide range of differentmachines,architectures,batch systemsandshellprograms.

From experience,the overheadof this procedureencouragesthe researcherto resubmit a job on the
samemachine,discarding potentially faster machines.

Automated Migrati on: Theprocessof submitting anapplicationonanarbitrary host, which ful�lls
minimumresourcerequirements, is a primecandidatefor automation. In this section we describe the
migration service in generalanddraw theattention to someof theproblemsthathave to besolved.

In Figure2.1 we illustratea migration processfor an applicationover time. The migration pro-
gressesfrom left to right acrossthree differenthosttypes A, B andC, indicating a network of work-
stations, a cluster and a traditional supercomputer, respectively. The left inset showsthe different
phasesof anapplication in aqueue: amigration client receivesreservedcomputetime,called a“slot” .
Within this time slot, all codeexecution hasto take place: therecovery of thesimulation statefrom a
checkpoint (after the �rst migration), thecalculation phase andtheprocessof writing thesimulation
state to a checkpoint �le. Applicationswhich exceed their time slotsareterminated.

In the illustration the simulation is started on hostA. A migration server (not shown),which is
responsible for therelocationof applications, receivesinformationon thesimulation's resourcecon-
sumption andits location. It monitorsthe availability of new machineswhich meetthe simulation's

8 CHAPTER2. USINGCOMPUTATIONAL GRIDS

requirement.As “better” resourcesbecomeavailable,the simulation on A is informedandit check-
points. Thecheckpoint �les aretransferredto hostB. Thesimulation is restartedor submitted to the
queuing system. As theapplicationrunsout of compute time on B, the lastcheckpoint is archivedin
astoragefacility andthesimulation is resubmittedto thequeueon thesamemachine. Thesimulation
will executea second time on B.

Someadvancedapplicationsareable to receive thecheckpoint asa socket streaminsteadof read-
ing from �le. In combination with advanced reservation scheduling, this transfer modeallows for
fastcheckpoint transfer, shown in the migration to machineC: Theapplication on B is awareof the
expiration of its queue time andrequestsin advance a slot on machineC, which overlaps with the
computeslot on B. By the time the application is about to �nish on B, the migration server startsan
uninitialized simulation on C, which receivesthe simulation statethrough the streamedcheckpoint
andcontinuesthecalculation.
This casestudy identi�es someof theproblemsthathave to besolved:

� File Transfer: A migration server stagesexecutablesandother �les to a new host. Therefore,a
migration server mustbeableto determine andusethedifferent �le transfer methods for each
of thesourceandtarget machines.

� File Description: A service must provide a compact description of multiple �les, including
informationon wherethe�les arelocatedandhow they canbeaccessed.

� JobSubmission:Themigration serveris responsible for submitting thenew job to theindividual
queuing systems.

� ResourceDescription: It is essential to characterize resourcerequirementsof anapplicationas
well asresourcecapacitiesof machines.Theservermustbeableto evaluateandcomparethem.

� Hardware Description: A migration service mustdescribe the location of machines, including
thewaysto access it.

� Fault Tolerance: Any participating servicemustoperatein afault tolerantway. If anapplication
requiresa service, it mustbeableto determinea serviceinstancesomewhere.

Nomadicmigration offers a way to radically increasethe throughput of long-term simulations by
automating theresourceselection andapplicationtransfer process.

2.2.2 Application Spawning

Application Spawningis a strategy to speed-upa simulationby taking advantageof work �o w paral-
lelism andout-sourcing partsof anapplication to external hosts. Many typesof simulations usually
involve a chain of differentalgorithms,whoseoutcomemayfeedback into themainsimulation. The
resultof a computation, e.g.ananalysis routine,maynot beneededfor sometime. We canperform
this calculation on a different computer, outside themain program�o w. However, we have to make
surethatthedatais sentbackin time for themaincalculation to continue. We call this techniqueap-
plication spawning. In thefollowing scenario,we focus on thespawning of algorithms,which do not
provide datafeedbackto thecoresimulation. In Figure2.2 we illustratethesplitting of a simulation
work �o w into a sequenceof corealgorithmsA,C,E,.. . anda setof sub-algorithmsB,D,F,H,.. . that
arespawned.

Eachsub-algorithmis executedin astandaloneexecutableonamachinewhich is “best”-quali�ed
for that typeof task. Theapplication determinesautonomically at runtime,which sub-routines in its
work �o w donot feedbackimmediately into themainsimulation andcanbespawned. Thesimulation

2.2. ADVANCEDGRID USAGESCENARIOS 9

Figure2.2: Application spawningdescribesa technique to identify regions in the program's work �o w that
areparallelto themainexecution andcanbe run on external resources. Spawning customizesanapplication
to perform the resourcedemanding computationson expensive machinesand to outsource lesschallenging
routinesto economic compute resources, like clusterpools.

writesa checkpoint which only contains thedatathat is necessaryto startthespawnedtasks. For this
reason,spawned sub-jobsdo not comewith large checkpoints andusually run with reducedmemory
requirements. The hosting machine canbe chosen to bestmatchthe characteristicsof the spawned
sub-jobs, e.g. in termsprocessing architecture andpower, disk capacity, etc. In our illustration we
execute thesub-jobsB, F on a workstationnetwork B andsubjobsD, H on a mainframeC, while the
corealgorithmsarecontinuedon cluster A.

Note that “better” resourcedoesnot necessarilymeanfaster, it canalsobea “cheaper” machine:
If timely completion of the sub-job is not an issuefor the researcher, application spawning can be
used to populate the inexpensive idle workstation cycles with useful computation. The high-quality
compute time on a supercomputer is dedicatedto thecorecalculations. We have gainedthroughthis
approacha shorter usage of expensivehigh-performancecomputersby outsourcing lesschallenging
routinesto economicresources.

Thedesign of amigration andspawn serviceenvironment is describedin Chapter7 and8. Exper-
imentswith theapplicationspawningandmigration servicesarepresentedandanalyzedin Chapter9.

2.2.3 Simulation Prototyping

Simulation Prototyping allowsa simulation to determine its future numerical behaviorby launching
simulation probes.Theseprobes“overtake” themainexecution andtheir behavior is usedto control
theprincipal simulation.
Simulation prototyping is useful for any simulation thatdependson thesetting of certain parameters,
e.g. Adaptive MeshRe�nement(AMR) algorithms. AMR methods smoothout critical regions in
numerical simulations by locally increasing the resolution of themesh.Theprocessof adding more
points to the meshandchoosinga smallertime stepis called meshre�ni ng. Certain local numerical
conditions, (e.g.an increasein error residualsduring the evolution process)may indicate a critical
area, which requireshigher spatial re�nement.Oftentheseconditionsdonotgiveenough information

10 CHAPTER2. USINGCOMPUTATIONAL GRIDS

Figure2.3: SimulationPrototyping denotesfast-runningprobesthatexplore thebehavior of a parent simula-
tion. In this illustration,anAMR simulationlaunchesaprobeto detectproblematicregionsin advance.

on the exact location of a region. Sinceadding meshpoints implies a serious increasein memory
consumption,there�nementof thewholemeshis generally not anoption.

A solution to thisproblemis illustratedin Figure2.3,whereasimulation probeis started onhostB.
Theprobeonly contains partsof thefull problem: it usesthesamenumerical algorithmsbut operates
with lesser precision, resolution andspatial extent. Becausethe probeon hostB executes faster, it
“overtakes” theparent simulation on hostA in time anddevelops theundesiredpathological behavior
earlier. The probe's simulation is stopped, the results aretransferredto the principal simulation and
areusedto identify thecritical regions in advance.Theright numberof meshpoints is added to the
mainsimulation before thepathology develops.

A variation of theapproachis usedto conductparameterstudies:anumerical modeloften depends
on many different physical parameters.To gain an understanding of their impact,many simulations
(“clones”) with slightly different parametersettings arelaunchedto survey the parameter space. In-
formation of such a survey feeds backinto a parent simulation.

While this particular scenario is not implementedin this thesis,we gave thethereader animpres-
sionof thepossibilities thatareoffered by intelligent applications. It will becomeevident at theend
of this thesis how sucha self-controlled applicationcanberealizedin our Grid PeerServiceenviron-
ment. With the realization of migration andspawning techniquesin this thesis, the possibilit ies of
autonomic Grid computing mayappearlessimaginary.

2.3 Characteristicsof a Grid Envir onment

In this section we analyze thecharacteristicsof Grids. We concentrate on networks in Section 2.3.1,
the hardwareenvironmentin Section2.3.2andsoftware environment2.3.3asthe core components
of Grids. We restrict our analysis to multi-organizational, global computing Grids anduseour ob-
servationslater in thedesign of a service infrastructure. In Section2.3.4we derive requirementsfor
applications to run andmigratein a heterogeneousGrid environment. We look in particular at the

2.3. CHARACTERISTICSOFA GRID ENVIRONMENT 11

hardwareindependenceof theexecutableand�le dataformats.
Thecharacteristicsof Gridsarelargely a result of a heterogeneousresourcesubstrate [26] com-

binedwith autonomoussiteadministration. Resourcesaretypically ownedandoperatedby different
organizationswith varioussitepoliciesandapplication backgrounds.Thetermsubstrateportrays the
underlying hardware, network, software,compiler andresourcemanagementlayer, which is different
from site to site andvaries with time. Even if the samecomponentsareemployed at different sites,
differences in the local con�guration settings areusually quite large. Obviously the substrateis not
static but hasdynamic properties: the componentsof a Grid change someof its properties over the
courseof months, daysor hours.

2.3.1 Networks and Reliability

Computational Grids can be realized on a large rangeof settings and we give an idea of what is
typically understood by theterm“Grid”:

� Combiningthe supercomputersof several computing centersis an example whereonly a few
high performancecomputers from differentorganizationsassemble a computing Grid. Sucha
collection is typically usedto solve largescalenumerical problems,which donot �t onasingle
supercomputer.

� Utilizing idle cyclesof PCsized workstation: Suchanetwork of workstations(NOW) is aviable
approachto close in on the performanceof a supercomputer by summingup idle workstation
cycles.This collection of machinesis mosteffectively usedby trivi ally parallel algorithms.

� “Intra-Grids” areassembledfrom thehardwareof acompany'sintranetonly: Suchencapsulated
Gridsrequire lower security standardsandeasethesocialaspectof co-allocating resources.

� Combiningof all storagefacilities into a single virtual storage space hasfound a popular re-
alization in today's Storage Area Networks (SAN). Such“storageGrids” arealso subject to
extensive research by the EuropeanUnion's “Data Grid” project [27], which focuseson dis-
tributedandsharedlarge-scale databasesof high-energy-physicsexperiments.

All these scenarios sharetheproperty thatseveral resourcesaretied togetherby a network. Through
this link, a new “virtual” resourcecomesto existence: a computing or storage Grid. The lifeline of
such a Grid computer is thenetwork. As thenetwork's quality decreases, the“Grid computer” fades
out of existence. Increasing the complexity andsize of the network doesnot make computational
Gridsmorereliable per se. Thenetwork possessesan inherentlydisruptive property andeven if the
reliability of asingleconnection maybecloseto

�����

%, thechanceof failuregrows to signi�cant size
asmoreconnectionsareadded.

Distri buted Applications and Networks: Thedynamic bandwidth andlatency of a connection on
thenetwork will vary vastlyover time,asthebandwidth mayberanging severalorders in magnitude.
Theassumption that thedynamicpropertiesareconstant during the lifetimeof anapplication allows
for basicperformancebalancing: At thestartof aprogram,thenetwork quality is measured andbasic
strategiesareemployed to compensate the network situation. The settings arenot modi�ed during
the lifetime of the program. The initi al adjustmentof the TCP buffer size for Globus socket based
meta-computing is anexampleof sucha strategy.

For long-termdistributed applications likeservicesor simulationsthisassumptionno longer holds
true: thenetwork's dynamicproperty maychange signi�cantly e.gduring a oneweeksimulation run.
Thenetwork quality mayvaryupto thedegreethatthenetwork becomesunusablefor certainperiods.

12 CHAPTER2. USINGCOMPUTATIONAL GRIDS

A distributed application, which fails to acknowledgesucha change in the underlying fabric, may
eitherstopworking or continuerun in a rather inef�cie nt way. Theadaptability of thecommunication
in anapplicationis currently investigatedby Dramlitsch[8, 29].

Understanding the effect of changing network quality is imperative for any service that interacts
with distributed resourcesor applications. In this thesis we chosea distributedservice environment
andaredundant servicetopology (Chapter4) to providea fault-tolerant service environment to appli-
cations.

2.3.2 Grid HardwareEnvir onments

Gridsspana wide range of hardware.Thevariety of operatingsystemsandhardwarearchitecturesis
further in�ated by thedifferent computecapacities they offer. Certain machinesareable to hostlarger
applications,while others execute faster.

A userwho is offeredtheheterogeneousmachine parkof a Grid hasusually no ideahow well his
programwill perform on theassortmentof resources.On a conventional multiprocessor system, it is
straightforward to derive thecomputational performanceof anapplication. Theef�cien cy on a Grid
canoftenonly bedeterminedatruntime. Extractingthis informationfrom theapplicationanddrawing
theconsequenceslike stopping andrestarting a codesomewhere elseputsa signi�cant management
overhead ontotheuser.

Computerhardwareexhibits a similar unreliabil ity asthenetwork: machineaccess becomesim-
possible asmachinesareshutdown for maintenance,cluster nodesexperiencefailures,or harddisk
capacities �ll up, etc. In general we have to distinguish betweenthe machineandresourceaccessi-
bility1. While themachine itself maybeaccessible,its resourceis usually not immediately available:
supercomputers often partition their total computecapacities into queuesandexecutejobs through
batchsubmissionsystems.Thewait time in suchqueues mayrange from hours to days.

2.3.3 Grid Software Envir onments

Thevarious softwareenvironments areanother factor which causethe heterogeneousappearanceof
Grids across multi-organizational domains. Different software packagesoffer solutions for secure
access, batchsubmission andresourcescheduling, �le transfer, etc.Thepackagesaretunedto perform
well for a single siteandareintendedto beused by users– they arenot designedto beutilizedfrom
external domains andin anautomatedfashion.

For parallel applicationsthedifferentparallelization librariesareanother important characteristic
of a softwareenvironment: vendor implementations of MPI canbe found alongwith generic MPI
installation, likeMPICH.Thevarietycontinuesfor thecompilers,wheresomeallow for compilations
thataretightly tunedto achip architecture, while other “just” compileanexecutable.In Chapter 3 we
acquaint thereader with a numberof different Grid software solutionswhenwe give anoverview on
Grid middlewarethat is relevantfor our migration andspawn scenarios.

Softwarepackagesareprobably themostdiversebut leastdynamiccomponentsin a Grid. Instal-
lationsaregenerally quitedifferent, but they areusually not changed,oncethey have beenadjustedto
a hardware andproventheir functionality.

2.3.4 Client Applications

An application needs to ful�ll a numberof requirementsto be able to execute and migrate on a
heterogeneous Grid. Beyond theseminimal requirements, an applicationwill not perform optimal

1By “resource”we referto thecomputecapacityof oneor moremachines,by “machine”we denotethehardware.

2.3. CHARACTERISTICSOFA GRID ENVIRONMENT 13

unlessit bringsacertain “awareness”for thedynamicsin aGrid. In thenext section, weexplain what
these requirements areand how application intelligence improves performancein a computational
Grid.

Hardware Independence: Beforeany applicationscanrun acrossa varietyof heterogeneousplat-
forms, an appropriate binary mustbe supplied to the different architecturesandoperating systems.
Severalsolution arefeasible:

1. Hardwareindependenceof theexecutablecanbeachievedby takinganinterpretiveapproach,as
seenwith High PerformanceJava [56]. This strategy usesthenative platform independenceof
Java. Although a Java implementation of MPI [14] is available,Java hasnot been overwhelm-
ingly successfulis numerics, since interpretive languageslack the potential of fastexecution
andspecial breeds of supercomputerslack Java runtimeenvironments.

2. Providing theappropriate binary at eachsite is another strategy. For standardapplications, like
Mathematicaor a chemical engineering software,this requirementmaybeeasyto ful�ll. If the
binariesaregeneratedby a user, this strategy doesnot scalewell for a large number of sites: it
requiresan enormous amount of �le managementto keepbinariesup-to-dateon the different
hosts. Feider[32] hasaddressedthis problemwith anautomatedmake-systemwhich compiles
thesourcecode on anarbitrary numberof platforms.

3. A scalable solution canbe achieved by supplying binariesfor eachof the participating archi-
tecturesandstoring themin a central repository. This solution reducesthenumberof binaries
to the numberof architectures in a Grid but possibly ignoressite, compiler andchip speci�c
optimizations.

4. Compilation-on-the-�y generatesanexecutablefrom sourcecodejust in timefor theexecution.
This approachmakesit possible to usechip speci�c compiler optimizations, insteadof using a
generic executable. It requireson theother handa very disciplined programmingstyle, which
needsto conform closely to standardslike e.g.ANSI C. If the programmerhasemployed ar-
chitecturespeci�c optimizationwithout proper protection, theprogrammayperform poorly or
will not compileat all.

Data Formats and Checkpoints: Platform independence is also necessaryfor the output data,
which is generatedby the application. A migrating simulation leavesa trail of output dataon each
host. It mustbe ensured to that �le chunks canbe joined together at a later stage. Checkpoints are
data�les, which areusedto save the stateof a simulation. They permit to restore the stateof the
application andcontinue theprogramwhereit hasleft off. Checkpointscanbeusedon machines of
differenttypeonly if they arewritten in ahardwareindependent format. If this is thecase, checkpoints
arean idealway to relocate anapplication in a heterogeneousenvironment. Hardwareindependence
rules out dataformats,which arebased on memoryimages. Suchmemoryimages aree.g.usedfor
checkpointsin theCondorHigh-Throughput-Computing environment[23], seeSection3.3.1.

Checkpoints canbedrawn in regular intervals to safeguardthe simulation against hardwarefail-
ures. If thecodediesfor somereason, it canberestarted from the time on whenthe lastcheckpoint
wasgenerated.

Application Intellig ence: A production codeonaGrid is facedwith adynamicenvironment, which
leavesthe userin thedark on mostof its propertiesduring theexecution of theprogram. Theappli-
cation needsto beskilled enough,to dealwith thesechanging conditions. To give an idea,in which
�elds “application intelligence” is needed, a few examplesaregiven:

14 CHAPTER2. USINGCOMPUTATIONAL GRIDS

� Memory Consumption: a simulation's memoryallocation candepend on the behavior of the
numerical problem.Memoryconsumption increasesasregions of highly dynamic behaviorre-
quire�ner resolution (seesection 2.2.3on adaptive meshes). A code which is not awareof the
memoryconstraintsimposedby thehardwareor queue settingsusually terminatescatastrophi-
cally.

� RuntimeandIO awareness: Checkpointing is the processof saving the stateof anapplication
to disk. Depending on the sizeof the simulation memoryand IO capabilities of the system,
thewriting of a checkpoint �le cantake considerable time. Scientistsusually derive thecorrect
duration of acheckpointing processfrom experimentandeducatedguesses.Whenuserssubmit
their simulationsto aqueuingsystem,theapplication needs to �nish thewriting of checkpoints
before the queue time limit expires or the application is killed. In a Grid environment, where
eachresource hasdifferent I/O characteristics, checkpoint timing information is dif�cult to
predict.

This list providescompelling incentivesto introduceapplication intelligence: For example,anappli-
cationwhich is awarethat it is about to consumeall available memorycaneither shutdown cleanly,
stopany further re�nementprocessor initi atea migration to a better suited machine.

2.3.5 Discussion– Probabilistic Reliability

Network, hardwareandmiddlewarearearethe key componentsthat turn the Grid into a productive
entity for anapplication. Their characteristics arediverse,their properties�uctuate on all time scales
andall componentsareunreliable. Thekey question is thefollowing: Is it possible to usetheunreli-
ablesoftware, hardware andnetwork componentsto create a reliable service structure ? We believe
thatthis canbeachievedthroughtheconcept of probabilistic reliability .

This ideatakesadvantageof two abstractions: the abstraction of the application from the hard-
wareandthe abstraction of a servicesfunctionality from the application that providesit, alsocalled
“serviceinstance”. With this strategy we caninstall a redundant setof services:a single servicetype
with multiple serviceinstances.Multiple servicestypesareorchestrated to form complex, compound
serviceswhich alsooperateaccording to thesameredundancy philosophy.

By deploying numerous servicesof the sametype acrossa collection of machines,we create a
pool of redundantservice applications. While we cannot guaranteethat a service on a speci�c host
will be availableat sometime in the future, we canassume that the service type will be available
somewhere on thecollection of machines.

2.4 Implementing Scenarios– ThesisObjectives

The objective of this thesis is the developmentof a fault-tolerant service infrastructure that allows
a client to operateautonomically. In particular, we permit clients to requesthigh-level serviceslike
migration andspawn servicesthroughremoteprocedurecallsfrom a server.

Whenwe implement theadvancedscenariosof Section2.2,wearefaced with two essentialproblems
which have their origin in thecharacteristicsof Grids:

1. The network andhardwarecomponentsof the Grid, which hostthe various Grid applications
andservices,operateunreliably. However, we needto provide a service infrastructure, which
yields a consistentaccessto servicesandresources.

2.4. IMPLEMENTING SCENARIOS– THESIS OBJECTIVES 15

2. Thelandscapeof theGrid consistsof a varietyof middlewareandsoftwarepackages.Interfac-
ing with these ubiquitous, legacy systemsis critical for thesuccessof a service infrastructure:
we cannot promotea singlesystemandrequire all sites to install it. Our service infrastructure
needsto interfacewith today'ssoftwareinstallationsaswell asupcomingtechnologieslikeweb
service basedaccessmethods.

The objective of this thesis requires multiple steps before a service infrastructure can be put into
practice:

� We proposea consistent service environment by taking advantageof a probabilistic reliability
through a redundant deploymentof services.We develop this concept in Chapter4 andcall it
in analogy to thePeer-To-Peermodel“Grid PeerServices” (GPS).

� Weestablish ageneric description modelfor objectson theGrid (Chapter5). The“Grid Object
Description Language” (GODsL) integratesthe various independent aspects of Grid objects
into a commoninformationmodel. It allows for compact communication betweenGrid peer
services.

� TheGODsL datamodelis usedto translatebetween theproprietary description vocabulariesof
thevariousGrid middlewaresolutionsandit is usedto interfacewith legacy applications, like
batchsubmissionsystems.

� We develop a request handler framework in Chapter 6, to experiment with fault toleranceand
errorback-propagationcapabilitiesin a distributedservice environment.

� We proposeanApplicationInformationServer (AIS) asa registry to store generic information
on services,�les andresources,aswell asclient speci�c data(Chapter 8).

� We implement a numberof fundamentalGPSapplications that provide basic Grid operations
for clients through remoteprocedurecalls(Chapter 7). Thesefundamentalservicesuseexisting
Grid infrastructurewherever possible.

� Basedon the fundamentalserviceswe introducea second GPSclass that provideshigh-level
serviceslike migration andspawning (Chapter 8).

� By combining fundamentalandhigh-level peerservices,wedemonstrateanimplementation of
aservicemonitorthatis capableof managingredundantservices:it is monitoringandrestarting
service applications aswell asautomatically recovering client simulations(Chapter 8).

� We apply the migration andspawn environment aswell as the auto-recovery to two realistic
scienti�c applicationsandanalyzetheir autonomicmigration andspawn behavior in Chapter9.

Notethat this thesis doesnot focuson theapplication internal realization of spawning. We provide a
service environment to codes, which allows themto autonomically requestsuchoperations,while the
service environmenttransparently performs the necessarytasks. Figure2.4 sketchesthe distributed
service infrastructure that is developedin this thesis. Hardwareresourcescomein different types and
constellations, they may be directly accessible or hiddenbehind �re walls. In an application-centric
environment, these servicesare to be usedby client codeswithout humaninteraction. The sketch
showsseveral Grid Migration Servers(GMS), Application Information Servers(AIS) andGrid File
Servers(GFS).TheAIS functionsasa central repository for informationrelated to services,�les or
resources, etc. TheGFSoffersanaccess to �le transfersfor theparticipating machines andtheGMS

16 CHAPTER2. USINGCOMPUTATIONAL GRIDS

Figure2.4: This thesisdevelops an informationmodel anda fault-tolerant,distributedserviceinfrastructure
on a heterogeneous Grid: For instance,Grid File Services(GFS)useexisting middlewareto manage�les and
Grid MigrationServices(GMS)offer migrationservicesto applications. TheAIS actsasa datawarehousefor
all participants andstoresapplication, service,�le andresourcerelatedinformation.

providesmigration services. Servicesuseexisting Grid infrastructure andaredeployed redundantly
to compensatefor hardware or network failure.

We will prove the working concept of the service infrastructure in Chapter9, wherewe analyze
themigration andspawn experimentsthat we conductedwith realistic, scienti�c simulation codes on
a testbed of machines.

Chapter 3

Grid Computing Envir onmentsand Related
Work

This chapter acquaintsthe reader with different computing environments andmiddlewaretechnolo-
giesfor computational Grids. We want to raiseawareness for the numerous solutions,eachwith an
individual usage. We highlight someshortcomings of existing packages, which motivatedour devel-
opment of theGrid PeerServicesandtheGrid ObjectDescription Language asthefoundation for a
distributed,fault-tolerantmigration environment.

We startwith anoverview on resourcemanagement andapplication monitoring software in Sec-
tions3.1and3.2,foll owedin Section3.3by aselection of high-level packagesfor seamlessintegration
of resourcesandapplications.Wherever possible we will usetheseexisting Grid solutions in our mi-
gration environment. WeintroducetheCactusCodeFramework in Section3.4asanapplicationbased
Grid solution. We take a look at informationmodelsto describe Grid entities in Section 3.5 andlist
someof the major Grid research initiatives in Section3.6. We concludewith a comparison of the
introduced softwarein Section 3.7. Thewebservice modelandrelated technologies, like OGSAare
introduced in Chapter 4 anddiscussedin Section5.11togetherwith GODsL.

3.1 ResourceManagementand Monitoring

In this section we give anoverview on resourceandjob management systemswhich arerelevant for
our work. An automated submission serviceasemployedin ourmigration serviceenvironment hasto
interfacewith a largevariety of resourcemanagementsystems.

3.1.1 The Globus Toolkit

The Globus Toolkit providessolutionsfor a variety of tasksin a computational Grid. Globus offers
central services for communication, security, informationmanagement,brokering andresourceac-
cess. The modular approachin Globus is contrastedby the Legion framework [31], in which every
componentof theGrid becomesanobject of asingle virtualcomputer [52]. In thisoverview, wefocus
on theGlobusresourcemanagement,informationinfrastructureandsecurity packages.Like all Grid
enabling middleware,Globusis asoftwarelayer thatis locatedabovetheoperatingsystemandbelow
thesitespeci�c management applications,suchasbatchsubmissionsystemsanduserapplications.

Resource Speci�cation Language

TheGlobusResourceSpeci�cation Language(RSL)providesa commoninterchange languageto de-
scriberesourcesrequirements,based on attribute-valuepairs. Thevarious componentsof theGlobus
ResourceManagementarchitecture useRSL strings to perform their management functionsin coop-
eration with theother componentsin thesystem. TheRSL allows for complex resourcedescriptions.
(An RSLscript, generatedby themigration service for a threemachinemeta-computing run is shown
in Section7.4.2).Below is a simpleRSLscript for a parallel run:

17

18 CHAPTER3. GRID COMPUTING ENVIRONMENTSAND RELATED WORK

(&(reso urceManagerC ontact="ferm at.cfs.ac.uk /jobmanager- pbs")
(count=16)
(jobtype=m pi)
(executabl e=pi)

)

Suchscripts canbelaunchedwith Globus, asshown below:

lanfer@ vidar2:˜> globusrun -f RSLfile

Theattributes(e.g.count) aremapped to thecorresponding batch submissionattributesby theGlobus
ResourceAllocation Manager (GRAM) [49]. Herethejob is submittedthroughPBS. Thejobmanager
is omittedfor interactive execution. Thesetof RSLattributes is �x ed1.

Metacomputing Dir ectory Service

The Metacomputing Directory Service(MDS)2 is part of the Globus informationinfrastructure and
provides a directory service for Grids. MDS is a framework for managing static and dynamic in-
formation about the statusof a computational Grid compute nodesandstoragesystems. MDS uses
theLightweight Directory AccessProtocol (LDAP) [89], asa uniform interface.MDS consists of an
information provider component called “Grid Resource InformationService” (GRIS),which is de-
ployed at participating sites, anda centralized directory component called “Grid Index Information
Service”(GIIS). An MDS canbequeried throughagraphicaluserinterfacesor anAPI. Theeffortless
browsingof a MDS databasethrougha GUI is deceptive: searching andaccessing speci�c dataitems
in deeply rootedMDS treefrom within anapplication is non-trivial.

GlobusSecurity Infras tructur e

TheGlobus Security Infrastructure(GSI) allowsfor secureauthentication based on X.509public key
certi�cates. GSI canbe usedto authenticate users,resourcesandprocesses. A request to access a
machineis authorized if a userhasan entry in the machine's “gri d-map-�le” , which serves as an
accesscontrol list. GSI operateswith global userIDs (seeYour iden tity :), which aremapped
to thesitelocal accounts.Thegrid-map-�le mustbeeditedon all machineseachtime a user is added
to theGrid environment.

Single sign-on is accomplished through the generation of a temporary proxy [87] from a user-
certi�cate,asshown below. Theproxy canthenauthenticatetheuserto other machinesor processes.
A proxy hascertain lifetime, which defaults to 12 hours. During this time, the usercanaccessma-
chines,which have theuser's identity in their grid-map-�le. After theproxy expires a new onemust
be retrieved manually. A proxy canbe taken alongwhenuserslog into other sites. This is called
“proxy-delegation” andallowsa userto access all participating machines from any other.

origin> grid-proxy- init
Your identity : /O=Grid/O= Globus/OU=ae i.mpg.de/CN= Gerd Lanferm ann
Enter GRID pass phrase for this identity: ******* *
Creatin g proxy Done
Your proxy is valid until Tue Aug 6 00:13:56 2002

origin> grid-proxy- info
subject : /O=Grid/ O=Globus/OU= aei.mpg.de/C N=Gerd Lanfermann/ CN=proxy
issuer : /O=Grid/ O=Globus/OU= aei.mpg.de/C N=Gerd Lanfermann
type : full
strengt h : 512 bits
timelef t : 11:56:59

1http://www-fp.globus.org/gram/rslspec1.html
2MDS wasrecentlyrenamedto “Monitoring andDiscovery Service”.Theliteratureusesbothterms.

3.1. RESOURCEMANAGEMENT AND MONITORING 19

3.1.2 Condor Classi�ed Advertisement

While wediscussthefull Condorenvironment in Section3.3.1,wefocushereonacomponentof Con-
dor, called theCondor Classi�ed Advertisements(Class-Ads) [22]. Class-Adsusea semi-structured
datamodel,which folds the querylanguageinto the data model,allowing applications andcomput-
ersto publish queries asattributes. Class-Ads areexchangedby Condorprocessesto schedulejobs.
They includea matchmaking ability which is a valuable tool to compareresourcerequirementsand
constraints.

Below, weshow two Class-Ad examples: theleft onedescribesthecharacteristicsof anobject (an
apartment),theright onedescribestherequirementof a requestor(apartmentrenter).

[[
MyType = "Apart ment" MyType = "Apartme ntRenter"
SquareArea = 3500; Student = True;
RentOffer = 1000; Rank = 1 / (other.Ren tOffer)
OnBusLine = True; Constrai nt= other.Bu sLine && otherSqua reArea>2700

]]

The arithmetic andrelation operator canbe part of a Class-Ad.They let the potential renter specify
constraints for all objects(they mustbe near a bus line andhave be larger than2700 sft.) andrank
them(cheapestoffer �rst). It is obvioushow thismechanismcanbeperfectly appliedto theevaluation
of resourceandnetwork constraints. We will utili ze this package to matchapplication requirements
with resourceinformationthatwe havegatheredfrom variousinformationservices.

3.1.3 Batch SubmissionSystems

Batchsubmission systemsprovidea mechanism for submitting, launching andtracking jobs on ma-
chines. Thesesystems greatly simplify the useof clusteredresources. They achieve an optimal
util ization of thesystem andprovidea quick turn around for theuser. Thecommonlyknown systems
are the Portable Batch SubmissionSystem (PBS)[54], Load Leveler (LL) [58]. The Load Sharing
Facility (LSF)[92] andSunGrid Engine(SGE)[83] alsoprovidebatch submissionfunctionality, but
their capabilities reachfurther andarediscussedin Section3.3.

Traditionally jobsaresubmittedthrough userwritten scripts. A sampleLSFscript is givenbelow.
A scriptspeci�es theresourcerequirementsof theapplicationthroughdirectives(#BSUB). Thecom-
mandsto beexecutedtrail the list of directives. In theexample,a job requests 84 processorsand10
GByteof memory. Theexecutableis launchedthrough mpi run .

#!/bin/sh
#BSUB -M 10G
#BSUB -n 84
cd /utmp/ger dlan/AHF
mpirun -np 84 ./cactus_ ahf GravWave2.par

The Maui Scheduler: Maui is anapplicationscheduleranddesignedasapolicy engineto organize
when,whereandhow computeresourcesareallocatedto jobs.TheMaui scheduler receivesinforma-
tion on theresourceandthescheduledapplication from aresourcemanager like LoadLeveler, PBSor
LSF. If a new parallel job is to bescheduled,Maui calculatestheoptimal location of thejob in terms
of nodelocation andexecution order. Maui supportsadvancedreservation, which reservesa block
of compute time for a user. The scheduler arrangescompeting jobs in a manner that the reserved
resourcesareavailableby thetime thereservationstarts.

20 CHAPTER3. GRID COMPUTING ENVIRONMENTSAND RELATED WORK

3.2 Application Monitoring

In this section we review a numberof monitoring systemsfor applications,which allow a program
to extract information at runtimeon its own performanceor its environment,e.g.network situation.
Suchmonitoring toolsarepre-requisite for autonomicoperation.

3.2.1 PAPI, SvPablo and PACE

ThePerformanceAPI (PAPI) [65] providesauniform API for accessing hardwarecountersonmicro-
processors.SvPablo [78] is a languageindependent performanceanalysis andvisualization system
thatsupportsanalysisof applicationsexecutingonbothsequentialandparallel systems.In addition to
capturing applicationdatavia software instrumentation,SvPabloalsoexploits hardwareperformance
counters to capture the interaction of softwareand hardware. Both hardwareandsoftware perfor-
mancedataaresummarizedduring programexecution. Performance predictions is animportant�eld
of researchthat attempts to qualify andextrapolateperformancedatainto the future. PACE [71] is
suchanattemptfor parallel applications. Ripanau [77] targets in his work thepredictability of algo-
rithms.

3.2.2 Network WeatherService

TheNetwork Weather Service(NWS)[91] monitorsthenetwork quality between sitesandmakesthis
information available to applications. It alsoattempts to predict the TCP/IPend-to-endthroughput
andlatency that is attainableby anapplication. Pchar[67] is another tool to measurethebandwidth
andlatency. We will useNWS andrelated technology in a future project (seeSection 5.8.3)to rank
hostsbased on their accessibility for large �le transfers.

3.3 High-Level Grid Envir onments

In thissectionwelist relatedhigh-level environments,whichintegrateseveral capabilitiesinto asingle
system(like resourcemonitoring, applicationsubmissionandmigration capabilities).

3.3.1 Condor

Condor[17] is a high-throughput scheduling mechanism, which is developed at the University of
Wisconsin,Madison. Condorhasasuccessful tenyearhistory in high-throughputcomputing. Condor
allows users to submitjobsto machinesof anadministrative domaincalled “�ock” andharnessthem
in a “cycle-stealing” mode.Besidesscheduling jobs,Condor suspendsor relocatesan application if
thecomputer is usedinteractively, or if themachine load increasesabove a certain threshold. Within
a homogeneousenvironment single-processor jobscanbecheckpointedandrestartedby the transfer
of the application's memoryimage. Theconnection of multiple administrative domains is the focus
of Condor-G [40], which is a project to join multiple condor “�ocks” from independent organizations
through Globus. Our migration environmentcanfor example interfacewith Condorto fanout single
processorspawn jobs.

3.3.2 Sun Grid Engine

SunGrid Engine(SGE)[83] andthe enterpriseedition (SGE-EE)offer a distributedcomputing en-
vironmentfor Gridswithin a single organization. SGEde�ne complex rules for resourcesharing: It
featuresguaranteedcomputecapacities andhasa“deadline”policy to dedicatecomputecapacities for

3.4. THE CACTUSCODEFRAMEWORK 21

theduration of a project. SGEdistinguishesthreetypesof resources(CPUcycles, Memory, andI/O
activity) to calculate theuser's share of theavailable resources. Sunhasintegratedits solution into a
single product.

3.3.3 Load Sharing Facility

Load Sharing Facility (LSF) [92] by Platform Computingis a distributed computing environment,
similar to the Sun Grid Engine. In its basecon�guration, LSF offers a batchsubmission system
similar to PBS.The LSF baseproduct can(or must)be complementedwith additional packagesto
gainadvancedresourcemanagement capabilities.

3.3.4 TENT and Symphony

TENT [35] is a distributedwork�o w managementsystemfor engineeringapplications. It originated
in the �eld of aircraft andturbine design, wheredifferentcommercial andnon-commercial software
packagesareusedsequentially in the processof datapreparation, simulation andanalysis. TENT
uses CORBA [24] in its communication middleware andJava for the key components. The TENT
framework itself is a monolithic solution,designedfor local Grids.A Globusbasedsolution for wide
areanetworksis currently researched.

Symphony is a componentbasedframework for composing,saving, sharing andexecuting meta-
programs[80, 66]. TheSymphony framework abstractsGrid architecturesandtheir middleware. Re-
moteprogramsand�les canbeaccessedusinga number of differentprotocolsandservices: job sub-
mission is achievedthrough GRAM andthrougha proprietary protocol, �le access is offeredthrough
HTTP, FTP, GSI-ftp.

3.3.5 Harness,Javelin and Charlotte

Harness [69] (HeterogeneousAdaptableRecon�gurable Network System)is an experimental meta-
computing systemthatis basedon theconcept of adistributed, virtual machine(DVM). Harnessaims
to overcomePVM limitations,e.g.restrictedcommunicationscope betweenPVM virtual machine. It
allowsmultiple PVMsto operate together.

Javelin [70] connectsmultiple, anonymousmachinesthroughWebjava-applications. Usersdown-
loada client asa java applet andparticipateinstantaneously in ongoing computations. Thesystem is
aimedat trivially parallel applications.A broker processmanagesclients anddistributesthework.

Charlotte [16] is a virtual machinethat executesJava applications throughWebbrowsers. Char-
lotteprovidesloadbalancing by re-assigning tasks to faster machines. Like Javelin, it targetstrivially
parallel computations.

3.4 The CactusCodeFramework

The CactusCodeframework [47] addressesa number of characteristics in a Grid environmenton
the client side, ratherthan in a Grid framework. We give a brief overview on this project and its
philosophy. We useCactusCodebased simulations asclients for our migration experimentsand it
servesasa theframework for our service applications.

TheCactusCodeis developedat theMax PlanckInstitutefor GravitationalPhysicsby both physi-
cists andcomputer scientists3. The CactusCodeembodiesa new paradigm for the developmentof
numerical software in a collaborative andportable environment. As a freely available open-source

3Theauthoris a foundingmemberof theCactusteam.

22 CHAPTER3. GRID COMPUTING ENVIRONMENTSAND RELATED WORK

toolkit, Cactusextends the traditional, single-processor code developmentinto parallel applications
that canbe run on a large variety of platforms, from laptops or clustersof workstations, up to su-
percomputers.Cactusprovidesaccess to advancedcomputational tools, suchasparallel I/O, remote
visualization andsteering, aswell asperformancemonitoring [6].

Thename“Cactus”comesfrom thedesign principleof amoduleset,termed“thorns” thatinterface
with the Cactus framework, called “�esh”. In emerging researchareas,it is not alwaysclearwhat
techniquesare bestsuited to solve a scienti�c problem. Research groups in large scalescienti�c
challengesareusually distributedandrequire a collaborative work style thatneedsto bemirrored in
their programmingenvironmentaswell. Further, the underlying computing platforms areevolving
andchanging rapidly over time. For thesethreekey problems,the CactusCodeframework offers a
solution for non-computing-expertslike numerical scientists: Themodular design allows scientiststo
assemble anapplicationfrom a setof numerical thorns andtune it to solve a certain problem.Thorns
canbereplacedto try out differentalgorithmsor they canbeadded to perform additionalanalysis on
theevolveddata.

The Cactus�esh controls how thorns work together by coordinating the dataandprocess�o w.
“Dri verthorns” abstracttheparallelization,whichallowsaCactusapplication to replacee.g.MPI with
othercommunication librarieslike Globus-MPI or PVM. The CactusCodehasthorns that interface
with the PAPI andSvPablo application monitoring tools introducedabove. Cactusexecutablescan
be compiled for numerous architectures. All these features makes Cactusan ideal framework to
experiment with autonomicapplications in a Grid computing environment[11, 7, 5].

Scientists at theMax-Planck-Institute usetheCactusCodefor developing numerical solutions to
Einstein's equation. Thesecomputationally intensive partial-differential equations describe cosmic
eventslike thecollisionof black holes andaresolvedon large-scalesupercomputers [12].

In this thesiswe usethe thorn concept for our Grid PeerServiceimplementation to attach an
arbitrarynumber of servicethornsto aservice request handler, describedin Chapter6. Thisapproach
allows usto generateexecutableswhoseservice variety canbe�ne-tunedto a speci�c task.

3.5 Object Description

This section takesa brief look at datamodels thatareusedto characterizecomplex objectson aGrid,
goingbeyondisolatedaspectssuchasresourcedescriptions. Thetaskof de�ning objectsin a simple,
robust way is not new. In fact, all of the high-level Grid environments musthave somedatamodel
which describesobjects on a Grid moreor lesscoherently. However, mostof thesedatamodelsare
internal andcannot beusedto communicate informationexternally betweenservices.

3.5.1 Symphony

Symphony provides Java beansto describe �le and program properties. A Java �le bean can e.g.
represent local or remote�les. The beans act as“data sinks” or “data sources” [80], which reador
write �les, respectively. File beans include �le description andtransport. A Java programbeanis a
description of a local or remoteprocess. Beanscanbe coupled together: for instancetwo Java �le
beansimply source andtarget �le in a copy operation. Wetake a similar approachwith Grid Objects,
which expresssourceandtarget object in a copy service request.

3.5.2 GrADSoft

TheGrADSoft (Grid Application DevelopmentSoftware)environmentseeksto provide a continuous
program preparation and execution system, util izing MDS and NWS. GrADSoft uses thosenative

3.6. GRID RESEARCHINITIATIVES 23

datamodelsandaswell asits own Abstract Resource Topology Model (AART). TheAART bundles
resource, network and topological information into a virtual machine which is interpretedby the
GrADSoft scheduler.

3.5.3 CIM and CIM Application ManagementModel

TheCommonInformation Model (CIM) [21] is developedby theDistributedManagementTaskForce
(DMTF). CIM' s datamodelis animplementation-neutral schemefor describing overall management
informationin a network/enterpriseenvironment. CIM is comprisedof a speci�catio n anda scheme:
thespeci�cation de�nesconstructsof theManagedObjectFormat(MOF) language, while thescheme
provides the actual modeldescriptions. The CIM Application ManagementModel is a CIM based
model to describe the details commonly required to manage softwareproducts andapplications. It
distinguishesanapplicationinto softwareproducts,featuresandelements. TheCIM modelusesthree
conceptsto structureanapplication: Thesoftwareelementlife cycledescribesactivitieslikedeploying
software;theenvironmental conditions list dependenciesfor anapplications (e.g.existenceof certain
directories); softwareelementactionsdescribe thesequenceof actionsthatleadto thegeneration of a
new softwareelement.

CIM hassimilaritiesregarding our goal to providea commondescription system.CIM andCIM-
based informationmodelsoffer a functionality which reachesfar beyond what we feel is necessary
to describe entities on the Grid. We foll ow a more simplistic approachto describe Grid Objects.
However, CIM developmenthighlights the needto have common, abstract datamodels to manage
complex interactions.

3.6 Grid Research Initiati ves

We list someof the major multi-organizational researchinitiatives,that contribute relevant Grid in-
frastructure.

� GrADS: The GrADS [48] project is developing strategies for launching programsin Grids
anddeveloping GrADSoft (seeSection3.5.2). GrADS maintains a testbedandstudies Grid
computing scenarios.

� GridLab: TheGridLab[82, 51] project focuseson developing capabilities to usedynamicre-
sources. It developsservice tools to make applications awareof their computing environment.
Themigration environment developedin this thesisservesGridLabasa prototypeto studythe
behavior andrequirementsof migration applications in a Grid.

� Global Grid Forum: the Global Grid Forum(GGF) [43] is a forum of researchers andprac-
titionersworking on technologies. GGF focuseson the promotion anddevelopmentof Grid
technologies and applications. The GGF has inaugurated a Peer-To-Peerworking group in
September20024, which investigateshow to useOGSA (seesec.4.5.2)with P2Penvironments.

� EGrid: TheEuropeanGrid Forumhasmergedits organizational structurewith theGGF. The
EGrid still maintains a testbed to testout Grid technologies. We areusing this testbed for our
migration experiments.

4http://ba talion.ucsd .edu/ggf

24 CHAPTER3. GRID COMPUTING ENVIRONMENTSAND RELATED WORK

3.7 Discussion

In this section we evaluate thepresentedGrid softwarewith regardto fault-toleranceandinteroper-
ability aswell astheir application restrictions andthetypeof Grids they arebestsuited for.

The above frameworks manageapplications on the Grid, in the sense that they submit jobs and
copy �les. But they do not support autonomic applications in the sense that a self-contained ap-
plication requestsservicesor contributesinformation to a shared database.The situation is slightly
ironic: On onehand, applicationsaremadeincreasingly intelligentby packageslike by SvPablo[78]
or PAPI, on theother handtheapplicationsaredenied anenvironment whichexecutestheir decisions,
for example theconclusionto migrateif anSvPabloprobeindicatesinadequateresourceutili zation.

Many informationregistriesaredesignedto storespeci�c data:e.g.network data(NWS) or ma-
chineinformation (MDS). We will seelater in Chapter5 that this is an inef�cien t abbreviation of a
comprehensivesituation: e.g.thenetwork bandwidth to asiteandits diskcapacitiesde�ne constraints
for large �le transfers andmustbe expressedtogether. Further, autonomic, self-awareapplications
becomea sourceof informationin its own, whenthey benchmark their host's I/O system or �oating
point operations.To tapinto this informationpool, registriesmustpermitdataretrieval anddeposit of
�e xible contentby userapplications. This view is not found in the traditional designof information
registries.

TENT and many other not mentioned packagesrely on their own server componentsin a dis-
tributedenvironment. This is a strong requirementfor a global Grid, in which eachsitehasadminis-
tration autonomy. Harness,CharlotteandJavelin needJavaapplicationsto operatein aheterogeneous
Grid, underlining thefact that thepotential of heterogeneousGrids is still not fully exploredfor real-
world applications: middlewaredesignerscompromise with respect to thelanguage(Java) or require
a homogeneousmachinespool.

While mostsystemsdopayattention to theissuesof security in aGrid environment,mostsystems
do not suf�cie ntly address the problemswhich arecausedby hardwareunreliability. For example,
the Condorenvironment detects and restarts a failed Condor client, but it is not obvious how the
masterprogram is monitored. Symphony provides a small foot print framework that can be used
on top of computational Grids without major modi�cations or requirementson the host system, but
doesnot addressfault toleranceeither. SGE restricts its scopeto “campus-Grids” right away. In
general, the above solutionsconcentrate on handling small andenterprise-sizedGrids. They rely on
centralized services,which is acceptablefor small sizedmachinepools. Due to unreliability of the
Grid componentsthese solutions do not scale up to global Grids. This is not a failure of the Grid
middlewarebut causedby theunreliabili ty of theGrid components.

It is alsonot clearwhy only sofew of thehigh-level systemslink up with relatedGrid infrastruc-
ture. We believe that interfacing with existing technology is crucial to cover a signi�cant percentage
of machines in a global Grid andto avoid the re-invention of thewheel. A maindifferencebetween
existing environmentsandtheGrid PeerServicemodeldevelopedin this thesis, is thatcurrently each
systemprovidesa solution within an isolated universe. This criticism is not valid for the Globus
Toolkit anda few others, which not only support a variety of batchsystems but also interface with
related systemslike Condor.

The Grid PeerServicemodel (GPS)should be seenasa prototype for providing a service en-
vironment,which is not encapsulated. It interfaceswith existing middlewarewherever possible to
extendits servicesto asmany machinesaspossible. Grid PeerServicesdo not need to run on every
host,insteadGPSinstancesinterfacethrough API's or interactively with theinfrastructure on remote
machines (MDS, PBS,etc.). In this spirit, Grid PeerServices do not intend to compete with any of
theGrid middleware solutionsmentionedabove. Insteadit should beseenasanapproachto enhance
theusability andinterconnectivity of Grid middlewarefor autonomicapplications.

Chapter 4

Grid Peer Services

ThePeerServiceModelandtheWebService Modelemergedandevolvedseparately from eachother
andare two new trends in the �eld of distributed computing. Both enable usersto participate in a
deepervision of the Internet. In this chapter we introducethe two modelsandexplain how they can
support a fault tolerantservice structureon Grids. Thetwo models arediscussedin Sections 4.2and
4.3,their fusionis analyzedin Section4.4. Currentwebservicetechnology is reviewedin Section4.5,
thecommonencodingandtransportprotocolsareoutlinedin Section4.6. Thechapterconcludeswith
a discussion of our service approachin Section4.7.

4.1 A History of Services

Until recently developersandusersdid not have to beoverly concernedabout thehardwareindepen-
denceandcommunication skills of their software. In a “server-centric” environment theapplication
clients hadto know about the properties of the local hardwareandsoftware, since all functionality
andresource considerations weremaderelative to a central server environment. Therewasno need
to accommodatethird party hardware or software outside the scope of the local server theater, sim-
ply becausethere wasno information�o w of signi�cant size,e.g.between two cooperating compa-
nies. As theneed for information interaction increasedwith theappearanceof “businessto business”
(B2B) models, webservicesemergedasa concept which allowedtwo applications written in differ-
ent languages, employing independent internal datastructures andhosted on arbitrary hardware to
communicate.

Otherthanthecommonly known webinterfaces,which areaccessedthrough webbrowsers, web
servicesaredesignedfor theautomatic communicationbetween applications. Technologieslike “Ex-
tendedMarkupLanguage” (XML)[18], “Simple ObjectAccessProtocol” (SOAP)[28], “WebService
Discovery Language” (WSDL)[20], “Universal Description Discovery andIntegration” (UDDI)[88]
and most recently the “Open Grid Services Architecture” (OGSA)[37] enableapplications to au-
tonomouslyconnectto other programsto exchangeinformationandservices.

Peer-To-Peer (P2P)computing hasbeenmadepopular by applications like seti@home,Napster
or Gnutellaandopened a new view on how to anticipatethe Internet. Returning to the rootsof the
Internet,applicationsandusersinteract directly with eachother, without involving a Webserver or a
centralized administration unit. This chapter discusseswhy the fusion of webservicesandthepeer-
to-peermodelis anidealmatchfor theanatomyof a computing Grid, asoutlined in Section2.3. We
illustratehow anenvironment of webservicescanbecreatedandhow theP2Pservice modelendows
serviceswith a redundancy that is ableto handle theunreliablepropertiesof computing Grids.

This service topology servesuslaterin theimplementationof theGrid PeerServices in Chapter7
and8. The GPSimplementation allowsus to realize the different Grid scenariosthat wereoutlined
in Section2.2. Theexperiences andexperimentswith the Grid PeerServicemodelarediscussedin
Chapter 9.

25

26 CHAPTER4. GRID PEER SERVICES

4.2 WebServiceModel

Thecoreideaof a webservice is simple: webservice technology decouplesaservicefrom theunder-
lying hardware andsoftware andmakesit available to theoutside community througha well de�ned
interface. A web service consumer does not have to be concernedaboutthe implementation of the
service. This abstraction of theservice from theactualimplementation hasa variety of advantagesto
both service providersandusers: web service providerscanupgrade their hardwarewithout impact
on their clients. Clientson the otherhandarenot forced to adapt the sameIT growth rateas their
service providers.Clientsmaychoosefrom severalservice offers aslong asthefunctional capability
is identical. An application which is webserviceenabledandwhichhasoutsourced majorportionsof
its functionality to external applicationsis moreportableandleaner in design.

XML-RPC

XML-RPC

Resource B

OS:
 Linux

Architecture: IA64

Language:
 Perl

Resource A

OS:
 SGI

Architecture: Mips

Language:
 C

Figure 4.1: Web serviceshide detailsas architecture, programming language or internal datastructures.
Communication is donethrough protocols like XML-RPC or SOAP, which provide platform-neutral encod-
ing throughXML anduseHTTP asfor messagetransport. Arbitrary applications areableto communicateif
they conform to thesecommunicationstandards.

A web service canbe seenasan interfacepositioned betweentwo application codes. The web ser-
vice actsasthe middle layer, which allows the communication of the two codes asit hides program
speci�c characteristics suchasprogramming language,application internal datalayout, architecture
of the hosting machines, etc. as shown in Figure 4.1, wheretwo applications on diversehardware
andsoftwareplatformscommunicatethrough acommonprotocol. Any application which speaks this
protocol canaccess thefunctionality hiddenbehind the interface.Because webservicesarede�ning
the languageandtransportof thecommunication, conforming to thesestandardsis a strong require-
mentto interactwith such a service. XML-RPC andSOAP aresucha protocolsandcanbecalled a
lingua-franca of webservices.Any numberof applications canjoin this ensembleof communicating
tasks. The pool of participantsis distinguishedinto “service providers” and“service requestors” in
analogy to theclient-server model.

Theabstractioncanbeextendendto thepoint thatit is notonly irrelevanthowaservice is realized
but also where it is operating. This abstraction requires a third party, which traces the types and
location of services:It is termedServiceDirectory or ServiceRegistry. We deduce thata webservice
environment(Figure 4.2)consistsof three elements:

� TheServiceProvider is anapplication which hastheability to perform a certain task. It makes
thetaskavailableto external programs.Theservice provider is contactedby a service request.
It executestherequestin accordancewith policieslike security, authorization or priority.

� The Service Requestor is an application which wantsto usethe functionality provided by a
service.Therequestorsendsa message to theproviderandrequests a certain service.

4.3. PEER-TO-PEERSERVICE MODEL 27

Service

Registry

Service

Provider

Service

Requestor

Figure4.2: WebservicecomponentscanbecategorizedintoServiceProviders, ServiceRequestorsandService
Directories. Sincethelocationof aserviceprovider is notnecessarilyknown to aservicerequestor, a directory
serviceis neededto relayservicelocationandcontactinformation.

� TheService Registry storesinformationon theavailable servicesandtheir locations. Thereg-
istry is contactedby the provider, who announcesits service and contact information. The
registry is queried by theservicerequestorto obtainthelocationof a services.

Web Services vs. Client-Server Operation: The term “web service” and “client-server” areof-
ten usedsynonymously. The understanding of web servicesis morerestrictive thanwhat is usually
described by “client-server” computing. While every web service can be regarded as a temporary
client-server relationship, not every client-server pair is a webservice. Webservicesrequire theab-
straction of functionality, implementationandarchitecture.

4.3 Peer-To-PeerServiceModel

Peer-to-Peer(P2P)computing hasbeen theresult of a trendtowardsdecentralizing softwareservices
and hardware, away from monolithic client-server systemsto distributed environments. The peer
service modelhasmany featureswhich arealso found in the web service model. P2Pservicesdo
not needto conform to the web service de�nit ion. A typical feature of a P2Penvironment is the
vast quantity of participantscompared to the numberof services. This strategy is not captured by
the webservice model. It endows a P2Penvironment with a probabilistic immunization against the
unreliability of a single peer:For a largeenoughnumber of serviceprovidersin a P2Ppool, a service
hasa good chance of being available “somewhere”. P2Pnetworks can “survive” in environments
which aretoo unstable for a single consumer-requestor service relationship.

Peer-to-Peerstyle computing yieldsa probabilistic (rather thandeterministic) strategy for service
reliably. P2Pshifts the focustoward collaboration andcommunication orientedapplications,while
the web service model is moreaimedat describing the communication in a temporary client-server
relationship.

4.3.1 A P2PExample: Gnutella

Oneof the widely-known P2Pnetworks is built by Gnutella [44]. Gnutellapeers usepoint-to-point
communication to connectwith neighboring peers. Gnutellais usedasa�le sharing utilit y thatenables
hundredsof thousands of usersto offer, search anddownload �les over the internet, including mp3-
encodedmusic�les. In order to locate a �le, a peer sends a requestto its neighbors, which propagate
this message on through the Gnutella network. If a peerhasthe requested�le available, it returns

28 CHAPTER4. GRID PEER SERVICES

a response. Eachrequest hasa time-to-live which is decrementedat eachpeerhop to avoid the
problemof network �oodin g. Gnutella's communicationbehavior hasbeen the focusof research by
Ripeanu[77]. File sharing relieson theredundancy of service anddata:a failing peer doesnot effect
thefunctionality of thepeernetwork nor theavailability of acertain �le, providedthenetwork is large
andinformation (�les) areredundant.

4.3.2 A P2PCharacterization

Basedon theexampleabove, we canderive a classi�cation of a Peer-to-Peersystem,sincenot every
distributedapplication is P2P:

� P2Pconsistsof a number of peers,eachperforming a speci�c role in theP2Ptheater.

� Thetotal number of peers is large comparedto thenumbersof rolesthey play.

� No constantconnectionbetweentwo individualpeerapplicationis requiredto provideaservice.

� Theclient-server classi�cation is dissolved,peers inter-operate on equalterms.

� Peersagreeon a commontransport protocol.

The threefundamentalcomponentsof the web servicesarealsopresent in the PeerServiceModel.
A key problem imposedby a P2Penvironmentis thecoordination andmonitoring of theindependent
participants. Thenumber of peers that a service registry hasto dealwith is signi�cantly larger. The
webservice modelemphasizesthe client-server classi�cation, while the peer service modelstresses
thefactthataservice requestorandaserviceprovideroperate“at equalterms”: apeer canbothactas
server andasaclient. Furthermore,P2Pestablishesadataandoperation redundancy andoutnumbers
possible failurepointswith purequantity.

4.3.3 Why P2P?

We saw that the Peer-To-Peerservice modelhasa number of advantages which arenot found in the
webservicesmodel.

� P2Pservicesareusually small,simpleand�e xible. Ideally, they scaleacross a vastnumberof
hosts, which yieldsa probabilistic redundancy for a service type.

� P2Peliminatesthe singleapplication bottlenecksinceservicesanddataareprovidedby more
thanoneapplication.

� P2Pprovideseasyloadbalancing. P2Pservice application canbeshutdown or recreatedin the
caseof high servicedemand.

Many of thesecharacteristics arealsopossible in non-P2Penvironments. For example,thethreading
of tasks is a standardprocedurein server computing. Thewebservice ideagoes further andaddsthe
notion of application independence: the service interfacebecomesthe essential component, not the
applicationitself.

4.4. THE CONCEPTOFGRID PEER SERVICES 29

l
a
t
i
g
i
d

D
a
t
a

G
e
n
e
r
a
l

l
a
t
i
g
i
d

D
a
t
a

G
e
n
e
r
a
l

a)
 b)
 c)

Figure4.3: Communicationpattersdevelopedover theyearsfrom theisolatedclient-servermodel (a) to aweb
servicemodel (b), which allows variousclientsto communicatecontent with serversof different domains and
architectures. In themostrecent – andstill evolving – step(c), thedistinctionof client andserver is dissolved
asparticipants in peernetwork communicateonequalterms.

Extending the P2Pidea: Theprincipleof P2Pabstractioncanbeapplied to other situationsaswell,
for instance:

1. A compute resourceconformsto theideaof a P2Pnetwork, whencompute capacity of a com-
puteris decoupledfrom its speci�c plattform andlocation. In an (admittedly) ideal world, an
applicationis requiring acertain computepowerandis notberestrictedby thehardware,which
deliversthis capacity. Theanalogy to webservicesis evident.

2. A numberof different servicesarecombinedto provide a complex “compound service”. The
compound service takes advantageof the redundancy of the lower-level services andcan be
deployed redundantly aswell. This construction is e.g.usedfor the Grid Migration Server in
Chapter8.

4.4 The Conceptof Grid PeerServices

It is obvious, how web servicesanda P2Pstrategy complementeachother. Web servicesbring the
abstraction of servicesfrom theunderlying hardwareandimplementation. P2Penhancesthis model
with a reliability due to its service and dataredundancy. Figure 4.3 sketchesthe evolution of the
communication patterns amongapplications: to the left a traditional client-server model is shown,
which operatesin anencapsulated environment. Webservices(shownin thecenter broke) this crust
andallowedmultiple clients to accessserviceson various hosts of differentadministrative domains.
To theright, thenext – andstill emerging – stepis shown, whichopensuptheclient-serverdistinction
andallowsparticipants to communicate on equalterms.

The Grid PeerServicemodelscombinesboth modelsascomplements the single edgedweb service
modelwith a peerto peer topology. We de�ne Grid PeerServices asfoll ows:
Grid PeerServicesarea serviceenvironment,in which each particular serviceis realized throughmul-
tipleserviceinstances,which operateindependentlyof a hardwareor softwarein multi-organizational
Grids andcommunicatethrough webserviceinterfaces.

TheP2Pmodelsuppliesa robustness againsthardwarefailuresto thewebservice modelby giving a
particular service a high redundancy: theservice is likely to beavailable “somewhere” even if some

30 CHAPTER4. GRID PEER SERVICES

machines or networks fail. We areinterestedin providing exactly this fault-tolerant property to our
migration services.

4.5 WebServiceTechnology

In this section we give anoverviewover existing webservice technology. We introducethestandards
of WSDL, UDDI and WSFL in Section4.5.1 and review OGSA as an architecture aimedat Grid
environments in Section4.5.2.

4.5.1 WSDL, UDDI and WSFL

Thesection reviews thewebservicetechnology to describe, identify andconcatenate webservices.

Web Service Discovery Language(WSDL): WSDL [20] is an XML based language,which de-
�nes the interfaceof a service. WSDL informsanapplication, whatkind of interfacespeci�cation a
service provider is using. WSDL is similar to “Interactive DataLanguage” (IDL), which is usedto
characterizeCORBA interfaces.Serviceinterfacesarede�ned abstractly in termsof message struc-
turesandsequencesof simplemessage exchanges,called“operations” in WSDL terminology. The
interfacedescription is tied to a concrete transport protocol and dataencoding scheme.WSDL is
extensible andallows the complex interfacede�nit ions for various network interfacesandtransport
procedures. Several standardized binding conventions arede�ned, describing how to useWSDL in
conjunctionwith SOAP, HTTP andMIME.

UniversalDetection and Discovery Interface(UDDI): UDDI [88] operateson thelevel of service
registrationandservicediscovery. UDDI storesthedescription of serviceswhile WSDL describesthe
service itself. UDDI allowsabusinessto register information about thewebservicesthey offer sothat
otherbusinessescan�nd them.Thecorecomponentof UDDI is aXML based“businessregistration”,
which consistsof “white pages” includingaddressandcontact identi�ers, “yellow pages”, including
categorizationsbasedon standardsand“green pages” containing technical informationabout theser-
vice thatareprovidedby a business.

Web Service Flow Language(WSFL): WSFL [64] by IBM is anXML languagethatmodelsthe
composition of web services. It speci�cies the execution sequenceof the functionality provided by
thecomposedwebservices. Complex servicesarespeci�ed by de�ning the �o w of control anddata
betweenweb services. In August 2002, the ideasof IBM' s WSFL andMicrosoft's XLANG were
convergedinto the BusinessModel Execution Language for Web Services(BPEL4WS)1. BPEL4WS
de�nesaninteroperable integration modelthat aimsat facilitating theexpansionof automatedprocess
integration in intra-corporateandbusiness-to-businessenvironments. WedonotuseWSFLnorBPEL,
but suggestin Section8.4.5thedynamicde�niti onof high-level serviceslike theintroduced migration
service through a service �o w de�nitio n.

4.5.2 OpenGrid ServicesAr chitectur e

TheOpenGrid ServicesArchitecture(OGSA)[37, 86] is anevolutionof thecurrentGlobusToolkit [36]
toward a Grid system architecture. It is basedon the integrationof the Grid properties andthe Web
service strategiesandtechnologies.An initial setof technical speci�cationscomposedby theGlobus

1http://www-106.ibm.com/developerworks/webservices/library/ws-bpel/

4.6. WEB SERVICE ENCODING AND TRANSPORT 31

Project andIBM hasbeen proposedat theGlobal Grid Forumin February2002. This speci�cation is
currently open to input from thecommunity, andis discussedwithin theGlobalGrid Forum.

The OpenGrid Services Architecture is the most recent approachto combinethe Web service
propertiessuchasservicedescriptionswith featureslike dynamicservicecreation. OGSAis likely to
haveasigni�cant impactonthewebserviceidea. TheGrid ServiceSpeci�cation2 statesthat OGSAis
intendedto combinekey Grid technologiesandwebservicesinto systemframework basedaroundthe
Grid service. TheOGSAspeci�cation de�nes with WSDL extensionsthe interfacesandmechanism
thatarerequiredfor creating distributed systems.It includesfeatureslike “life time management” for
servicesandservice “noti�cation” . The OGSAspeci�cation addressesauthentication,authorization
andreliable startup of services.Similar to theGrid PeerServices (GPS)systemin Chapter7, OGSA
alsoallows theconstruction of servicesthroughthecomposition of multiple lower-level services.

A �rst analysis of the OGSA speci�cation hasbeengiven by Gannon et.al. [42]. We cannot
provide an indepth description of OGSAin this thesis, but put theobjectivesof OGSA in relation to
our work in Section 5.11,after wehave introducedtheGrid ObjectDescription Language(GODsL).

Web Service Security: Traditionally, web servicesare served from a web server. Because web
service requestsmasqueradethemselvesasweb traf�c, they usually pass right through �re walls via
webport

� �

. This doesposea security risk, sinceit allows access to functionality insidea machine.
In a secureenvironment it mandates thatthewebservicesupplies a security system of equal strength
asthe�re wall concept.

Webserviceswhicharegeneratedby users,like theGPSapplications,executewith usermodeper-
missions.Weuseportsother than

� �

andabovetherestrictedport rangeof �

�����

. Numeroussolutions
exist thataddressthe issuesof security andauthenticationduring andafter request transport, like the
reliableHTTP(HTTP-R) by IBM. Becausewe wantedto develop aninnovative service environment
for autonomicapplications,we havenot madethesecurity aspect a majorthemein this work.

4.6 Web ServiceEncoding and Transport

Information which is exchangedbetweenprogramsneeds to be packaged into a format that is un-
derstood on both sides.Commonpackagingformatsfor webservicesincludeSOAP (Section 4.6.2)
andXML-RPC (discussedin Section4.6.1),which is anearly implementationof theSOAP standard.
BothSOAPandXML-RPC areXML based encodingmethods. Theprocessof converting application
internal datainto a commonXML format is called serialization. The inverseprocessof extracting
dataandfeeding it backinto application internal structuresis calleddeserialization. XML is a meta-
languagewhichallowstheexpressionof complex datatypesandstructures,while keeping themeasily
traversable. XML is vendor andplatform independent, aswell aslanguageandtransportation neutral.

Moving serialized dataover the wire is described by transfer protocols. It is important to note
that datatransport is independent of the encoding. Web servicesmay be built on top of nearly any
transportprotocol. In a webservice model, participating applicationshave to agreeon theencoding
andthetransport.

Themostcommontransport protocolsof webservicesarenetwork protocolssuch as“Hypertext
Transfer Protocol” (HTTP) [34], “Simple Mail Transfer Protocol”(SMTP) [76] or “File Transfer
Protocol” (FTP)[75]. Thetransmittedcontent in awebservice is independentof thechosentransport
layer. This “transport-neutral” property allowsoneto change theunderlying transportprotocol with-
out modi�cationsto theservice implementation. In this thesis, we usethemostcommonlyemployed
transportprotocol: HTTP.

2http://www.globus.org/ogsa

32 CHAPTER4. GRID PEER SERVICES

4.6.1 XML-RPC

XML-RPC (“Extended Markup Languages- RemoteProcedure Call”) [90] providesa XML-based
mechanismfor makingfunction callsacrossa network. It emerged in early 1998 asa spin-off of the
SOAP protocol developmentandwaspublishedby Userland Software3.

XML-RPC allows an application to specify a methodnameanda number of argumentsaspart
of a request. The request is sentto a server, which deserializes the message, makesthe appropriate
local function call andpasses on thetransmittedarguments.Theresponseof thefunction call, which
canbe anything from an error codeto a databaseentry is serialized to an XML-RPC documentand
returnedto therequestor(Figure4.1on page26). TheXML-RPC vocabulary consistsof simpledata
typesandstructures. XML-RPC hasno notion of objects nor mechanismsfor providing translations
to otherXML vocabularies. Despitetheselimitation, XML-RPC hasproven to be a robust protocol
andit successfully usedfor numerousprojects.

Data Types: XML-RPC providesthefollowing datatypes, listedherewith a brief example:

Data Type Example

integer <i4>42</i4>

Double <double> 3.1415 </double >

Boolean <boolean>0</ boolean>

String <name> North Dakota </name>

dataTime.iso8601
<dateTime.is o8601>
19040101T05: 24:54
</dateTime.i so8601>

base64 <base64>R0lG ODlhFg</base 64>

Data Structur es: XML-RPC supports the two kinds of datastructures, which canbe mixed and
nested:

� Structur esidentify avaluewith astring-typedkey. Structurescanbenested: thevaluetagscan
enclosesub-substructuresor arrays.

<struct>
<member>

<name>Key</ name>
<value>Valu e</value>

</member>
<member>

<name>Key</ name>
<value>Valu e</value>

</member>
</struct>

� Arrays arealist of values.Thevaluesdonotneedto beof homogeneoustype. Within thevalue
tags,any of theabove describeddatatypesareallowed.Arrayscanalsocontain sub-arraysand
structures.

<array>
<data>

<value>... </value>
<value>... </value>

</data>
</array>

3TheXML-RPC speci�cationcanbefoundathttp://www.x mlrpc.com/sp ecs

4.6. WEB SERVICE ENCODING AND TRANSPORT 33

RequestStructur e: Eachrequestin anXML-RPC consistsof asingleXML document,whoseroot
element is markedby <methodCall> andclosedwith </method Call >. Thebody of themethod
call is tagged with <methodName> (</method Name>), andnamesthe function which is to be
executed. The tag <params > (</par ams>) enclosesthe list of parameters andvalues, which is
supplied asanargumentto therequestedmethod.

Below is a sample XML-RPC message which is indented for readability. At transport time the
message hasall white spacecharactersremoved betweentags. This particular messageis sentto a
server to retrieve the temperature for a region, which is speci�ed by theUS postal ZIP code[19]. In
thisexampletheZIP stringvalue

����� ���

is suppliedastheargumentfor theweather .getW eath er
method, which is invokedon theserver side.

<?xml version="1. 0" encoding= "ISO-8859-1" ?>
<methodCall>

<methodName>weather .getWeather< /methodName>
<params>

<param>
<value>10 016</value>
</param>

</params>
</methodCa ll>

TheXML-RPCresponsereturnedby theserver containsthemethod meth odRespon se anda tem-
peraturereply of typeinteger, e.g.<i4 >95</i4> . ThevariousXML-RPC implementationsprovide
tools to generatesuchstructuresaswell asto extract parameterinformationandmake theappropriate
function calls.

4.6.2 SOAP

TheSimpleObjectAccessProtocol (SOAP) [28] is alsoanXML-based,platform independentproto-
col to exchangeinformationandrequest servicesover thenetwork. Contrary to popular belief SOAP
is not of�ciall y standardizedby theW3C at the time of this writing (August 2002). The�rst version
of SOAP wasannouncedin 1999 andsince thenfour versions have been released.The �fth version
(SOAP 1.2)will very likely beincludedin theW3CXML Protocol Version1.0 in thenearfuture.

SOAP is an XML based protocol that consists of threeparts: an envelopethat de�nes a frame-
work for describing the content of a message anddetails how to processit, a setof encoding rules
for expressinginstancesof data types, which arede�ned by anapplication, anda conventionfor rep-
resenting remote procedurecalls andresponses. Below we show the previous exampleof a weather
service asa SOAP request:

<?xml version='1. 0' encoding= 'UTF-8'?>
<SOAP-ENV:Envelope

xmlns:SOAP -ENV="http: //www.w3.org /2001/09/soa p-envelope/"
xmlns:xsi= "http://www .w3.org/2001 /XMLSchema-i nstance"
xmlns:xsd= "http://www .w3.org/2001 /XMLSchema">
<SOAP-ENV:Body>

<ns1:get Weather
xmlns:ns1= "urn:example s:weatherser vice"
SOAP-ENV:encodingStyle =

"http:/ /www.w3.org/ 2001/09/soap -encoding/">
<zipcode xsi:typ e="xsd:strin g">10016</zi pcode>

</ns1:ge tWeather>
</SOAP-ENV:Body>

</SOAP-ENV:E nvelope>

It is obvious that SOAP is slightly morecomplicatedthan its XML-RPC counterparts. SOAP uses
namespacede�niti ons and XML schemes; header elements may be optional or mandatory. The

34 CHAPTER4. GRID PEER SERVICES

numberof SOAP build-in simpletypesis larger than in XML-RPC andincludestypessuchasbi-
nar y, byte , negative Inte ger , nonPositi veIn teger , to namea few. In their essence,
bothSOAPandXML-RPCprovide amethodnameanda list of arguments.For a critical comparison
of SOAP andXML-RPC, seeSection 4.6.4.

4.6.3 HTTP

Becauseof its pervasiveness on the Internet, HTTP is by far the most commontransport usedto
exchange web service requestsanddata. Below we give an example of an HTML messagewhich
contains anXML-RPC encodeddocumentin its body. Themessagewasgeneratedby the Grid Mi-
gration Service(see8.1)andintendedfor aserverwhichis listeningonhostvid ar2. aei.m pg.d e,
port 7010at thebinding /GPS:

POST /GPS HTTP/1.0
Content -Length: 1745
Content -Type: text/html
User-Ag ent: GridMig rationServer /0.8
Host: vidar2. aei.mpg.de:7 010
Accept: text/html
Connect ion: Keep-Al ive
<?xml version ='1.0' ?>
<method Call>
...
</metho dCall>

The service handle which is available on vida r2.ae i.mp g.de :7010 /GPS is a central com-
ponent of the Grid PeerServiceimplementation, explainedin chapter 7. It deserializes XML-RPC
messages, tracks requests,passes themon to routineswhich executethemandensuresthat requests
arecommunicatedproperly.

While HTTP is the mostpopular transport for SOAP andXML-RPC messages,there arecases
whenHTTP does not work well with these two encodings. Large size binary datacan be base64
encodedandsentby either SOAP or XML-RPC via theHTTP transport protocol. Doing so is time-
consuming and hence problematic. The “Blocks Extensible Exchange Protocol” (BEEP)[79] is a
recentprotocol,which permitssimultaneous andindependent exchangesof textual andbinary data.

4.6.4 XML-RPC vs. SOAP and CORBA

This section brie�y justi�es our decision for XML-RPC over SOAP andcompares thetwo protocols
with CORBA, anotherwidely usedframework for distributedapplications.

Choosing betweenSOAP or XML-RPC is important whenimplementing a service infrastructure.
Theweather serviceexampleabove illustratesthatthesimplicity of XML-RPCis its majorasset. It is
straightforward to understand, easyto implementandfastto parse.Unlike SOAP its design poses no
requirementson the languagein which XML-RPC canbe implemented.At the time of this writing,
approximately 65 different client-server implementations of the XML-RPC speci�cation existed in
33 different languages4, alsore�ecting thepopularity in thecommunity. SOAP implementations are
usually leaning towardsobject-orientedlanguagesas C++ or Java due to the message complexity.
While this is not restricting in a Business-to-Businessenvironment with mainstreamhardware, it is
a harderrequirementin scienti�c Grid environments with a larger numberof “not-so-mainstream”
hardware species andsupercomputers.

4http://www .xmlrpc.com/ directory/15 68/implement ations

4.7. DISCUSSION 35

If the ideaof webservicesis to bemoved into a Grid environment, thesoftwarewhich provides
themessaging protocol needsto bedeployedacrossawiderangeof platforms.It will needto bework-
ing on legacy mainframes,supercomputersandproprietary vectorcomputersaswell ascommodity
platforms.

SOAP's greatestfeature is its ability to steppastXML-RPC's limitationsandprovide customiza-
tion at every level of themessage. It allows a programmerto specify exactly how hewantsto seethe
messageprocessedandit permitsoneto de�ne new datatypes. XML-RPC doesnotallow self-de�ned
datastructuresandit is not astyperich asSOAP. Thereis e.g.no native support to expressNaNand
INF valuesto communicatescienti�c simulationcontent.

On the other hand, XML-RPC's robustness andsimplicity makesit the ideal choice of dataen-
coding to experimentwith webservicetopologiesonheterogenoushardware. All of our requirements
werewell addressedby XML-RPC, whereSOAP wouldhaveaddedasigni�cant overhead. For future
implementations of the Grid PeerService, SOAP andpotential competitors should be reevaluated.
Sinceswitching betweenXML-RPC andSOAP is straight forward, giving XML-RPC thepreference
over SOAP is only a minor obstruction for a future development.

CORBA: TheCommonObjectRequest Broker Architecture(CORBA)[24] is anopenstandardfor
distributedobject computing de�ned by theObjectManagementGroup(OMG) andhasacomparable
capabilitieslike webservices. CORBA is an“objectbus” andenablesa client to invoke methods on
remoteobjects. This is doneindependently of thelanguagetheobjectshave beenwritten in, andtheir
location. Theinteractionbetweenclient andserver is mediatedby ObjectRequestBrokers (ORBs)on
both theclient andserver sides,communicating typically throughanInternetInter-ORBProtocol (II-
OP).Thecapabilities of CORBA objectsarede�ned usingthe InterfaceDe�nition Language(IDL).
Thecommunication protocols usedby CORBA for ORB communication includeTCP/IP, IPX/SPX,
ATM, etc.

With CORBA technology deployed in many industrial disciplines, the web servicesmodel is
often regarded asareinvention of thewheel.Gokhaleet.al.[45] provideacritical comparisonof both
technologies. A key differencebetween CORBA andtheWeb service technologies(UDDI, WSDL,
SOAP) is thatCORBA providesanobject-orientedcomponent architectureunlike themessage-based
webservices(anddespite of SOAP's name).CORBA hasa rathertight coupling between theclient
andthe server, whereboth mustshare the sameinterfaceandmustrun an ORB. In the web service
modeleverything is decoupled, a client sends a message andreceivesa reply. Web servicesallow
for thin-clients, while CORBA requiresa large footprint on all participating sites. While CORBA
implementsits own reliability andscalability policies(e.g.“Load-balancing CORBA”), webservices
are not burdenedwith this responsibility. Instead, it is left to the application servers,which often
bring their own, native fail-over strategies. On thesocial side,webserviceevolution is experiencing
tremendouscommunity contributions,while CORBA hasconsolidated into a rather inert, industrial
product.

An important observation concerning CORBA andwebservicesis that whatever canbe accom-
plishedby CORBA canbeaccomplishedusingWebservicetechnologiesandviceversa. In particular,
onecanimplementCORBA on topof SOAP, or SOAP on topof CORBA. SOAP andCORBA arenot
exclusive but rathershould beseenascomplementary technologiesthatneed to coexist.

4.7 Discussion

We chose not to go with any of theexisting UDDI andWSDL modelssincethey areall focusingen-
tirely ontheserviceaspect. Wearedeveloppingandexperimenting with acomprehensive information

36 CHAPTER4. GRID PEER SERVICES

modelthatdescribesmorethananisolatedcomponentof a Grid entity. Insteadof regarding a service
asself-contained information andstoring it asa WSDL document,we take a differentapproachand
introduceGrid Objects (Chapter 5) asa handle to entitieson a Grid. In this model, a service is only
a special aspect andis seenin conjunction with e.g.�le properties,resourcecharacteristics on a ma-
chine. We useGrid Objects to communicatecontentwith migration andotherservices.Section 5.11
providesa comparison of the Grid Objectapproach to the service-centric strategies like WSDL or
OGSA. Instead of usingtheservice-focussedUDDI, we extend theidea of a serviceregistry towards
aninformationregistry andintroducetheApplicationInformation Service (Section 7.1). This service
actsasa “datawarehouse”andstoresGrid Objects, which contain arbitrary informationon services,
�les, resources,etc. Informationcanberetrievedanddepositedby applications,servicesandusers.

While theideaof webserviceshasbeen aroundfor awhile, it hasjust recently been putby into the
context of Grid computing – mostprominently by OGSA. In the“old days” customapplications and
protocols existed side-by-side andGlobus wasthe mostembracing solution. The fusion of P2Pand
webservicescombinesfault toleranceanddataredundancy with service abstraction. We believe that
this combination is a promising way to interconnect Grid middlewareandto achieve the necessary
failure toleranceto operatein multi-organizational, global Grids.

Chapter 5

Grid Object Description Language

Thischapterde�nesaninformationmodelfor specifying ageneral handle to entitiesonaGrid. These
entities or objects representthe components of the Grid infrastructure or applications that make use
of it. This notion is calledGrid ObjectDescription Language. The datamodel is motivatedby the
experiences andexperimentsconductedwith realapplicationsin heterogeneousGrid environments.

An “application-centric” network of services requires a precisede�nit ion of objects to be able
to communicatecontent. While sophisticateddatamodels exist to describe andcharacterize individ-
ual aspects(e.g. resource or services),we show that a comprehensive description, which combines
multiple aspects,is neededto give anadequaterepresentation of objectson a Grid.

Westartthischapterwith athoroughmotivationof theGrid ObjectDescription Language(GODsL)
asa hybrid informationmodel to objectson a Grid. We thenshow how the generic andextensible
GODsLuni�es thevariousaspectsof Grid entitiesinto asingle datastructure.GODsLis aconceptual
modelandis not bound to a speci�c implementation. Appendix A introducesa C-implementation of
a GODsLtoolkit which is used in theimplementationof themigration andspawn environment.

5.1 Moti vation for Grid Objects

We illustratewith several examples, whatwemeanby “object on a Grid” or “Grid entities”:

Grid Objects Moti vation, Example 1: The information on the nameand directory
of a data�le is only suf�cie nt if we know on which physical machine the �le resides.
However, we have no informationon how we canaccessthat particular computer, we
arenot ableto look at the�le, copy it or treatit in any other way.

To let serviceswork with objects like �les, compute capacitiesor migratable applications,a common
datamodel is needed, which re�ects the different aspects of theseobjects. Sucha modelneedsto
provideastructurethatcombinesall of its properties.Example1 demonstratesthatfor anapplication-
centric grid environment, information of this kind needsto beavailable within a single datastructure
andnot spreadout over severaldifferentandunrelateddataconstructs.

Grid Objects Moti vation, Example 2: A �le located on a computer which is con-
nected to the internet can e.g. be accessedthrough copy operations. The standard
grammarof addressing such a �le, which is owned by a user monroe, is: mon-
roe@astro .ums l.edu :/ho me/monroe /MyArticl e.ps . Thesame�le canbe
madeaccessible throughawebserver, in whichcasethegrammar(now tied to theHTTP
protocol) becomes:http ://w ww.umsl.e du/ � monro e/My Artic le.p s.

The above example illustratestwo user-centric expressions: the �rst expression doesnot make a
statementon how to accessthe �le, but it conforms to the syntax of rcp , scp or GSI-scp copy
operations. A UNIX familiar userwill recognizethis immediately andusethe appropriate method.
ThesecondexpressiongivestheURL of the�le andindicatesthatthetransferis madethroughHTTP.

37

38 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

Both expressions hidedetails like port informationandauthentication. An sshconnection is usually
madethroughport 22 while incoming HTTPcommunicationis channeledthroughport 80; copy pro-
ceduresbetweenmachines usually require password or pass-phraseauthentication. Our information
modelmustbecapableof associating the�le MyArticl e.ps with oneor moreaccessmethods(e.g.
ssh,http) andit mustaccommodate additional information suchasport ranges.

Grid Objects Moti vation, Example 3:

1. The�le mentionedin Example1 mayhavebeengeneratedby anapplication. Un-
surprisingly, themachinewhichhoststheapplication is identical with themachine
location of the�le.

2. This application hasa minimal resource requirement, e.g.numberof processing
elements. Anothercomputer may provide oneor moreresource capacities (e.g.
the main capacity partitioned by batch queues). The host canexecutethe appli-
cation if andonly if thehardware's resourcecapacity is greater or equalthan the
application's resourcerequirement.

3. If such aresourcematchsucceeds,theapplicationscanbehostedonthatparticular
hardwareor migratedto it. Thedescription of theapplicationis identical, but the
host information changes.

In Example3 we canidentify four corefundamentalcomponentsof anobject, which areits service,
hardware, �le andresource properties. It is obvious that the componentswhich assemble an object
comewith ahighdegreeof reusability. For example,componentscanbeinherited,asseenin Example
3.1, wherethe �le' s machinedescription is copied from the application object. Components of the
sametypecanbeput in relation, asshown in Example3.2,wheretwo resourcescharacterizations are
compared. Componentscanbeadded or replaced,asfeatured in Example3.3,wherethedescription
of thehardwareis addedor replacedastheapplicationstartsor migrates, respectively. It is clearthat
weneedto supply adatamodelwhichintegratesverydifferent aspectsandallowsoneto swap,replace
andcopy its sub-structures.It mustbescalable to allow theproperdescription of complex objects.

LegacyServices in Grids: Condor, PBSandLSF, to namea few, provideservicesto managecom-
puter resourcesandto submit jobs to particular batchqueues on a machine. Compared to the web
serviceswerefer to themas“legacy services” — which is not meantderogatorily: While webservice
protocols like SOAP have capabilities to translate the requestvocabulary, legacy applications come
with a proprietary syntax for describing resourcesandareillite rateregarding other systems.Eachap-
plication hasspecial abilitieswhende�ning a resourcebut to thegreater extentall describe common
featureslike memory, number of processors,etc.Thedescription languagewe strive for mustallow a
mappingbetweenthesecommonfeaturesandactasanintermediarywhendealing with suchservices.

We have realizedthat thelegacy serviceswhich aredeployedthroughout Grid environments sim-
ply do not comeasself-descriptive webservicesthatconform to WSDL or UDDI. To integratethem
we must translateon a syntactical level �rst – before we canattempt to interfacetheir functional-
ity. Our descriptive languagefor Grid objectshasto be elementary enough that its grammarcan
be mappedto an already existing vocabulary of a resourcemanagement system. With our approach
we have no ambitionto describe every single capability. However, by expressingthe mostcommon
features,we areableto join togethera signi�cant number of legacy software systems.

5.2. DEFINITION OFGRID OBJECTS 39

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

���������������������

Service A Service B

Service C

different Vocabularies
Functional Overlap

Figure5.1: Different (legacy) serviceapplicationsfor a common purpose(suchasbatchsubmission)show a
functional overlap. However, they do not sharea common syntax. Grid Objectsprovide a mapping between
different vocabulariesandhelpto accessthesamefunctionality in different tools.

5.2 De�n ition of Grid Objects

WeproposeGrid Objectsasageneral descriptionof objectsonaGrid. A Grid Objectis acollectionof
sub-objects, termeda Container, which hold oneor morePro�les that re�ect thedifferentproperties
of this object. The containerstructure in a Grid Object is optional anddepends on the background
situationthat is described. Wecall thestructureto describesuchanentity theGrid ObjectDescription
Language.

For our purposeswe de�ne a Grid Objectasfollows:
�����	��

�����������

UID ���

���������

�

�! "�$#%�'&)('#*��+-,.��/
��0�('12���!�'&)('#*��+-,.�'34�!��5��	�!�'&)('#*��+-,.��6
�	�7��&)('#*�8+-,

A containeris awrapping structurewhich holds oneor morepro�les. A pro�le in acontainermaybe
optional.

&
('#*�

�

�$#%�!�
�

UID �9�

���:�<;

Pro�l e=

�8>

+!+!+';

Pro�le =

#

>

The pro�le is the fundamentalbuilding block of a Grid Object. It representsthe object's properties
througha �x edsetof attribute/valuepairs, which is speci�c to eachpro�le type. Thepresenceof the
speci�c setof attributesis mandatory, theassociatedvalues arenot.

?

��(.@A�	�7���

UID �9�

�8�����.��BC�D�D�'�D�E12���.,F;HG

�

�I1A�

>

,

The attributesfor a unique identi�er (UID) anda label areavailable at all structure levels (object,
container, pro�le); associatedvaluesareoptional.

Classifying Pro�le Types: Theclassi�cation into thefundamentaltypesof machine, resource,ser-
vice and�le pro�le s is inspiredby our underlying migration scenario,whosecommunicationcontent
we intend to express with this datamodel. For other scenarios,differentpro�les maybecomeimpor-
tant while others canbe omitted. We believe that the modular Grid Objecthierarchy allows accom-
modation of mostcases. In section 5.10 we suggestseveral important additions to the Grid Object
informationmodel.

5.3 Service Pro�le

A service pro�l e is a description of a functional ability which is available on a machineor provided
by anapplication, usually throughaport or rangeof ports. Weaimatdescribing modernwebservices
aswell astraditional interactivecommands like secure-shell based accessto ahardwareor PBSbased
queuesubmissionsystem.Thekey attributes,which areusedto describe such a pro�le are

40 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

Type A classi�cation for theservice. Theserviceclassstates a commonfunction-
ality, which maybeimplementedin differentways(e.g.a �le copy method).

Label A humanreadable label, describing this particular service.

Operation If the service is not a web service,operation stateswhat commandneeds to
beexecuted on a machine.

Binding Usedto �ag anRPCtypedwebservice. It holds theBinding of a URL under
which a webservice is reachable.TheURLshostnamecanbederivedfrom a
machine pro�le.

Method For an RPCtypedservice, the nameof the remoteprocedurecall which in-
vokesthis service.

Transport A de�nitio n of thetransportprotocol. For webservices,mosttransport meth-
odsareHTTPbased. Othertransportmechanismsaree.g.secureshell, HDF5
datastreamsor LDAP baseddatabasequeries.

UID A uniqueID to identify this particularservice. This ID is usedto distinguish
serviceswithin anapplication. The ID should beuniquewithin thescope of
theservice environment.

Port[] An arrayof integers holding port numbers,e.g.port 22 for secureshell based
accessto a machine.

PortLabel[] An arrayof labels to distinguishthedifferentports.

Oneor moreservicepro�les arecollectedinto aServiceContainer. Theservicecontainerrolls several
service de�nitio ns into a single structure. Sucha containermaye.g.list all accessmethods (e.g.ssh,
rsh,HTTP, Globusgatekeeper) of a computer.

ServicePro�le[] An arrayof servicepro�le s

Label A humanreadable label describing this collection of services.

UID An uniqueID, which identi�es this collection of services.

Count This variable which holds the numberof attached pro�le s is usedto ensure
theconsistency of thenumberof attachedstructures.

Service Pro�les and WSDL: At the risk of being repetitive: there is a fundamental difference
betweena WebServiceanda Grid Object: a (web)service is an isolatedaspect of a Grid entity and
Grid Objectscorrelatethe different aspects into a single representation. Grid Objectsand WSDL
weredesignedwith different intentions: WSDL is a languageto describe web service functionality,
like theoperations thata webservice cansupport, its argumentsandreturn values. Grid Objects are
a unifying handle to entities on the Grid. Oneaspect of suchan entity are its service capabilities.
Theservicepro�le wasdesignedto accommodatenon-webservices,likeuserapplicationsandlegacy
infrastructureaswell. Thedescriptivecapabilities of WSDL aresuperior to servicepro�les. However,
it is notour intention to reinventthe“service-description wheel”, but rather to experimentwith amore
embracing datamodel.

Possible waysto full y incorporatea web service description in a service pro�le include the du-
plication of WSDL functionality or storing a complete WSDL document. Both options areclearly

5.4. FILE PROFILES 41

problematic. Instead, usingthe service pro�le asa handle to a WSDL documentappears to bea far
more practical approachif need comesup. Sucha service pro�le can then be usedto retrieve the
properWSDL document.

Classifying Services: Theservicepro�les provide room to classify a service but do not prescribe a
setof pre-de�ned classes,which hasto beobeyed by a service. Servicepro�les do provide a system
to sub-categorize a class. We found that a classi�cation system needs to be consistent within the
pool of applications which provide andconsumethe service. Obviously, a service declared to be of
type “copy” may not delete the �le. Thereis currently no way to “guarantee”that a service will do
what it pretendsto do. Theservice veri�cation becomesevenmorechallenging if thedifferencesare
more�ne grained. For instance,“copy” and“move” operationsyield thesameresult (a �le on a new
location), but havedifferentsideeffects (removing vs. keeping theoriginal).

Migra tion ServiceClasses: Within themigration serviceenvironment, wesettled onasetof service
classes,which we found useful andwhich expressedall required services.Our classesare:

copy, dele te,m ove
Theseservice classes classify copy, deleteandmove operation for �les on
theGrid. TheGPSimplementationusesssh , rsh , GSI-ssh andsftp to
perform these�le operations.

shell This typesummarizesall services,which allow shellaccess on a remote ma-
chine. Remoteshell accessis carriedout e.g.through ssh , rsh andGSI-
ssh .

submi ssio n Thesubmission serviceclasswasintroducedto provideacategory for submission-
only access,e.g.through Globus,PBS,LSF.

migra tion ,spa wn Thesetwo classes provideda category for themigration andspawn services.

Othersituationswill mostlikely requireadifferent classi�cation system.This is easily possible,since
GODsLdoesnot promote certain serviceclasses.

5.4 File Pro�les

File pro�les areusedto describe thepropertiesof �les anddirectories. In a user-centric environment,
the �le' s nameanddirectory often suf�ces to managethemon a single machine. In an automated
webserviceenvironment,additional informationis useful e.g.to avoid namecon�icts, to let aservice
choosethe bestmethod of �le transfer, or to describe a single logical data�le madeup by separate
chunks.Wemotivate a �le pro�le with a typical exampleof simulation I/O:

File Objects, Example: A parallel simulation performs periodic checkpoints to save
the application's state asa protection against failure. To speed up checkpointing, the
application writesonedatachunk perprocessor. Thefull checkpoint is composedby all
�les. After amigration to asingle processormachineanew checkpoint is drawn andthe
checkpoint is now representedby a single �le.

To describesuchsituationswe introducea datastructurecalledFile Pro�le which describesa single
�le. A �le pro�le doesnot posses informationon the machine that the �le is located on, nor does
this pro�le contain information on a higher-level datacomposition, like the logical checkpoint in the
example above,which is madeup from different physical �les.

42 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

Name Thenameof the�le asgivenby theuseror thegeneratingapplication andas
it is found in a directory on �le system.

Directory The directory in which a �le can be accessedon a �le system. Nameand
directory provideauniqueaddressing schemeonacomputer. They cannot be
used to identify a �le in Grid environment, since different directory/�le pairs
maybeidentical on distinct machines.

UID An ID, which is usedto provideauniquedescription. It canbeusedto distin-
guishthe �le in a Grid environment – even if namesof thesamenameexist.
Provided that the uniquenessis preserved, an ID canbe usedto expressre-
lationshipinformation for a collection of �les, e.g.thenumberof checkpoint
chunksin theexampleabove.

Type A classi�cation which permitsa categorization of �le. The classi�cation is
open andnot de�ned within theGODsL.

Label A humanreadablelabel, givenby theuseror thegeneratingapplication. This
label is not intendedto beinterpreted by anapplication, it hasonly illustrative
purposes.

Size Thesizeof the�le. This information cane.g.beusedto determineif multiple
small �les should be combined into a large archive before transmissionto
avoid overhead.

SizeUnit Unit of thesizeattribute.

Date Dateinformation for this �le.

Compacti�cation A �oating point numberindicatingthecompactibili ty of the�le, whichranges
from

�

for not compressible to
�

for highly compressible. This factorwould
ideally be provided by the generating application since it knowsbestabout
its origin andinternal structure. A second approachderivesthis factor from
related �les (e.g.the compressionproperties of a checkpoint areidentical to
othersof thesameorigin).

To collect multiple �les to a logical unit, the�le pro�les arecollectedto a �le container.

FilePro�le[] An arrayof �le pro�les

Label A humanreadable label describing this collection of �les.

UID A unique ID, which identi�es this collectionof �les.

Count This variable holdsthe numberof attached pro�les andis helping to ensure
theconsistency of theattachedstructures.

File Identi�catio n: Files areintuitively described by their nameanddirectory. This identi�cation
is risky because it relieson the userto supply a unique name– a moduswhich usually works in a
smallsetting, like on a local PC.For a Grid environmentwith many participating sitesandautomated
servicesthelimitationsof thisschemeareobvious,e.g.if �les areautomatically transferred to storage
facilities. In addition to thename/directory which is unique per �le system,we thetagthe�le pro�le

5.5. MACHINE PROFILES 43

with anuniqueidenti�er . This UID canalsobeusedto expressrelationship properties amongrelated
�les, e.g.in parallel-I/O scenarios. TheUID schemehelpsin distinguishing�les aslong asall services
honor this scheme.Theapproachbecomesproblematicif a service relies on legacy copy operations.
While theservicehonorstheuniqueness,it cannotavoid thattheunderlying copy operationoverwrites
a �le with another one,becausebothhave different UIDs but sharethesamedirectory and�le name.

It is dif�cu lt to waterproof theUID �le concept for legacy environments. A workable, but ques-
tionableapproachis to append the unique ID to the nameof the �le. This works in an automated
environment, but complicatesthemanual handling of �les. Thedatagrid community [27] is using a
replicamanager1 whichperformsamappingamongthephysical andlogical �le namethatis globally
unique.

File Properties: Important additionalinformation for large�les aretheir sizesandcompacti�catio n
properties. The latter cane.g.be usedto indicatean ASCII formatted �le, which compresseswell
against a binary �le, which is already compressed.Both pieces of informationallow a serviceto pick
the bestof all available transfer methods or to rule out certain machine targets,whosebandwidth is
too small to achieve a �le transfer in a speci�ed time.

5.5 Machine Pro�les

A Machinepro� le containstheinformation whichis obligatoryto addressthehardwareontheinternet,
e.g.throughanIP number. Themachinepro�le introducesthelocation aspect of anobject asit is used
in conjunction with otherpro�les. Themachinepro�le re�ects thepropertiesof a singledevice in the
internet. It doesnotcontain informationon its resourcecharacteristics,likememory, typeof machine,
etc.Themachinepro�le providesspeci�c informationon:

Hostname A full y quali�ed hostname,if available.

Domain The Domainnameof the machine, if available. Quite frequently machines
arecon�gured in a way that the application cannot determine the machine's
full domainname.

IP IP number, if hostnameis not available. This is often the caseon cluster
systems,wheresingle nodes do not comewith hostnames.

Type Allowing for a categorization of hardware. No classi�cation is enforced.

Label Humanreadableinformationstring describing themachine.

UID uniqueID. It doesnot suf�ce to usetheIP number asthesoleidenti�er . This
approachwould allow duplicates if machinesarehosted on privatenetworks.

Username Usernameunder which themachinecanbeaccessed.

TheMachineContainer is thewrappingstructurefor oneor moremachinepro�le s. It is usedto group
many hardware devices into a logical unit. Theattributesof a machinecontainerare:

MachinePro�le[] An arrayof machinepro�les.

Label A human-readablelabeldescribing this collection of machinepro�le s.
1DataReplicationResearchGroup(REP):http://www .zib.de/ggf/ data/rep.htm l

44 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

UID A unique ID identifyi ng this collectionof devicesexclusively.

Count A number of pro�le s in this machine container. Thecount variable is usedto
ensureconsistency whenpro�les areattachedto thecontainer.

Machinecontainercanbe usedto describe a network of workstationsor the participating machines
of a meta-computer, whereeachparticipant is expressedthrough a pro�le. Themachine pro�le and
container structure doesnot make a statementon the granularity at which a machine description is
carried out: for a cluster computer, a singlemachine pro�le for thehead nodecanbeusedto describe
thefull machine.A comprehensiveapproachusesapro�le for eachclusternodeandgroupsall nodes
in a container. Which style is chosen,dependson thesituation: If thecluster requiresthat individual
nodesarelisted in a machine �le for a mpirun statement, the detailedapproachstoresthe necessary
information.

5.6 ResourcePro�le

TheResourcePro�le holds information, which characterizesthecompute capacities or requirements
of aGrid Object. Important attributesof aresourcepro�le describethenumberof processingelements,
memoryor informationon theoperatingsystem.

The reason to treat the resource characteristics separately from a machine pro�le is justi�ed by
thefact that resourcepro�les arenot necessarily tied to a hardware device. Resource pro�les canbe
usedto characterizeapplicationsor abstractresourcesituationsaswell: An applicationmayprovidea
resourcepro�le to interestedpartiesto relay informationon its resourceconsumption. In this context
the resourcepro�le is not attributedto a hardware(machine pro�le) but to an application, which is
describedthroughits location (machinepro�le) andfunctionality (servicepro�le). Multiple resource
pro�les may be usedto characterize the different batchqueues which partition the total compute
resourceof a machine, speci�ed throughthemachinepro�le of theheadnode.

The informationin a resource pro�le is usually supplied through a resourcemonitoring system,
whichwatchestheresourcestateof anapplicationor amachine. Performance-API[65] is anexample
of a software package,which returns information on memoryusageor �oating point performanceof
an application. The Metacomputing Directory Service (MDS)[25] is an exampleof a service suite,
which observesandreports theresourcesituationon computer hardware. All of thesesystemscome
with a proprietary syntax on how to specify the resource requirementsor constraints, as shown in
Figure5.10, page54. While our resourcestructure is not able to describe the full functionality of
every single resourcesystem, we de�ne a vocabulary, which is large enough to providea mapping to
thesyntax of mostresourcesystems.In Figure5.1we sketch this syntactical overlap.

Theattributesin resourcepro�le areableto represent theresourcesfor a Grid migration service.
They maybe incompletefor othersituationsor require adaption. An expansionby adding attributes
or new pro�le types is straightforward.

Processors Thenumber of processing elements.

Memory Theamountof memorydescribedin thispro�le, e.g.thememoryrequirement
of anapplication or theresourcecapacity of a machine.

MemoryUnit Memoryunits (G/M/K = Giga/Mega/Kilo).

OperatingSystem Description of theoperatingsystem,asreportedby theuname command.

Machine Type A set of keywords to distinguish a workstation, cluster, vectormachines or
supercomputer.

5.7. GRID OBJECTS 45

CPUspeed Frequency of thecentral processing unit.

CPUSpeedUnit Unit of theCPUspeed in Hz (G/M/K = Giga/Mega/Kilo).

CPULoad1/5/15 CPUloadduring thelast1/5/15 minutes. Theseattributesaredirectly derived
from theMDS databaseentryandusedto monitortheinteractiveexecutionof
programs. They areuseful for experimenting with the interactive execution
of programs.This datais not relevant if theexecution is scheduledthrough a
batchsystem.

RunCmd A stringholding theproper MPI run-commandfor parallel environments(e.g.
mpirun-np , mpprun-n, poe, etc.).

UID A uniqueID to describethis resource.Likeall UIDs, it canbeusedto express
relationship informationbetweenrelated resources.

Label A human-readablelabeldescribing a resourcepro�le.

Multiple resourcepro�le saregroupedwithin aResourceContainer. Theattributesin suchacontainer
are:

ResourcePro�le[] An arraycontaining oneor moreresourcepro�les.

UID An uniqueidenti�er which is used to discriminatebetweendifferent resource
pro�les.

Label Humanreadablelabelholding informationon this resourcecon�guration.

Count Numberof pro�les in this resourcecontainer.

5.7 Grid Objects

Thedifferentpro�le s thatwe introduced above cannow becombinedto provide auni�ed description
of the different aspectsof objects on the Grid. In this section we describe Grid Objects asthe main
objectsof theGrid ObjectDescription Language andconstructspecialized objectswith regardto �le
andresourcedescriptions.

TheGrid Object structurecollectsthevariouscontainers to asingle entity. Containerinformation
is optional,they areattacheddepending on thesituationwhich is expressedthrough theGrid Object.
TheGrid Objectconsistsof:

Machine Cont. Linking in anoptional machinecontainer.

Service Cont. Linking in anoptional service container.

File Cont. Linking in anoptional �le container.

ResourceCont. Linking in anoptional resourcecontainer.

UID An unique ID which is usedto identify theGrid Object.

Label Humanreadablelabelholding informationon this Grid Object.

Multiple Grid Objectscanbecollectedto anarrayof Grid Objects, calleda Grid ObjectContainer.
Thecompletestructureof a Grid Objectis shown in Figure5.2.

46 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

3

d

3

o o o o

Machine Profile #1

Machine Profile #2

Service Profile #1

Service Profile #2

File Profile #1

File Profile #2

Machine Profile #n File Profile #n Service Profile #n

Resource Profile #2

Resource Profile #1

Resource Profile #n

Grid Object

Machine Container Resource Container File Container Service Container

Figure5.2: Thecompletestructureof theGrid Objectdatamodel, consistingof machine, resource,�le and
servicepro�les asthefundamentalcomponents.

Unique Identi�cati on Numbers (UID): Thesubstructures of a Grid Objectcanbe distinguished
through a unique identi�er . How a UID is provided is not de�ned by GODsL, but left to the appli-
cation. Generating globally unique IDs is an everlasting problem in Computer Science. If GODsL
objectsareusedin anenclosedapplicationenvironment andall participantsagreeonthesamescheme,
pseudo uniqueID will work well. SuchIDs canbe e.g. be generatedby combining the processID
andthecurrenttime. This schemeis usedto settheUID for theadvancedmigration scenarios.

For truly globally uniqueIDs, thedeploymentof aUID server is abetter solution. A client contacts
theUID server andreceivesanID. Sucha process mustoperate reliable. A redundantserver strategy
asdescribed in Chapter 4 canbe usedto accomplishthis reliability . Distributed UID server require
inter-communication to de�ne theUID rangeswhich they operate on. We have no roomto elaborate
on this problem,but would like to mention theservice monitorsystem,described in Section 9.4.3as
a framework to superviseapplications or distributed serviceinstancesandrestart themif necessary.

5.8 SpecialGrid Objects

This section introducesa numberof specializedGrid Objects, which provide a comprehensive de-
scription of �les, resourcesandnetworks interconnectson a Grid.

5.8.1 Grid File Object

A Grid File Object (GFO)de�nesaGrid Object,whichdescribesthelocationof a�le onaGrid. A �le
object requiresa machineand�le container, theexistenceof a service informationon how to access
the �le is optional. Later, if the �les areto beaccessed,this thanonenetwork pro�le information is
indispensable, andit mustbeattachedin time to accessthe�le.

�����	�F6)�	�7��
 �����:�8���

UID ���

���:�����

�

�� �$#%��&
('#*��+-,.��6)��� �'&)('#*�8+-,F;H3 �!��5������'&)('#*�8+

>

5.8.2 Grid ResourceObject

A Grid Resource Object (GRO) de�nes a Grid Object,which describes the the resource aspects of
a machine or application. A resource object mandates at leastone resource pro�le in a container
andeither a service container to characterize the application or a machine container to describe the
hardware. Multipl e resourcepro�les percontainerareused to describe batchqueueswhich partition
thetotal compute capacity of a machine.

�����	�F/
��0�(�12�.���'

�������8���

UID �9�

���:����/
��0�('1 �.�!��&
('#*��+-,

�

���

�

�! "�	#%��&)('#*�8+-,�� �'34�!��5��	�!�'&)('#*��+-,��

5.9. GRID OBJECT EXAMPLES 47

MachType:

CPU unit:
CPU speed:

o

 Machine Profile #1

 Machine Profile #2

 Machine Profile #3

PC Cluster PC Cluster

Hostname:
IP:

Label:

Machine Profile #4

pc04
172.16.36.4

PC Pool #4

UID: 36493.4

36493

 Resource Profile #1

Processors:
Memory:
MemUnit:

Label:

4
1024
M

NOW

1
GHz

PC Pool

12978

UID: 12978.1

Grid Object

Machine Container Service Container

Label:

UID:

Label:

UID:

Figure5.3: A simplenetwork of workstations (NOW) is madeup from 4 PCs.Themachine pro�le describes
thehardwareof thiscluster. A singleresource pro�le is usedto characterize thecombinedcomputing capabili-
tiesof thecluster.

5.8.3 Grid Network Object

A Grid NetworkObjectde�nes the network quality betweentwo network endpoints. The edge be-
tweentheendpointsis providedthroughanetwork containerwhichholdsanetwork pro�le. Theactual
endpoints arede�ned through two machine pro�les, which arelocatedin a single container. Thema-
chine pro�le' s typeattributeallows do introducedirected bandwidth statements,distinguishing e.g.
between upload/downloadcharacteristics. While themachine container musthold two pro�les only,
thenetwork container mayhold morethanonenetwork pro�le.

�����	��� �!��� ('���

���F�:�8� �

UID �9�

���:����� �!��� ('��� &)('#*�8+-,.���

�

�! "�$#%�'&)('#*��+-,

TheGrid Network Object is not partof this thesis,but well befoll owedup on in a future project,see
Section 5.10.

5.9 Grid Object Examples

In this section, wepick typical situationsfoundin Grid computingor migration environmentsanduse
theGrid ObjectDescription Language to provideaproper representation of theinformationinvolved.

5.9.1 Machine Constellations

We give a numberof examples that illustratehow machinepro�les can assembled to provide an
adequatepicture if individual machinesarepartof a moreabstractmachine setting, like in cluster or
meta-computer.

Workstation Cluster: In Figure5.3we illustratetheGrid Objectfor a loosely coupled network of
workstations (NOW), madeup from simplePCs. Eachmachine is described by a machine pro�le ,
which identi�es the hardwareby its IP number. Theclusteredstructureis preserved in the machine
container. Thegranularity at which a cluster canbedescribedis discussedin Section5.5.

48 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

MachType:

CPU unit:
CPU speed:

MachType:

CPU unit:
CPU speed:

 Machine Profile #1 Machine Profile #1

Hostname:
IP:

Label:

194.94.224.100

AEI Origin2000

 Resource Profile #1

Processors:
Memory:
MemUnit:

Label:

 Resource Profile #1

Processors:
Memory:
MemUnit:

Label:

Meta Queue 1
124531

16
1
G

1245311

MetaQueue1

SMP

MODI4 at NCSA
134532

IP:

Label:

Hostname: modi4.ncsa.uiuc.edu

1345321

MODI4 at NCSA

UID:

UID: UID:

Meta Queue 2
879574

16
1
G

8795741
SMP

ORIGIN at AEI
929233

9292331UID:

origin.aei.mpg.de

MetatQueue2

Meta Computer 1 Meta Computer 1
12453 87957

Machine Container Machine Container Resource Container Resource Container

Label: Label: Label:

UID:UID: UID:
Label:

UID:

Grid Object Grid Object

Grid Object Container

Label:
UID:

Label:
UID:

Figure 5.4: A meta-computer is a abstractcomputing resource built from several physical machines. The
example illustratesameta-computerwhich is assembledby two O2K at theAlbert-Einstein-Institute(AEI) and
theNationalCenterfor SupercomputingApplications(NCSA).

Meta-Computer: Figure5.4 shows the Grid Object representation of a meta-computer. In a dis-
tributed meta-computing environment, multiple geographically distributed machinesare combined
to a single, virtual Grid computer. In this example,a meta-computer is assembled from two ma-
chinesattheAlbert-Einstein-Institute(AEI) andtheNational Centerfor Supercomputing Applications
(NCSA).

5.9.2 Grid Service Objects

Servicepro�les specify how anobject cancopied,accessedor manipulatedin any otherway. Wegive
exampleswhereservicepro�les areused. Theservicepro�le itself makesnostatementonthelocation
of theservice.Thelocation (� hardware) of theservice is de�ned by attaching a hardware pro�le.

Simulation Services: The �rst exampledescribesa proprietary service provided by a simulation
basedontheCactusframework. Theapplication hasopenedports to let scientist introspectthecurrent
simulation state[57]. The application hasgeneratedits own web page,which is accessiblethrough
port 8010. It streams simulation datato external visualization software. Here,port 8015is usedto
streamthe datawhile port 8016steersthe geometric shape of the extracted data. It is not necessary
that every web service understands the syntax behind this port con�guration, anprogramwhich un-
derstandsservice type IOStrea medHDF5 would know how to dealwith theport setup describedby
ServicePro�le #2.

Machine AccessServices: In the following example we characterize the GSI-sshservice. GSI-
sshis the sshversion adapted to the Globus SecurityInterface[38]. The GSI-sshdaemonusually
operateson port � � � � . gsis sh andgsisc p aretwo applicationto gainshellaccess andcopy �les,
respectively.

5.9. GRID OBJECT EXAMPLES 49

 Service Profile #1

Type:
Operation:
Binding:
Transport:

Label:

Port:
PortLabel:

http

 Service Profile #1

Type:
Operation:
Binding:
Transport:

Label:

html

19453.2241 19453.2242

Webpage

8010
HTML

IO HDF5 stream

Data streaming

Port:
PortLabel:

8015
Data

Port:
PortLabel:

8016
Control

Simulation Access
19453.224

hdf5

UID: UID:

Service Container

Label:
UID:

Figure 5.5: A simulationallows scientistto introspectthe ongoing simulation. This codegeneratesa web
pageby streamingHTML codethrough port 8010(Service Pro�le #1)andsendingHDF5 formatteddatato an
external visualization client like OpenDX(ServicePro�le #2). TheHDF5 datais streamedthrough port 8015,
while control parameterslikedown samplingareacceptedonthrough port8016.

Migra tion Services: The examplein Figure 5.7 contains the description of a migration service.
The service canbe contactedon port

�������

via HTTP transport, the nameof the associatedRPCis
migra te . A machinepro�le (not shown)contributesthehostname.

5.9.3 Grid File Objects: SingleFile on a SingleMachine

Figure 5.8 illustratesa Grid File Object, which holds the description of a single �le on machine.
The�le properties, like sizeandcompressibility arecapturedby the �le pro�le . Themachine pro� le
contributes the location of the hosting machine and the service pro�le lists the supported methods
to accessthe �le, herethrough a GSI-scpcommand. Additional service pro� les canbe listed if the
machine's environment offers theseaccess types. Whena �le is moved to a new host,machineand
service pro�les arereplaced; if the �le is copied, a duplicate of the Grid File Object is created and
updatedaccording to thenew host.

5.9.4 Grid File Objects: Multiple Fileson a SingleMachine

Large data�les in parallel applications areoften brought to disk through parallel-IO methodsto ac-
celeratethe processof datawriting. Parallel-IO ideally requiresconstant IO time asthe numberof
processors increases,but it generatesmultiple �les, assketchedin Figure5.9. To expressthis situa-
tion, wecanaccommodatemultiple �le pro�les in a �le container, therebypreserving theinformation
that they areall part of a logical unit. In Figure5.9 we showthe expanded,single-�le example,in
which thehosting machineandaccessservicesstayed thesame.

5.9.5 Grid File Objects: Multiple FilesacrossMultiple Machines

An oftenmentionedscenario in Grid computing is theexecution of asingle applicationacrossmultiple
supercomputers.Thedata, which is generatedthroughparallel-IO techniquesnow residesonmultiple
machines.For example, a logical �le is composedof 10 datasets, wheresix datasetsaregenerated
on machine A andthe remaining four areresiding on machine B. Both machines mayhave different

50 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

GSI Access
19453.124

Type:
Operation:
Binding:
Transport:

Label:

Port:
PortLabel:

2222
gsi

19453.1242

Copy
gsiscp

GSI Copy

Service Profile #2 Service Profile #1

Type:
Operation:
Binding:
Transport:

Label:

shell

GSI Shell

19453.1241

gsissh

Port:
PortLabel:

2222
gsi

UID: UID:

Service Container

Label:
UID:

Figure5.6: A descriptionof GSI-sshtypedaccessto a computer. TheGlobusSecurityInfrastructureprovides
asshbasedaccessto shellandcopy functions,usuallythroughport ������� .

accessmethods. Wecanprovideaproperdescription by creating aGrid File Objectfor � and � . The
two Grid objects together yield to full andaccuratedescription of thedistributed�les. If the�les are
physically movedto a single w machine,a new �le description is obtainedby creating a Grid Object
with themachineandservice pro�le of thenew computer andjoining all �le pro�les.

5.9.6 Grid ResourceObjects: Application Requirements

Theresourcepro�le canbeusedby anapplicationsto characterizeits memoryandCPUrequirements.
This informationcanbe gathered automatically at runtime or manually. The resource consumption
characteristics of anapplication is usedto determineanappropriate compute capacity before a appli-
cationis relocated. If amatching machineis found,theGrid Objectdescription of theapplicationcan
inherit themachinepro�le . Theresourcematching processis describedin thenext section.

5.9.7 Grid ResourceObjects: ResourceIdenti�cation and Evaluation

Beforeany job is executedon a supercomputer, a threestageprocessneeds to becompleted, which is
traditionally doneby theuser, interactively andintuitively:

1. Resource Identi�catio n: The userdeterminesthe resource requirements of his application,
typically through educatedguessesor trial and error. Secondly, the userhas to familiarize
himself with the compute capacitieson the machinesin question. This knowledge is usually
gatheredby reading up on thesite's batchsubmission con�guration.

2. Resource Evaluation: The user decides for a particular supercomputer, wherehe choses a
queuing systemwhoseconstraintswill not beviolatedduring theruntimeof theprogram.

3. Resource Request: Theuserrequeststhe resources,usually by �lling out a batchsubmission
script, in which he stateshis requirements, like numberof processorsandmemory. The user
hasto obey theparticular queuesyntax. He �nally submits thejob.

Sincewecanexpressthediverseresourcerequestsandconstraintsaspro�les in aGrid Object, wecan
comparethemto determinesuitableresourcesfor migrating applications. In Figure5.10, weillustrate

5.9. GRID OBJECT EXAMPLES 51

 Service Profile #1

Type:
Operation:
Binding:
Transport:

Label:

Port:
PortLabel:

migration
migrate
/GPS
http
19453.9241

Grid Migration

7010
GMS

Grid Migration Serv.
19453.924

UID:

Service Container

Label:
UID:

Figure5.7: A migrationservicedescribesits servicethroughaservicepro�le. Themigration serviceis partof
theGrid PeerServicesdescribedin Chapter7. ThecompleteURL (e.g.origin .aei.mpg.de :7010/GPS)
canbederivedfrom theportnumber, binding andthehostname in themachinepro�le (notshown).

this automated,threestageprocess,wheretheresourceidenti�cation is shown to theleft, followedby
theevaluation stagewhichcomparesandselectsaresource.Finally, theappropriatebatch submission
scriptsare�lled out.

Condor Class-Ads: In a service environment, the resourcematching andselection processis car-
riedoutby anapplicationinsteadby auser. Oneof theadvanceddecisionmakingsystem is Classi�ed
Advertisements(“Class-Ads”) [22], usedby Condor. Applicationsandresourcesadvertisetheir char-
acteristics in a special dataformat anda matchmaking processselects thosepairs which ful�ll the
speci�ed relation. Section3.1.2describesClass-Adsin detail. In Figure5.10we outline theprocess
of matching the requirementsof an applications with the resource constraints provided through the
queueson a supercomputer. Figure5.10sketchesthetranslation of differentvocabularies,which are
used by thevarioussystems.

� Resource Identi�cation The�rst stageof a submissionprocess concernsthe identi�cation of
resourceconstraints on a machineandresourcerequirementsof theapplication.

1. Resourceconstraints: In Figure5.10,on the left side, theupperresourcecontainer holds
pro�les, which describe the resource characteristics of the queues that partition the total
computecapacity of a machine. Suchqueueinformationcanbeobtainedthrough a query
of resourcedatabaseslike the Meta Directory Service(MDS). The MDS is discussedin
section 3.1.1. For eachhost, which is reportedasa potential execution host,we generate
oneGrid Resource Object,which in turn mayhold morethanoneresourcepro�le. These
pro�les statethe resource constraints. The �rst gray box in Figure 5.10 illustratesthe
mappingof theMDS vocabularyto thepro�le structures.

2. Resource requirements: the lower pro�le in Figure5.10 is re�ecting the application re-
source needs: the program demands 500 MByte and 64 processors. The datacan be
supplied manually by the user, who may for examplespecify the maximumamount of
experiencedmemoryusage or restrict the architectures to thosethat he hasprecompiled
executablesfor. In advancedapplication informationon thememoryrequirementsis ob-

52 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

o

Port:
PortLabel:

2222
gsi

120341.3123t

Name:
Directory:
Size:

/scratch/job045
Cp_045_#1.bin

File Profile #1

Compact:

SizeUnit: M

0.8

1034

Label:

120341.31234#F1

Run a=9.8 T=4.2

 Service Profile #1

Type:
Operation:
Binding:
Transport:

 Machine Profile #1

Hostname:
IP:
Binding:

Label:

GSI Access
19453.124

copy
gsiscp

19453.1242

64835.343
ORIGIN at AEI

origin.aei.mpg.de

Origin at AEI

64835.343

CP File 9.8/4.2

UID:
UID:UID:

120341.3123

Label: GSI Copy

CP File 9.8/4.2 on origin.aei.mpg.de

Grid Object
Label:

UID:

Service Container Machine Container File Container

Label: Label: Label:
UID: GUId: UID:

Figure 5.8: The accessof a single �le on a singlecompute resourcecanbe describedby �le, serviceand
machine pro�le. Together thesethreepro�les describethe �le' s properties,theaccessmethods supported on
thehardware,aswell thehardware itself.

tained by instrumentingtheexecutableandextracting resourceconsumptionrates at run-
time. Thedatais expressedin a resourcepro�le with designatestherequirements.

� Resource Evaluation: To determinewhich resourceprovidesthebestcompute capacity for a
given resourceconstraint, we prefer usingexisting technology, like CondorClass-Ads: A mi-
gration service rewrites the resource pro�le of the applicationandthe resource pro�les of the
availableresourcesasClass-Ads.The Class-Adparsing algorithm compares the job require-
mentto theconstraintsandreturnsa matchif possible.

� Resource Request: Whena matchis found, the service �lls out the batch submissionscript,
usingtheappropriatesyntax. Thecontentsof application's resourcepro�le is now mappedonto
thevocabulary of thebatchsubmissionsystems.We showthis translation for PBSandLSF in
thebottom partof Figure5.10.

This simpleexamplealready involved the four resource“dialects” anddataformats of MDS, Class-
Ads, PBSandLSF. For example: the amountof memoryon a systemis expressedasphy sical -
memorys ize (MDS), Memory (Class-Ads, user de�ned), #BSUB -M (LSF directive), #PBS -l
mem(PBSdirective).

We have shown in this section that theObjectDescription Languagepermitsus to conversewith
already existing software packagesandgrid middlewareandcanadapted to integrateupcoming Grid
technology aswell. Grid Objectsful�ll the important requirementof compatibilit y andenable third-
partysoftwareto interoperate.

5.9.8 Dynamic Object Composition

Thedifferentpro�les whicharecomposedinto aGrid Objectdonotneedto comefrom asingle source
or at thesametime. It is evenunlikely thata single application is knowledgeable aboutall aspects of
a Grid Object. Different applications may contribute different informationat different times. As an
examplewe illustratea situation, wheretwo different instancescontribute to a commonGrid Object,
asillustratedin Fig 5.11:A simulationcreatesaGrid File Object, whichidenti�es thelocation of a�le.

5.10. FUTURERESEARCH 53

o

File Profile #1

File Profile #2

File Profile #3

 Service Profile #1

Type:
Operation:
Binding:
Transport:

Label:

copy

ssh
120341.31C

copy access

Port:
PortLabel:

22
ssh

sftp

 Machine Profile #1

Hostname:
IP:
Binding:

Label:

vidar2.aei.mpg.de

34524.424M

Test Machine

Data Transfer Test Machine
120341.3 34524.4

120341
Checkpoint Files for a=9.8 T=4.2 on Vidar2

Name:
Directory:
Size:

/scratch/job045

Compact:

SizeUnit: M

0.8

1034

Label: Run a=9.8 T=4.2

File Profile #4

Cp_045_#4.bin

120341.31234#F4

120341.31234
Checkpoint Files

UID:
UID:

UID:

Grid Object

Service Container Machine Container File Container

Label: Label:

UId:

Label:

Label:

UID: UID: UID:

File #1 File #4File #2 File #3

Checkpoint

vidar2.aei.mpg.de

Figure5.9: Multiple �les onasinglecomputeresource.Multiple �le pro�les describethedifferent�le chunks.
Theservicepro�le determinestheaccessmethod, while themachine pro�le hasthe informationon thehard-
ware.

A service pro�le for theaccessmethods is not provided,becausethe applicationhasno knowledge.
If the �le is about to be accessede.g.through a �le server, the machine pro�le is usedto query an
information databaselike the AIS (Chapter7) on the supported access methods for that host. The
completedGrid File Objectholdsnow a full prescription on how to accessthe�le.

5.10 Futur e Research

In this section wegiveanoverview of extensionsto theGrid ObjectDescription Languageandpoten-
tial synergieswith otherresearchprojects. Thedatamodelhasenough structuralcapacity to holdextra
componentswithout becoming to heavy to use.In thefollowing paragraphs we list two extensionsto
expressadditional Grid properties.

Network Pro�les: ThecurrentGrid Objects do not support thecharacterization of network perfor-
mance. However, it is necessaryto statethe condition of a network that an application may depend
on. A package which providessuchinformation is e.g. the Network WeatherService [91], which
periodically monitors anddynamically forecaststhe network conditions like bandwidth. Fricke [41]
workson thenormalizationof themeasurementstakenby differentnetwork monitors andexpressing
this datain aGrid ObjectNetworkPro�le , asde�ned in Section5.8.3.Theinformation is e.g.usedto
qualify theaccessibility of a sitebefore a large �le transfer is initiated. It allows a migration service
to select or rule out potential migration hosts basedon their network connectivity.

54 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

RP.time

RP.memory =
MP.hostname =

physicalmemorysize
hostname

SP.operation= schedulertype

Class-Ads

#PBS -l walltime=

#PBS -N
#PBS -l mem= RP.memory

mpirun -np RP.processors

RP.processorsmpprun -n

Resource Lookup (MDS)

Application Resource Needs

64

500
"MySim"RP.label =

RP.memory =

SP.label

#BSUB -W
#BSUB -M
#BSUB -J

RP.memory
RP.time

SP.label

RP.processors =

Resource Identification Resource Evaluation Resource Request

Example2: LSF script

Example1: PBS script
 Resource Profile #3

 Resource Profile #2

 Resource Profile #1

Processors:
Memory:
MemUnit:

128
2
G

 Resource Profile #1

Processors:
Memory:
MemUnit:

64
500
M

Resource Container

Figure5.10: Resourcepro�le (RP), servicepro�le (SP) andmachinepro�le (MP) translatebetweendifferent
application vocabularies. An MDS server is queriedfor queue properties, while an applicationidenti�es its
resource needs. Constraintsand requirementsareexpressedasGrid Objects. Class-Admatching�lters an
appropriatequeue andmachine. Jobsaresubmitted,which requiresthemapping to e.g.PBS,LSF or Globus
RSL directives.

o

Name:
Directory: /scratch/job045

Cp_045_#1.bin

File Profile #1

Checkpoint

 Machine Profile #1

Hostname:
IP:

Simulation Host

 Service Profile #1

Type:
Operation:
Binding:

123494
GSI Access

19453.124

copy
gsiscp

origin.aei.mpg.de

Grid Object

File Container

Label:

Machine Container

Label:

Service Container

Label:
UID: UID: UID:

by Application

Data provided by

Application Information Server
Data provided

Figure5.11: An applicationprovidesinformationon�le, e.g.acheckpoint�le andit mayknow about thelocal
machine aswell. If theapplication hasno knowledgeon accessmethods, theApplicationInformationServer
(or otherdatabase)canbeusedto completetheGrid Objectdescription onhow the�le canbeaccessed.

Time: Futurework includes the notion of time and time intervals. The present systemof Grid
Object pro�le s is static in the sense that pro�les do not timeout or become invalid. For example
de�ning resource co-allocation andadvanced reservationrequires the useof time-out constructs to
describe the beginning andexpiration time of a resource. We areworking on the extension of Grid
Objectsto accommodate these dynamicproperties.

5.11 Discussion– OGSA, GODsL and GPS

OGSA de�nesanarchitecturefor theGrid with aspectslikesecurity, authentication,andauthorization.
Grid PeerServicesde�ne thenotion of aredundantserviceenvironmentfor Grids.GODsLallows for
acompactdescription of Grid content. In thissection, wecompare theaimsof OGSA[37] to theGPS
andGODsL.We give ananswer to the question, in how far OGSAoverlaps with GPSandGODsL.
Weshowin factthatthethreepackagesdo not rival eachother.

We consider OGSAasan important approachto realign the different Grid technologies that are
developed in independent projects and allow them to interoperate. Basedon the experienceswith

5.11. DISCUSSION– OGSA,GODSLAND GPS 55

distributed service environments, we believe that there aretwo crucial points for the successof this
architecture:

� Simplicity: OGSA should be a lightweightandmodular speci�cation . A monolithic, all-in-
onespeci�cation will likely defeat the purposeof servicecompatibilit y aswell ascommunity
acceptance.Someof theOGSAconcepts like servicefactoring arevaluable,andambitious,as
we have seen in our service monitor (Section9.4.3),which creates andmaintains service and
applicationinstances.

� Application Base: Useracceptance canonly bereachedby having real-world applications as
the driving force for the developmentof any technology. OGSA de�nit ely facilitatesthe in-
teroperability betweenGrid technologies. Its successto interoperatewith customerapplication
will depend on how soonuserapplicationsareinvolved.

OGSA vs.GPS: Thereis a simplereason why GODsLandGPSimplementationswerenot ableto
conform to the OGSAspeci�cation: By the time that OGSAwasreleased,mostof the design work
for GPSandGODsLwerecompletedand�rst experimentswereshown [50]. TheOGSAcodebase
was– at the time of the writing – still in a stabilizing phaseassampleimplementations of OGSA
conformal servicesbecameavailable.

OGSAandGPSboth usewebservicesasa meanto communicatebetweenindependentapplica-
tions. OGSAaimsto de�ne an“architecture” for theGrid andstressesaspects like security, authen-
tication, andauthorization. Thesefeatureshave not beenthe focus in the Grid PeerServices, which
concentrateson a redundantservice environment.

Thedifferencebetween GPSandOGSAaremoreon thelevel of service topology: Grid PeerSer-
vices promotesa fault tolerantservice topology by usingpeer-to-peerstrategies. With themigration
service environment(chapters7 and8) we show that a P2Papproachallowsfor reliable serviceson
top of a unreliable Grid infrastructure. As morehigh-level servicesaredevelopedfor global Grids,
designersarefacedwith thesameproblem. Likely they will reacha similar design decision. There-
quirementsof fault tolerancein aGrid environmenthaveto besolvedby any OGSAbasedapplication.
We believe thatthepeer-to-peer approachis a viable concept.

Besidesadding security andauthentication, OGSA offersmany featureslike theservice factoring
to generatea service instance. GPScanmake immediateuseof suchtechnology, e.g.in the “service
monitor” thatweuseto manageandsuperviseuser codesandserviceapplications. In this respect,we
areeager to enhanceour codewith sophisticatedOGSAtechniques.

OGSA vs.GODsL: Theindividualpro�les of a Grid Objectfall short in respect to thecapabiliti es
of specialized tools. For example,WSDLandOGSA provide a far moresophisticated web service
description thana service pro�le in a Grid Object. Nevertheless,both mechanism areconceptually
different: GODsL describescontent andcorrelatesvarious aspects of a generic entity into a single
handle. WSDL focuseson thedescriptionof anisolatedaspectlikewebservicesdescription. While it
is possible to stretch theconcept of WSDL accommodate otherinformationaswell, WSDL remains
a systemfor services.

Whenanalyzing theadvancedGrid scenarios in theintroductory chapter, we cameto theconclu-
sion thatonly focusingon servicesitself is aninef�ci entabbreviation of thefull problemscope. The
isolateddescription of single aspect of a Grid object (like it' s resourceaspect, machinelocation or
service methods) is inadequateto capture theabstractionprocessthat is necessary for advancedGrid
scenarios. In this thesis, we have exploredthecapabilitiesof suchanencompassingview on entities
on a Grid.

56 CHAPTER5. GRID OBJECTDESCRIPTION LANGUAGE

However, to link up with thefuture developmentof webservices,thestandardized description of
webservice in a Grid Object's service pro�le is important. TheOGSAcode basehasbeenevolving
over time and hasnow reached a stagewhereit startsto stabilize. For a future migration service
infrastructure,which conformsto theOGSA speci�cation , wehave to make surethatGODsLservice
description is compatible with OGSAbased servicesdescription.

With GODsL we have also addressedthe problem of characterizing legacy objectson a Grid,
which arenot web-service compliant – andnever will be. Thesepackagespose themajority of Grid
softwareinfrastructure today. Any application-centric service infrastructurewhich intendsto interop-
eratewith legacy systems,mustcomewith adescription schemelike GODsLto describe capabilities.
Providing web service wrappers to the legacy codeis an option but requiresthe modi�cation of in-
stalled software. It remains to beseen,if OGSA basedserviceswill dealwith proprietaryapplications
directly or if OGSAenvironmentswill only incorporateweb service conformal codes. We choseto
include ubiquitous legacy middlewarein its current form without requiring additional service wrap-
pers.

Synergies: The migration service environment with its GPStopology is a loosely coupled setof
services,whoseunderlying service communication is so modular that it canbe easilyreplaced,e.g.
with a OGSAconformal messaging system. TheOGSAspeci�cation contributesauthenticationand
security aspects, which have beenof minor focus in this versionof theservice environment. OGSA
with SOAP, asthe underlying requestprotocol in OGSA, allows for sophisticated security arrange-
mentsin ourenvironment, e.g.multi-level encryptedrequestdocumentswhichwouldallow thesecure
request relaying into �re walleddomains. It would bea intriguing project to switchthecompoundmi-
gration andspawn servicesto OGSAconformal communication, thereby taking advantageof OGSA
featureslike security featuresandservice factoring. In Section8.4,we discuss security issueswhich
arespeci�c to a migration environment: they result from the alternationbetweenexecution and�le
state.

Chapter 6

The RequestHandler

Failureandresponsepropagationin a distributed service environmentis essential to ensure fault tol-
erant operation. In orderto experimentwith propagationstrategieswe implementedour own request
server. In this chapter we present theRequestHandlerarchitecture, which is thecorealgorithm that
tracks the incomingandoutgoing XML-RPC messagesin all GPSapplications. Therequesthandler
is implementedin the CactusCodeframework. It is used for the various Grid PeerServices, which
areintroducedin chapters7 and8.

6.1 RequestHandling Requir ementsand Strategies:

Therequesthandler managesincoming andoutgoing messagesandis amiddlelayer locatedbetween
theHTTP communicationlayerandtheapplicationwhich providesor requestsservices.Thehandler
is the �rst thing that an incoming messagesees,after it hasbeenreceived by the HTTP layer. The
server system design focuseson providing thefollowing properties:

� RequestReception: Thehandler accepts incoming RPCsandtracks their process.It identi�es
andauthenticatestheoriginatorof themessage.

� ProcedureCalls: Thehandler mustexecutetherequestedRPCanddeterminetheresult of such
a RPC.It mustbeableto distinguish betweenfaulty andsuccessful calls.

� RequestReply: The requesthandler returns information which wasgeneratedby the remote
procedurecall to theoriginal requestor.

� Fault Tolerance: The handler mustbe fault tolerant with respect to interruptednetworks or
failing connections whensending messages. It hasto provide proper return valueswhenRPCs
did not succeedandit mustpropagatethis information backto therequestor.

Therequesthandlerprovidesbasic security likepassword basedauthentication for incomingrequests,
but it should be noted that security hasnot beenthe focus of this work. The data �o w through
the different layers is shown in Figure 6.1. The individual layersadd or extract speci�c protocol
informationlike TCP/IP, HTTP or theGPSenvelop.

RequestHandling Strategies: Thestrategiesfor handling RPCsby a server canbediverse. Here
we list two approaches:

� An application receivesremoteprocedurecalls andhandstheincoming messageover theRPC
routineimmediately. TheRPCroutineis responsiblefor providing thenecessaryfault tolerance,
ensuring the authentication and completing the remoteprocedure call. This is a convincing
approach,if only a single remote procedurecall is implemented within a service application.
If multiple RPC routinesare hidden behind a single request handler this approach leads to
unnecessarycodeduplication. If theRPCroutinesbehind thehandlercanbeexchanged,it may
leadto non-uniform reply behavior.

57

58 CHAPTER6. THE REQUEST HANDLER

GPS Application

GPS Request Handler

HTTP Transport

Socket Communication

{
{
{
{

Envelope

Add./ Extract

Add / Extract

Add / Extract

Add / Extract

Content

HTTP

TCP/IP

Messages
Incoming / Outgoing

Figure 6.1: The data�o w of RPC requestingand receiving applications. The GPSapplication at the top
performstheRPC.Layerspeci�c information is added or extracted,respectively, for outgoing andincoming
messages.

� An alternative approachleavesthe RPCservice routine unburdened with any request bureau-
cracy. Insteadtherequesthandler is responsiblefor ensuring thatamessage is well-formedthat
theclient is authorizedto posearequestandthattheresult is returnedin a fault tolerant manner.
TheRPCroutine is called by thehandler. TheRPC's feedback is returnedto the requesthan-
dler, which propagatesit back to the client. Therequesthandler is in charge of thesuccessful
transfer of thereply data.

We chosethe latter approach,becauseit leavesthe service procedureunburdened with any request
management andkeepstherequesttracking overheadwith therequesthandler. It allowsaprogrammer
to write very leanRPCroutinesandtake advantageof already existing messagemanagementin the
request handler. We can replace,add and remove the RPCroutineswhile relying on the message
transfer of therequesthandler backbone.

6.2 RequestHandling within the CactusCodeFramework

The request handler architecture is implemented within the CactusCodeFramework and uses the
XML-RPC-epi1 library. xmlrpc-epi waschosenover other implementations,becauseit separatesthe
transport from theencoding aspect andyields avery compact xml-rpc parser. TheCactusFramework
(cf. 3.4)waschosen for severalreasons:

� ArchitectureIndependence: Cactusprovidesanarchitectureindependent framework thatallows
easyportability of applications to a variety of platforms. As discussedin the chapter on Grid
characteristics, this is an important issue, whena Grid service is deployed in a heterogeneous
environment.

� Modularity: The Cactusthorn concept matchesthe request handler architecture: The request
handler is realizedthrough a speci�c thorn, while thedifferentRPCcapabilities canbemoved
into aseparatethorns.A serviceexecutable is generatedby combiningtherequesthandler thorn
with thedesiredRPCthorns.

� User and Application Base: The Cactus Codeframework is usedby a numberof large-scale
numerical projects. Sincetherequest handler canalsobeusedby Cactusbased simulations, it
allows usto experimentwith realworld programs,rather thanusing theubiquitous ray tracing
andprimenumbersearchesastestapplications.

1http://xml rpc-epi.sour ceforge.net

6.3. REQUESTHANDLING - OPERATION MODES 59

F
ile

tC
op

y

S
pa

w
n

M
ig

ra
te

HTTP Messages

C
ac

tu
s

C
od

e
F

ra
m

ew
or

k

HTTP Comm. Thorn

Request Handler Thorn

Socket Communication

XML-RPC Documents

F
ile

tC
op

y

S
pa

w
n

M
ig

ra
te

C
ac

tu
s

C
od

e
F

ra
m

ew
or

k

HTTP Comm. Thorn

Request Handler Thorn

Socket Communication

C
ac

tu
s

C
od

e
F

ra
m

ew
or

k

HTTP Comm. Thorn

Request Handler Thorn

Socket Communication

C
ac

tu
s

C
od

e
F

ra
m

ew
or

k

HTTP Comm. Thorn

Request Handler Thorn

Socket Communication

b)a)

Figure6.2: Therequesthandler is locatedbetweentherequestcommunicationlayerof theCactusHTTPthorn
andtheRPClayer, which providesthevarious remoteprocedurecalls. TheRPCthornsregistertheir methods
with therequesthandler. Any numberof RPCthorns canbeattachedto therequesthandler.

Theleft diagramin �gure 6.2 illustrateshow differentthornsareusedto generatea single executable
with multiple Grid services: three thorns,which provide �le transfer, migration andspawning capa-
bili ties areattached to the request handler thorn. The HTTP Communication thorns providesbasic
socketcommunication. It receivesincomingmessagesanddoeslittle elsethanpassing themon to the
requesthandler. The request handler supervisesincoming andoutgoing request. The thorns, which
contain the RPCmethods, are located on the top level andregister their methods with the handler.
Thesethorns focuspurely on performing theRPCservice. Thethree diagramsto theright �gure 6.2
demonstratethe �e xibil ity of the thorn concept: a single executable for eachof the three service
methodscanbeeasilygenerated.

6.3 RequestHandling - Operation Modes

A request which is communicatedbetweena requestoranda provider canbeclassi�ed in two opera-
tion modes.Whatmodeis chosen is usually dependenton thesituation andcanbesetaspartof the
transmittedrequest:

1. Request- Response: A client requestsaserviceandareply is returnedby theserver. Thereply
information canbeanything from a databaseentryto anerror code.

2. Noti�catio n: Theserver sendsunsolicited informationto clients. In accordancewith thePeer-
to-Peermodel,serverscanactasclients andvice versa. A noti�cat ion is donewithout having
received a requestprior to the send. E.g.a noti�cation modeis chosen whenapplications are
pinged to determine their runtime status. Noti�cat ion modeis alsousedwheninformation is
broadcasted to a range of application without requesting feedback to cut down the protocol
overhead on thereceiving side:anapplication caninform its peersthat it is about to shutdown.

6.4 RequestEnvelope

A fault tolerant operationmoderequirestheback-propagationof return codes. Thenecessaryaddress
informationhasto begained asearlyaspossible. For example, if a request handler is not responsible
for extracting the informationon who sent the request,but leavesthe RPCcodein charge of this, it
cannot provide feedback to a client if therequestedRPCdoes not exist.

60 CHAPTER6. THE REQUEST HANDLER

HTTP

<Method> : [String]

<Source> [XML-GridObject]
<Target> [XML-GridObject]

<RequestMode>
<localID>
<remoteID>

status

error_code

localID : [String]

RequestMode: [ReqStruct]

To : [GridObject]
From: [GridObject]

RPC : [String]

remoteID: [String]

statuscount / statustwait

Data structure in the Request Handler Data structure on the wire

<Request Content>

<Request Envelope>

</Request Envelope>

</Request Content>

Request Wrapper

Request Content

Request Info (local)

Request Info (remote)

Figure6.3: A request on the wire is expressedasan XML-RPC document,wrapped by HTTP. The request
body is further structuredinto a RequestEnvelopeandtheRequestContent. Uponarrival, therequesthandler
storesthedatain a requestwrapper structure with additional datalike stateinformation.

A generic XML-RPC messageis distinguished in two parts: the method, which contains the
nameof the requestedoperation and the data which is associated with that call. Our implementa-
tion of the request handler demands that the datawhich accompaniesthe RPC can be further di-
vided into the Request Envelope and the Request Content. Thesesub-sections in the XML docu-
mentare tagged <Reques tEnve lope >, </Re quest Envelope> and<RequestC onte nt> ,
</R eque stCon tent >.

The request envelope containsall informationnecessaryto senda messageto the request origi-
nator. The request envelopeprovidesinformation, which allows us to reply to the client in an early
stageof thefull RPCexecution chain, evenif theRPCitself failedor if therequestcontent is not well
formed.Therequest envelopecontainsinformationon thesourceandtarget of therequest,expressed
asGrid Objects. In thefoll owing sectionswe describe envelopein moredetail:

6.4.1 RequestSource

Thissub-structurein partof therequestenvelopeanddescribestheobject,whichsendseither arequest
or reply to a request.In particularly it contains:

� Grid Object: describesthe originating application or service through a machine pro�le and
service pro�le. The service pro�le de�nes how to provide possible feedback (e.g. through
HTTP, with a speci�ed port,RPCbinding andmethods).

� Authentication Inf ormation: astructurewhich holdspublic keys,passwords,etc.Thecurrent
version of therequesthandler featuresonly password authentication.

6.4.2 RequestTarget

This sub-structure of the request envelopedescribesthe application or service, which is intendedto
receive andexecute therequest. It consistsof thefoll owing data:

� Grid Object: describestherequestedservice. Thehostinformation is providedby a machine
pro�le, theservice contact is characterizedthrough a service pro�le.

6.5. REQUESTCONTENT 61

� Authentication Inf ormation a structurewhich containsdatato identify theprovider astrusted
service.

6.4.3 RequestProperties

Therequestproperty structurecapturestheinformation, which is neededto processtherequest in the
requesthandler. We brie�y discussits content.

RequestID: TherequestID identi�es arequestdocument,whichcommunicatedbetween two peers.
For thedurationof asinglemessageexchange,theparticipantscanbecategorizedin sourceandtarget
peers-independentlywhetherthey actasserviceclientsor providers.Eachpeersassignsantherequest
messageanindividualID:

� SourceID: This ID is assignedby thesending applicationor service. It is usedto distinguish
multiple requests.A SourceID is mandatory.

� Target ID: This ID is assignedby thereceiving peer. At thebeginning of a messageexchange
thetarget ID is not set. Thetarget ID is assignedby thereceiver assoonastherequestarrives
in thehandler.

Reply Modes: The reply modede�nes at what stage during the execution of a reply, feedback is
sent to theclient. Possiblereply modesare:

� Reply on receive: A reply is generatedassoonastherequestis receivedandpooled.

� Reply on method start: A reply is generatedwhentheexecution of theremoteprocedurecall
is initi ated.

� Reply on method end: A reply is generatedwhen the execution of the remoteprocedure is
�nished.

� Reply result: A reply is generatedwhich containsthe resultof theRPC.If theRPCdoesnot
provide anerror code,thesuccess or failureof theRPCexecution is transmitted.

� Reply never: No reply is generated.This is thedefault mode.

Two-PhaseRequests: The reply-on-receive modeallows for two-phaserequestsof web services.
Imagineaclient requesting anservice,whichhewantsto cancel or pauseduring execution. Theclient
needs to receive a handle to the web service operation before the copy procedurestarts. Reply on
receive canperform exactly this task.

6.5 RequestContent

While the envelopesection is standardized with respect to the information on the sending and re-
ceiving application, the requestcontent is interpretedby the actual RPCmethod only. Its format is
determinedby theremoteprocedurecall. Therequestcontentstructurein theXML messageis a<Re-
quest Cont ent> ,</Re ques tCont ent> tag.Therequesthandlerextractsthissub-structureand
passesit on to theremoteprocedurecall.

62 CHAPTER6. THE REQUEST HANDLER

6.6 RequestHandling States

In this section, we introducethe concept of a request communication channel to abbreviaterequest
overhead in repeated massage exchangesbetween peers.We continuewith a detailed discussionof
the request statediagram for incoming (Sec.6.6.2)and outgoing requests(Sec.6.6.3) and request
expiration (Sec.6.6.4).

6.6.1 RequestCommunication Channels

Thecompletion of a certaintaskthrough a webservicemaynot necessarilybeachievedby a single
“request and reply” pair. Multiple pairs may be exchangedbefore a desired result is reached. A
simpleexampleis therequest for feedbackasillustratedin Figure6.4,wherepeer

B

sends a request
to peer

�

andexpects informationback. � returns the informationandrequestsfeedback from
B

on
thesuccessful delivery of thedata.

From the technical point of view, sucha task can be accomplished by many independent re-
quest/reply pairs. But it can be effective to de�ne a request communication channel, which stays
openuntil the taskis completed. Thechannel cantransport multiple “request-reply” pairswhich are
exchangedbetween trusted peers until a result is reached. Sucha channel allows for a single ini-
tial authentication operationfollowedby acceleratedrequestoperationwithout furtherauthentication.
Thisapproachis e.g.used in Sun'sJXTA project [46]. Thetwo communicationendpointsin arequest
channel arenot tied to a speci�c hardware, like in a TCP/IP network connection. Instead,thechannel
endpoints areidenti�ed with peers. This waya request channelscanaccompany amigratingpeers,as
longasthey maintain their identity. In thisversion of therequesthandler, weimplementedtherequest
channelsto manage multiple request exchangesbetween peers.We have not followed up on theidea
to reducetheauthentication overhead for high-frequency messageexchanges.

A request-reply channel is well de�ned if both, target andsource ID arepresent in a message. A
missingtarget ID initi atesa new channel,a missing sourceID is treatedasanerror andis propagated
back.Multiple requestchannelscanbeopenbetweentwo peers. Eachonedescribesasingle, individ-
ual exchange,which mayconsist of oneor moremessages.A channel canbeclosed by a participant
or by a timeout, if a reply is not receivedwithin a giveninterval.

6.6.2 Incoming RPC Messages

An incoming RPCmessages canoriginatefrom a client request or arrive asa reply to a previously
madeRPC.In the�rst case,themessagecontainsnotarget ID from previousexchangesandnorequest
channel is open.Thereceiver�lls theemptytarget ID andopensarequestchannel. In thesecondcase,
thereceiver extracts thetarget ID, which hehasassignedin earlier communication exchanges. Here,
a channel is alreadyexisting andthepair of sourceID andtarget ID identify thechannel. Opening a
channel requiresthecreating of channel structure. This structurecontains informationon therequest
andits state.The state diagram of a request is shown in Figure6.5. The channel structure is added
to the requestpool, which tracksthe different requestchannels. The speci�c operations, which are
carried out by therequesthandler for incomingmessages are:

1. Receiving of the serializedXML-RPC data,which is passed through from theHTTP commu-
nication layer.

2. Checking theXML-RPC codefor errorsanddeserializing it.

3. Extracting the envelopestructure,which contains informationon the sender andthe receiver.
An errorcheck on thecompleteness of theenvelopedatais performed.

6.6. REQUESTHANDLING STATES 63

}

Request Wrapper
status
statuscount / statuswait
error_code

Request Info

RequestContent

RPC : [String]
Source: [GridObject]
Target: [GridObject]

Request Wrapper
status
statuscount / statuswait
error_code

Request Info

RequestContent

RPC : [String]
Source: [GridObject]
Target: [GridObject]

Request Wrapper
status
statuscount / statuswait
error_code

Request Info

RequestContent

RPC : [String]
Source: [GridObject]
Target: [GridObject]

Request Wrapper
status
statuscount / statuswait
error_code

Request Info

RequestContent

RPC : [String]
Source: [GridObject]
Target: [GridObject]

Response by Peer B

A+B: complemented ID

Request Communication Channel

B: adding target ID
A: source ID, missing target ID

Request by Peer A

Figure6.4: Theexchangeof multiple “request-reply”pairsis implementedthroughaRequestCommunication
Channel, whichstaysopenuntil thechannel timesoutor is closedby aparticipant. Thechannelend-pointsare
associatedwith peers,notwith anetwork connection like TCP/IP. Channelend-pointscan“migrate”.

64 CHAPTER6. THE REQUEST HANDLER

4. Authenticating theclient. This is currently done through username/password matching.

5. Opening a requestchannel, if therequest contains no target ID from previousexchanges. This
operation consistsof creating a channel structureandadding this datato therequest pool.

6. Identifying the requestchannel, if the requestspeci�es a target ID andupdate the information
in thechannel structure. If no channel is found reply with anerror.

Incoming MessageStates: The incoming requestpassesthrough several statesbeforeit settlesin
oneof the �nal statesREQUESTDONEor REQUESTFAIL ED. An incoming message,which holds
a target ID andwhich hasbeen added to therequestpool, receivesthe initial state REQUEST OPEN.
If therequesthandler comesacross this stateasit traversesthepool, thepending requestis switched
to REQUEST METHODOPEN. The handler attemptsto executethe local RPC.If the handler failed
to make the call technically, e.g. if the methodis not existing, the request is declared a failure:
REQUESTMETHODFAIL ED.

If thehandler wasableto make thecall andreceivesa returnvalueother thanNULL, therequest
is set to the stateREQUEST METHODDONE. A NULL reply is interpretedasmethodfailure. The
existenceof a return valueis not a statement on thesuccessof theactual RPC.In this respect a com-
pletedmethoddoesnot imply asuccessfuloperation. It only meansthatthemethod wascompletedin
acontrolled way. Informationon thesuccessor error of theactual RPCmustbeprovidedin thereply
value.If noreply is required,therequestreachesit �nal stateREQUEST DONEor REQUESTFAILE D
depending on theoutcomeof themethodcall.

If the userhasrequestedfeedbackon the result of the RPCby setting the reply mode,a reply
is generated. If the RPChasreturnedan XML value,this valueis usedasthe content of response.
If no message wasreturned by the RPCa standardizedmessage is usedto build the content of an
error message. The new target is the sender of the original requestand the previously “incoming”
request now becomesan “outgoing” request. For the reply, the handler is using the communication
method,whichwaspreviouslyde�ned in theincoming request.Wearecurrently experimentingwith a
primitive �le communicationto circumvent�re wall problemson somemachines: therequest content
is written to �le andtransferredto the sender's machine. Thesender checks for theexistenceof the
�le, reads it andprocessesit like a normal RPC,which wasreceivedthroughsocket communication.
It is a simpledemonstration of how different transport methods canbe used within a singlerequest
channel.

RepeatedRPC Execution: In thecase thata stage of theRPCexecution fails, therequest handler
hasseveral possibiliti esto handle sucha failure. An unsuccessful sendoperation is repeatedseveral
times,until the sendprocesssucceeds or the allowed number of retrials is exceeded. Eachof the
open-stateshasavariable,which de�nesthemaximumnumber of timesthatthestatecanbeassigned
to thesamerequest. A statuscounter tracksthenumber of unsuccessful sends. If the request hasno
moreresendsavailable, it is set to REQFAIL ED, otherwise it is requeuedwith REQSEND OPEN.
A new resend attempt is madeafter a wait period. With the samemotivation asin TCP/IPwe use
exponential back-off to circumventproblemsof temporarily deadnetworks or stalledapplications. If
a client is requesting an unknown RPCmethod, it doesnot help to repeatedly call to this method.
However, therearecases, whererepeatedexecution canhelp:

� Storagespacewhich �lls up during a copy operation, but is freedover thetimescale of hours.

� A service which is busyanddoes not receive incoming socket communication at themoment.

6.6. REQUESTHANDLING STATES 65

� A failing network connection, which is reestablished within a foreseeable time.

In general, treating failureswith repeatedexecution makesonly sense, if the problemthat leadsto a
failure is of temporary nature. At this point, we have no meansto predict theusefulness of repeated
RPCexecutions.

REQ_DONE REQ_FAILED

REQ_METHOD_OPEN

REQ_METHOD_BUSY

REQ_METHOD_FAILEDREQ_METHOD_DONEREQ_SEND_LOCKED

REQ_SEND_FAILED

REQ_FEEDBACK_OPEN

REQ_FEEDBACK_FAILED

REQ_SEND_DONE

REQ_SEND_OPEN REQ_OPEN

Initial States Final States Method StatesCommunication States

Figure6.5: Thestatediagramfor therequest handler. Requestcanentertheprocesscycle asoutgoing mes-
sagewith stateREQUEST SENDOPENor asanincoming requestwith REQUEST OPEN. Final statesareRE-
QUESTDONEandREQUESTFAILED.

6.6.3 Outgoing RPC Messages

An outgoing message is generatedeither by a service requestor by a reply to a previously received
RPC2. If a requestis sentout for the�rst time, thehandler opens a new request channel. If a request
replyis sentout, achannel wasalready completedwith theincoming request. For outgoingmessages,
thehandler hasto do thefoll owing tasks:

1. Thehandler receivestheinstruction to senda RPCrequest from a applicationor service.

2. The handler receivesa reply value from a RPCfunction andreturns this datato the original
client.

3. In bothcasesthehandlerstartsor updatesthechannelstructure,which is used to trackthestatus
of theoutgoing request.

4. Thehandler sends therequest to desired service host.

5. Thehandler supervisesrepeatedsends in thecaseof failure.

2Repliesarealsorequests

66 CHAPTER6. THE REQUEST HANDLER

Outgoing Message States: As shown in Figure6.5,a message which is to besentout by thehan-
dler enterstherequestpool with theinitial stateREQUESTSENDOPEN, indicating that themessage
is completeandcanbe send. The request handler which traversesthe requestqueue markssuchan
entry asREQUEST SENDLOCKEDandattemptto sendit. If the handler could bind to the remote
peerandthesendwassuccessful, thesendrequestis markedasREQUEST SEND DONE. If thesend
operation failed, the request is set to REQUEST SENDFAI LED andthe error counter is increased.
If the error counter hasnot exceeded the error limit for this state, the request is requeuedas RE-
QUEST SENDOPENwith a timeout, which avoidsanimmediateresend. Thetimeoutpolicy cane.g.
follow the exponential back-off found in the TCP/IPprotocol. If the error limit is exceeded,the re-
questis marked asfailedandno further attemptsaremadeto deliver themessage.A notedpreviously,
thescheme's sendprocedureis not tied to HTTPbased communication: RPCtransfer through�les is
a crudeway to circumventrestrictive �re wall policies(seesection.6.6.2).

If amessageis sentandareply is expected,therequestis marked asREQUESTFEEDBACKOPEN
uponsuccessfuldelivery. This indicatesthata return message is expectedandtherequestchannel is
kept open. The requeststays in this stateuntil a message arrives in this channel or until the reply
wait time expires. In �rst case,the reply is usedto updated the request pool entry: the stateis
switchedto REQUESTOPEN, theRPCmethod thatdeals with thedatareply is called andanew RPC
cycle is entered. If the feedbackstateis not resolved in time by an incoming reply, it is marked as
REQUESTFEEDBACKFAIL EDand�nally enters the REQUEST FAILE D state, which closes this
channel. Whena reply arrivesto late andthe request channel is already closed, an error messageis
returned,providedthatthesourceis expecting feedback.

Err or handling: Wetreaterror messagesarehandled like normal outgoing messages.If no special
RPCis known for the target of the error message, a default RPCmethodis assumed. This default
request only acknowledgesthe arrival of a message andsetsthe stateto REQUEST DONE but does
not provide any RPCoperation. The request handler attempts to deliver the error messages like a
normalrequestuntil all successor trials exceed thelimit. Error message transmissions never solicit a
reply from thetarget to avoid avalanchesof reply messages. If a requesttransmission succeeded and
feedbackis expected(REQUEST FEEDBACKOPEN), we do not resend therequest if this statetimes
out. Thereis usually something seriously wrong if thereceiving sidegetstherequestbut is not even
ableto return anerrorcode. In such a case, we leave it to theprogram layer (e.g.theapplication) to
initiate another requestattemptor try out anotherservice. Therequest handler itself hasnot enough
information to draw suchconsequences.

6.6.4 RequestExpiration

ThestateREQUEST DONE or REQUESTFAILE D is the�nal statefor all requests.If sucha stateis
reached, therequest channel is closed andtherequestsareno longer actively pursued.Therequest is
not immediately deleted from the request pool, but kept in a passive modefor a certain time period.
After this time, therequestis deleted.

Requests with a �nal statecannot be deleted immediately for the foll owing reason: an attached
application may want to �nd out about the request which it hassubmitted to the request pool. It
canmonitor the stateof the local requestwith the request identi�er that is received. If the request
is removed from the queueimmediately, the application may not be able to perform sucha query.
For this reason, the request is left in the databasein a passive mode: it canbe looked up but cannot
be modi�ed. After a certain period (REQDONE WAITTIME and REQFAI LED WAITTIME), the
�nalized requestsarepurgedfrom thepool.

6.7. REQUESTHANDLER DESIGN 67

1 char � Wxml NewRequestXML (Gr i dObj ect � to ,
2 XMLRPC VALUE � xml content ,
3 i n t repl ymode ,
4 char � method name ,
5 char � method name f b) ;
6

7 / ��� Example : sendi ng a pi ng r equest ��� /
8 reqk ey = Wxml NewRequestXML (p i ng c l i en t , xcontent ,
9 REPMODE RESULT,

10 ” pi ng ” , ” pi ng ok ”) ;

Listing 6.1: Wxml NewRequest andWxml NewRequest XMLaretwo routines,which requesta service.
Both routines specifytheremoteserviceandthelocal procedure,which handlesa reply. Theusercanprovide
Grid Objectsor anXML document(shown above)asanargumentto therequest.

6.7 RequestHandler Design

A requestchannel contains informationon the two participants andthe properties andstatus of the
request. The request is storedin a requestwrapperandaddedto a RequestPool. This pool stores
all requestswith their different states. It is the requesthandler's responsibility to traversethe pool
and treat the requests depending on their status. A request is addedto the pool if a new channel
is initialized; they areremoved from the pool if a channel is closedor if the channel experienced a
time-out.

Working andpruning therequestpool is executedin regular intervals.Adding requeststo thepool
is event triggered,either by receiving a messagefrom theHTTP transport layeror by a sendrequest
by theapplicationcode.

6.7.1 RequestHandler API

Therequest handler providesa simpleAPI for thorns to posea request. In Listing 6.1,theprototypes
for the two C routinesWxml NewReques t andWxml NewRequestXM L areshown,which create
a request and hand it over to the request pool. Both routines specify the request target through a
Grid Object, and the reply modethrough an integer value. The also pass along the nameof the
remoteprocedurecall which is executed remotelyandRPCwhich is executedlocally to processreturn
information. Thetwo routinesdiffer in thecontent format,which is a Grid Object(conte nt) in the
�rst caseandanarbitrary XML structure (xmlco ntent) in the latter. Grid Objects canbeusedin
a number of situation, for all othercasesthecustom XML structureis offered. Both routinesreturn a
string value, which identi�es therequest in thepool. It canbeusedto monitor thestatus of the local
request. Theexample shows thecall to make a ping requestto anapplication, describedby theGrid
Objects pin g cli ent . Theclient processestheping RPCandreplies with a RPCrequestthat is
processedby the ping ok RPC. Listing 6.2 shows the program,which sendsthe ping reply to the
requesting application.

6.7.2 Example RPC routines

A RPCis registeredwith therequesthandler by storing thefunction pointer andassociatethatpointer
with the RPCmethodname.An incoming request speci�es the message nameandthe function can
beexecutedwith theappropriate argument. In listing 6.2 we illustratea RPCroutine: theping-RPC
�rst extracts the requestcontent, marked <Request Cont ent> , </Req uest Cont ent> . It then
looks for a string value, which is marked <pke y>, </p key> . Theping client returns this valueto

68 CHAPTER6. THE REQUEST HANDLER

1 XMLRPC VALUE r pc pi ng (XMLRPC SERVER ser v er ,
2 XMLRPC REQUEST xreq ,
3 voi d � twrap)
4

�

5 x cont ent = XMLRPC VectorGetValueWi thID (xdata , ” RequestContent ”))
6 xV al = XMLRPC VectorGetValueWi thID (xcontent , ” pkey ”) ;
7 key = XMLRPC GetValueStri ng (xV al) ;
8

9 i f (! key) r et u r n (NULL) ;
10 el se r et u r n (Wxml RetStr i ng (0 , key)) ;
11 �

Listing 6.2: ping : a RPCroutinewhich repliesto ping requests.Theroutinereceivesxml message,extracts
thecontent returns thevalue thekey-valuepair.

the request handler (retur n (Wxml Ret Strin g(0, key))). The handler propagatesthe data
backto theapplication thatrequestedtheping RPC.

6.8 Futur eWork

The request pool approachwas chosen to permit better server performancelater by threading the
work on therequestpool. Thecurrent request handler runsunthreadedandexperiencestheexpected
performancerestriction under heavyload. In a future implementation, multiple threads operateon
therequest pool, yielding a higher throughputof RPC.Switchingto a professional server framework
should eventually be considered. Note we gain a great dealof �e xibil ity by running the servicesin
userspace, which mustbegivenup if Webserver basedrequestframeworksareused.

This Request Handleris intended to be usedasa work benchto experimentwith different error
handling strategies.We found that repeatedsendsareessential in anapplication environment, where
unthreadedcodes simply refuseto accept RPCreplies while they arebusy crunching numbers. The
ability to retrieve information on the various stagesin a RPCexecution requires too much logical
overhead to beof use.While it alwayseasyto instrumentandtime differentphaseswe found it a lot
morechallenging to derive proper consequencesof a detectedbehavior. It is easyto determinethata
request hasfailedor takesconsiderable time. It is currently impossible to saywhy it is behavingthis
way andto derive alternatives.

Editing ServiceOperations: Thecurrent request handlerdoesnotprovideanRPCinterrupt system
to modify serviceoperationsin progress.This featureis essential to cancel e.g.�le transfer operations.
To allow clientsto edit ongoing service execution, theserver returns anidenti�er to theclient before
the process starts. The “Reply on methodstart” modeof the request handler (seeSec.6.4.3) can
directly support “two phasecommits”by returning therequest ID. Theclient usestheID to terminate,
pauseor resume a service process. We regard this asan important feature for web serviceswhich
perform long-termoperations.

Chapter 7

AIS and Fundamental Grid Peer Services

This chapter introducesthe Application InformationService(AIS) anda migration service environ-
mentbasedon the“Grid PeersService” concept asde�ned in Section4.4. It is basedon our analysis
of Grid environments(Chapter 2) andmotivated by thedevelopmentof a fault tolerantservice infras-
tructure (Chapter 4). As shownin Figure1.1 on page2, high-level servicesarebuilt incrementally
from theunderlying Grid infrastructureandfrom fundamentalservices. TheAIS providesinformation
service capabilities to all levels. Client applications communicatewith theservicesandAIS directly.
In this chapter we start with the introduction of the AIS andfundamentalservices,followed by the
description of complex high-level servicesin Chapter 8. The servicesareimplementedasthornsin
theCactusCodeframework thatoperatewith therequest handler introducedin thepreviouschapter.

GPSEnvir onment: Wemake no special assumptionon thecomputer hardwarewhich supports the
GPSapplications. In particular, we do not restrict ourselves to homogeneoussetsof machinesand
we make no requirementson thequality of thenetwork, except that it is usable from time to time. If
possible,we reuse existing Grid infrastructure,like Globusor batch system.We have no requirement
on the Globus version, however at the time the experiments wereconducted, Globus v1.4 wasmost
thewidely deployedversion1. TheGPSapplicationsareexecuted in userspace, they arenot hidden
behind a webserver like Apacheor WebSphere. They do not communicatethrough theHTTP port
80, but in the public port range, usually found above 2000. Port numbers arenot pre-de�ned and
canbeadaptedto thelocal environment. Theusermodeapproachwaschosento experiment with the
automaticrestart of serviceapplicationsin thecaseof failure.
In this chapter we take a detailed look at thefoll owing services:

� Application Inf ormation Server (AIS): TheAIS actsasaninformationdirectory for theGPS
andis a central part asin any distributed client/server environment. The AIS differs from the
otherpeerservicesin thesensethatit servesasthecentral registry for applications,servicesand
�les. Applicationcanregisterandderegisterservices,�les, machinesetc.throughGrid Objects.
Applications canquery the AIS for the existence, type, andstatusof compound objects like
resource,�les, etc.

� Grid Ping Service: A simple service construct which is inspired by the ping [74] command
foundonmostUNIX systems.TheUNIX ping allowsauserto checktheavailability of ahard-
wareandderive somebasic information on thequality of thenetwork interconnect. Grid Ping
is a web service that intendsto provide a similar functionality for applications. Applications,
which featuretheGPSclient interface,canbepingedto check if theprogramis upandrunning.

� Grid File Server (GFS): TheGrid File Serverprovidesbasic�le managementoperationsonthe
Grid. Its servicesallow to copy, delete andmove directories and�les from onehost to another.
The Grid File Server interfaceswith transfer methods like secure copy(sco) or GSI-scp. The
GFScanaswell accommodateadvanced�le transportation mechanism, suchasgridftp [3] or
secure ftp (sftp).

1Thelatestreleaseis Globusv2.2,Globusv2.0 is consideredstable.

69

70 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

� Grid Shell Server (GSS): The GSSexecutes commands on a remotemachine. Similar to
the GFS, it hasknowledgeabout access protocols, like rsh, ssh, GSI-ssh. The GSShasthe
special task to start or submit programson remotehosts. Besides execution through remote
shells,Globusbased submissionmethodsthrough GRAM[49] (using theglobusruncommand)
in conjunction with RSLscripts canbeused,if they aresupportedon thetarget system.

� Grid Resource Service (GRS): This service providesinformationon compute resourcesand
servesasaninterfaceto thedifferent resourceselection systemsalready developed.Information
canbesuppliedmanuallythroughparameter�les or resourceinformationcanbeextractedfrom
MDS databases[25]. The GRSprovidesan API to matchresourcesthrough Class-Ads [22].
Section5.9.6describes,how Grid Objectsareusedto relatethedifferent de�nitio n of resources.

7.1 Application Inf ormation Server

TheApplication InformationServer (AIS) servesastheregistrationcomponentin thetriad of service
requestor, provider andregistration. It is constructed asa web service, which canbe contacted by
applications to query thedatabaseor deposit object information. TheAIS featuresa simplegraphical
userinterface,which allows a userto monitor the state of objects in the database.The AIS (unless
it operatesasa personal AIS, explainedbelow) is designedto becontactedprimarily by applications.
The AIS canactively track servicesby using the Grid Ping. In Figure7.1 we demonstratethe web
browserinterfaceto theAIS: thetableshowstwo serviceapplications,which haveregisteredwith the
AIS. Thetop applicationis running on ori gin. aei.m pg.d e andprovidescopy, shell, migration
andspawn services. Thesecond applicationrunson mat.r uk.c uni.c z andis a scienti�c simu-
lation. Both applicationsarestoredasGrid Objects.Thesimulation canbeactively tracked,sinceit
registersaGrid Pingclient interface.Thesimulationannouncesdifferent accessmethodsto introspect
numerical data: Isosurfacestreaming, raw dataandthe application's own web page. The AIS plots
thecurrent location of (migrating) applicationsin a map,shown at thebottom. TheAIS cantrigger a
migration or checkpointeventremotely, if theclientsupports theappropriateRPCinterface(not listed
in thetable). Thepassword authentication for suchsignaling is shownin theright mostcolumn.

7.1.1 Primary AIS

In adistributed serviceenvironment at leastonecentral, primaryregistry mustexists,whichresembles
therootof astructured informationserverhierarchy. Weillustratesuchahierarchyin Figure7.2. This
servermustbeknownto all clients.All otherservices,includingadditionalAIS canbederiveddirectly
or indirectly from thisprimaryregistry. Theprimary AIS is notnecessarily asupersetof all registered
servicesbut servesasthe�rst contactpoint for a client.

Having asingle instanceof aprimaryAIS posesasingle point of failure. Thisproblemis intrinsic
to the topology in peernetworks. It canbecircumventedby deploying redundantprimary AIS with
the samecontent andmaking theseAIS known to the clients. A client learns about the redundant
AIS by requesting this informationthrough ais sear ch . TheAIS mayalsosendunsolicited update
information to registeredclient applications. Multiple instancesof theAIS mustmaintain a synchro-
nizeddatabasecontent. If synchronization canbe preserved,a client maycommunicatewith any of
the AIS. In reality, databasecontent is not propagatedfastenough to be in synchronization: While
missingAIS entriescanstill beretrievedby a client from theotherAIS, it becomesa severeproblem
for a client to distinguishbetweenstaleandvalid data.

Deploying different typesof AIS besidesthe primary AIS canimprove the performanceof AIS
communication. ThevariousAIS typesmayregisteronly certain aspects: someAIS canbededicated

7.1. APPLICATION INFORMATION SERVER 71

Figure7.1: TheApplication InformationServer(AIS) is adatabasewhichstoresinformationonservices,�les
or resources.Thebrowserinterfaceof theAIS shows severalservicesanda usersimulation.Theright column
shows themanual controls for checkpointandmigrationsignaling.

72 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

pAIS
other GPS pAIS

AIS AIS AIS

Root Level with
Redundant primary AIS

Specialized AIS

Registered Clients

primary AIS

Figure7.2: Informationregistriescanbeoperatedin ahierarchical structure:theprimary AIS is therootserver,
which containsinformationon otherAIS services.Thevarious AIS mayhave different content, like selected
GPSinformation(left), informationon all services(center) or referencesto personal informationservers only
(right).

to serve fundamentalservicesonly, others monitor high-level services,store �le informationor track
personal AIS. All datais stored asGrid Objects.

7.1.2 PersonalAIS

The personal AIS (pAIS) serves as a private information server to usersand re�ects the scienti�c
content of applications. For migrating applications, researchers cannot directly determine, where
their application is executing or whereit will relocateto next. A pAIS is usedto inform the userof
thecurrent state of his simulation. ThepAIS shows andvisualizes data,which hasbeentransmitted
by a client application. Seethegenomeanalysisapplicationfor a demonstration of this capability in
Section9.3.

7.1.3 AIS interface

AIS interfacemethods are remoteprocedurecalls, which candeposit and retrieve Grid Objects or
setthe state of an entry. Table7.1 lists all RPC's that aresupportedby the AIS. An object is added
to thedatabasethrough theais anno unce methodwith anGrid Objectasargument. Themethod
is unaware of the Grid Object's content. The AIS can actively track the statusby pinging those
applications which have announceda ping client methodto theAIS (seeSection7.2.1).Active status
tracking allows the AIS to detect hanging programsor deadnetwork connections, which render a
remoteserviceuseless:It e.g.permitstheAIS to verify theavailability of aGrid Object (�re walled?)
by pinging it before publishingtheinformation.

A Grid Objectcanbe setactive/inactive with the ais set stat us method, independently of
whethertheobject describesa �le, a service,a resourceor collection of those. An migrating applica-
tion e.g.declaresits status inactive prior to migration andresetsit to active afterrecoveringon a new
host.Machineentriescanbeinactivatedasthey areshutdown or losenetwork connectivity; resource
entries which describe queueproperties canbe inactivatedwhenthe queues areturned off. Simple
key-value pairs canbe addedandretrieved to the databasethrough the ais inf o, ais get info
method.An examplefor a key-valueentryis thecurrent iteration of anapplication.

The interfacemethods (Table7.1) satisfy the requirementsof themigration andspawn scenario.
Otherscenariosmayrequire additional databasemethods.

7.1. APPLICATION INFORMATION SERVER 73

AIS method Arguments Description

ais announc e Grid Object
Registrationof a Grid Objectwith theAIS
database.

ais update Grid Object
Updating of aGrid Objectin theAIS
database.

ais destroy Grid Object
RemovetheGrid Objectin theAIS
database.

ais setstat e Grid Object, integer
Settheapplication to a differentstate(e.g.
declareinactive,inoperational,active).

ais info key, info string
Depositinginformationby simple
key/valuepairs.

ais info2fi le info string, MIME Type
Append informationstringto a �le and
announcethe�le with thespeci�edsuf�x
andMIME Type.

ais search
in: Grid Object, count
out: Grid Objects

Returnsthenumber of Grid Objects,
whichmatchtheinformationof input
argument.E.g.usedto searchfor a
speci�c servicetype.

ais get
in: ID
out: Grid Objects

Returnsthespeci�edGrid Objects.

ais getstat e
in: ID
out: state

Returnsthestatusof anAIS entry. This
methodis e.g.usedto verify theactivity of
servicesor validate�le pro�les.

ais getinfo
in: ID
out: key-value

Returnsa speci�edkey-valuepairs.

Table7.1: ApplicationInformationServer: webserviceinterface to depositandretrieve Grid Objects.

74 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

Pingmethod Arguments Description

ping
in: ID
out: ID

Client interface:receivesaping-ID and
returnsthetransmittedID.

ping ok in: ID
Server interfaces,whichreceivesthe
returned pingrequest, timesandevaluates
theping response.

ping rec in: Grid Object
Server interface,whichreceivesthe
applications to pingasaresultsof a
ais search requestto theAIS.

Table7.2: Grid Ping:WebServiceInterface.

7.1.4 RelatedInf ormation Dir ectories

Information servicesexist in any distributed environments. We have discussedseveral solutions in
Chapter3, like Globus MDS, UDDI andWSDL. ThedataGrid community is using�le replica man-
ager in their distributed �le environment to monitor the data �les (and its copies) of high-energy
physics experiments.Our AIS differsfrom thedescribedsystemin therespectthat it primarily stores
Grid Objects asa “neutral” format,but with arbitrary content. It is not intendedto store an isolated
aspect, like servicesor resources. The AIS actslike a datawarehouseandallowsservices,applica-
tionsandusersto deposit andretrieve information. Theinformation formatis de�ned (Grid Objects),
while thecontentof those objects is arbitrary andonly relevantto theclients.

7.2 Grid Ping Service

TheGrid PingServiceaddsa“heart-beat” client to anapplication,whichis similar to thepingprogram
foundonmostUNIX systems.TheGrid PingServicesprovidesasimilar functionality to applications.
A Grid PingServer sendsa ping request to anapplication, which hasthePingclient serviceenabled.
The client replies with a return requestindicating that it hasreceived the message. The Grid Ping
Server usesthis informationto determinewhether anapplication or anotherserviceis availablein the
sensethat it is running andis reachableby network. Currently it cannot distinguish between a failing
machine, network or application. A future version distinguishesapplication errors from a machine
or network failuresby proper interpretation of socket error codes. Note thatusing theUNIX ping is
problematicsinceICMP packetsarefrequently �ltered.

7.2.1 Ping Interface

Ping client andserver provide an individual RPC,listed in Table7.2. The server sends a ping re-
questto a client interfaceandtheclient RPCreturnsa reply. (TheexampleRPCcodewasshown in
Section6.7.2).

7.2.2 Application Monitoring and Fir ewall Detection

The Application Information Server canbe setup to usePing Services in order determine whether
the registered servicesandapplications canbe contactedandareopen to RPCcalls. The temporal
communication graph 7.3showsthisoperationmode:A client registers its ping interfacewith theAIS
(ais anno unce) . ThePingServer queries(ais sear ch) theAIS for these ping client interfaces
andstartsto ping the applications (pin g). The Ping Server informs the AIS about an active state

7.3. GRID FILE SERVER 75

on successor an inoperational state for multiple ping failures.(ais sets tate). TheAIS updates
its databaseaccordingly. The ping server canbe used in various con�gurations, e.g.aspart of the
automatic recovery shownin Section9.4.4. In thespirit of Peer-To-Peer, theping server canalsobe
used by applicationsto checkfor theavailability of any other service, like anAIS.

{

{

Ping Server Ping Client

ais_announce

ping_rec

ping

ping_ok

ping

ping_ok

ais_search

default_ok

Ping Process

Ping Client
Requesting / Recv.

Ping Recv./Reply

Ping Recv./Reply

AIS

Database Update ais_setstate

ais_setstate
Database Update

Announcing Ping Client

Database Update

Figure 7.3: The Grid Ping Servicedetermines the accessibilityof an applicationor serviceinstance. An
applicationmaybecomeunaccessiblethroughmachine or softwarefailureor through network problems. The
AIS utilizesthepingserver to actively trackthestatusof servicesor userapplications.

Fir ewall Detection: ThePingServercanbeusedto checkfor theexistenceof �re wallsandscanfor
open ports. For a �re walledapplication it is not easy to detectwhetherportsareaccessibleby outside
applications. An applicationcandetect this by acting asa Ping Server andsending ping requeststo
a persistentclient, e.g.a primaryAIS. If theAIS' replies fail to getback,theapplication canassume
that it is �re walled andtake appropriatemeasures: it caninform the AIS that active tracking won't
work but thattheit will updateitself to theAIS morefrequently to signal activity.

7.3 Grid File Server

TheGrid File Server(GFS)offersfundamental�le managementlikecopy, moveanddeleteoperations
ona �le, acollection of �les or directories. TheGFSdoesnot provide theseoperations itself, but uses
the existing infrastructure (asshownin Figure1.1, on page2). In Figure7.4 we show the process
of retrieving a GFSfrom theAIS andrequestinga �le copy operation. Theargumentsof theservice
requestsareGrid File Objects, which specify e.g.the source andtarget �les for copy operations, or
thetarget �les for deletions.TheGFSretrievesinformationabout thesupportedaccessmethodsfrom
theAIS.

7.3.1 GFS Interface

Table7.3 lists the operations, which areusedby a migration andspawn service. Argumentsto the
GFSinterfaceareGrid Objects.TheGFSmeasuresthe�le transfer ratesfor copy operationsasshown
in Figure7.5. We intend to make this datapart of the selection processfor machines: in future we

76 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

{
ClientGrid File Server

ais_announce

client_rec

ais_get

Copy Process

Database Retrieval

Receiving Copy Server

Requesting Copy Server

Announcing Copy Server

default_ok

ais_search

gfs_rec

Requesting Copy Op.

Receiv. Information

Requesting Access
InformationDatabase Retrieval

gfs_copyfile

default_ok

AIS

Database Update

Figure7.4: TheGrid File Server(GFS)providesvarious�le managementmethodsto clients.After registering
with anAIS, a client applicationrequeststheFile Server from theAIS. Theclient sendsa copy request to the
GFS.If theGFSis notableto determinetheaccessmethods for sourceandtarget �le, it queriestheAIS for this
information.Thereturnvalueof a �le operationis sentbackto theclientasa default reply.

GFSmethod Arguments Description

gfs copyfile
in: SourceGFO,Target GFO
out: error code

�le, directory copy operation

gfs movefile
in: SourceGFO,Target GFO
out: error code

�le, directory moveoperation

gfs delfile in: Grid File Object �le, directory deleteoperation

gfs rec in: Grid File Object receiving AIS data

Table7.3: Grid File Server: WebServiceInterface

want to ignore hosts with inferior network that cannot be supplied with data�les in an acceptable
time.

7.3.2 Supported Infrastructu re

TheGFSitself doesnot copy �les, but usesthe techniquesthat areavailable on the sourceor target
machine. Source andtarget machines do not needto support the sametransfer methods, sincecopy
operations arecarriedout in a two-way process. The information on the methods is either part of
thecopy arguments(servicepro�le in a Grid Objects) or is retrievedfrom anAIS. Grid File Services
support copy andmove methods with thesyntax for remotecopy (rcp), secure copy(scp), secure �le
transferprotocol (sftp) andGlobusSecure Infrastructure-copy (GSI-scp). Deleteoperationsarebased
on shell access which usesremoteshell (rsh), secureshell (ssh)andGSI-ssh.

Authentication: Depending on theshell and�le operation, authenticationis achievedthrough pub-
lic/private key authentication for ssh/scp. For Globus based access a Globus proxy is used. We
introducedtheGlobusSecurityInfrastructurein Section3.1.1.

7.4. GRID SHELL SERVICE 77

Figure7.5: TheGrid File Server measurestransferrates.In a futurewe want to make this bandwidth dataa
partof theresourceselectionprocess.

Futur e Infrastr ucture: GridFTP2 is a high-performance, secure, reliable data transfer protocol
optimizedfor high-bandwidth wide-areanetworks.TheGridFTPprotocolextendsthetraditionalFTP
with featureslike GSI authentication, parallel streamsandthird-party transfers. In conjunction with
Reliable File Transfer (RFT)3 GridFTPachievesa high-degreeof fault-toleranceon both client and
server side. We are looking for exactly this kind of service to stage migration �les of signi�cant
size. Interfacingwith GridFTPpromisesa far moreef�cient �le transfer thanwith the rcp andscp
operations. Sincetheunderlying copy operationsareabstractedfrom theGFSservice interface,such
additional copy operationscanbequickly added. TheGFSwill alsobeableto support thetwo-phase
commitof copy requests(sec.6.4.3).

7.4 Grid Shell Service

TheGrid ShellService(GSS)providessimpleshell access to remotehostsandexecutestherequested
commands on behalf of the user. The target machine is speci�ed asa Grid Objectandmay contain
pro�les thatdescribe thesupportedaccessmodes.If nosuch informationis speci�ed, theGSSqueries
theAIS for ServicePro�les, which de�ne theaccesstypes.

7.4.1 GSSInterface

Table7.4 lists theoperationsof theGSS.Like theGFS, theGSSrelieson existing servicesto access
a site.Wearecurrently using rsh, sshandGSI-sshbased accessmethods. If available,weuseGlobus

2http://ww w.globus.or g/datagrid/g ridftp.html
3http://ww w-unix.mcs. anl.gov/ � madduri/RFT.htm l

78 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

GSSmethod Arguments Description

gss shellcmd
in: CommandString, Grid
Object
out: error code

Argumentspeci�esaccessmethod and
targetmachine,methodexecutesa
command on thespeci�edhost.

gss submit
in: Grid Objects
out: error code

Submitsa job to thespeci�edhost(s).
Grid Objectspeci�essubmissionsystem,
targetmachine,resourcerequirementsand
startupsequence.Multiple Grid Objects
areusedfor ameta-computingexecution.

Table7.4: Grid ShellServer: WebServiceInterface.

GRAM services(globusrun) to launch applications(seebelow).

7.4.2 Job Submission

In addition to simple shell access, the Grid Shell Servicestarts applications on remotehosts. The
GSSdoesnot needto run on thesemachines,aslong asit caninterfacewith them.Jobsubmission is
possible through traditional batchsubmissionsystemsor GlobusGRAM services.Thesesubmission
interfacesusually require the speci�cation of resourcessuchasmemoryconsumption, runtime,etc.
The Grid Objectmustcontain a Resource Pro�le to details the resource characteristics of the appli-
cationandto �ll out batchscripts. Theexecution commandis speci�ed in the resourcepro�le 's run
commandattribute. The GSShasa simple interfacesystemto register moduleswhich generatethe
batchscripts for the various systems. If theGSScannot submita job, it returnsan error codeto the
requestingapplication.

Figure7.6 showsthe resource selection through a web form of the Grid Resource Service, dis-
cussed further down. The chosen resourcesare usedto perform a meta-computation across three
hosts. TheGrid Shell Servicerecognizesthe threemachinesandtheir Globus serviceandgenerates
the appropriateRSL script. Below, we show the RSL script, which wasassembled by the resource
selection shown in screenshotin Figure7.6:

+
(* origin.aei .mpg.de *)
(&(reso urceManagerC ontact="orig in.aei.mpg.d e")

(count=16)
(jobtype=m pi)
(label=414 935.813973_0)
(environme nt=(GLOBUS_DUROC_SUBJOB_INDEX 0))
(directory =/data/sc200 1/WORM2)
(executabl e=/data/sc20 01/WEXESERVER/cactus_w2- 32)
(arguments =/data/sc200 1/WORM2/WormNG4F_man_W414935.813973- 856.par)
(stdout=/d ata/sc2001/W ORM2/LOG_W414935.813973. log)
(stderr=/d ata/sc2001/W ORM2/LOG_W414935.813973. err)

)

(* fermat.cfs .ac.uk *)
(&(reso urceManagerC ontact="ferm at.cfs.ac.uk ")

(count=4)
(jobtype=m pi)
(label=414 935.813973_1)
(environme nt=(GLOBUS_DUROC_SUBJOB_INDEX 1))
(LD_LIBRAR YN32_PATH

/opt/scsl/s csl/usr/lib3 2/mips4:/opt /scsl/scsl/u sr/lib32:
/opt/mpt/mp t/usr/lib32/ mips4:/opt/m pt/mpt/usr/l ib32:/opt/MI PSpro
/MIPSpro/us r/lib32/mips 4:/opt/MIPSp ro/MIPSpro/u sr/lib32)

7.4. GRID SHELL SERVICE 79

Figure7.6: Grid Shell Service: the GSSsupports various waysto launchapplications. It is ableto launch
a meta-computing jobs by composinga Globus RSL script andsubmittingit. This resourcecon�gurationis
composedmanuallyin theresourceservice.It launchesa 36 processorsimulation,of which 16 processorsare
usedon origin .aei.mpg.de , 16 processorson modi4.ncsa. uiuc.edu and4 processorson fer-
mat.cfs.ac .uk .

(LD_LIBRA RY64_PATH
/opt/scsl /scsl/usr/li b64/mips4:/o pt/scsl/scsl /usr/lib64:
/opt/mpt/ mpt/usr/lib6 4/mips4:/opt /mpt/mpt/usr /lib64:/opt/ MIPSpro
/MIPSpro/ usr/lib64/mi ps4:/opt/MIP Spro/MIPSpro /usr/lib64)

(LD_LIBRA RY_PATH /opt/MIPS pro/MIPSpro/ usr/lib))
(director y=/ohome10/ zzallen/WORM)
(executab le=/ohome10 /zzallen/EXE REP/cactus_w 2-32)
(argument s=/ohome10/ zzallen/WORM /WormNG4F_man_W414935.81 3973-856.par)
(stdout=/ ohome10/zza llen/WORM/LO G_W414935.81 3973.log)
(stderr=/ ohome10/zza llen/WORM/LO G_W414935.81 3973.err)

)

(* modi4.ncs a.uiuc.edu *)
(&(resourceM anagerConta ct="modi4.nc sa.uiuc.edu")

(count=16)
(jobtype= mpi)
(label=41 4935.813973 _2)
(environm ent=(GLOBUS_DUROC_SUBJOB_INDEX 2))
(director y=/u/ac/gal len/WORM)
(executab le=/u/ac/ga llen/EXEREP/ cactus_w2-32)
(argument s=/u/ac/gal len/WORM/Wor mNG4F_man_W414935.813973 -856.par)
(stdout=/ u/ac/gallen /WORM/LOG_W414935.813973 .log)
(stderr=/ u/ac/gallen /WORM/LOG_W414935.813973 .err)

80 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

Resourcemethod Arguments Description

grb match
in: Grid ResourceObject
out: Grid Objects

inputde�nesrequirements,returnsall
possiblematches.Matching performed
through Class-Ads.

grb add
in: Grid ResourceObject
out: ID

Addsa resourceto thedatabase.

grb del
in: ID
out: error code

�le,directory deleteoperationRemoves
resourcefrom thedatabase.

Table7.5: Grid ResourceServer: WebServiceInterface.

)

Although theRSLsyntax lookswell structuredandstraightforward,it maycontain alot of sitedepen-
dentenvironmentsettings. For this reason, the migration server's routine usesa RSLtemplate. The
templatecontainsa working RSL section for eachhost. The migration server replacesrun-speci�c
datalike executables, arguments,etc. and keepsthe site speci�c data. This approachallows us to
maintaina setof working RSLscripts andimport theminto themigration server.

7.5 Grid ResourceService

This section introducesthe Grid Resource Service(GRS) which interfaceswith existing resource
databases.In Section 7.5.1we introducethe basic layer, followed by a manual informationspeci�-
cationin Section 7.5.2andan interfaceto the Globus Meta Directory Servicein Section 7.5.3. The
GRSis responsiblefor storing information on compute capacities in a Grid, which canbeindividual
machines or their batch queues. TheGRSdepositsthis datain theresourcepro�le of a Grid Objects.
Resourcesareretrievedby theGRSwebservice interface.

7.5.1 Grid ResourceBase

The Grid ResourceServicesuite consists – unlike the otherservices– of serveral thorns. The Grid
Resource Baseservesasa backbonethat registersthe interface thorns,which connectto third party
resourcemanagers. Theconcept is similarto theregistrationof servicethornswith therequesthandler.
Theinterfacethornscanbecompiled into anexecutable or left out depending on whethersupport for
aspeci�c resourcelook-upmethodis desiredor not. Thebackboneprovidesthewebservice interface
for theclients.

Grid Resource Interface: Resource Basequeries the available resourcesystems in regular inter-
vals. It translatesthereceivedinformationto Grid Objectsandstoresthemin a database.It provides
thewebservice methods,aslistedin Table7.5.

Condor Class-Ads: Thegrb matc h serviceis usingtheClass-Adssystemto matchaninput Grid
Object, which de�nes the requirement,against all machine entries in the database. Details of the
matching structure and logic were explained in Chapter5 as part of the Grid Object Description
Language. TheGrid Objectsfor machinesor queuesaremappedto a Class-Ad.Sucha ClassAd for
a single machine is shown below to the left. To the right we show the resourcerequirements of an
application, alsoexpressedasa Grid Objectandthenmapped to a Class-Ad:

7.5. GRID RESOURCESERVICE 81

[[
type = "machine "; type = "job";
mem = undefine d; requirem ents = (other.proc s >= 4 &&
procs = 1; other.os == "linux");
cpuload1 = 1.240000 ;]
cpuload5 = 1.080000 ;
cpuload15 = 0.980000 ;
procs = 1;
os = "linux";
qsys = "fork";
domain = "aei.mpg .de";
host = "vidar2" ;

]

The machineresource examplewould not matchthis requirementClass-Ad,because it doesnot
provide thenecessarynumberof processors.This examplefrom a standard MDS installation andthe
screenshotin Figure7.7highlight theproblemof missingdatabaseentries, in this case, thememory
attribute hasno value and is unde�ned. The manualresource de�ni tion described in Section7.5.2
providesback-up informationin sucha case.

7.5.2 Grid ResourceManual

Grid ResourceBasein aninterfacethornthatoffersthemanualsetting of resources.It parsesa list of
resourceswhich is providedby theuser. It servesin thefollowing ways:

1. It givesthe usera simpleway of de�ning a small setof machines. Fromour own experience,
thenumber of machinescanbesmall if thesimulation requiresspecialized compute resources.
The manual setting allows a user to de�ne such a small pool. without the overhead of third
partyresourcemonitoring programs.

2. It servesasa backup informationrepository. In somecaseswe experiencedmissingdatain the
installations of resourcesystemslike MDS [25]. The manual completion of datasolves this
problem.

3. It canbe usedto supply additional data. In somecasesit is important to have special infor-
mation,for exampleabout scratch �le systemsthathave thecapacity to storelarge checkpoint
�les.

7.5.3 Grid ResourceMDS

Grid Resource MDS is an interface thorn that retrieves information from a Meta Directory Ser-
vice [25]. TheMDS is our primarymeanto gatherinformation about hostsin a Grid. Theoperation
of theMDS server wasdiscussedin Section3.1.1.We have worked with MDS v1.1. Thelatest MDS
v2.2 is partof Globus 2, which hadjust beenreleasedwhenwe conductedour experiments.

The MDS thorn requestsinformation from an arbitrary numberof userspeci�ed MDS servers.
The returned informationis translatedto a Grid Objectandstored in the databaseof the thorn Grid
Resource Base,which alsoprovides the interfaceto access the data. Figure7.7 shows the browser
interfaceto theMDS data, now stored asGrid Objects.

The MDS is designed to store resourcerelatedinformation: MDS information on the deployed
queue system allows the GMS to automatically chose the right batchsubmission syntax if Globus
GRAM is not available. We seedatabasesasan essential part in a Grid service infrastructure. Our
experiences with the MDS indicate the enhancements that would make it even moreeffective. Our
MDS querieswerequitetime intensive, takingup to a minutefor a single server. Inconsistent dataas

82 CHAPTER7. AIS AND FUNDAMENTAL GRID PEER SERVICES

Figure7.7: The MDS interfaceof the Grid Resourceservicesqueriesdifferent MDS servers. The returned
datafor eachresource is storedasa Grid Object. The browser interfaceshows someof the retrieved data.
Sometimes MDS information is not consistent(“workstation”) andincomplete. Manual completion resolves
theseproblems.

shown in Figure7.7 (machine type: “workstation”) wasanother problem. Many clusters with MDS
only reported datafor the front nodeandnot the full cluster. Theseproblemscanbe contributedto
theadministrative dif�cult iesof maintaining a distributedenvironment andarenot technically insuf-
�ciencies of MDS.

MDS could becomeeven more valuable, if it were possible to have more information in the
database: For example, on the possible accessmethods (e.g ssh,sftp) for a machine, on the host's
�lesystem andits capacities. Large �les mustbestored on special �lesystems,usually not thehome
directory. Wecurrently supply this informationmanually. Usingaping client, wecould easily deploy
a �le systemmonitor (asshown in sec.8.3), we but we feel that MDS is the adequateplace to store
�le system related information. The current implementation of MDS relieson GRIS serversto de-
posit informationin theMDS database.It would behandyto allow any authorized application (like a
monitorprogram)to deposit data(seeour discussionon datacontributionsby autonomicapplications
in Section3.7).

Our information requirementsare somewhat special, they are usually not a problem for other
scenarios. Someof these issues (like consistent MDS entries) are of administrative nature, rather
thantechnical; others (like thedatabaseperformance)havebeen addressedin mostrecent versions of
MDS. We foundMDS to beanextremely useful componentfor our serviceenvironment.

Chapter 8

High-Level Grid Migration Services

This chapter familiarizesthe reader with theGrid Migration andGrid Spawn Service.We start with
a detailed explanation of the migration service in Section8.1 andcontinue with the spawn service
in Section 8.2. We introducea service monitor in Section8.3 as a tool to supervise servicesand
applicationsandrestart themif necessary. We concludethis chapter with a discussionof openissues
andfuture research �elds for migration andspawning in Section 8.4. Migration andspawn services
exhibit a similar program �o w. Techniquesdiscussedfor migration also apply for spawning. The
migration service environmentprovidesthefollowing capabilities:

� Migration andspawn serversarecontactedby an autonomic client-application through a web
service interface,requesting migration, spawn or otherservices.

� Clientscanspecify required andoptional information asGrid Objectarguments.

� Themigration server usesredundantfundamentalpeer servicesto selectresources,stage�les
andexecutejobs. It is ableto survive failing serviceinstances.

� Themigration server'sdesign is ableto handle failuresduring themigration, either by repeating
anindividual operationor by reiterating through themigration process with a new resource.

� Themigration server offersa reliable startup veri�cat ion. It usestheAIS to determinewhether
a migratedapplicationhasrestartedsuccessfully.

� Themigration server canbeused in a variety of ways,of which wedemonstratethree in Chap-
ter 9: migration, spawning andauto-recovery.

Our approachoffersapplication-level migration to autonomicclients. While a kernel-level migration
(asdone with Condor) happenstransparently to theapplication, we require a migration interfacefor
theclient, which requeststhemigration from a server. It is theresponsibility of theclient to provide
checkpointing andbasiccommunicationcapabilities. With the threetestcases that we introducein
Chapter 9, we showthata traditional programcanbeeasily upgradedto an“autonomic” application
andperform migrations.

8.1 Grid Migration Service

TheGrid Migration andSpawn Serviceis a high-level compoundservice that relieson fundamental
services. The migration process is invoked through a RPC by an application, which hasdecided
to migrate. The migration service selects a new resource, it copies the necessary�les from the old
machine to the new oneandcontinuesthe simulation. First migration experimentswereconducted
with a prototype, calledthe CactusWorm [60]. Theexperimentswith that modelandits testbed[9]
have greatly in�uencedthedesign of this migration framework [61].

We start this section with the introduction of the client interfaceof the GMS (Section8.1.1),
foll owedby the webservice interface(Section 8.1.2). Thecomplex migration processon the server
sideis discussedin detail in Section 8.1.3and8.1.4. Section8.1.5is devotedto thestartup andfault
tolerantpropertiesof theGMSandSection8.1.6discussestypes of migration failures.

83

84 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

8.1.1 Migration Client Application

A GPSmigration client operates self-contained and makes the ultimatemigration decision, based
on local or external information. While a server cansignal a migration “suggestion” to a client, it
remainswith theclient to follow suchaproposal.A migration cane.g.betriggeredwhentheresource
consumption approaches the provided resource constraints of a queue. The expiration of granted
queuetime is suchanexample. We studied a migration condition basedon thelocal loadof a system
in [4]. Thisapproachhaspotential usefor “cycle-stealing” in interactiveenvironments. In batch queue
environments thecompute resourceis usually not sharedwith otherapplication andremains stable.

Note that this thesis is not focusing on the application's decision makingprocessthat leads to a
migration. Sucha processcanbemadearbitrarily complex. This thesis providestheservice environ-
mentandsupplies the client with an interfaceto requestmigration (andotherservices). We suggest
anddiscussbasicmigration andspawn policiesfor theclient in Chapter9.

Themajor steps of a migration for a client areshown aspseudo codebelow. Initially, the client
composes a Grid Objectthat holds information like hosting machine, resource consumption,neces-
saryrestart �les. The respective Grid Objectcontainers aredenoted(MC, RC, FC) andareattached
to the Grid Object(GO). Theclient announcethis datato anAIS (ais announce). Theclient de-
rivesthe local resourceconstraintsthat aredictatedby thecomputeenvironment:e.g.the remaining
computetime in a queue. Theclient storesthis datain the resourcecontainer of a new Grid Object:
con strG O.RC. Constraints andapplication information areupdated in regular intervals(step 3.a
and3.b). If thecurrent resourceconsumption drops belowa critical threshold (step3.c),a migration
is triggered: In a �rst steptheAIS is instructedto mark theapplication inactive (ais sets tate).
The application writes its stateto a checkpoint andrequests the migration (gms mig rate). Note
that the minimal migration algorithm consistsof the construction of the Grid Object,the call to the
application's checkpointing routineandthemigration request.Everything elseis optional.

���������	��

��
��

����������������������������������� ��!����#"�$#!%�'&(���*),+-�/.0������

GO
MC,RC,FC,SC

�1 ���2!��*���#3�4(������"�������3657�����8���6)%9/����:;�����8�����;�<���������-=?>@����A6�����

GO.MCB

��"��������	�C!��#�D�

GO.RC B

��"��������	�E��������"������F���#����"�G'�������#�

GO.FC B

G'�*$��<�������#�HA6������IJ�2!����<K/�������;��3/�����<��G'�2������3/�����#L

M�

4(��$����D�����CNC����! O(P�9�

ais announce(GO)

Q#

Repeat

Q

L �

��!����<KR��������"������F���#���D���<�����;����

constrGO.RC BTS

"���"��(���#���D���<�����	���

Q

L �

��!����<KU�������#"������F���#����"�G'���������V

GO.RC B

��"/�������	�E�������#"/�����F���#����"�G'�/���*���

Q

L �

����G'�6�����F��"��������	�E��������"������F"�����$#�F���W��!��X�������D���<�����	����

If (GO.RC - constrGO.RC Y toleranc e)
P0����������:������FOZ�����*�����[�����#�V

ais setstate(GO, inactive)
��!����2K;���#���	�ZO(�������������������\9;�<�[���X���'57���*��

GO.FC
4Z�

S

"����D�(1%��$��<�[�����#�V

gms migrate(GO)

Until
I]>^���#$��<��G_A6���*��!���)

As anenhancement theclient maysupervisetheavailabili ty of a migration server by actively pinging
the GMS or requesting frequent AIS updates. Figure 8.1 illustratesthe request sequence from the

8.1. GRID MIGRATION SERVICE 85

{
Grid Migration Client

Migration
Process

ais_announce

default_ok

AIS

gms_migrate
ais_setstate

Database Retrieval
client_rec

ais_search

Database Update Requesting Migration

Inactivating Application

Requesting GMS

Receiving GMS

Completed Operation

Operation

ais_announce

Announcing GMS

Announcing Client
Database Deposit

Server (GMS)

Client Triggers Migration:

Figure 8.1: The Grid Migration Server asseenfrom a client application: The client contactsthe AIS and
requeststhelocationof aGMS.Beforerelocation, theclientinactivatesitself attheAIS andrequestsamigration
(gms migrate). Theclient eitherwaits for thereply of theerrorcodethroughthedefault responsemethod
(default ok) or terminatesimmediately.

client's point of view. Lessimportant replies arenot shown. The GMS announcesits service to the
AIS (ais annou nce) andallows theclient to retrieve thelocation of themigration server from the
AIS by anais sear ch request.Optionally, theclient mayannounceto theAIS aswell. In theevent
of anmigration,theclient deactivatesitself at theAIS (ais set stat e) andsendsagms mig rate
to the GMS. It may then wait for the arrival of the operation result as a default responsemethods
(defau lt ok) or terminate immediately.

8.1.2 GMS Interface

The migration processappearsasa rather simpleevent to the client application consisting of single
service request,e.g.gms migr ate . Table8.1 lists themostimportantGMSservicesandtheir argu-
ments. The service calls aremadeby a client to the GMS. In mostcases, the argumentof a service
call is a Grid Object. The server respondswith a returnvalue, indicating successor failure of the
migration process.It is left to theapplication to receive andinterpret theresponse.

GMS Operations: TheGMSoffersmorefunctionality thanjust migration. Wereview thedifferent
GMSservicesaslisted in Table8.1:

� Data Announcement: Insteadof requesting an immediatemigration, the client announces
relevant datawithout triggeringa migration or any otheroperation: gms annou nce . This is
useful for applications thatcheckpoint in regular intervalsbut donotwish to migrateeach time.
An operationcanbeinitiatedanytimelaterwith arequest,specifying theuniqueID (UID) under
which thedatais stored asa Grid Object.

� Data Operation: Announced datais untyped by default. To associate the data with a certain
operation (migration, spawning, auto-recovery or storage), thedata's operation typeis setwith
gms sett ype by theclient.

86 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

{

GMS Checks
Client Status

GMS Checks
Client Status

Grid Migration Client
Server

Migration
Process

ping

ping

ais_getstate

Requesting Ping

Database Retrieval

ais_getstate

Database Retrieval

Application Host
Fails

Response Fails

Status: active

Status: inactive

ping

ping_ok
 (state: active)

default_ok

gms_rec

gms_rec

AIS

gms_announce
Announcing Migration

Data

 (state: inoperational)

Updating Database

Updating Database

Figure8.2: TheGMSprovidesanauto-recoverymode, whereit checkstheAIS for thestateof anapplication.
If theAIS reports aninoperational state,theGMS proceedsto automatically recover theapplication on a new
resource.

� Migrat ion: The client requests a migration through a gms migra te call to the GMS and
providesa Grid Objectwith thedatathat is necessaryto restart theapplication.

� Automatic Recovery: TheMigration Server canbeoperatedin a mode,whereit requeststhe
status informationof the client application from an AIS. A client, which is declared inopera-
tional by theAIS, canbeautomatically recoveredfrom theprogramstateof thelastcheckpoint.
Theapplication is thencontinuedeither on thesameor on a new host. This modeof operation
is illustrated in Figure8.2. After two successive failuresto receive theping response,theAIS
databasechangesthestatus of theentry to inoperational. TheGMS requeststheapplication's
status from theAIS andstarts themigration/recover processafter �nding theapplication inac-
tive. In this mode,regular application checkpoints mustbe announced andthe client activity
mustbetraceableby theAIS.

� Execution: TheGMS offers a simpleinterface (gms exec ute) to execute anapplicationon
a remotemachine,without startup veri�cation.

� Data Storage: TheGMScanbesetup to move theannounceddatato securestoragethrougha
gms stor e call. This is helpful in thecasethata site's queue policy only providesdisk space
to an application aslong asit is executed in the batchsystem1. The application mustensure
that thedatais moved to a permanent �le system during thebatch job. This restriction canbe
handled by scripts after programexecution – providedthatenough queuetime is left. TheGrid
Migration Service allows to dealwith those�les during runtime.

Migrati on Data: Theclient speci�es those�les in a �le container, which areneeded to restartthe
applicationon a remoteresource(e.g.parameter andcheckpoint �les). If theclient hastheability to
pro�le its resourceconsumption,it cansupply thisdatain aresourcecontaineraswell. All information
is collectedin aGrid Object,whichaccompaniestheservicerequest.Thefoll owing datais mandatory:

1For example, NCSA'squeuepolicy.

8.1. GRID MIGRATION SERVICE 87

Migrationmethod Arguments Description

gms announc e
in: Grid Object
out: ID

Input is theGrid Objectde�ning the
locationof �les ona clientmachine. The
call does notassociatea type(spawn,
migrate)with thedata.

gms settype
in: ID
out: gmstype

Setsthetypeof announceddata:
migration, spawn, storagedata.
Depending on thetype,serviceoperations
vary.

gms migrate
in: Grid Object
out: error code

Initiatesa migration. TheGrid Object
de�nesthe�les or holdstheID that
identi�es previouslyannouncedrecover
data.

gms autorec
in: ID
out: error code

Monitors a registered application and
restartsthesimulationof a failureis
detected.

gms execute
in: Grid Object
out: error code

Copiesdataandexecutesa commandona
remotemachine,doesnotperform a
successcheckwith theAIS.

gms store
in: Grid File Object,Grid
ServiceObject
out: error code

Thespeci�edGrid File Objectis moved
from thecurrent machineto anew site,
usuallyastoragefacility, speci�ed
througha Grid ServiceObject.

gms rec in: error code, Grid Object
RPCroutinesto receive thefeedback
providedto theGMS.

Table8.1: Grid Migration Server: WebServiceInterface.

88 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

� Execution Grammar: speci�es in which order an executable,parameter�les, data �les etc.
areto bearrangedto executethestartup command.In section 8.1.4we give a description of a
(simple) approachfeaturedin theGMS.

� Startup Files: theclient informs theGMS about its hostmachinewith a Machine Pro�le and
thelocation of thestartup �les with aFile Pro�le . Thespeci�cation of theaccessmodethrough
aServicePro�le is optional,since it cannot beexpectedthataclient programknowsabout such
details. TheGMS will latercompletetheGrid Objectwith theappropriate accessmethodsfor
theclient host.

� Executable: theclient speci�es thenameof theexecutable.TheGMSprovidestheexecutable
for thenext hostplatform. Pre-stagedexecutablesor a repository of executableson a dedicated
server arethesupportedmethods in this versionof theGMS.

Thefollowing information is optionalandcanbeusedto select anappropriate next machine:

� Memory Requirements: the application's memoryrequirementscan be expressed in a Re-
sourcePro�le .

� Processor Requirements: if a multiprocessor application requiresa minimumnumberof pro-
cessors it canexpressthis in a ResourcePro�le .

� Host AccessMethods: if theapplicationknows aboutthelocal machineaccess,it caninclude
this informationin a Service Pro�le .

8.1.3 Migration Server

The migration server performs the migration on behalf of a client application. It receives the mi-
gration requestandextracts the migration information from the transmitted Grid Object. The main
stepsof a migration are: Resource Selection, Data Staging, Application Launch and Veri�cati on
and Clean-Up. Thesesteps are shownas pseudo codebelow. The migratable object on the “old
host” is storedin theGrid ObjectoldG Owith theattachedMachine,Resource,File andServiceCon-
tainer, denotedMC, RC, FC, SCrespectively. “New” host informationis stored in newGO. TheGMS
makesrequeststo fundamentalpeerservicesto select resources(grb match), copy anddelete �les
(gfs copy , gfs del file), launch applications (gss sub mit)) andretrieve information from
theAIS (ais sear ch).

9;����: ����

��

4(��������: �XG'��$��<�[���*���%���

S

"����D�ZNC� ��! &(���) +-�/.0������

oldGO
�

�

���<���2�Z���������*���������#�,����� ����GU�[���*��� �#����� ���)��	�6!����D��

oldGO. MC B

���)HGU���<!������

oldGO. FC B

�<!����<K;���#���	��3/�6���<��G'��������3������#L

oldGO. RC B

��������"������X���

S

"�� ����G'���	���

oldGO. SC B

:��������#"��C������:;�*�����

Q#
��

��������G'�����(����N ��������"�������

newGOB grb_match (GO.RC)

newGO.FC B oldGO.FC
newGO.RC B oldGO.RC
newGO.UID B oldGO.UID

If NOT
I

oldGO.SC
���#�	�<�������CGU���2!��*���F�����������

�

��������G'�����-������������� ���(�#�*)%!����D��

oldGO.SC B ais_sear ch(oldGO.[MC ,SC])

8.1. GRID MIGRATION SERVICE 89

��

If NOT
I

newGO.SC
���#�	�<�������CGU���2!��*���F�����������

�

��������G'�����F����������� � ���Z����N !����D��

newGO.SC B ais_search(n ewGO.[MC,SC])

�#

���#��� 57�����F���W����N !��#�D��

gfs_cop y(oldGO, newGO)

��

9;�<�����(OZ�����������[���*���V

gss_submit(n ewGO)

�#

��!����<KH�D�<�[��"���
��������������������#�,�D�<�[���

B ais_gets tate(newGO.U ID)

�#

While
I]���������*���������#� �D�<�[�����

inactive

>^��"��������6) ��!����<K%��$ �����

�������*�����[�����#�,�D�<�����

B ais_getstat e(newGO.UID)

If
I]�������������������#�	�

inactive

� � ������
 ����������

���������
� ����$#�2�(A��*����

gfs_de lfile(newGO)
GOTO

I 9;�����

�#

OR
I 9;�����

�

OR
I 9;�����

Q

OR S

"�� �C�*�	���

End Whil e

���

If
I]��������������������� �D�<�������

active

��������� 9/��"������XA��*����

gfs_delfile (oldGO)
�

G'��$��<���������\+��

���[

If
I]�������������[���*���,�D�<�������

inactive

�

G'��$��<���������,5;O(P����

�

Theleft diagramin Figure8.3shows themigration processasa �o w chart: in eachmigration phase
externalservicesareaccessedin anon-blocking fashion. Eachmigration phaseis processedaccording
to the samestateframework, which is shownin the diagramto the right: Any of the four migration
stagesis enteredwith thestate OPEN. If thestage involvescalls to external services,themigration is
labeled ACTIVE, indicatingthata responseis expectedfrom athird party. While statesareACTIVE,
they areregularly examinedfor timeouts. If no service responseis received within a given interval,
thestateis markedasFAILE D. Depending onthestatepolicy, afailedstatecanresult in thefollowing
actions:

� Themigration phase is repeated.

� Themigration is rewound to anearlier phase.

� Themigration event is declareda failure.

Note that the failure strategies illustratedhereare implemented on top of the request failure policy
that is providedby theunderlying requesthandler (Chapter 6). Therequest handler makesbesteffort
to executeanRPCor deliver a message.

Err or Handling: Making theright choice,whento foll ow what failure policy is a �eld of research
on its own: In general it is dif�cult to make anautonomicapplicationconscious of whyanoperation
fails. The causeof a failure may or may not go away with time: e.g.a copy operation might fail,
becausethe network connection is taken down for 5 minutes or because the destination machine
does not have enough disk space. A repetition of the copy operation may bring successin the �rst
case, while it will not help in the second case.Seethe discussion on possible migration failures in
Section 8.1.6.

Themigration processcanbemadearbitrarily “intelligent” (andcomplex): a client announcesits
checkpoint �les asa security measureagainst suddenfailure and is automatically restarted whenit

90 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

Prev.
StateMS_NEXT_HOST

MS_COPY_FILE

MS_START

MS_CLEAN

MS_DONE

Grid Shell Server / AIS

Grid File Server

Grid Resource Lookup

Grid File Server
State
Next.

Request

Error External GPS RequestSuccess

GPS

State Sequence: Single State:

OPEN

ACTIVE

DONE FAILED

D

L
I
A
F

E

D

L
I
A
F

E

Figure8.3: The migration statediagram. The right diagram shows the four migrationphasesandtheir ex-
ternalserviceaccess.Thestatesof eachstepareshow on the left diagram. Themigrationfailuretreatment is
constructedon topof theRPCfailurepolicies.

fails (seeauto-recovery in Section9.4.4). Otherserversmayconstantly watchout for new resources
andsuggest moreappropriateequipmentto anapplication.

ResourceLookup: If a migration client hassupplied a ResourcePro�le with therequest,resource
requirementsarepassed along to the resource lookup service. Whenan appropriate resource is re-
turnedto themigration service,theservice checks if themachine andservice datafor the target host
arecomplete.If this is not thecase, themigration service mustsupply themissing piecesof informa-
tion, e.g.on themachineaccessmethods. Themigration service alsodeterminestheaccessmethods
for thesourcehost, if this hasnot been speci�ed by theclient. If theresourcelookup service cannot
provide anappropriate resource,themigration entryreceivesa time stampandis paused, until a new
lookup process is initi ated. This query for computer capacities canbe repeatedseveral times. An
exponential back-off providesanincreasingtimeoutperiod to avoid successive failures.

Migrati on Data Staging: If amatchingresource(e.g.aqueueonamachine) is found, themigration
datais transferredto thenew host.Sincetheaccessmethodsfor thenew hostareknown, themigration
server composestwo Grid Objects: the �rst lists themigration �les of theold host,thesecond gives
the description of the new machine. Theseobjects arepassed along with a gfs copy requestto a
Grid File Server. If all datahasbeenstagedto thenew host, themigration server proceedsto restart
thejob.

Application Restart and Veri�catio n: The GMS composesthe startup sequence and issues an
execution commandthrough a Grid Shell Server (GSS).The GSSexecutesthe restart commandon
theremotehoste.g.through a remoteshell or by going throughmiddlewareinstallations like Globus
GRAM, using the globu srun command. We currently do not usethe Globus API but issueshell
commandsremotely.

The GMS is interpreting the return value of the restart request to check if the call succeeded
technically. However, it would be shortsighted if the GMS identi�ed a positive return code with
a successful restart of the application for several reasons: If the applications starts off, but fails and

8.1. GRID MIGRATION SERVICE 91

shutsdown later, themigration serverwouldassumethattheapplicationis running, while it is actually
dead. Furthermore,Globusexecution methodsprovideambiguouserror messages,which aredif�cult
to interpret,especially for service applications.

The GMS expects the restarted application to announceitself to the Application Information
Server. TheGMSqueries theAIS until it receivesanactive-stateresponsefor themigration client. In
this casethemigration server assumesthattheapplicationhasprogressedfarenoughinto its program
�o w anddeclaressuccessful restart. The migration server can in theoryping the restarted applica-
tion itself to determine if it continues. However, since the GMS hasno informationon which port
the applicationis excepting request, it is usually a cleaner way to querythe AIS to which the client
announces.

Restart Timeout: TheGMS queries theAIS for anactive client state
#

times.Thetime interval is
called the restart timeoutandsetsthe time that is grantedto an application to restart. This interval
mustbechosenwith care.Potential errors canoccur in thefollowing circumstances:

� If the new resourceis managed by a batchsystem, the application hasto go through a queue
wait period andmayspendsometimewaiting to berestarted.A GMSwhichhassetaverybrief
restart timeoutwould consider theapplicationasfailed, althoughit hasnot evenstarted.

� If the query interval is chosen too long, the application might have already terminated (and
henceinactivateditself) before theAIS is checkedby theGMS.

� If thecheckpoint �les areof considerable size, therecovery progressmaytake longer thanthe
GMSis willing to wait for thepositive AIS feedback.

Thetheoretical wait time ���������
	���� is a sumof theclient waiting time in thequeue, recovery time,and
announcing time:

�
�������
	���� �

�����

�

�

���

�

���������������

�

	������

�

�����

To predict ���������
	���� weneed to givetheGMSsomeestimateof thepossible wait time
�����

�

�

� andstartup
time

�

������������� , while
�

	������

�

����� is negligible (
�

	������

�

����� �

�

0'�:�

in our experiments).Very few sched-
ulersareableto provide thequeuewait time (e.g.Maui [68]). Therecovery time in a multi-processor
environment dependson the I/O performanceof thedisks andthenetwork interconnects, if the data
hasto bedistributedto all processors. Neitherinformationis currently available in databases.A re-
sourcedatabase,which tracks this kind of data,would beableto provide at least a simpleprediction
for recovery timeson large scale supercomputers.

Migra tion Clean-Up and Data Storage: A migrating application cancreate a lot of �les: check-
points,parameter �les, log �les, etc.A clean-up processconcludesthemigration event.Theclean-up
processdistinguishesbetweentarget cleaning andsource cleaning: if a migration event fails in the
startup phase, the target �les on the next hostmustbe erased, while the datasourcesareto be kept.
They areneededfor further restart attemptson other resources. If a migration eventsucceeds,thesit-
uation is reversed: sourcedata�les aredeleted,while target datais used by therestarting application.
The migration server cleans up its own dataor datathat hasbeenannouncedwith the migration. It
is currently left to theclient applicationto remove the �les that it created itself. Note thatwe do not
move restart �les, but copythemto keep a working backup. A client caninstruct the GMS to move
�les to central storagefacility with gms sto re requests.

92 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

8.1.4 Execution Grammar

Sincetherestart routine makesno assumption on how a programis launchedon a host, themigration
(or spawn) client provides this informationasa commandtemplate. The startup routine parses the
templateand replacesall occurrencesof $ � UI D� $ with the �le nameof the pro�le that hasthe
sameUID. It alsoreplaces$ � RUNCMD� $ with the architecture speci�c run commandandnumber
of processors(e.g.mpir un, mpprun , poe , etc.).This grammardeals with thestartup cases thatwe
have encountered, including sequencesof commands.

Thefollowing example is a startup directive, which referencesthepro�le UIDs of theparameter
�le andtwo partial checkpoint �les. Thecheckpointsaremerged to anew checkpoint temp.h5 with
a rec ombin e programbefore startup:

recombi ne $1242.324 3$ $1242.32 44$ temp.h5
$RUNCMD$./cactus_b lackhole $1242.324 2$ 2> temp.err > temp.lo g;
rm $1242.3243 $ $1242.324 4$ temp.h5

Notethat theexecutablesrecombiner andcactus blackholecanbeenaddressedthroughtheir UIDs as
well. Also notethata migration is not limited in thenumber of executables. It is possible to transfer
any numberof executables(two in this case)from a repository to a target host. $ � RUNCMD� $ is
translatedinto thehost speci�c run command andthenumber of processors. Thecheckpoint �les are
erasedafterward:

recombi ner chkpt.it _0.file_0.h5 chkpt.it_0. file_1.h5 temp.h5
mpprun -n 4 ./cactus_bla ckhole BH_r3.2.par 2> temp.err > temp.log;
rm chkpt.it_0 .file_0.h5 chkpt.i t_0.file_1.h 5 temp.h5

8.1.5 Startup and Fault Toleranceof the GMS

The migration server is only functional if its sub-services,which operate as independent peers,are
readyto accept tasks. If thesub-servicesfail, themigration server cannot processmigration requests
properly. In suchacase,pendingmigrationsarenotdiscardedbut left in thequeuefor furtherprocess-
ing. TheGMS takesadvantageof P2Pserviceredundancy: it is not concernedwherea fundamental
servicestypeis executed, aslong asa serviceis available.

Figure8.4shows thetemporal communicationexchangefor thestartup phaseandduring runtime
of a GMS, which only interactswith the AIS to monitor the availability of basic serviceslike Grid
File Services(GFS),Grid ShellServices(GSS)andGrid ResourceServices(GRS).BeforetheGMS
startsup, these fundamentalservicesmustbe announced to the AIS (ais announc e). Whenthe
GMS starts up, it queries an AIS about the required sub-services(ais searc h). The AIS returns
the information (gms rec) to the GMS, which addsthe services to an internal database. Only if
anactive service instancefor eachthese(copy, shell, resource) is reportedby theAIS, themigration
server is operational andannounces its own servicesto theAIS (ais anno unce).

Our Grid reliability study in Chapter 2 showedthat any service implementation may shutdown
unexpectedly due to software, hardware or network failure. This is also true for the fundamental
services,on which a migration service relies. To recognize a change in the availability of the un-
derlying services,theGMS sendsanais sea rch requestsin regular intervalsandupdatesits own
databaseappropriately. An ais sear ch request is alsotriggered, if the requestto oneof the fun-
damental servicesfails. If theGMS fails to �nd therequiredservices,it deactivatesitself at theAIS
(ais sets tate , not shown). It continuesto query theAIS until all servicesarefound, reactivates
its AIS state andcontinuesoperation.

8.1. GRID MIGRATION SERVICE 93

File/Shell/Resource
Server Server

Grid Migration

ping

Database Retrieval

Database Retrieval

Requesting Base Services

Receiving Base Services

Announcing Migration Server

ping
ping_ok

Ping Verification

ais_announce
Database Deposit

gms_rec

ais_search

gms_rec

default_ok

ais_announce

ping_ok

ais_search

default_ok

AIS

Ping Verification

Updating Base Services

Figure 8.4: The Grid Migration Server relieson the availability of fundamentalservices. The GMS must
ensurethat theseservicesareavailable to stayoperational. It queries the AIS in regular interval to receive
updatedserviceinformation.TheAIS trackstheannouncedservicesthrough pingrequests.

8.1.6 Migration Failures

In thissection wediscuss thetypesof migration failureswhichwehavecomeacross. Wealsooutline,
whether these failurescanberesolved by the migration server andhow this canbe done. The auto-
nomic application givesup control to the migration environment, whena migration is initiated and
migration failuresmustbehandled on theserver side.

Resource Failur e: If a client speci�es resourcerequirementsthat cannot be solvedwithin a given
time, the migration is aborted. The migration server makes several attemptsto look up resources.
Because queueand machine properties do not change within a day, a resource requirementwhich
cannot beresolvedin a �rst attempt, always failedin later lookupsaswell.

Binary Failur e: If a binary for a new platform cannot beobtained, (e.g.in a binary repository), the
migration to that host cannot continue. However, the server canattemptto identify a new resource,
which satis�es theclient's requirementsandis not of thepreviousplatform type(for which no binary
existed). While this is not part of the current migration server, its implementation only requires
additional resourcepro�les to blank out the failing platform in theClass-Ad selection process.This
is an example of a failure which is “understood” by the service environmentand it is able to take
alternative actions.

PseudoFailur e: Thereis a chance for the GMS to react to pseudo-failures caused by badtiming
of the ping responsetime andAIS search operation: If the ping responsethreshold is settoo short,
a brief failure in the network may lead to an inoperational stateof the client in the AIS database,
becauseping repliesdo not get back in time. Sincethe AIS keeps pinging the client anyway, this
state is quickly corrected with the �rst successful ping response. However, if the GMS sends an
ais sea rch request to retrieve theclient state from theAIS in this particular momentanddoesnot
verify the negative results with additional requests,it proclaims an applicationasfailed,which is in
reality still running. Sincethe GMS is instructedto retry the launch of the application or execute a
recovery operation in thecaseof failure,a duplicateapplication instanceis generated. To avoid such

94 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

Spawn method Arguments Description

gms spawn
in: Grid Object
out: ID

input is theGrid Objectde�ning the
spawn �les, setsthetypeto “spawn” and
initiatesa spawning process.Canbeused
with gms announce , gms settype .

Table8.2: Grid Spawn Server: WebServiceInterface.

duplicatesGMSmakessurethattheold applicationis shutdown by trying to terminateit. Choosing the
appropriateterminationmethodis not trivial: thecurrent implementationsends a terminationrequest
to the application. An explicit kill signal to the processID or usingthe queue system's termination
procedurewould bethepreferredway.

Algorithmic Failur e: Automated recovery fails if theapplication aborts dueto internal simulation
errorsrather thanmachine failure. Themigration serverstill restarts theapplication, which diesagain
for thesamereason. A possible work around is to stopautomatedrecovery if a progressmetric indi-
catesnofurthersimulationadvance,for instanceif thesimulation is unableto continuefurther in time.
This approachinvolvesthe comparison of a parameterwhosenameis providedby the client to the
GMS (e.g.theiteration count). Theclient updatestheparameter value in theAIS (ais set info) .
TheGMS retrievesthevalue of theprogressmetric (ais get info) eachtime a restart is triggered
andcompares it to the previous value. If both valuesare the same,no advance in the evolution is
assumedandthemigration is abandoned.

8.2 Grid SpawnService

TheGrid Spawn Serviceis partof theGMS,sincebothservicesfollow a similar order to move data
and launch applications. Spawning describesthe processof identifying routines in an simulation's
program�o w, which have no impacton theongoing simulation andcantherefore beexecuted inde-
pendently of themainroutine. Thespawning of a subroutinespaysoff through thetime (andmoney)
thatcanbesaved if expensive resourcesareonly usedfor thecorealgorithms,while lessdemanding
dataanalysisis performedon economic resources.An illustration of a spawning scenario is shownin
Figure2.2on page6 andaspawning example is studied in Chapter 9. Thespawn service is requested
by clients, who canprovide a checkpoint andexecutable to restart the speci�c routine. The client's
spawn processis similar to migration, shown in Section8.1.1.

SpawnAlter natives: Thealternative approachof storing theraw simulation dataandperforminga
post-processinganalysis is lesssatisfactory: while it speedsup themaincomputation, it canrequirea
signi�cant amountof disk spacefor the raw data.By spawning a routine, disk space is only needed
during thetransferof theraw datato theexternal routines.Theraw datacanbedeletedassoonasthe
routine is completed. An illustration of a spawning scenario is shownin Figure2.2 on page6 anda
spawning example is studied in Chapter 9.

8.2.1 Grid SpawnInterface

Table8.2 lists thespawn speci�c service calls,which operate like themigration service.

8.3. GRID SERVICE MONITOR 95

8.2.2 The SpawnProcess

The client application contacts the Grid Spawn Serviceandprovidesthe following information in a
Grid File Object:

� Execution Grammar, which speci�es in which orderanexecutable,parameter �les, data�les
etc.areto bespeci�ed.

� SpawnFiles: theclient informstheGMSabout its hostmachine(MachinePro�le) andthethe
spawn �les (File Pro�le). Thespawn �les areusually smallerthan in amigration event,because
thetotalstateof thesimulation doesnotneedto besaved. Only dataimportantfor theparticular
routine needs to beprovided.

� Executable: theclient speci�esthenameof theexecutablewhich continuesthespawned rou-
tine. Similar to themigration, executablescanbeprovidedpre-stagedor through a repository.

� [Resource Requirements]: optional – if the client hasknowledgeon the resource require-
mentsby thespawnedroutine, it canexpressthis in a ResourcePro�le to help�ndin g theright
resource.

� [Host AccessMethods]: optional – if theapplication knowsaboutthelocal machine access, it
caninclude this informationin a Service Pro�le .

Spawn dataregistration is possible via gms anno unce , followed by a gms sett ype (spawn) re-
quest. Similar to migration, gms spa wn requeststrigger the spawn process immediately, while
gms announce stores thedata without further actions.

Unique Identi�ers: A majordifferencebetweena spawn event anda migration is thehandling of
theapplication UID. In thecaseof migration, theUID does not change. For spawning, new applica-
tions arecreatedwith each new task. Becausetheserver mustidentify a spawn client with its parent
(e.g. to transfer output databackto the parent), the spawn UID mustbe related to the parent UID.
Thespawned process inherits theidenti�cation number of theparent processasthebaseidenti�er and
appendsanother UID. Thespawned processregisters andderegistersitself at theAIS under this new
UID.

Spawn States: The spawn service traversesthe samestatesasthe migration service and features
thesamestrategiesfor fault tolerance.Spawnedapplications aretreated asindependent applications:
They canrequestauto-recovery or migration. As adifferenceto migration, thespawn server automat-
ically transfersall datageneratedon thespawn hostbackto theparenthostor anotherstoragefacility.
Thetransfer relies on theassumption thatall data,which is generatedby thespawnedapplication, is
written into its currentdirectory. Thespawn servercontactsaGrid ShellandFile Serviceandrequests
thetransferof thespawn directory, either to theparent machine or to a userspeci�ed storagepoint.

8.3 Grid Service Monitor

The Grid ServiceMonitor is a distributed service application that maintains a constantnumber
of servicesor applicationson machinesof a Grid. We implementedsucha service by usingtheping
service in conjunction with a migration server asillustratedin Figure8.5.

At start-up the service monitor instructsthe GMS to launch anapplication on a numberof hosts
with gms exec ute requests.Theapplicationsstart upandregisterwith theAIS. Theservicemonitor

96 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

"ping"

1

2 3

Service 2 Service 3

Fig. a)

Service 1

Service Monitor

2 3

Fig. b)

1

2 3

Service Monitor Service Monitor

Service 4

Service Monitor

4 4

GMSAIS AIS

Fig. c)

41

Service Request
(and Reply)

GMS

GMSAIS
AIS

GMS

Fig. d)

Service ExecutionFailed Request

"ais_announce"

"ais_announce"

"gms_execute"

"gms_execute"

 setstate"
"ais_search &

"ais_search"

"ais_search"

Figure8.5: A servicemonitor watchesthestateof serviceclientsandrestartsthemin caseof failure.

checks the AIS for registeredapplications andmonitors their stateby issuing pin g requests. If the
client fails to respond to repeatedping requests, the monitor restarts the failed applications. The
service monitor requiresa traceableclient application, eitherthrough ping requests or by keep-alive
messages to theAIS.

Any GPSservice(likeGFS, GMS,GSS) canbeloadedontotheapplication: Webrie�y elaborated
ontheideaof implementing adistributedUnique-ID server in Section5.7. Thisservicemonitor is the
appropriatetool to ensure its consistent availability. In Section9.4.3we demonstratethe automatic
deploymentof pingclientsacrossmachinesof theEGrid. Theservicemonitor is usedto restart failing
ping clients.

A “stacked” monitor concept supervisesotherservicemonitorsto ensureconstantoperationof ser-
vices.Thestackedmonitorapproachis anotherstepto prevent a singlepoint of failuresin distributed
environments. The service monitor is not restricted to work with service applications: it is able to
operatedwith legacy codes or proprietaryapplicationslike user simulationsaswell: in Section9.4.4
we demonstratehow the service monitor is usedto automatically recover a failing userapplication
from backup checkpoints. In this casea single application is monitored.

8.4 Discussionand Futur e Research

In this section wediscussfutureextensionsof theserviceenvironment that wepresentedin theprevi-
oustwo chapters. In our analysis of a Grid environmentwe rejecteda monolithic approachin favor
of a P2Pservice strategy to overcome failing service instances.To maintain a redundantsetof ser-
vices,wesuggestedapool of informationserversandintroducedaservice monitor, which supervises
the various service instancesandautomatically restarts the onesthat failed. The service monitor is
designedto beusedwith servicesaswell asuserapplications. Although theservice environmenthas
consolidated, it requiresperfection andoffersroomfor enhancements. Weregardtheimprovementof
thecommunicationstructurethrough OGSA, theextension of theservicevariety, andthe increaseof
application“intelligence” astheimportant�elds for future research.

8.4. DISCUSSIONAND FUTURE RESEARCH 97

8.4.1 Fault Tolerancefor Autonomic Applications

The weakest participant in our migration service environment is not the service but the client appli-
cation. While we circumventsingle points of failuresfor servicesthroughredundant service deploy-
ment,we have only oneinstanceof a client application. We currently rely on applicationcheckpoints
to restoreafailed client. Sincethecontinuousoperationof amigrating client is themajorgoal, further
meansof safe-guarding the clients against failure must be found, perhaps through the coupling of
kernel-level checkpoints with application level migration.

8.4.2 Authentication and Security

As we have statedinitially, we have not concentratedon security issuesin a distributed serviceenvi-
ronment.Wefeel thattheseissuesarebestaddressedwith upcomingservice technologieslikeOGSA.
Adding asecurity infrastructureto adistributedenvironment, whichsupportsmigration applicationsis
not trivial. Thefollowing example illustratesthefar reaching complexity of thesecurity issue, which
areyet unsolved:

� Applications must be authenticated before they request a service: if applications are started
from a secureportal they can inherit its authentication. If they are launched interactively by
theuser, they mustbeauthenticated“manually”, which is a processwherea useridenti�es an
applicationassecure andtrusting.

� Migrating applications comein two states: they alternatebetween an execution stateand a
checkpoint state. Nevertheless,they have to maintain an identity at all times, requiring the
encryption of checkpoints �les.

� Spawnedapplications mustinherit their identity andauthorization from a parentprocess. They
mustalsomaintain their identity during thecheckpoint state.

8.4.3 Application Intelligence

Making applications andservicesmoreawareof their environmentis important to operate in global
Grids. The GPSservicesbenchmark their own performanceat every level. The Grid File Server
e.g.storesthe �le transfer statistics to every host. AdvancedGrid applications like theCactusCode
framework areable to pro�le memoryconsumptionandprocessorsperformance. However, we are
still looking for a proper evaluation of this data,e.g. to give preferenceto a slower machinewith a
fastnetwork insteadto a fastsupercomputer, which hasa low-grade network connection. With the
upcoming NetworkPro�le , we provide an extension to the Grid ObjectDescription, which lets us
expressthe results of different network benchmarkingsystemsin unifying scheme. Network-based
selection of resourcesis not crucial for intra-Grids, but it is important for global Grids with their
shifting network loads. We regardassessmentpackageslike Condor Class-Adsasessential for this
task.

8.4.4 Using AdvancedGrid Infrastructure

Themodularity of theGPSimplementationallows usto transparently addadvancedGrid infrastruc-
ture like Grid-ftp with its reliable �le transfer capabilities. Coupledwith a prediction serviceto fore-
cast the �le transfer time, we aim at using intelligent �le transfer in our environment. Advanced
reservation of computeresources(e.g. provided through Maui) couplesdirectly to �le transfer time
prediction. Achieving anearlycontinuesstream of resourcesrequiresafunctioning advancedreserva-
tion system. Themostwidely used�rst-c ome,�rst-serve scheduling policy is too inferior andprone

98 CHAPTER8. HIGH-LEVEL GRID MIGRATION SERVICES

to abuse: after an excessive reservation of computeslots in various submissionsystems,only those
slotsareused, which areactive by thetime a previousslot expires - all others arediscarded.Suchan
exploit systemcould easily beimplementedwith themigration service. Wewould like to offer thisen-
vironmentasa tool to evaluatedifferentscheduling systemsandchargingalgorithmswith real-world
applications.

8.4.5 ServiceFlow Control

It would be fascinatingto investigate how the WSFL or its successorBPEL4WS(seeSection 4.5.1)
couldbechosento describecompoundhigh-level servicesfrom theunderlying fundamentalGPSser-
vices. An important advancein the design of autonomic application would be the self-determined,
dynamicde�nit ion of compound services,which would be created for a particular situation andde-
stroyedafterwards.

Chapter 9

Grid Migration and SpawningExperiments

Thischapterpresentsexperiencesandexperimentsthatweconductedwith themigration serviceenvi-
ronment,describedin thepreviouschapters.Wefocusontwo of theGrid casestudiesthatweoutlined
in theintroduction of this thesis: Grid migration andapplication spawning.

Westartthischapterin Section 9.1with asummaryof thefoundationsthatwehavenow athandto
experimentwith migration andthespawning. Wethenacquaint thereaderwith theclient applications:
Section 9.2 describesa lightweightscalarwave evolution codeanda numerical relativity simulation.
Both arebasedon the CactusCodeandaredevelopedat the Max PlanckInstitute for Gravitational
Physics1. A genome analysis code,which is developedat the TechnicalUniversity of Munich2 is
introduced in Section9.3. In Section9.4, we take a look at different migration, spawn and auto-
recovery experiments with thenumerical relativity client code. In Section9.6we describe migration
experiences andvisualization techniques for thegenomeanalysiscode.

9.1 Summarizing Migration and Spawn Infrastructur e

We now have all the tools in place to realize the scenarios that have beenour initial motivation:
after analyzing theunreliableGrid infrastructure,wederivedaservice topologywhichpossessesfault
tolerantproperties.Weprovidedaninformation structure,which is ableto present a compact view of
objectsonaGrid. Weimplementedamigration andspawn serviceenvironment asGrid PeerServices.
Fundamentalandhigh-level servicesarejoined together to provide fault-tolerant taskspawning and
migration capabilities.

As mentionedwe needto posefundamentalrequirements to anapplication to make it eligible for
migration: it mustpossessa hardwareindependenceand it mustbe able to checkpoint andrecover
from a checkpoint. Our testapplications ful�ll theserequirements. The migration experimentsare
carried out on a testbedof machines, which is assembled from various Computing Centersacross
Europe. All of thesecenters arepart of the European Grid Initiative [30] andcontribute to the Grid
Lab project [10]. Thedifferentmachines arelistedin Appendix B.

9.2 CactusMigration Clients

This section introducesCactusbasedmigration andspawn clients. In Section9.2.1we describe the
modules(or “thorns”) that have to be compiled for a Cactusclient. Thesethorns provide the appli-
cation internal migration andspawn functionality to the application code (like �le preparation) and
allow to contacta migration or spawn service. In Section 9.2.2we describe a simpletestapplication,
Section 9.2.3introduces a numerical relativity simulation.

1http://ww w.aei.mpg.d e
2http://ww w.tu-muench en.de

99

100 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

9.2.1 Migration and SpawnCapabilities for a CactusClient

As explained in Section3.4, the CactusCodeenforcesa modular “thorn” structure on the codes
that areprogrammedin this framework. Themodular approachhasthe advantagethat all migration
and spawning technology can be hidden in separate thorns, without touching any of the scienti�c
simulation routines. In other words,theauthors of thescalar wave codeandtherelativity simulation
arenot at all involved in the migration andspawning of their codes. Instead we areable to develop
new capabilities andprovide them to scientistsfor instantuse.

Migrati on and SpawnThorns

Below, we brie�y list the modules,which contribute the migration and spawning interfacesto the
client code andneedto beadded to theCactuscompilation.

� WormBase: This thorn provides the request handling routines, like extracting the envelope
information,makingthe requestedprocedurecalls andmanaging failing requestandresponse
messages(seeChapter 7 for details). Thesamemodule is alsousedby theGrid Migration and
Spawn Services. It allows theclient to sendandreceive RPCmessages.

� WormNG: This thorn is in chargeof communicatingwith themigration server. It queriesthe
AIS for anactiveGrid MigrationServer in regular intervalsandpublishesuserinformationto a
“personalAIS”. WormNGtriggersthecheckpoint procedure: a migration canbesetoff aftera
speci�ed number of iteration, afteracertain timeinterval or if amigration signal from anAIS is
received.WormNGgeneratestherestart parameter�les, it expressesinformationoncheckpoint
andparameter �les in a Grid Objectandcommunicateswith themigration server. WormNGin
conjunction with Grid Pingsupportsauto-recovery.

� Spawner: TheSpawner is a thorn, which discoversthoseroutinesin a Cactus executablethat
canbe spawned. The initi al spawner design wasdone by Allen [59]. The Spawner takes ad-
vantage of the scheduling system within Cactus.As explainedin Section3.4, all routinesare
scheduled and executed by the Cactusscheduler. The scheduler identi�es the location of a
routine in the program�o w andthe numberandtypesof argumentsthat this routine receives.
The Spawner is a replacementof the Cactusscheduler. For spawnable routines it initiatesa
checkpoint which containsexactly those variables,which would have beenpassed through in
a function call. Routines, which cannot bespawnedareexecuted in thetraditional way. A pa-
rametercontrols whether spawnable routinesareactually spawnedor executed internally. The
Spawner creates a parameter�le which instructsthe executableto readin the checkpoint and
executetheroutine.

The�le informationis passedto theWormNGmodule, which handlesthecommunication with
thespawn server. Thespawn server transfersthedatato anew hostandrestarts theapplication,
which now only executesthespawnedroutine.

� GridPing: This thorn provides the Grid Ping Servicecapabilities as described in 7.2. It is
optional andnot requiredto request migration andspawning.

Other RequiredThorns

The migration and spawn thorns rely on the following thorns, which are part of the CactusCode
framework. Thesethorns maydependon other thorns,which arenot describedhere:

9.2. CACTUSMIGRATION CLIENTS 101

� HTTP: This thorn providesHTTP communication. It opensa port on the execution hostand
accepts HTTP Postand Sendrequests,e.g. from web browsers. Programmers can register
functions with URLs, which are executedwhen the URL is requested. All GPSweb pages
shown in this thesisaresuchdynamically generatedHTML code. WormBaseusesthe HTTP
thornto receive theincoming RPCrequest.

� IOHDF5, IOHDF5Util : ThethornIOHDF5 providesI/O capabilitiesin theHDF5[53] format.
It is usedfor checkpointing in theCactusCodeframework. IOHDF5Util'sAPI is used to access
theIOHDF5datastructure.

� IOStr eamedHDF5: This thorn allows the streaming of checkpoint �les from oneapplication
to another. It circumventsthe writing, transferring and reading of checkpoint �les. Check-
point streamingrequiresan execution overlapbetweenthe sending, “old” simulation andthe
receiving,uninitializedcode.

9.2.2 ScalarWaveSimulation

Thescalarwave simulation is a lightweightapplication usedto testthemigration services.Beforewe
target real-world applications, we usethis program to analyze andexamine the functionality of the
migration service. Theresourcerequirementsof thetestapplication aremodest:

TestSimulation, small TestSimulation, large

Grid Size: �����

Flops per Grid Point: 12
Grid Functions: 7
Runtime: �

Total Memory: 1.4MB
Checkpoint Size: 1.3MB

Grid Size: �����

Flops per Grid Point: 12
Grid Functions: 7
Runtime: �

Total Memory: 11.5MB
Checkpoint Size: 10.4MB

The scalar wave test simulation is implemented in the CactusCodeframework, which contributes
checkpoint capabilitiesandplatform independence.Thethorns which enable migration for thescalar
wave simulation areidentical to thoseusedfor thenumerical relativity simulations.

9.2.3 Numerical Relativity Simulation

Another client for our migration andspawning experimentsis a numerical relativity simulation im-
plementedwith Cactusanddevelopedat the Max PlanckInstitute for Gravitational Physics, Albert
Einstein Institute(AEI). A researchbranch attheAEI focusesonthedetaileddescription of relativistic
phenomenathroughnumerical simulation.

Thedetaileddescription of gravitating objectslike binary black holes andgravitational waves[1,
2] is oneof the most important problemsfacing relativity today: Binary black hole systems arethe
primecandidatefor sourcesof strong gravitational waves. By the time thegravitationalwave detec-
tors like Geo600[55] or LIGO [85] will comeonline, scientists who analyze the detector datafor
signs of gravitational waves,need �lter patterns to know what to look for. The Einsteinequations,
which describe such relativistic scenarios, area full y coupled elliptic-hyperbolic system of nonlin-
earpartial differentialequations.Finite differencemethods on rectangular Cartesian meshesareused
for discretization. Theevolution equations areevolved in time with compute intensive schemeslike
leapfrog, McCormackandhyperbolic shock capturing.

102 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

9.3 GenomeAnalysisMigration Client

Thethird migration client is a philogenetic genomeanalysisprogram,called Grid AcceleratedMax-
imum Likelihood (GAxMl) [63]. We start this section with an introduction of the algorithm and
program(Section 9.3.1),followed by a description of the modi�cationsmadeto allow it to commu-
nicatewith the migration server (Section9.3.2). Experimental results arediscussedin Section9.6.
With GAxMl we show how minor modi�cationsto a traditional, parallel program allow it to perform
autonomic migrationsin a Grid environment.

9.3.1 The Maximum Lik elihood Algorithm

Thepurposeof philogenetic studies is to estimatetheevolutionary genealogy of agroupof species. It
is usedto reconstruct evolutionary tiesbetweenorganismsandestimatethetime of divergencesince
they lastsharedacommonancestor. Themaximumlikelihood approachis oneof threemajormethods
thatareknownto construct a philogenetic tree.

Like many problemsin the �eld of genomeanalysis, the perfect philogeny problem is NP com-
plete. Heuristics areintroducedto reducethesearch spacein termsof potential treetopologies [33].
Still, philogenetic treecalculations remaincomputationally intensive: For instance out of the large
amountof available data,like the20,000 mitochondrial sequencesin the ARB database[13], only a
smallfraction of datawith sizesaround 500sequenceshave beencompared.

Philogeny programsoften feature a simple master-worker architecture, which makes the appli-
cationeasyto adapt to various resource situations. Their performanceis primarily dictated by the
numberof available processing elements. Philogeny codesstoretheir data in tree formats, which
express thecomplex treerelationshipsandarecomparatively small in size.

Themaster-worker paradigm requiresdataexchangewith theworker at thebeginning andending
of a search process.Unlike thesolution processfor partial differential equations,no synchronization
of global variablesor exchangeof boundaryvaluesis required. Thestartup andcheckpoint phasesare
brief andcheckpoint sizesarein theorder of megabyte.

9.3.2 Adding Migration Capabilities in GAxMl

The ancestor of GAxMl [63], calledPAxMl [72] (“Parallel Accelerated Maximum Likelihood”) is
a well testedphilogeny program based on the master/worker paradigm andlooks backon a history
of successfully solvedproblems. Client migration capabilities wereaddedin a collaboration by Sta-
matakis,TU Munich andLanfermann, MPI Gravitational Physics. Inserting migration functionality
wasa challenge,since theapplicationwasnot designedto beexecuted in anGrid environment. Pro-
grammodi�cations had to be minimal to keep the researchers' trust in the algorithm andprogram
structure.

With GAxMl wewantto demonstratehow migration capabilitiescanbeaddedto userapplications
quickly without rewriti ng majorportionsof thecode. We illustratetheminimal stepsthatwe took to
provide migration capabilities to PAxMl andcalledtheresulting version GAxMl.

Theoriginal PAxMl codehadnosocket communicationcapabilities. While it is easy to addsocket
functionsto permitoutgoing communication, it is moreintrusive to theexecution �o w to addsocket
polling capabilities. Becausewe wantedto show how only smallchangesto anexisting andmatured
programarenecessaryfor migration, we did not restructurethemain execution �o w of the program
to accommodatesocket polling procedures.

The GAxMl application starts with a masterprocess, followed a by a foremanprocess,which
communicateswith anumber of worker processes.Thefollowing additionsto themastersourcecode
weremade:

9.3. GENOME ANALYSISMIGRATION CLIENT 103

� Registration: GAxMl announces itself to the AIS andsends information aboutthe machine
that it currently executes on.

� Runtime Inf ormation: The application sends information, which re�ects the current search
state.This information is publishedon thepersonal AIS to beviewedby thescientist.

� Migrati on: If a migration is initiated,GAxMl writesthesearch treeto a checkpoint, composes
the startup commandandspeci�es the resourcerequirements.This informationis sentto the
GMSaspartof themigration request.

TheGAxMl application speci�es thefoll owing information in Grid Objects andpassesit alongwith
themigration request.

� Checkpoint Files: The client declares�les, which arerequired to restart the program. This is
currently only two checkpoint �les, for later versionsof GAxMl a parameterwill beadded.

� Executable: The client informs the server about the executable that is usedto restart the pro-
gram. If the application is moved to a different machinearchitecture, the GMS retrieves an
appropriateexecutablefrom a binaryrepository.

� Startup Command: Becausethe server hasno knowledge on how the program wants to be
started, GAxMl informstheserver on its startup sequence.

� ResourceRequirements: Theclientspeci�es its resourcerequirements. GAxMl requiresamini-
mumof threeprocessorsto launch themaster, foreman andworker processes.This information
is expressedin theresourcepro�le of a Grid Object.

Adding Communication: To permit theregistrationwith theAIS andthecommunication with the
Grid Migration Server, anumberof routineswereprovidedto performthesocket operationsandallow
thetransmissionof a request. Theconnection routinesopena socket connection to a communication
endpoint, which is provided by the AIS or GMS. The transfer routinestake a request,serialize the
XML codeand embedthe data in a HTTP header structure. This buffer is written to the socket
andreceivedby theserver. Theserver deserializesthedataandproceedsaccording to the requested
method.

Checkpoint Files Structur e: Thecheckpoint �le doesnot describethefull stateof thesimulation.
Thesimulationstatecanonly berestoredin conjunction with theoriginal startupsequence.Therefore
wehaveto transfertwo �les: thecurrent checkpoint �le andtheoriginal sequence�le. For illustration,
we showanexcerpt of an initial sequence�les with thenamesof thebacteria strandson the left and
their RNA sequenceon the right [13]. This datais analyzed through philogenetic matching andthe
results canbevisualized asshown in Figure9.14.

deinonema- ATTTGCCCCAGGGATTCCCGCAAAAACCCC AGTAAGTTGG GGATGGCAGG GGAGGAA
ChlamydiaB ATTTTCCCCAGAAATTCCCGAAAAAACCCC AATAAATTGG GGATGGCAGG GGAGGAA
flexistips ATTTTCCCCACAAAAAAAAGAAAAAACCCC AGTAAGTTGG GGATGGCAGG GGAGGAA
borrelia-b ATTTGCCCCAGAAGTTAAAGCAAAAACCCC AATAAGTTGG GGATGGCAGG GGAGGAA
bacteroide ATTTGCCCCAGAAATTCCCGCAAAAACCCC AGTAAATTGG GGATGGCAGG GGAGGAA

104 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

GAxMl Identi�catio n and Security: Thereis currently no roomto storeapplicationrelatedinfor-
mationwith GAxMl. TheGAxMl application asit stands now does not reada parameter�le andthe
GAxMl checkpoint containsonly treerelatedinformation. For now, we include informationlike ap-
plication ID andgeneration count in thenameof thecheckpoint �le. This is atemporarysolution only,
sinceit is not capableof transporting theinformationneededto providebasicsecurity throughauser-
name/password scheme.The next versionincludesa parameter �le, which contains application-ID,
username,password,etc.This �le maybeencryptedandaccompaniesthemigrating GAxMl code.

9.4 CactusMigration Experiments

Thissection givesanoverview of thedifferentmigrationexperimentsconducted with thescalar wave
andnumerical relativity client. In Section9.4.1we showtheresult of a single-host referencemigra-
tion, followed in Section9.4.2with results of a migration across selectedmachines of theEuropean
EGrid. We describe the implementation of a service monitor anddemonstratethe results of a Grid
ping measurementin Section9.4.3.We concludethemigration experimentsin Section 9.4.4with the
results of anauto-recovery experiment with a relativity simulation.

9.4.1 Migration ComparisonExperiments

This section comparesdifferent transport and startup methods for the scalarwave test application.
We want to establish referencebenchmarkswhich arenot effected by thecharacteristicsof theGrid.
Therefore we perform a “local” migration, in which theapplicationis relocatedon thesamehostbe-
tweentwo different directories. TheGMS still transfers �les throughscpetc. but we do not have to
beconcernedabout thebandwidth �uctuation in anexternal network or different I/O performanceof
thesystems.Thereferencemigrationwascarriedout100timeson thehostori gin. aei.m pg.d e,
a32processorOrigin 2000, running R10000 MIPSprocessors.Theloadof thesystemwasnegligible
at the time thebenchmarkswereconducted. Timing results areaveraged.Thediagram in Figure9.1
shows two referencemigrationson the samehostorig in.ae i.mp g.de . We show two applica-
tionswith differentmeshsizes:themigrating application to theleft writesacheckpointof 1.3MByte,
theapplication to theright hasa checkpoint of 10.3MByte. TheGMS alsotransfersa complete exe-
cutable of 5.3MByte andaparameter �le of 300Byte. Timing resultsareshownfor thedatatransfer,
execution, feedback andclean-up phase.

Discussion: For Cactusbased simulations,themosttime-consuming phaseis required for thedata
transfer. For the two checkpoint sizesshown, the total amount of datais dominatedby the sizeof
the executable. For larger checkpoint sizes, the sizeof the executable becomeslessimportant. The
codeexecution andcleaning is identical, it is governed by the speed at which the shell connection
canbe established. The feedback time is the second longest phase: an interactive restart procedure
(not through a queue), which yields instant execution of the code. The feedback time depends on
thepaceat which thesimulationis recoveringfrom thecheckpoint, followed by theregistrationwith
theAIS. We cannot directly identify the feedbacktime with theduration of thecheckpoint recovery,
even if we subtract registration overhead, for the foll owing reason: The GMS checks the AIS with
anexponential back-off strategy, starting with a two secondpoll interval, which is doubled on every
second trial. Therefore, we seediscrete insteadof continuousfeedback times: The �rst AIS poll
returns aninactivestatus for theapplication, thesecond poll four secondslaterreturnsactive.

In Figure.9.2wecomparethesshbased execution with aGlobus/GRAMbased submissionfor the
applicationwith thesmallcheckpoint. Thereis virtually nooverhead usingaGlobusbased submission
systemoversecureshellexecution. Wehaveseenthatmostof thetime is usedfor thetransferof �les.

9.4. CACTUSMIGRATION EXPERIMENTS 105

Figure9.1: Origin-Origin referencemigration for asmallandlargecheckpoint �le, showing therequiredtime
for themigration phases.

Figure9.2: Comparisonof executionmethods:GSI-sshbasedshellexecutionvs.GlobusRSLscriptexecution.
Performanceof thetwo methodsis nearlyidentical.

106 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

Figure9.3: Comparisonof transfermethods during the�le copy phasefor a smallcheckpoint �le. Migration
transferis carriedout by a combinationof scp,sftp andcheckpoint streaming.Streamingreducesthetransfer
timesigni�cantly.

Figure9.4: Comparisonof transfermethodsduring the �le copy phasefor a large checkpoint �le. Fastest
migrationcanbeachieved by combinationof sftp for �le transfer(executableandparameter)andcheckpoint
streaming.

9.4. CACTUSMIGRATION EXPERIMENTS 107

Figure9.5: Comparisonof theadvantageof choosingsftp andstreamingfunctionality over thestandardscp
�le transfermethod.

Theoverheadof checkpointwriting andreading is notcapturedheresince it is partof theapplications
program�o w. In Section9.5weanalyze comparable I/O requirementfor a spawning event.

In Figure9.3and9.4,wecompareseveral�le transfermethodsfor thesmallandlargecheckpoint
size, respectively. The�rst columnshowsascptransfer for theexecutable andthecheckpoint (abbre-
viated“CP”) data.Thesecond columnshowsthesamedatatransferaccomplished throughsecure-ftp
(sftp). sftphastheadvantagethatonly theauthentication is encrypted, while theactual datatransfer is
not, yielding afastertransferrate.sftp is notnecessarilyavailableonall machineswith sshinstallation
andsftp still requiresa two-way copy operation.

To reduce transfer timeseven further, we experiment with the direct streaming of a checkpoint
�le from theexpiring sourcesimulation to theuninitializedtarget simulation. Checkpoint streaming
requires anexecution overlap betweenboth application andopenportson both hosts. It is therefore
not generally applicableto any migration, but still worth to look into. Columnthree andfour of both
diagramsshow the �le transfer for the executable andparameter �les through scpandsftp methods,
respectively, while the checkpoint (CP) is directly streamed. The relative speed of the migration
increasesthe morethe checkpoint dominatesthe total datasizeasshown in diagram 9.4. Note the
long timespent in thefeedbackstate,shown in columnthreeof bothgraphs. This is thebinning effect
causedthroughthepolling intervals.Themigrating application hasneverthelessstarted. In Figure9.5,
wesummarize thespeedupthatwasgainedby usingsftp andcheckpoint streaming overa normalscp
transfer. In Figure9.5,we show thespeedupthat we gainedby using sftp andcheckpoint streaming
over normalscptransfer.

9.4.2 EGrid Migration Experiments

In Figure9.6 we showthe results of a migration experiment carried out on machineson the EGrid.
For eachof the six hosts, we performed20 migrations, resulting in 120 migrations over a time of

108 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

Figure 9.6: Cyclic migration acrossmachines of the testbed. The x-axis denotessource and target host,
abbreviatedwith hostname andtop level domain.

approximately20 hours.
Eachcolumndescribesthe migration betweenthe two hosts, (hostname.top-level domain). The

bars illustratethe time requirementsfor the migration phases, as reported by the Grid Migration
Server. It is dif�cult to derive any sensible statementsfrom this data,except that �uctu ationsarea
fact: Thevariation of bandwidthwasquitelarge. For example,theClean-Upphaseshown (column �)
invokedon mat. ruk.c uni. cz is based on a sshaccessto themachine but still takesanexcessive

�����

seconds. This cannot becausedby a onetime event,since we removed the worst andbestdata
setbeforeaveraging thedata. It might have beencaused by anill-con�gured sshdaemonwith reverse
namelookup problems.Transfertime includes�le transferduration from thesource to theserverand
from theserver to thetarget host. Sincetherequestis madeto aGrid File Server, themigrationserver
only receivestheresultof thecopy operationbut cannot distinguishthetwo datatransfers.

9.4.3 Ping Service Monitor

In Figure9.7 we showa 75 minuteexcerpt of the ping statistics for ping clients that weredeployed
acrossmachinesin the EGrid. The ping reply timesareeffected by the network quality andload of
themachine,becausetheping clients areexecutedin usermode.Thelarge �uctuationsin reply time,
especially seenin thebottom graph, canbecontributed to shifting loadon themachine.

9.5. CACTUSSPAWN EXPERIMENTS 109

The ping clients aresupportedthrough a service monitor (see8.3), which automatically restarts
failing applications. For modi4 .ncs a.uiu c.ed u note the regular interruption in the response
time. This is caused by the hostsystem terminating any interactive programafter 15 minutes. On
uranu s.cs .uni -pots dam. de asimilar interruption of unknown causecanbeseen. Theservice
monitor re-deploys a new ping client.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.01

0.1

1

10
R

es
po

ns
e

T
im

e
/ s

ec

Grid Ping Response Time
Service Monitor on origin.aei.mpg.de

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Runtime / sec

0.1

1

10

R
es

po
ns

e
T

im
e

 /
se

c

modi4.ncsa.uiuc.edu

mat.ruk.cuni.cz

uranus.cs.uni-potsdam.de

gescher.vcpc.univie.at

fermat.cfs.ac.uk

Aug 06 2002 14:44 Aug 06 2002 16:02

Figure 9.7: Pingreplynumberswith automaticpingclient restart.Extractof longtermpingmonitorstatistics.

9.4.4 Automatic Recovery

Client applications are the most vulnerable componentsin a distributed service environment. The
service monitor offersaninstrumentto automatically restart client applications. Figure9.8shows an
auto-recovery experiment conductedon modi4.n csa.u iuc. edu . This host kills all interactive
jobs after 15 minutes (as illustratedby the Grid Ping responsetimes). We usethis machineasour
disruptive testbed. Figure 9.8 shows a sequence of 6 simulation phases. The simulation stateas
reportedby theAIS is plottedat thebottom: it alternatesbetween INOP(inoperational) andACTIVE.
Thestatesareoverlaid with theping responsetimeof theservicemonitor. In theinitial phase,pinging
does not startimmediately: Theping monitorrequestsapplicationsfrom theAIS in regular intervals.
The absence of ping activity falls into this interval. The inset showsa blow-up around the time
that theapplicationis setINOP. Note that theping responsesarenot received,but theapplication is
still marked ACTIVE. The AIS requiresmultiple failing responsesbeforean application is declared
inoperational.

9.5 CactusSpawnExperiments

In thissection, wedescribeour spawn experimentsandshowunderwhich conditionsspawning either
speedsupor deterioratestheperformanceof themainexecution. As describedin Section 8.2“spawn-
ing” denotes the processof identifying routinesin the program �o w, which have no impacton the
ongoing simulation andcanbeexecutedindependently of themainroutine.

110 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

0 2000 4000 6000 8000
Runtime / sec

0

5

10

15

P
in

g
R

es
po

ns
e

T
im

e
/ s

ec

ACTIVE

INOP

S
im

ul
at

io
n

S
ta

te

Application Autorestart on modi4.ncsa.uiuc.edu
GMS on origin.aei.mpg.de

2500 3000 3500

4

6

8

Figure9.8: Automaticrestartof anapplication onmodi4.ncs a.uiuc.edu .

For the foll owing experimentwe useanapparenthorizon �ndin g (AHF) algorithm that operates
on numerically evolved black hole data. We timed � ve successive AHF events. In Figure 9.9 we
comparethespawned andinternal execution of theAHF. The�o w chartof theprogramis shown in
the left insetof the �gure. We comparethemainprogramphases Initialization, Evolution, Analysis,
Communication, I/O and Total Time for eachof the three applications: the full simulation, which
includestheinternal executionof theanalysisroutine,thespawnparent, whichspawnsoff theanalysis
routine andthe spawn client, which executesonly the analysis routine. The sizeof meshwas

�����

,
resulting in checkpoint of

�

�

+

�

MByte perspawn eventandwith 84 meshvariables.
In this speci�c casewe observe thatspawning speeds up themainalgorithm:

1. Spawning permits to reduce the total time consumedby the parent application. The parent's
analysisbarincludesthetimespent to write thespawn checkpoint andis therefor not zero. The
spawn parentmayspendsigni�cantly shorter time on expensive compute resources.

2. Spawn clients�nish fast:only therecovery operationandtheanalysisroutine contribute to the
total time. Otherphases (like initi alization or evolution) do not contribute.

3. Spawn clientsareusually very lean: becausethey concentrateonasingle routine,they canhave
a reducedmemoryconsumption. Together with their fastexecution time, they make a perfect
applicationto �ll idle machine cycleswherever possible.

4. Spawningdoesnotnecessarily reducetheoverall timeto complete thefull simulation including
theanalysis process. This is expecteddueto theI/O overhead. Adding up the“total time” bars
shows a extended execution for the full problem, compared to the internal execution. In this
�gure wedid not includethedurationfor datatransfer or waiting in thequeue.

Wedescribeaspecial casebelow, wherespawning deterioratestheperformanceof theparentapplica-
tion.

9.5. CACTUSSPAWN EXPERIMENTS 111

Figure9.9: Comparingthe spawnedanalysisroutine to the internalexecution: While the total time (spawn
clientplusparent) is larger thanthetotal timespentfor internalexecution, the“parent time” onamainmachine
is reduced. Thisplot doesnot include thetime spentfor datatransferor queuewait time.

Critic al Ef�ciency: Spawning introducesadditional I/O for checkpoint writing andrecovery and
addsanetwork overheadfor datatransport, possibly evenwait timein batchsystems.Theseoverheads
averydynamic: they dependonthenetwork traf�c, stateof thequeue,etc.Thetotal overhead ����� 	�� �

canbeestimated asfoll ows:

� ��� 	�� � �

�

��� ������� �
	 ���
�

�

��������������� �

�

� ��	�� �
� ���
�

�����

�

�

�

If the total overhead � ��� 	�� � is not compensatedby a faster execution on an external machine, the
overall time to calculate the problemwill behigher thanthe time for an internal computation of the
problem. This is expected andnot surprising. However, spawning givesscientists an opportunity to
minimize thesimulation time spenton expensive high-level resourcesandperform analysis taskson
economiccommodityresources.

Spawning vs. internal computationhasa critical boundary: Applicationspawning severely harms
the performanceof the parent if the I/O processtakes longer than the time spent for the internal
calculation of the routine. We investigated sucha critical casein Figure 9.10 and 9.11: Eachof
the two graphs shows the time (y-axis) spent for spawn-checkpoint I/O vs. the time for the internal
calculation of the problem asthe number of processorsincreasesalong the x-axis. We look at two
counter-acting developments:

1. Thespawn parent uses parallel I/O to generatethecheckpoint �le. TheI/O time is slightly in-
creasingwith thenumber of processors. TheI/O behavior dependson theclient's I/O algorithm
andtheI/O loadof themachine.

112 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

1 5 10 15 20 25
0

50

100

150

200

T
im

e
/ s

ec

Analysis Process
IO Spawn Process

Internal Analysis vs. Spawning IO
Apparent Horizon Finding vs. Parallel IO : Grid Size 20^3

1 5 10 15 20 25
Processors

0

50

100

150

T
im

e
A

dv
an

ta
ge

 /
se

c

Time Difference

Figure9.10: Time advantageof spawningoff a routine comparedto a local execution, grid sizeis ��� � . Here,
a breakevenpoint is reachedat four processors, wherea local execution is fasterthanbringing spawn datato
disk.

2. The analysis routine parallelizes fairly well up a certain number of processors: The compute
time decreasesasthenumber of processorsbecomeslarger. For thesmallproblemsizeof �

� �

,
thecompute time hasa minimumat

�

processors. Beyondthatthecomputationtakeslonger as
thenumberof processorsincreases,which is a well knownbehavior3.

The bottom plot of both graphs shows the difference � � , subtracting the internal execution time
�

	 ���
������	�� from theduration of spawn-checkpoint I/O
�����

��� 	�� � . Notethatwe compare theI/O time of
thespawn parent with thecompute time of theinternal execution. We do not look at theperformance
of thespawn client.

� � �

�����

��� 	�� �	�

�

	 ���
������	
�

At � � �

�

we derive thecritical number of processors
?

� ��	 � whereI/O takesaslong asthe internal
calculationof theroutine.Figure9.10, with ameshsizeof �

�
�

showsthebreak evenpointof
?

� ��	 ����

processors,while Figure9.11has
?

� ��	 ���

�

 . Thevalueof
?

� ��	 � dependson two characteristicsof the
application: theparallelizability of thespawnable routineandof theI/O environment (I/O methodand
I/O load).

?

� ��	 � is neverreachedif thespawnableroutinerequiresmoretimeonasingle processorthan
the I/O process and if it possessesa lower degree of parallelization thanthe competing I/O process.
Only caseof � � �

�

arepractical for spawning. For � � �

�

the preparation of the spawning
(spawn I/O) takeslongerthentheinternal execution.

It is a debatablehow a spawning application determines the usefulnessof spawning a routine:
A �rst estimateof

�����

��� 	�� � canbe computed from thesizeof the checkpoint andthe I/O character-
istics of the device. Suchdatacould be retrieved from an informationserver. In another approach
thespawning applicationexecutesanexperiment to determine

�

	 ���
������	��
and

�
�
�

��� 	�� � andchoses the
methodwhich is fastest.Thisapproachis problematicwhenthebehavior of theinternal routineor the
sizeof thespawn �les changesin thecourseof theprogram�o w. In suchcases, theexperimentmust
berepeatedin regular intervals.

3Amdahl's law plusparalleloverhead.

9.6. GAXML MIGRATION EXPERIMENTS 113

1 5 10 15 20 25
0

200

400

600

800

1000

T
im

e
/ s

ec

Analysis Process
IO Spawn Process

Internal Analysis vs. Spawning IO
Apparent Horizon Finding vs. Parallel IO : Grid Size 50^3

1 5 10 15 20 25
Processors

0

200

400

600

800

1000
T

im
e

A
dv

an
ta

ge
 /

 s
ec Time Difference

Figure9.11: Time advantagefor spawning off a routine comparedto its local execution, meshsizeis ��� � . A
breakevenpoint is reachedaround 14processors,whereI/O takesthesametime asinternal execution.

origin.aei.mpg.de
194.94.224.100

141.89.59.135
uranus.haiti.cs.uni-potsdam.de

GSS
GMS, GFS

172.16.35.5
vidar2

Figure9.12: Migration of a GAxMl application betweentwo hosts:While uranus is on a public network,
vidar2 is locatedon a private wirelessLAN andonly visible by origin .aei.mpg.de . Strategic place-
mentof the Grid File andGrid Shell services(GFS,GSS)on common hostenablesmigrationbetweenboth
hosts.

9.6 GAxMl Migration Experiments

This section describesthe results of a migration experimentsconductedwith the genomematching
code. In Section9.6.1weshowthemigrationresults, in theSection9.6.2wedemonstratevisualization
in a Grid environment.

9.6.1 GAxMl Migration

Figure9.13shows the results of a “ping-pong” GAxMl migration between two hosts. Note a slight
asymmetryin thedatatransferasthemigration from vida r2 to ura nus shows faster datastaging.
Thecauseof this is notknown. Unlike themigration ontheEGrid,this relocation takesplacebetween
a publicly visible machine(uranu s.hai ti.c s.uni -pot sdam.de) anda machine in a private
wireless LAND (vida r2). Thereis no direct connection between both hosts. In this setup, the
migration, �le andshell servers are located on ori gin.a ei.m pg.d e, which hasaccess to both
resources. Figure9.12illustratestheservicetopology thatallows theapplication to migratebetween

114 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

Figure9.13: Alternating migrationof a GAxMl application betweentwo hosts.uranus is theheadnodeof
acluster, vidar2 a PCin aprivatewirelessLAN.

hosts, which have no direct contact. In Section 9.7, we give discuss appropriate locations for the
different services.

9.6.2 GAxMl Visualization on Grids

Grid migration canbe regarded asan abstractionof the application execution from the application
result; latter is of major interest to thescientist. In anautomatedmigration environmentit is not pos-
sibleto tell wheretheapplicationis currently running,or whereit will executenext. Thesedecisions
depend ontheshifting availability of resources.Nevertheless,thescientist hasaninterestin observing
thesimulation's progressandmonitoring theresults asthey aregenerated.

For theGAxMl project,weworked out two solutionsthatpermitscientiststo track theprogressing
treeevaluation for a migrating application: The GAxMl application broadcasts information on the
current genome matching stateto the personal AIS, which advertisesthis information on its web
page.In this mode,GAxMl usesais inf o requestsandpassesalongtheappropriateinformation as
key/valuepairs.

In an advancedapproach,GAxMl makes useof the �le advertisement features in Cactus[47].
Although GAxMl is not a Cactusapplications, it can useCactusvisualization features indirectly
through the pAIS: GAxMl sends the current treeto the pAIS in a ais info 2fil e request, along
with a MIME-Typeextension4 In this casewe requesttheextensiondata/philo.

Whenthe pAIS receivesthe ais info 2file request, it writes theenclosedtreedatato a �le,
associatesthe transmittedMIME-Type extension with it andpublishesthe URL on its web page.A
web browsercanbe con�gured to startup special tree readers, when the userclicks on a link with
this MIME-Type. Independently of wherethe genome codeis currently executing, the scientist can

4TheMIME-Typespeci�eshow awebserver is advertisingadata�le. Typicalextensionsaree.g.application/postscript,
which instructsthebrowserto opena postscriptviewing program.

9.7. POSITIONING OFGRID PEER SERVICES 115

Figure 9.14: The screenshot shows a genome visualizationprogram, which is launched automatically by
clicking on theadvertised�le, shown in thelower left browserwindow. Theupper right window shows client
informationona personal AIS which re�ects thecurrent stateof thematchingprocess.

at all timesinspect the ongoing process.In Figure9.14we show a screen shotof ATV5, a Java tool
to visualize philogenetic trees. The program is launched automatically by the browser. The lower
right browserwindows lists of the advertisedtreeanda parameter �le. The upper windowsshows
informationwhich helps researchersto monitor theprogressof their application.

9.6.3 GAxMl Summary

With the GAxMl experiment we demonstratedthe capability of the migration service environment
to accessresourcesin private networks. We elaborateon this conceptin Section9.7. We have also
shownthatanautonomic operation canbeachievedby fairly “Grid unaware” applications. Themore
featuresandcapabilitiesareavailable in aserviceenvironment,thefewer technology hasto beloaded
onto theclients.A webservice interfaceis basically theonly requirementfor aclient to participatein
nomadic migration anduseadvancedvisualization techniques.

9.7 Positioning of Grid PeerServices

Basedon our experiencewe list thepreferredlocation of thevariousservers:

� AIS: The Application InformationServersandits redundantinstancesmustbe positionedon
machines,which areaccessiblefrom all participating resources.

� pAIS: ThepersonalAIS' mustbepositioned onamachines,whicharereachableby anapplica-
tion. For conveniencethey canbelocatedclosely to theuserto allow faster response.Multiple
pAIS canservea distributedresearchcollaboration.

5http://ww w.genetics. wustl.edu/ed dy/atv/

116 CHAPTER9. GRID MIGRATION AND SPAWNING EXPERIMENTS

GMS

GFS,GSS

GFS,GSS

public net

A
B

C

D

171.16.1.0

private
172.16.2.0

private

Head2

Head1

Figure 9.15: Grid File andShell Services(GFS,GSS)canbe positioned to allow accessto resources on a
privatenetwork. Suchdistributionof servicesdoesnot require public IP numbersfor resources

� GRB: Thelocation of resourceservers is rather arbitrary. They musthold contactto themigra-
tion server andbeableto access third-partyserverslike MDS.

� GMS: themigration servers do not need to have direct contact to themigration resources, but
mustbereachableby amigrating application. TheGMSdelegatesoperationsto thefundamental
services,which makesit importantthatthosehave accessto thesites.

� GFS, GSS: The �le andshell serversmustbe located on machines,which have access to the
resourcethat mayhostmigrating applications. TheGFSandGSSmuststayin contactwith the
GMS.

Resourcesin Private Networks: To allow resourceaccessin multi-domainenvironments with pri-
vatenetworks, the GFSandGSSmustbe located at the interface between suchnetworks. The two
privatenetworks172.1 6.1. 0 and172.16. 2.0 in Figure9.15areaccessiblefrom thepublic ma-
chinesHead1 andHead2, respectively. If thesemachinesarechosento hosttheshell and�le server,
a two stage copy operation to move a �le from oneprivate network to another. For instance,Condor-
G connectsits machine pools by using the Globus gatekeeperto accessresourcesandthe site's job
scheduler. In our scenario, we go a stepfurther sincewe access eachresourcedirectly. Notethat if a
Globusservice is availableon theheadnodes,we canimmediately copy to Head1,2 andlet Globus
take it from there. A dynamicweb service orchestration through WSFL or BPEL4WSassuggested
in Section8.4.5would allow thepropercoupling of copy servicesat runtime.

Chapter 10

Summary of Resultsand Futur e Research

In order to illustrate the contribution of this thesis, we review the pastdevelopmentstyle for Grid
infrastructureandcompareit with thepossibiliti esthatwe now have at hand.

10.1 Grid Infrastructur eDevelopment

Grid Computing originatedwithin thescienti�c andtechnical computing segmentandsoftwarepack-
ages wereoften developedin isolated projects, which focused on special research aspects, like re-
sourcescheduling, �le transfer, etc. Thedevelopmentstyle generateda hotchpotchof protocolsand
standards. Grid middlewarerequired the installation of thesamesoftware on all hostsandwasoften
not ableto interactwith third-partysoftwareof similar functionality.

As Grid research cooperationswere formedGrid tools becameless“standalone” andwereput
into agreatercontext. Still, theinteroperability of today's Grid infrastructure canbevastly improved.
Applications (or “customers”) mustbecomethedriving forcefor Grid development.

Thewebservice idea�ts theworld of Grid infrastructure ideally, assuggestedby theOpenGrid
ServicesArchitecture,whichhides theproprietaryimplementation issues from theservice functional-
ity. However, many componentsof thecurrent Grid infrastructurewill remainnon-webservice com-
pliant for a long time. Userapplications areusually hand-coded anddo not conform with the web
service concept either. Nevertheless, legacy applications andusercodes,mustbe incorporated in a
global Grid serviceenvironmentaswell.

10.2 Contrib ution of this Thesis

Themajorresults of this thesis canbesummarizedasfollows:

� To describe theparticipants in complex scenarios, angeneric datamodelfor objectson a Grid
is motivated.WeproposetheGrid ObjectDescription Languagein Chapter 5 asaninformation
modelto combine thedifferent aspectsof Grid entities.

� Weimplementedatoolkit to createandmanageGrid Objectsandusethis tool in theimplemen-
tationof our migration service environment.

� GlobalGridsareunreliableandrequire fault tolerantapplications.We suggest thecombination
of webserviceswith a Peer-To-Peerstrategy, Chapter 4. With this unionwe gaina service and
dataredundancy andareableto overcome the failure of individual service instances.We call
this fusion of two distinct servicemodels“Grid PeerServices”.

� We presenteda migration andspawn environment in Chapter8 that is basedon the Grid Peer
Servicesidea. Theenvironment is designedasageneric, modular andextensible serviceframe-
work, basedon theP2Ptopology. Theservice framework performsfundamentalandcomplex
services(e.g.copy andmigration operations, respectively). It is hierarchically structuredand
makesuseof existing Grid technology wherever possible.

117

118 CHAPTER10. SUMMARY OFRESULTSAND FUTURERESEARCH

� We presentedthe concept and implementation of an Application Information Server as an
generic informationregistry to serve applications,services,�le andresourcerelated data. We
introducedthepersonal AIS asa tool to view privatesimulation data independently of wherea
simulation codeis executing.

� Thepresentedmigration environment enhancesthethroughputfor long-termsimulations.

� We testedthe migration andspawn serviceswith a Grid-awaresimulation code basedon the
CactusCodeframework andatraditional,Grid-unawaregenomeanalysisprogram.Weshowed
thatbothareableto migrateautonomically.

� We analyzedunder what circumstancesspawning accelerates the execution of the corealgo-
rithm. Wemeasured thecritical processornumberfor aspawnableanalysisroutine in numerical
relativity.

� We demonstratethat the migration service environment is able to accesshidden resourcesin
privatenetworks.

10.3 Futur e Work

Throughout this thesis we have mentioned related work, pointed out extensionsandoutlinedfuture
projects. The concreteand long term research projectstowards an environment that supports auto-
nomiccomputing are:

� NetworkPro�les: Taking the changing network quality into account, we require an extension
of theGrid Objectdatamodel,which describesthepropertiesof networks.

� TimePro�le: Thecurrent Grid Objects have no understanding of time or duration. We require
suchinformationto de�ne e.g.thestart andtermination time of resourcesor services.

� OGSA:usingOGSAconformalcommunicationfor theGrid PeerServices would allow us the
offer a sophisticatedsecurity conceptto migrating applications.

A new trend in distributed computing is emerging: autonomiccomputing. Theself-determinedopera-
tion of applications in serviceenvironmentspromisesanew wayto deal with theincreasingcomplex-
ity of compute resources.Making applicationsandservice environment progressively moreawareof
their actionsandfailuresandderive theproperconsequencesis essential for a truly self-governedand
intelligentbehavior.

Appendix A

GODsL Toolkit

TheGrid ObjectDescription LanguageToolkit (GODsL-Tk)providesasetof routineswhichassistthe
programmerin manipulatingtheGODsLobjectsin theC programminglanguage.In this chapter, we
list theGODsL-Tkfunctionsandgiveabrief example,onhow GODsL-TKis usedto send amigration
requestwithin a C program. The GODsLobjectsandthe GODsLToolkit areusedto communicate
theargumentsfor thevarious servicesintroduced in Chapter 7.

A.1 Toolkit Functionality

The GODsL toolkit is written in in the C programming language. Other languagessuchas Perl,
C++, are currently not implemented but the toolkit can be translated in a straightforward fashion.
TheGODsL-TkprovidesAPIs for object managementandconversion of Grid Objectsinto anXML
representation. Thetoolkit usesthexmlrpc-epi libraries1, which conform to theXMLRPC speci�ca-
tion [90]. GODsL-Tk providesroutines to create, add, combine anddeletepro�les andcontainers.
TheGODsL-Tkspeci�cally providesthesefunctions:

A.2 Toolkit Programming Example

Listing A.1 givesan exampleon how the toolkit is used to handle migration �les. This exampleis
taken from a Grid migration client: The client collects information on all essential migration �les
in Grid ObjectgoMi g. The local routine WSetSt ruct MachinePr ofil e ("lo calho st")
storeshostnameinformationin themachine pro�le mp. TheroutinesWGetCheckp oint Info() ,
WPre pare NextP arfi le() andWGetExeIn fo gatherinformationon thecheckpoint, param-
eter�le andexecutable,respectively. Themachine pro�le mpandthree�le pro�les areappendedto
the Grid ObjectgoMi g. This Grid Object is passedalongasthe argumentof a gms migra te()
requestto themigration server mig serv er .

A.3 Download

Themigrationandspawn serviceenvironment andGODsL-Tkis work in progress,pleaseseetheCVS
section of theCactusCodehomepagehtt p://w ww.c actus code .org for downloador contact
lanfe r@aei.mp g.de .

1xmlrpc-epiv5.0by DanLibby, Epinions.comhttp://xml rpc-epi.sour ceforge.net

119

Appendix Appendix

ToStruct GridObject()
ToStruct

�

File,Service �

�

Profile ,Cont. � ()
ToStruct

�

Resource,Machi ne �

�

Profile,Cont. � ()

Conversion of an pro�le,container or Grid Object in
XML to its C structurerepresentation. If no XML doc-
ument is speci�ed, theroutinewill createandinitialize
anemptystructure.

FreeGrid Object()
Free

�

File,S ervice �

�

Profile,Con t. � ()
Free

�

Resour ce,Machine �

�

Profile ,Cont. � ()

Releasingof allocatedcontainer, pro�le or Grid Object
structuresand free the allocatedstorage. The routine
traversesinto substructuresandfreesall of theattached
substructures.

CopyGrid Object()
Copy

�

File,S ervice �

�

Profile,Con t. � ()
Copy

�

Resour ce,Machine �

�

Profile ,Cont. � ()

The routinesprovide a copy the of the original object
structure(pro�le, containeror Grid Object)andreturn
it to the programmer. The programmer is responsible
for freeingthisdata.

MCAppMachineC ontainer(mc, mc)()
MCAppMachineP rofile(mc, mp)()
SC AppServiceC ontainer(sc, sc)()
SC AppServiceP rofile(sc, sp)()
RCAppResource Container(rc , rc)()
RCAppResource Profile(rc, rp)()
FC AppFileCont ainer(fc, fc)()
FC AppFileProf ile(fc, fp)()

The �rst four routinesappends take as the �rst argu-
menta containerstructure(of type machine(mc), ser-
vice (sc), resource(rc) or �le (fc)) andappendto this
structurethe content of the secondcontainerstructure.
Thelastfour routinesappenda pro�le to a container of
type machine(mc), service(sc), resource(rc) or �le
(fc). The routinesaree.g.usedto fusemultiple con-
tainerstructuresinto a singlecontainer.

GOAppMachineC ontainer(go, mc)()
GOAppServiceC ontainer(go, sc)()
GOAppResource Container(go , rc)()
GOAppFileCont ainer(go, fc)()
GOAppMachineP rofile(go, mc)()
GOAppServiceP rofile(go, sc)()
GOAppResource Profile(go, rc)()
GOAppFileProf ile(go, fc)()

This set or routinesappends a container or a pro�le
structureto a Grid Object(GO).

ToXMLGri dObject()
ToXML

�

Resource,Machine �

�

Contai ner,Profile � ()
ToXML

�

File, Service �

�

Container, Profile � ()

This set of routinesconverts the a pro�le, container
or grid functionstructureinto the corresponding XML
structure.ToXMLis theinverseto ToStruc t routines.

TableA.1: GODsL-Tk overview, listing the different routinesthat areavailableto manage the Grid Object
structuresin C. Thetoolkit offersconversionroutines to serializeC structures into theirXML representationas
well asdeserializeXML to C structures.

121 121

1 Gr i dObj ect � goMig ;
2 GOM achi ne Prof i l e � mp;
3 GOFi l e Pr of i l e � l ocal cp , � l ocal par , � l ocal ex e ;
4 char � reqI D ;
5

6 goMig = GO ToStruct () ;
7 mp = W Set St r uct M achi nePr of i l e (” l ocal host ”) ;
8

9 GO A ppM achi neProf i l e(& goMig , mp) ;
10 goMig �

� key = st r dup ((char �) w i d) ;
11

12 l ocal cp = W GetCheckpoi nt I nf o () ;
13 GO A ppFi l eProf i l e(& goMig , l ocal cp) ;
14

15 l ocal par = W Pr epar eN ex t Par f i l e (l ocal cp) ;
16 GO A ppFi l eProf i l e(& goMig , l ocal par) ;
17

18 l ocal ex e = W GetExeI nf o () ;
19 GO A ppFi l eProf i l e(& goMig , l ocal ex e) ;
20

21 reqI D = Wxml NewRequest (mi gserver , goMig ,
22 REPMODE RESULT,
23 ” gms mi grate” , ” def au l t ok ”) ;

Listing A.1: Migration Files: The Grid objectgoMig describesa setof migration �les through a machine
pro�le (mp) andthree�le pro�les (loca lcp , localpar , localexe).

Appendix B

Grid Peer Service Testbed

Thefoll owing machineswereusedto investigate thebehaviorof theGrid PeerServicesandconduct
themigration andspawn experiments. We give a brief description of themachines,which assembled
this testbed.

Hostname Institute OS
Processor

Type
Access

Methods

Submis-
sion

Methods

ori-
gin.aei.mpg .de

MPI for Gravitat-
ional Physics

IRIX R10000 gsi,ssh Globus

modi4.ncsa. uiuc.edu

NationalCenterfor
Supercomputer
Applications

IRIX R12000 gsi,ssh
Globus,

LSF

uranus.hait i.cs.
uni-potsdam .de

University of
Potsdam,Computer
Science

Linux Pentium4 ssh
Globus,

PBS

gescher.vcp c.
univie.ac.a t

European Centerfor
Parallel Computing,
Vienna

Linux Pentium3 gsi PBS

mat.ruk.cun i.cz
CharlesUniversity
in Prague, Computer
Science

IRIX R12000 ssh Globus

fermat.cfs. ac.uk

University of
Manchester,
Computation for
Science(CfS)

IRIX R12000 ssh –

TableB.1: Machinesof theTestbed.

122

Index

AIS, 73,74,78,100
personal,76
primary, 74

application
automaticrecovery, 91
binary repository, 13
dataformats,14
intelligence,14,102
monitoring,78
platform independence,13
spawning, seespawning
autonomic,6, 8, 10,94,98,103

ApplicationInformationServer, seeAIS

batch submissionsystems,20
binary repository, 98
BPEL4WS, 33,103
BusinessProcessExecutionLanguagefor Web

Services, seeBPEL4W2

CactusCode,23,51,61
Charlotte,22
checkpoint �le, 14
CIM, 24
Class-Ad, 20,84
Classi�ed Advertisement, seeClass-Ad
computing Grids,11
Condor, 14,20,21,122
CORBA, 37

EuropeanGrid Initiative,25

fault tolerance,8, 65,74,91,94,97,98,100

GAxMl, 107,118
GFS,73,79
Global Grid Forum,25
Globus,18
GlobusResourceAllocation Manager, seeGRAM
Globus SecurityInfrastructure, seeGSI
GMS,88,99

client, 89
fault tolerance,94,97,98
server, 93

Gnutella, 30

GODsL,18,39,41,48,50,57
GPS,18,26,27,58,73

de�nit ion of, 31
GrADS,25
GRAM, 18,22
Grid, 11,16

applications,13
characteristics,11
fault tolerance,8, 12
global, 26
hardware,12
infrastructure,18,102
platform independence,13
software,13

Grid Accelerated Maximum Likelihood , see
GAxML

Grid File Service, seeGFS
Grid FTP, 81
Grid Migration Service, seeGMS
Grid Object,41,48

File Pro�le, 44
Machine Pro�le, 45
Network Pro�le, 56
ResourcePro�le, 46
ServicePro�le, 42

Grid ObjectDescription Language, seeGODsL,
Grid Object

Grid PeerService, seeGPS
Grid PingService, 71,73,78,100
Grid ResourceService, seeGRS
Grid ShellService, seeGSS
Grid Spawn Service, seeGMS
GridLab,25
GRS,74,84
GSI,19,80
GSS,74,82

Harness,22

Java,13
Javelin, 22
JXTA, 65

LDAP, 19

123

124 Index

Legion,18
Lightweight Directory AccessProtocol, see

LDAP
LoadSharing Facility, 20,22
LoadLeveler, 20

Maui Scheduler, 21
MDS, 19,85,86
meta-computing, 18,50,82
Metacomputing Directory Service, seeMDS
migration, 6, 91,109,118
monitor

application, 78
service,100
application, 114
service,113

Network WeatherService, seeNWS
nomadicmigration, seemigration
NWS,21,56

OGSA, 33,57
OpenGrid ServicesArchitecture, seeOGSA

PACE,21
PAPI, 25
PBS, 20
Peer-To-Peer, 29
Performance API, 21,23
platform independence,14
PortableBatchSubmission, seePBS
probabilistic reliability , 14

reliability , 11,14
RequestCommunication Channels, 65
RequestHandler, 60
RequestHandling

fault tolerance,65
states, 65

request handling strategies,60
Requests

content, 65
envelope,63
noti�cat ion, 62
request-response, 62
two-phase,64

Resource Speci�cation Language, seeRSL
resourcesubstrate,11
RSL, 18,82

service monitor, seemonitor
SimpleObjectAccessProtocol, seeSOAP
simulationprototyping, 10
SOAP, 35,37
spawning,8, 99,115
storageGrids,11
SunGrid Engine, 20,22
SvPablo,21,25
Symphony, 22,24,26

TENT, 22,25

UDDI, 32
uniqueidenti�er , 48,100
Universal Description, Discovery andIntegra-

tion, seeUDDI

WebService,28,33,35
WebServiceDescription Language,seeWSDL
WebServiceFlow Language, seeWSFL
WSDL, 32,57
WSFL,32,103

XML-RPC, 34,37,125

Bibliography

[1] M. Alcubierre,G. Allen, B. Brügmann, G. Lanfermann, E. Seidel,W.-M. Suen,andM. Tobias.
Gravitational collapseof gravitationalwavesin 3D numerical relativity. Phys.Rev. D, 61:041501
(R), 2000. gr-qc/9904013.

[2] M. Alcubierre,W. Benger, B. Brügmann, G.Lanfermann,L. Nerger, E.Seidel,andR.Takahashi.
3d grazing collision of two blackholes.Phys.Rev. Lett., 87:271103, 2001.gr-qc/0012079.

[3] W. Allcock, J.Bresnahan, I. Foster, L. Liming, andJ.Link. GridFTPUpdate.Technical report,
The Globus Project, January 2002. http ://w ww.gl obus .org/ data grid /grid ftp.
html .

[4] G. Allen, D. Angulo, I. Foster, G. Lanfermann, C. Liu, T. Radke, E. Seidel, and J. Shalf.
The Cactus Worm: Experiments with dynamic resource discovery and allocation in a
Grid environment. Int. J. of High Performance Computing Applications, 15(4), 2001.
http ://ww w.ca ctusc ode. org/ Paper s/IJ SA 2001 .pdf .

[5] G. Allen, W. Benger, T. Dramlitsch, T. Goodale, H. Hege, G. Lanfermann, A. Merzky,
T. Radke, and E. Seidel. Cactus Grid Computing: Review of current development.
In R. Sakellariou, J. Keane, J. Gurd, and L. Freeman,editors, Europar 2001: Paral-
lel Processing, Proceedings of 7th International Conference, Manchester. Springer, 2001.
http ://ww w.ca ctusc ode. org/ Paper s/Eu ropar 01.p s.gz .

[6] G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke,
and E. Seidel. The Cactus Code: A problem solving environment for the
Grid. In Proceedings of Ninth IEEE International Symposium on High Perfor-
mance Distributed Computing, HPDC-9, Pittsburgh, pages253–260. IEEE Press, 2000.
http ://ww w.ca ctusc ode. org/ Paper s/HP DC9 2000.ps. gz .

[7] G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke, E. Sei-
del, andJ. Shalf. CactusTools for Grid Applications. Cluster Computing, 4:179–188,2001.
http ://ww w.ca ctusc ode. org/ Paper s/Ca ctusT ools .ps. gz .

[8] G. Allen, T. Dramlitsch, I. Foster, N. Karonis, M. Ripeanu, E. Seidel, and B. Too-
nen. Supporting ef�cicien t execution in heterogeneous distributed computing environ-
ments with Cactusand Globus. In Proceedings of Supercomputing 2001, Denver, 2001.
http://www.cactuscode.org/Papers/GordonBell 2001.ps.gz.

[9] G. Allen, T. Dramlitsch, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, T. Kielmann,
K. Verstoep, Z. Balaton, P. Kacsuk,F. Szalai, J. Gehring,A. Keller, A. Streit, L. Matyska,
M. Ruda,A. Krenek, H. Frese,H. Knipp, A. Merzky, A. Reinefeld, F. Schintke,B. Ludwiczak,
J.Nabrzyski, J.Pukacki, H-P. Kersken, andM. Russell. Earlyexperienceswith theegrid testbed.
In IEEE International Symposium on Cluster Computingand the Grid, 2001. Available at
http ://ww w.ca ctusc ode. org/ Paper s/CC Grid 2001 .pdf. gz .

[10] G. Allen andE. Seidelet.al.Gridlab: Enablingapplicationson theGrid. In Proceedingsof Grid
2002: 3rd International Workshop on Grid Computing. SpringerVerlag,November2002. to be
published.

125

126 Bibliography

[11] G. Allen, T. Goodale, G. Lanfermann, T. Radke, andE. Seidel. The CactusCode: A problem
solving environmentfor theGrid. In Proceedingsof First Egrid Meetingat ISTHMUS,Poznan,
April 2000, 2000. http://www.zib.de/visual/projects/TIKSL/Papers/EGrid2000-Cactus.ps.

[12] G. Allen, T. Goodale, G. Lanfermann, T. Radke, E. Seidel, W. Benger,
C. Hege, A. Merzky, J. Masśo, and J. Shalf. Solving einstein's
equations on supercomputers. IEEE Computer, 32(12):52–59, 1999.
htt p:// www.computer. org/c omputer/a rtic les/ einst ein 1299 1.htm .

[13] TheARB Project. TU Munich, 2002. htt p://w ww.arb- home.d e.

[14] M. Bake. mpiJava: a Java interfaceto MPI. 1stUK Workshop on Java HKCN, 1998.

[15] A. Barak,A. Braverman,I. Gilderman, andO. Laaden. Performance of PVM with theMOSIX
Preemptive Process Migration. In Proceedingsof the7th Israeli Conference on ComputerSys-
temsandSoftware Engineering, pages38–45,Herzliya,June 1996.

[16] A. Baratloo, M. Karaul, Z. Kedem,andP. Wyckoff. Charlotte: Metcomputing on the web. In
Proceedingsof the9thInternational ConferenceonParallel andDistributedComputingSystems,
1996.

[17] J. Basney, M. Livny, and T.Tannenbaum. High throughput computing with Condor. HPCU
News, 1(2),June1997.

[18] T. Bray, J.Paoli, C. Sperenberg-McQueen,andE. Maler. Extensible MarkupLanguage (XML)
1.0. W3CRecommendation, October 2000.http ://w ww.w3.org /TR/ REC-xml .

[19] E. Cerami.WebServicesEssentials. O'Reilly Publishers,1 edition, February2002.

[20] E. Christensen,F. Curbera, G.Meredith, andS. Weerarawana. Web ServiceDescription Lan-
guage(WSDL). W3C Note15,March2001. htt p:// www.w3.or g/TR/ wsdl .

[21] CommonInformation Model (CIM) Standards. The DMTF webpage: CIM Speci�cation v2.7
and Standards, September2002. http: //ww w.dmtf.or g/st andar ds/s tand ard\
_ci m.ph p.

[22] The CondorClassi�ed Advertisement. The Condor Webpage. http ://ww w.cs .wisc .
edu/con dor/c lass ad/ .

[23] Condorv6.3.1manual. University of Wisconsin-Madison, 2001.

[24] The CORBA Speci�cation. Object Management Group, November2001. htt p:// www.
cor ba.o rg .

[25] K. Czajkowski, S. Fitzgerald, I. Foster, andC. Kesselman.Grid InformationServices for Dis-
tributedResourceSharing. In Proceedingsof theTenthIEEEInternationalSymposiumonHigh-
Performance DistributedComputing(HPDC-10). IEEEPress,August 2001.

[26] K. Czajkowski, I. Foster, C. Kesselman,S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecturefor Metasystems.Lecture Noteson Computer Science, 1998.

[27] TheDataGrid Project. http: //ww w.eu - data grid. org .

127

[28] D.Box, D. Ehnebuske, G. Kakivaya, A. Layman,N. Mendelsohn, H. Nielsen, S. Thatte, and
D. Winer. SimpleObject AccessDataProtocol (SOAP)1.1. W3C Note,May 2000. htt p:
//ww w.w3. org/ TR/SOAP/ .

[29] ThomasDramlitsch. DistributedComputationsin a Dynamic, HeterogeniousGrid Environment.
PhDthesis, University of Potsdam,Potsdam, December2002.

[30] EGrid HomePagehttp ://ww w.eg rid. org .

[31] A Grimshaw et.al. Legion: An operating system for wide-area-computing. IEEE Computer,
32(5), May 1999.

[32] H. Feider. Grid make. htt p:// www.cs.un i- pot sdam.de/˜ schn or/po tsda m/
Research/ Grid /grid _ma ke.h tml .

[33] J.Felsenstein. Evolutionarytrees from DNA sequences: A maximumlikelihoodapproach.In J.
Mol. Evol, volume17,pages368–376,1981.

[34] R.Fielding,J.Gettys, J.Mogul, andH. FryStyk.Hypertext TransferProtocol – HTTP/1.1. RFC
2068, Network Working Group,January 1997.

[35] T. Fokert, H.-P. Kersken, A. Schreiber, M. Striezel,andK.Wolf. The DistributedEngineering
Framework TENT. In VECPAR2000, pages148–153,2000.

[36] I. FosterandC.Kesselman. TheGrid: Blueprint for a FutureComputing Infrastructure. Morgan
Kaufmann Publishers,1999.

[37] I. Foster, C. Kesselman,J. Nick, andS. Tuecke. The Physiology of the Grid: An OpenGrid
Service Architecturefor distributedsystemsintegration, June2002. htt p:// www.globu s.
org/ ogsa/ .

[38] I. Foster, C. Kesselman, G. Tsudik, andS. Tuecke. A security architecture for computational
grids. In Proceedingsof 5th ACM Conferenceon ComputerandCommunicationsSecurity Con-
ference, pages 83–92, 1998.

[39] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. Intl J. Supercomputer Applications, 15(3), 2001.
http ://ww w.gl obus. org/ rese arch/ pape rs/an atom y.pd f .

[40] JamesFrey, Todd Tannenbaum, Ian Foster, Miron Livny, and Steven Tuecke. Condor-G: A
Computation ManagementAgent for Multi- Institutional Grids. Journal of Cluster Computing,
5:237–246, 2002.

[41] C. Fricke. Characterizing networks through the Grid Object Description Language, 2002.
Grosser Beleg, University of Potsdam.

[42] D. Gannon, K. Chiu,M. Govindaraju,andA. Slominski. An Analysisof theOpenGrid Service
Architecture. Technical report, commissionedby theUK e-ScienceCoreProgram, May 2002.

[43] Global Grid Forum Home Page http ://w ww.gridfo rum. org , Applications Research
Grouphomepage: http ://w ww.zi b.de /ggf/ apps / .

[44] The Gnutella Protocol Speci�cation v0.4. http ://w ww.c lip2. com/
Gnut ellaP roto col04 .pdf .

128 Bibliography

[45] A. Gokhale, B. Kumar, andA. Sahuguet. Reinventingthewheel? CORBA vs. WebServices.
htt p:// www2002.o rg/C DROM/alte rnate /395 / .

[46] L. Gong. ProjectJXTA: A Technology Overview. Technical report, SUN Microsystems,April
2001.htt p://w ww.j xta.o rg/w hite _pap ers. html .

[47] T. Goodale, G. Allen, G. Lanfermann, J. Masśo, T. Radke, E. Seidel,andJ. Shalf. TheCactus
framework and toolkit: Designand applications. In Vector and Parallel Processing - VEC-
PAR'2002, 5th International Conference, Lecture Notesin ComputerScience, Berlin, 2002.
Springer. to bepublished.

[48] Grid AdaptiveDevelopmentSoftware.http ://w ww.i si.ed u/gr ads/ .

[49] Globus Resource Allocation Manager. The Globus GRAM Webpage. htt p:// www.
glo bus. org/g ram.

[50] Gridlabkick-off meeting, Poznan,February2002.

[51] Gridlab: A grid application toolkit andtestbedproject. URL: http ://ww w.gr idla b.org .

[52] A. Grimshaw andW. Wulf. TheLegion vision of a world-wide virtual computer. Communica-
tionsof theACM, 40(1):39–45,1997.

[53] Hierarchical Data Format Version 5 (HDF5) Home Page
htt p:// hdf.n csa. uiuc .edu/ HDF5.

[54] R. Henderson andD. Tweten.Portable BatchSystem:External referencespeci�cation. Techni-
cal report, NASA AmesResearchCenter, 1996.

[55] J.Hough. Lisa: Laserinterferometerspace antennafor gravitationalwave measurements,1994.
Preparedfor EdoardoAmaldi Meetingon Gravitational Wave Experiments,Rome,Italy, 14-17
Jun1994.

[56] Java Grandehttp ://w ww.ja vagr ande .org .

[57] CactusLiveSimulation WebServer. http ://t racke r.ae i.mp g.de: 2000 .

[58] IBM. IBM LoadLeveler: Usersguide,September 1993.

[59] G. LanfermannandG. Allen. ApplicationSpawning: Resolving algorithmic dependencies. in
preparation.

[60] G. Lanfermann, G. Allen, T. Radke, and E. Seidel. Nomadicmigration: A new tool for dy-
namicgrid computing. In Proceedingsof Tenth IEEE International Symposiumon High Per-
formanceDistributedComputing, HPDC-10,SanFrancisco, pages435–436.IEEEPress,2001.
htt p:// www.cactu scod e.org /Pap ers/H PDC10 2001 Worm.ps.g z.

[61] G. Lanfermann, G. Allen, T. Radke, andE. Seidel. Nomadicmigration: Fault tolerancein a
disruptivegrid environment. In Proceedingsof theSecond IEEE/ACM International Symposium
on Cluster ComputingandtheGrid, pages280–281,2002.

[62] G. Lanfermann, B. Schnor, and E.Seidel. Grid Object Description: Characterizing Grids.
IFIP/IEEE Internation Symposium on Integrated Network Management, March 2003. to be
published.

129

[63] G. LanfermannandA. Stamatakis. Grid Accelerated Maximum Likelihood: Migrating philo-
gentic analysiscodes. in preparation, November2002.

[64] F. Leymann.WebServiceFlow Language(WSFL). Technical report, IBM, May 2001. htt p:
//xm l.cov erpa ges.o rg/w sfl. html .

[65] K. London, J. Dongarra, S. Moore, P. Mucci, K. Seymour, and T. Spencer. End-user tools
for application performanceanalysis,usinghardwarecounters. In International Conferenceon
Parallel and Distributed ComputingSystems, August 2001. http: //ic l.cs .utk. edu/
proj ects/ papi .

[66] M. Lorch andD. Kafura. Symphony - a Java basedComposition andManipulation Framework
for ComputationalGrids.In ProceedingsClusterComputingandtheGrid (CCGrid2002), pages
136–143,2002.

[67] B.A. Mah. pchar: A tool for measuring internet path characteristics. http: //ww w.
empl oyees .org /˜bma h/So ftwa re/pc har/ .

[68] TheMaui Scheduler. http ://s uperc lust er.o rg/ma ui .

[69] M. Migliardi, D. Kurzyniec,andV. Sunderam. Standardsbasedheterogeneousmetacomputing:
Thedesignof Harnessii. In Proceedingsof theInternationalParallel andDistributedProcessing
Symposium(IPDPS-HCW), Ft.Lauderdale,FL, April 2002. http ://ww w.mathcs. emory.
edu/ harne ss/ .

[70] M. Neary, B. Christansen,P. Capello, and K. Schauser. Javelin: Parallel computing on the
internet. In Future Generation ComputerSystems, volume15,pages656–674,1999.

[71] G.R.Nudd,D.J.Kerbyson, E. Papaefstathiou, S.C.Perry, J.S.Harper, andD.V. Wilcox. PACE
- A toolset for theperformanceprediction of parallel anddistributedsystems.TheInternational
Journal of High Performance ComputingApplications, 14:228–251, 2000.

[72] G.J.Olsen,H. Matsuda,R. Hagstrom,andR. Overbeek. A tool for construction of phylogenetic
treesof DNA sequencesusingmaximumlikelihood. In Comput.Appl.Biosci, volume10,pages
41–48,1994.

[73] S.PetriandH. Langendörfer. LoadBalancing andFaultTolerancein Workstation Clusters– Mi-
grating Groupsof Communicating Processes.Operating SystemsReview, 29(4):25–36,October
1995.

[74] J. Postel. Internet Control Message Protocol. RFC792,Network Working Group,September
1981.

[75] J. PostelandJ. Reynolds. File TransferProtocol(FTP). RFC959, Network Working Group,
October 1985.

[76] J.B.Postel.SimpleMail Transfer Protocol (SMTP).RFC812, Network WorkingGroup,August
1982.

[77] M. Ripeanu. Peer-to-Peerarchitecture case study: Gnutellanetwork. In Proceedingsof 2001
IEEEInternational Conferenceon Peer-to-peerComputing, 2001.

[78] L. Rose,Y. Zhang, andD. Reed. SvPablo:A Multi-l anguage Performance Analysis System.
Computer Performance Evaluation (Tools), pages 352–355,1998.

130 Bibliography

[79] M. Rose.TheBlocksExtensible ExchangeProtocolCore.RFC3080, Network Working Group,
March2001.

[80] A. Sah. Symphony: A Java based Composition andManipulation Framework for Distributed
Legacy Resources.Master's thesis, Virginia Polytechnic InstituteandStateUniversity, 1998.

[81] B. Schnor, S.Petri,R. Oleyniczak, andH. Langendörfer. Scheduling of ParallelApplicationson
HeterogeneousWorkstation Clusters. In Koukou YetongnonandSalimHariri, editors,Proceed-
ingsof the ISCA9th International Conferenceon Parallel andDistributedComputing Systems,
volume1, pages 330–337,Dijon, September 1996.ISCA, ISCA.

[82] E. Seidel,G. Allen, A. Merzky, and J. Nabrzyski. Gridlab — a grid application toolkit and
testbed. Future Generation ComputerSystems, 18:1143–1153, 2002.

[83] SUN Grid Engine Project. Sun Microsystems. htt p://w wws. sun.c om/s oftw are/
gri dwar e/ .

[84] L. SmarrandC. Catlett.Metacomputing. Communicationsof theACM, 35(6):44–52,1992.

[85] K. Thorne.Ligo, virgo, andtheinternational network of laser-interferometergravitational-wave
detectors. In M. Sasaki, editor, Proceedings of the Eight Nishinomiya-Yukawa Symposium on
Relativistic Cosmology, Japan, 1994. UniversalAcademyPress.

[86] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,andC. Kesselman. The Grid Service
Speci�cation, February2002.http ://w ww.globus .org /ogsa / .

[87] S. Tuecke, D. Engert, I. Foster, V. Welch, M. Thompson, L. Pearlman, and
C. Kesselman. Internet X.509 Public Key Infrastructure - Proxy Certi�cate Pro-
�le, July 2002. http ://ww w.gr idfor um.o rg/s ecuri ty/g gf5_ 2002 - 07/
dra ft- ggf- gs i- pro xy- 03.PDF.

[88] UniversalDescription, Discovery andIntegration(UDDI). htt p://w ww.uddi.o rg .

[89] M. Wahl,T. Howes,andS.Kille. Lightweight Directory AccessProtocol (v3). Technical report,
RFC2251, Network Working Group,1997.

[90] D. Winer. XML-RPC Speci�cation, June1999. http ://ww w.xmlrpc. com/ spec .

[91] R. Wolski. Dynamically forecastingnetwork performanceusing theNetwork Weather Service.
In ClusterComputing, pages 119–132,1998.

[92] S. Zhou. LSF: Load sharing in large-scaleheterogenous distributed systems. Workshop on
ClusterComputing, 1992.

