
Dissertation

One-Sided Communication on a
Non-Cache-Coherent Many-Core

Architecture
eingereicht von

Steffen Christgau, M.Sc.

vorlegt der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

in der Wissenschaftsdisziplin Betriebssysteme und Verteilte Systeme

angefertigt am
Institut für Informatik und Computational Science
Professur für Betriebssysteme und Verteilte Systeme

Potsdam, den 1. Februar 2017

Supervisor
Prof. Dr. Bettina Schnor

Referees
Prof. Dr. Bettina Schnor
Prof. Dr. Wolfgang Karl
Prof. Dr. Wolfgang E. Nagel

Examining Board
Prof. Dr. Andreas Schwill (head)
Prof. Dr. Andreas Polze
Prof. Dr.-Ing. Benno Stabernack

Christgau, Steffen
christgau@cs.uni-potsdam.de
One-Sided Communication on a Non-Cache-Coherent Many-Core Architecture
Dissertation, Institute for Computer Science
University of Potsdam, February 2017

mailto:christgau@cs.uni-potsdam.de

Abstract

Contemporary multi-core processors are parallel systems that also provide shared
memory for programs running on them. Both the increasing number of cores in
so-called many-core systems and the still growing computational power of the cores
demand for memory systems that are able to deliver high bandwidths. Caches are
essential components to satisfy this requirement. Nevertheless, hardware-based cache
coherence in many-core chips faces practical limits to provide both coherence and
high memory bandwidths. In addition, a shift away from global coherence can be
observed. As a result, alternative architectures and suitable programming models need
to be investigated.

This thesis focuses on fast communication for non-cache-coherent many-core archi-
tectures. Experiments are conducted on the Single-Chip Cloud Computer (SCC), a
non-cache-coherent many-core processor with 48 mesh-connected cores. Although
originally designed for message passing, the results of this thesis show that shared
memory can be efficiently used for one-sided communication on this kind of architec-
ture. One-sided communication enables data exchanges between processes where the
receiver is not required to know the details of the performed communication. In the
notion of the Message Passing Interface (MPI) standard, this type of communication
allows to access memory of remote processes. In order to support this communication
scheme on non-cache-coherent architectures, both an efficient process synchronization
and a communication scheme with software-managed cache coherence are designed
and investigated.

The process synchronization realizes the concept of the general active target synchro-
nization scheme from the MPI standard. An existing classification of implementation
approaches is extended and used to identify an appropriate class for the non-cache-
coherent shared memory platform. Based on this classification, existing implementa-
tions are surveyed in order to find beneficial concepts, which are then used to design
a lightweight synchronization protocol for the SCC that uses shared memory and
uncached memory accesses. The proposed scheme is not prone to process skew and
also enables direct communication as soon as both communication partners are ready.
Experimental results show very good scaling properties and up to five times lower
synchronization latency compared to a tuned message-based MPI implementation for
the SCC.

For the communication, SCOSCO, a shared memory approach with software-managed
cache coherence, is presented. According requirements for the coherence that fulfill

iii

MPI’s separate memory model are formulated, and a lightweight implementation
exploiting SCC hard- and software features is developed. Despite a discovered mal-
function in the SCC’s memory subsystem, the experimental evaluation of the design
reveals up to five times better bandwidths and nearly four times lower latencies in
micro-benchmarks compared to the SCC-tuned but message-based MPI library. For
application benchmarks, like a parallel 3D fast Fourier transform, the runtime share
of communication can be reduced by a factor of up to five. In addition, this thesis
postulates beneficial hardware concepts that would support software-managed coher-
ence for one-sided communication on future non-cache-coherent architectures where
coherence might be only available in local subdomains but not on a global processor
level.

iv

Zusammenfassung

Aktuelle Mehrkernprozessoren stellen parallele Systeme dar, die den darauf ausge-
führten Programmen gemeinsamen Speicher zur Verfügung stellen. Sowohl die anstei-
gende Kernanzahlen in sogenannten Vielkernprozessoren (many-Core processors) als
auch die weiterhin steigende Leistungsfähigkeit der einzelnen Kerne erfordert hohe
Bandbreiten, die das Speichersystem des Prozessors liefern muss. Hardware-basierte
Cache-Kohärenz stößt in aktuellen Vielkernprozessoren an Grenzen des praktisch
Machbaren. Dementsprechend müssen alternative Architekturen und entsprechend
geeignete Programmiermodelle untersucht werden.

In dieser Arbeit wird der Single-Chip Cloud Computer (SCC), ein nicht-cachekohä-
renter Vielkernprozessor betrachtet, der aus 48, über ein Gitternetzwerk verbundenen
Kernen besteht. Obwohl der Prozessor für nachrichtenbasierte Kommunikation ent-
wickelt worden ist, zeigen die Ergebnisse dieser Arbeit, dass auf einseitige Kommuni-
kation auf Basis gemeinsamen Speichers effizient auf diesem Architekturtyp realisiert
werden kann. Einseitige Kommunikation ermöglicht Datenaustausch zwischen Pro-
zessen, bei der der Empfänger keine Details über die stattfindende Kommunikation
besitzen muss. Im Sinne des MPI-Standards ist so ein Zugriff auf Speicher entfernter
Prozesse möglich. Zur Umsetzung dieses Konzept auf nicht-kohärenten Architektu-
ren werden in dieser Arbeit sowohl eine effiziente Prozesssynchronisation als auch ein
Kommunikationsschema auf Basis von softwarebasierter Cache-Kohärenz erarbeitet
und untersucht.

Die Prozesssynchronisation setzt das Konzept der general active target synchroniza-
tion aus dem MPI-Standard um. Ein existierendes Klassifikationsschema für dessen
Implementierungen wird erweitert und zur Identifikation einer geeigneten Klasse für
die nicht-kohärente Plattform des SCC verwendet. Auf Grundlage der Klassifikation
werden existierende Implementierungen analysiert, daraus geeignete Konzepte extra-
hiert und ein leichtgewichtiges Synchronisationsprotokol für den SCC entwickelt,
das sowohl gemeinsamen Speicher als auch ungecachete Speicherzugriffe verwendet.
Das vorgestellte Schema ist nicht anfällig für Verzögerungen zwischen Prozesse und
erlaubt direkte Kommunikation sobald beide Kommunikationspartner dafür bereit
sind. Die experimentellen Ergebnisse zeigen ein sehr gutes Skaliserungsverhalten und
eine fünffach verringerte Latenz für die Prozesssynchronisation im Vergleich zu einer
auf Nachrichten basierenden MPI-Implementierung des SCC.

Für die Kommunikation wird mit SCOSCo ein auf gemeinsamen Speicher und softwa-
rebasierter Cache-Kohärenz basierenden Konzept vorgestellt. Entsprechende Anforde-

v

rungen an die Kohärenz, die dem MPI-Standard entsprechen, werden aufgestellt und
eine schlanke Implementierung auf Basis der Hard- und Software-Funktionalitäten
des SCCs entwickelt. Trotz einer aufgedecktem Fehlfunktion im Speichersubsystems
des SCC kann in den experimentellen Auswertungen von Mikrobenchmarks eine
fünffach verbesserte Bandbreite und eine nahezu vierfach verringerte Latenz beob-
achtet werden. In Anwendungsexperimenten, wie einer dreidimensionalen schnellen
Fourier-Transformation, kann der Anteil der Kommunikation an der Laufzeit um den
Faktor fünf reduziert werden. In Ergänzung dazu werden in dieser Arbeit Konzepte
aufgestellt, die in zukünftigen Architekturen, die Cache-Kohärenz nicht auf einer glo-
balen Ebene des Prozessors liefern können, für die Umsetzung von softwarebasierter
Kohärenz für einseitige Kommunikation hilfreich sind.

vi

Acknowledgements

At this point, I would like to express my thanks to some people who supported me in
the process of creating this thesis. First of all, I thank Bettina Schnor for supervising
me in the past years and for the vivid and fruitful discussions we had. Second, this
thesis would not have been possible without the provision of an SCC system by Intel.
For their support on SCC matters, thanks go to Werner Haas and Michael Riepen,
Intel engineers at the time. My colleagues from the sun deck at the Institute for
Computational Science deserve credits for the nice time we had together in the past
years: I want to point out Jörg Jung and Sven Schindler, who shared the office with
me from time to time, but who also caused (sometimes unproductive, yet welcomed)
distractions when they stayed in the room. The latter applies to Marius Lindauer
as well. I do not want to forget Klemens Kittan to thank him for his friendly and
infrastructure support, like shutting down and turning the SCC on again due to
reoccurring, nasty and campus-wide power shutdowns. Thanks goes also to Sebastian
Menski for his experimental support in the very early stages of the thesis, and to
Martin Ohmann for his work on the FFT benchmark during his diploma thesis.
In addition, Sven Schindler and Susi Kirschbaum have to be mentioned for their
individual support in language matters.

vii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Outline . 4
1.3 Contributions . 4
1.4 Publications . 6
1.5 Scope . 6
1.6 Conventions . 7

2 Background 9
2.1 Shared Memory Processors . 9

2.1.1 Memory Consistency and Coherence 10
2.1.2 Memory Consistency . 10
2.1.3 Cache Coherence . 11
2.1.4 Limitations of Cache Coherence 13

2.2 The Intel Single-Chip Cloud Computer 16
2.2.1 Architectural Overview . 16
2.2.2 Memory Subsystem . 18
2.2.3 Message Passing Buffers . 21
2.2.4 Memory Types . 21
2.2.5 Configuration and Atomic Registers 25
2.2.6 Software Environment . 26

2.3 Programming Models for Many-core Processors 30
2.3.1 Message Passing Concepts . 30
2.3.2 The Message Passing Interface Standard 31
2.3.3 Message Passing on the Single-Chip Cloud Computer 33
2.3.4 One-sided Communication . 35
2.3.5 One-Sided Communication in the MPI standard 38
2.3.6 Discussion . 40

2.4 Related Work . 41
2.4.1 Coherence and Consistency in Distributed Systems 41
2.4.2 Coherence via Release Consistency 41

ix

Contents

2.4.3 Shared Virtual Memory . 43
2.4.4 Object-based approaches . 47
2.4.5 Software-Based Cache Coherence 49

2.5 Conclusion . 51

3 Synchronization for MPI One-Sided Communication 53
3.1 Background: MPI Process Synchronization 53

3.1.1 Synchronization Epochs . 55
3.1.2 Fence Synchronization . 56
3.1.3 General Active Target Synchronization 57
3.1.4 Passive Target Synchronization . 59

3.2 Classification of Implementation Methods 61
3.2.1 Deferred Method . 61
3.2.2 Immediate Method . 62
3.2.3 Trigger-Only Method . 63
3.2.4 Discussion . 63

3.3 Survey of Synchronization Implementations 64
3.3.1 MPICH . 64
3.3.2 MVAPICH . 67
3.3.3 Open MPI . 69
3.3.4 FoMPI . 73
3.3.5 NEON . 76
3.3.6 Summary . 80

3.4 Synchronization for the SCC . 81
3.4.1 Analysis of RCKMPI’s Implementation 82
3.4.2 Related Work . 84
3.4.3 Design Overview . 86
3.4.4 Data Structures . 87
3.4.5 Window Database . 88
3.4.6 Window Creation . 93
3.4.7 Start and Post Operations . 94
3.4.8 Polling the Match Vector . 96
3.4.9 Complete and Wait Operations 97
3.4.10 Summary . 98

3.5 Experimental Evaluation . 99
3.5.1 Environment . 99
3.5.2 Functional Tests . 100
3.5.3 Benchmark Methodology . 101
3.5.4 Scaling . 103
3.5.5 Comparison with MPICH/RCKMPI 106

x

Contents

3.6 Summary . 107

4 Software-Managed Cache Coherence for MPI One-Sided Communication 109
4.1 Background . 110

4.1.1 MPI One-Sided Communication 110
4.1.2 One-Sided Communication in RCKMPI 114
4.1.3 Other MPI Implementations . 120

4.2 SCOSCo: An Approach for the Intel SCC 123
4.2.1 Cache Coherence Management . 124
4.2.2 Memory Model . 125
4.2.3 Requirements for MPI One-Sided Communication 126
4.2.4 Memory Type Considerations . 127
4.2.5 Implementation Sketch . 130

4.3 Implementation . 131
4.3.1 Window Creation . 131
4.3.2 Communication Operations . 134
4.3.3 Management of the Cache Coherence 134

4.4 Experimental Evaluation . 136
4.4.1 Functional Tests . 136
4.4.2 Memory Performance . 137
4.4.3 OSU Micro-Benchmarks . 141
4.4.4 Three-Dimensional Fast Fourier Transform 144
4.4.5 Cellular Autotomaton . 151
4.4.6 Summary . 157

4.5 Possible Optimization . 158
4.6 Conclusions for Future Systems . 159

4.6.1 Configurable Shared Memory and Memory Registration . . . 159
4.6.2 Guaranteed Commit to RAM . 160
4.6.3 Selective Invalidation of Cache Lines 161
4.6.4 Non-blocking Data Transfer . 162

4.7 Summary . 163

5 Conclusions and Outlook 165
5.1 Results and Discussion . 165
5.2 Future Work . 167

A Employed MPICH test cases 169
A.1 Succeeded Test Cases . 169
A.2 Failed Test Cases . 170

xi

Contents

B Source Codes Extracts 171
B.1 Load and Store Latencies . 171
B.2 GATS Synchronization Benchmark . 172
B.3 Cellular Automaton . 173

B.3.1 Two-Sided Time Step Kernel . 173
B.3.2 One-Sided Time Step Kernel . 173

B.4 Communication Patterns . 174

C Compute Cluster Properties 177

Index 185

Bibliography 187

xii

1 Introduction

Microprocessors and the main memory attached to them are the essential building
blocks of computer systems. Over the last, decades the processor performance continu-
ously increased by several orders of magnitude [14, p. 3]. In contrast, the performance
of the main memory, which provides data to the processor, could not be improved
that much, creating a large performance gap between the two essential components.
To compensate that gap, several layers of caches — fast intermediate memories — were
added between the processor and the main memory [14, pp. 72 ff.]. They hold
recently used data that is accessed by the processors and hide the large access times of
the main memory. Keeping the cache utilization as high as possible is critical to fully
exploit the processor’s processing capabilities [1, 15].

While several techniques for improving instruction processing contributed to the
performance gains of processors, the main driver has been the processor clock rate.
However, technical limits prevent further upscaling. In fact, the frequency of micro-
processors stagnates since about 15 years as shown in Figure 1.11. To further increase
the performance, the usage of multi-core processors became common at that time and
they are ubiquitous by now. In this type of processors, arithmetic logic units as well
as caches are replicated and grouped in cores (see Figure 1.2). This enables parallel
execution of programs on a single processor.

Besides the replication of some processor resources, other components are used by
multiple cores. Usually, the cores are connected via an interconnect and share the
main memory, although the memory might be distributed (see Figure 1.2). This
enables programs to share data via the commonly used memory. The usage of this
shared memory and the caches at the same time imposes an important problem. When
a process accesses data, the information will be transparently saved inside the caches
attached to the executing core. Thus, copies of the data from main memory are created.
If more than one core accesses data in the shared memory, potential copies in the
caches must be identified and an eventual modification must be handled such that

1Additional data compared to [14, Fig 1.11] obtained from http://ark.intel.com/products/93742

1

http://ark.intel.com/products/93742

1 Introduction

year

fre
qu
en
cy
/M
Hz

10

100

1000

10000

1978 1988 1998 2008 2018

Digital Vax-11-780
1978, 5 MHz

Sun-4 SPARC
1986, 16.7 MHz

MIPS M2000
1989, 25 MHz

Digital Alpha 21064
1992, 150 MHz

Digital Alpha 21164A
1996, 500 MHz

Intel Pentium III
2000, 1 GHz

Intel Pentium4 Xeon
2003, 3.2 GHz

Intel Nehalem W5590
2010, 3.33 GHz

Intel Skylake E3-1585 v5
2016, 3.5 GHz

Figure 1.1: Growth of processor frequency since 1978 (based on [14, Fig. 1.11])

each process observes the most recent data. This task of maintaining the correct state
of cached data is known as cache coherence.

1.1 Motivation

Over the decades of processor design, several techniques were developed to improve
the performance of a single processor core. Today’s architectures are able to issue
multiple memory accesses per clock cycle and also can load several machine words
in parallel, e.g. to fetch data into their vector registers. If a data access causes a cache
miss, i.e. the referenced item is not stored in the local caches, other caches must be
checked for copies which are potentially modified. Similar, if a local write to shared
data is encountered, other caches must be informed about that change. This causes
traffic on the interconnect to keep the cached data coherent.

It has been shown that coherence traffic of so-called snooping protocols can exceed
the capabilities of bus-based interconnects [16, 17]. A shift from pure snoop-based
protocols, which require broadcasts [14, p. 364], to directory-based or mixed coherence
schemes as well as different interconnects (point-to-point, ring, mesh) made multi-core
processors less prone to contention by coherence traffic. However, even on those

2

1.1 Motivation

core

ALU

private cache

private cache

core

ALU

private cache

private cache

core

ALU

private cache

private cache

core

ALU

private cache

private cache

shared cache

m
em
or
y

m
em
or
y

Figure 1.2: Schematic overview of a multi-core CPU with shared last level cache.

architectures, the implementation of coherence adds latency to memory accesses
requiring a deep understanding to achieve good performance [18].

In addition to the challenge of efficient programming of large-scale coherence systems,
two observations can be made.

First, advances in memory technology led to the integration of fast high-capacity
on-chip memories that assists conventional main memory. This type of memory
provides high bandwidth to the cores that share the processor die. However, the
high bandwidth makes building a coherent multi-socket system practically impossible,
because current coherent interconnects do not provide the required bandwidth to
serve the coherence traffic. For the Knights Landing processor, a memory bandwidth
of more than 400 GB/s is stated. Even if the coherence traffic is reduced, it exceeds
the capacity of the QuickPath Interconnect (uni-directional bandwidth of 19.2 GB/s)
which is used to provide coherence in systems with lower memory bandwidth. [19]

Second, other architectures, intentionally break with a support of cache coherence.
The Intel Single-Chip Cloud Computer [20] provides no coherence at all and enables
the research for many-core processors without that feature. Further, HPE’s The
Machine [21] or the EUROSERVER project [22] are designed to consist of multi-core
processors but do not provide a globally coherent system. While those two systems
are still based on shared-memory, they provide coherence only inside a subdomain, or
island, consisting of multi-core processors. Thus, both research of processor producers
and designs of system builders consider the absence of coherence.

3

1 Introduction

As a result of these two observations, non-cache-coherent architectures based on shared
memory need to be considered. So, programming models that use shared memory
and do not require transparent hardware-based cache coherence have to be regarded as
well. One-sided communication of the Message Passing Interface (MPI) is such a model
and is therefore focused within this thesis.

1.2 Outline

Chapter 2, provides background information which is required for the subsequent
discussions. Cache coherence and its limitations are discussed. The chapter also
presents the Intel Single-Chip Cloud Computer (SCC), which is used as non-cache-
coherent many-core platform, as well as a short overview on programming models for
many-core processors. This also covers one-sided communication which is investigated
within this thesis.

In Chapter 3, efficient synchronization for one-sided communication on the SCC is
discussed. Therefore, an existing classification of synchronization schemes is extended.
Implementations of the MPI general active target synchronization are then surveyed
according to this extended categorization. The survey also discusses the suitability of
the implementation for the SCC. Based on this analysis, a synchronization protocol
is designed and evaluated on the many-core chip to confirm its effectiveness.

Afterwards, Chapter 4 addresses the communication on the SCC in absence of hard-
ware-based coherence. The design of a software-based cache coherence protocol
for MPI’s one-sided communication that relies on shared memory is derived. The
chapter presents fundamental requirements according to the MPI standard, discusses
the efficient implementation on the SCC, and shows the results of the experimental
evaluation. In addition, beneficial features for future architectures are proposed.

Finally, Chapter 5 summarizes and discusses the results presented in the previous
chapters. With a look at future work, the thesis is concluded.

1.3 Contributions

The main contributions of this thesis are the following:

4

1.3 Contributions

1. The concept, implementation and evaluation of a synchronization protocol
for one-sided communication on a non-cache-coherent many-core architecture
is presented. The concept is based on shared memory, but does not require
cache-coherence. In the evaluation it is demonstrated that the implementation
of the proposed concept is efficient and provides much lower latency compared
to a tuned message-based solution.

2. The SCOSCo approach, a software-managed cache coherence solution for one-
sided communication on non-cache-coherent many-core processors is designed.
Requirements for such an implementation with respect to the MPI standard
are identified. Based on these, a suitable implementation for the Intel SCC
is derived and an evaluation is provided. Both micro-benchmarks as well as
a stencil application and a communication-intense three-dimensional Fourier
transform confirm the efficiency of that approach with up to five times reduced
communication share on the overall runtime.

3. From both contributions above, consequences for the possible future CPUs are
derived. Beneficial features are identified which should be included in future
systems to support one-sided communication on shared-memory system where
cache coherence is not available.

In addition to these major contributions, the following minor ones evolved

1. The existing classification of implementation options for the synchronization
of one-sided communication is extended by a new class. (see Section 3.2). The
additional class closes the gap between literature and implementations.

2. A survey on existing MPI libraries with a focus on general active target synchro-
nization is carried out. The implementations are classified using the extended
scheme. Based on its outcome, general concepts of such implementations are
identified (cf. Section 3.3).

3. As a result of the survey, a conceptual error in the stable version of the well-
known MPI library Open MPI is identified. The bug has been reported to the
community and was confirmed as well. See Section 3.3.3 for details.

4. Multiple implementation errors in the original MPI library for the Intel SCC
are identified that prevent the usage end evaluation of MPI one-sided communi-
cation with this library or any one-sided MPI application (see Section 4.1.2).

5. A (possible) bug the SCC’s hardware is identified. The hypothesis is supported
by an involved Intel engineer (cf. Section 4.4.2).

5

1 Introduction

1.4 Publications

The majority of the above contributions has been reviewed and published in the
following publications and was presented at the according conference workshops and
symposia.

– Steffen Christgau and Bettina Schnor. „One-Sided Communication in RCK-
MPI for the Single-Chip Cloud Computer“. In: MARC Symposium. Ed. by Eric
Noulard. ONERA, The French Aerospace Lab, 2012, pp. 19–23.

– Steffen Christgau and Bettina Schnor. „Software-managed Cache Coherence
for fast One-Sided Communication“. In: Proceedings of the 7th International
Workshop on Programming Models and Applications for Multicores and Manycores,
PMAM@PPoPP 2016, Barcelona, Spain, March 12-16, 2016. Ed. by Pavan Balaji
and Kai-Cheung Leung. ACM, 2016, pp. 69–77. DOI: 10.1145/2883404.2883409.

– Steffen Christgau and Bettina Schnor. „Synchronization of One-Sided MPI
Communication on a Non-Cache Coherent Many-Core System“. In: ARCS 2016
- 29th International Conference on Architecture of Computing Systems, Workshop
Proceedings, April 4-7, 2016, Nuremberg, Friedrich-Alexander University, Erlangen-
Nürnberg. Ed. by Ana Lucia Varbanescu. VDE Verlag / IEEE Xplore, 2016.

– Steffen Christgau and Bettina Schnor. „Exploring One-Sided Communication
and Synchronization on a non-Cache-Coherent Many-Core Architecture“. In:
Concurrency and Computation: Practice and Experience 29 (2017). invited paper
for special issue, in review.

1.5 Scope

This thesis addresses the domain of high performance computing. As a consequence,
general purpose parallel programming environments, like Thread Building Blocks,
Cilk, Go Routines of the Go Language, etc. are not covered. Further, the context of
this thesis are many-core processors. Although there is no commonly shared strong
definition, it is assumed that many-core processors are high-end or research chips
with a significantly higher number of cores than found in commodity, consumer-
level products. In addition, the thesis is restricted to chips with physically shared
memory, and fully coherent chips or systems are generally not in its scope. Also, this
thesis focuses on the design of software, especially middleware that relies on hardware
features, but does not address the hardware implementation of processors.

6

http://dx.doi.org/10.1145/2883404.2883409

1.6 Conventions

1.6 Conventions

In this thesis the following conventions are employed.

1. All physical quantities are considered to be a product of a number and a unit.
That is, a quantity divided by its unit gives the quantities value. As a result,
expressions like “latency / µs” are used in plots or tables to indicate that the
following given numbers should be considered as µs.

2. Units of quantities are expressed with SI prefixes which are based on powers of
ten. However, when a quantity is based on the unit Bytes, the prefixes k, M, G,
and T have to be considered as powers of two. That is, k= 1024,M= 10242,
and so forth.

3. Bytes are abbreviated as B and the small letter b denotes the unit Bit, not Byte.
4. Names of authors are displayed with small caps, such as in HOARE.
5. Source code is typeset with a mono-spaced font, like printf. Routines from the

MPI standard are generally written in upcase letters, like MPI_BARRIER, matching
the standard’s convention. In listings of real or pseudo code, they are shown
according the appropriate language binding, like MPI_Barrier when C is used.

7

2 Background

In this chapter, the architectural concepts of many-core processors are briefly intro-
duced. Also, limitations concerning the memory subsystem with a focus on caches are
covered. Those motivate to focus on non-cache-coherent systems, like the Single-Chip
Cloud Computer. In the progress, different programming models and their suitability
for non-cache-coherent many-core processors with shared memory are discussed, espe-
cially the one-sided communication model and its realization in the Message Passing
Interface.

2.1 Shared Memory Processors

In the domain of High Performance Computing (HPC), multi-core systems with shared
memory are essential building blocks of computer systems. They consist of multiple
cores which are connected via some type of interconnect. For performance reasons,
memory controllers are integrated into the processor in most cases. The design
allows all cores to access the memory attached to the processor, i.e. the processor
provides shared memory. As depicted in the introduction, caches are used to bridge
the performance gap between the raw processor performance of the cores and the
much slower main memory. Figure 1.2 illustrates an exemplary design with private
and shared caches. Either type can be moved closer or farther away from the cores in
other designs. VAJDA [24, pp. 9. ff] as well as RÜNGER AND RAUBER [25, p. 21]
describe different design variants and the concepts in more details.

Different techniques, like instruction pipelining, out-of-order execution, or superscalar
designs, improved the raw performance of the individual processor cores. Nowadays,
the majority processors are able to complete more than one memory operations
per cycle. A core of a contemporary Intel Skylake processor can theoretically issue
four memory operations per clock cycle. With a word size of 64 bits and a clock
rate of 3.5 GHz (cf. Figure 1.1) this results in 112 GB/s of theoretical peak memory
bandwidth per single core, not considering references to instructions. In a multi-core

9

2 Background

system with four cores, this results in 448 GB/s of data traffic [14, p. 73]. Current
DDR4-3200 memory with a frequency of 1.6 GHz delivers only 25.6 GB/s — barely
enough bandwidth for a memory intensive application running on a single core.

However, since a long time, caches exploit the fact that most memory references
reoccur both in space and time. They buffer data which is likely to be reaccessed in a
certain time frame as well as data that is close to the last referenced ones. The caches
are faster than the main memory, but can only buffer a subset. Nevertheless, they
provide the bandwidth that an application demands, as long as the principle of spatial
and temporal locality is fulfilled by the application [14, p. 72 f.]. Thus, they are an
essential component for contemporary processors. Efficient systems without caches
seam to be hardly feasible. Details about their design, replacement strategies, and
optimizations can be found in HENNESSY AND PATTERSON [14].

In addition to house several cores in a single processors, connections between those
multi-core processors are possible. In general, each of the connected processor nodes
provides memory to the system which is accessible to every core in the system. Since
the access latency of memory in local and remote nodes differs, those designs are also
denoted as non-uniform memory access (NUMA). They also impose a challenge to the
interconnect between the nodes because it has to sustain the bandwidth demands of
the individual cores that potentially access remote memory. Note that also multi-core
processors can be NUMA, depending on the actual design [25, p. 21].

2.1.1 Memory Consistency and Coherence

Even in a single multi-core processor, the presence of multiple cores and their caches
imposes two different but related problems.

2.1.2 Memory Consistency

If processes in a multi-core system exchange data via shared memory, i.e. they perform
load and store operations, the question arises when the result of those events become
visible to the running processes. The model that describes this property of the memory
system is the memory consistency model or memory model [26, p. 229]. It can also be
regarded as set of rules which specify the allowed behavior of programs running on
the multi-core processors [27, p. 21]. If these rules are followed, the memory system

10

2.1 Shared Memory Processors

ensures that programs generate correct results according to the model. The rule set
generally defines, in which order memory operations are allowed to be executed.

The problem of maintaining consistency is subject to many publications reaching back
to at least LAMPORT’s publication on correct program execution on multi-processor
computers [28]. Within his model of sequential consistency, LAMPORT defines that
the execution order of memory operations has to follow the instruction order in the
program. That is, no reordering of the stated operations is allowed to happen. As a
result, any sequentially executed interleaving of the (different) programs that maintains
the original instruction orders represents an outcome of the parallel execution. [26, p.
231]

More relaxed models loosen the ordering rule of the sequential consistency model.
They allow load or store operation to be reordered. The total store order model,
e.g., allows independent load operation to execute before stores, but it maintains the
order between writes.[25, p. 95 f.]. This model applies to contemporary Intel x86
processors [29].

The release consistency (RC) model [30] allows the reordering of all memory operations,
but only within a pair of synchronization operations, named acquire and release. A
processor has to complete an acquire operation before subsequent loads or stores are
performed, but the order of independent accesses is unspecified. Completion of those
accesses is enforced by the release operation. No reordering of acquire and release
operations is allowed within this model.

For more details, GHARACHORLOO ET AL. [30] provide an overview of consis-
tency models for shared memory multiprocessors that is extended by the survey of
MOSBERGER [31].

2.1.3 Cache Coherence

The discussion of memory consistency ignores the presence of caches. This is valid,
since from a programmers point of view they are transparent and, in fact, consistency
is also an issue without caches. However, they are critical components and need to be
considered since the they are used to implement the consistency [27, p. 21]. With
multiple cores and their caches, the task arises to keep the caches up to date in order to
avoid inconsistencies due to actions of other cores. This is the task of cache coherence.
Coherence protocols are used to solve this problem.

11

2 Background

Those protocols assign states to the cache lines. The lines represent the buffered
subset of the main memory. The state describes the level of sharing inside the system.
Coherence protocols define automata to describe the transitions between those sharing
states. The set of the modified, exclusive, shared and invalid state is used by the possibly
most prominent protocol, MESI. Inputs to the automata are memory operations
observed by the caches. Those are events from the local core as well as events issued
by other ones. For example, an observed load on an exclusive cache line causes a
transition into the shared state. Details of those protocols can be found in Chapter 7
in the book of SORIN, HILL, AND WOOD [27].

To observe operations by other cores, two different approaches are discussed in the
literature: snooping protocols and directory protocols.

For snooping protocols, each cache maintains the state of a cache line. The cache
observes, or snoops, memory operations by the local and other cores to change the
cache line state according to the protocol [14, p. 354 ff.]. All memory actions by
cores to their caches are broadcast to all other caches in the system. The observed
operations serve as input to the protocol’s automaton and cause according changes in
the individual cache line states.

In directory protocols, the state is kept in a directory and not replicated in every cache
of the system. Therefore, only the directory needs to be consulted when a memory
operation is issued by the cores. The directory performs further steps like fetching the
data from memory, requests data from other caches, collects the responses, resolves
conflicts, and replies to the requesting cache. Thus, it relies on point-to-point messages
with requests and replies rather than broadcasts.

The employed directory can be centralized. To avoid a bottleneck, it can be distributed
as well. In that case, a (configurable) hash function can be used to identify the respon-
sible directory based on the memory address [14, 32, 33]. In addition, the directory
keeps track which caches contain copies of a memory block. Usually, a bit vector
is employed to precisely track which caches own a copy. As a result the number of
additional bits per cache line in the directory scales with the number of caches (or
cores) within the system [14, p. 380].

A mix of the distributed and snooping protocol variants is also possible [14, p. 363 f.].
For example, for subdomains of the system a snooping protocol can be used. In
case of a miss inside that subdomain, the directory protocol is employed to contact
the directory and ask for the originally requested memory block. To find copies or
invalidate cached data, the protocol may send requests, i.e. it snoops, on point-to-point
links and waits for replies on order complete the operation [32, 34].

12

2.1 Shared Memory Processors

core

caching agent

home agent
(memory)

core

caching agent

home agent
(memory)

core

caching agent

home agent
(memory)

core

caching agent

home agent
(memory)

interconnect

multicore processor A multicore processor B

1

4
2

3

Figure 2.1: Messages sent in a QuickPath-connected system of multi-core processors

Figure 2.1 illustrates the messages that are sent in a system of multiple multi-core
processors with distributed shared memory and a mixed protocol, found in systems
with Intel’s QuickPath Interconnect technology [32, 34]. The diagram shows a
message sequence that occurs in case of a local cache miss. In this case, a core sends
a request to the cache controller (caching agent, CA) which is responsible for the
requested memory address and is part of the last level cache in the local processor.
From there the responsible memory node (home agent, HA) that holds the directory
is contacted if the cache controller could not satisfy the request from the last cache
level. In the example, the memory node replies with data from memory, but it could
also request data from other cache agents in case the address is shared.

2.1.4 Limitations of Cache Coherence

Both snooping and directory protocols as well as mixed variants are used in multi-core
and many-core processors.

Because snooping protocols require broadcasts, they often use a bus or a ring as inter-
connect since they are broadcast media and, therefore, well-suited for implementing
those protocols [14, p. 356]. The bus’ bandwidth needs to scale with the number of

13

2 Background

attached cores in order to provide them enough memory bandwidth. In fact, this is
the limiting factor. As indicated above, a single core can easily require several GB/s of
memory bandwidth. However, this exceeds the capacity of busses [14, p. 379], and
such an approach will not scale for much more than eight cores [14, p. 363] or even
connected multi-core processes, which has been demonstrated in experiments [16].
For that reason, such protocols are only used in systems with lower core counts or in
systems with mixed protocols [25, p. 89, 32], where the last cache level of a multi-core
processor is used as broadcast medium [25, p. 85].

In larger systems, like multi-core multiprocessor systems or many-cores, either mixed
protocol variants or pure directory protocols are used [32, 35]. Since they rely on point-
to-point messages only and do not employ broadcasts, the demands on the interconnect
is lowered. Nevertheless, the increasing core count imposes new challenges to both
the network performance as well as the storage capacity of the directories.

As pointed out above, a directory has to maintain a list of caches that possibly share
a cache line. This implies a scaling problem as one bit per core has to be added to
each cache block state. Thus, storage requirements for the directory are increased and
can limit the use of directory protocols in the field of HPC when implemented in
that straight-forward fashion [14, p. 379]. However, MARTIN, HILL, AND SORIN

propose that the list of sharing caches can be stored in a hierarchical manner to solve
this problem [36].

Besides those storage concerns, an increased core count still requires that the inter-
connect provides enough bandwidth to the cores [25, p. 31], even in presence of the
coherence protocol messages. Compared to memory accesses in systems without
coherence, the traffic per cache miss increases by about 20% [36] due to additional
messages (cf. [32]).

In addition, the access latency to memory is increased. Instead of requesting memory
directly, e.g. in case of a cache miss, the directory needs to be consulted. To provide
coherence, this compromise has to be accepted, but its overhead might be small
compared to high memory latency. In addition when the set of sharing caches is
tracked precisely, the coherence traffic can be minimized and kept constant for up to
1024 cores [36].

Based on these observations, it is unlikely that cache coherence disappears completely,
but its realization apparently becomes difficult. ASHBY ET AL. [37] state that ac-
cording designs are “notoriously hard to verify”. In addition, changes in technology
may require design changes. Fast and large stacked on-chip memories provide much

14

2.1 Shared Memory Processors

higher memory bandwidths than conventional external memory: The integrated
on-chip memory (MCDRAM) of the 72-core Knights Landing offers 450 GB/s, which
is five times higher than the bandwidth of the chips conventional main memory. The
processor uses a 2D mesh network, capable of handling 700 GB/s of traffic between
the cores. It also provides cache coherence using a distributed tag directory [33].

Connecting multiple of these processors to build more powerful and coherent system
is practically impossible. Coherent interconnects like QuickPath, with a maximum
bandwidth of 38.4 GB/s [34] are not powerful enough to handle the coherence traffic
even if a low share of coherence traffic is assumed [19, 33]. Even if one would connect
the chips it might be done only in a non-cache-coherent (nCC) manner1, but this
requires different programming schemes compared to multi-threading applications
using shared memory.

Other systems drop the support for cache coherence by design, but still connect
processors by means of shared memory. They provide coherence only within a
subdomain of the whole system. The proposed The Machine focusses on memory-
driven computing, i.e. to bring computation near the data by providing a huge pool
of memory to the compute elements [38]. While the compute nodes are still cache-
coherent multi-core processors, the whole system itself is nCC [21, 39] making it
similar to a theoretical connection of Knights Landing processors.

A similar design is observed in the EUROSERVER project. Here two multi-core
processors are connected with a coherent interface building a chiplet with attached
memory. Multiple chiplets can be connected using a multilevel interconnect, but it
does not provide a cache coherence protocol between the linked multiprocessor nodes.
However, cached load and store operations to remote memory are possible.[22, 40].

In summary, “on-chip cache coherence is here to stay” according to the publication of
MARTIN, HILL, AND SORIN [36]. Regarding the above examples, however, limita-
tions of pure hardware-based coherence become visible and trends to intentionally
avoid this hardware feature are coming up. Thus, the investigation of nCC systems
with shared memory, especially many-cores, is critical. With the Single-Chip Cloud
Computer such a system is investigated in the remainder of this thesis.

1personal conversation with Avinash Sodani, Knights Landing chief architect, on April 5 at ARCS
conference 2016, Nürnberg

15

2 Background

2.2 The Intel Single-Chip Cloud Computer

The Single-Chip Cloud Computer (SCC) is an experimental CPU architecture developed
by Intel [20] within the Tera-Scale research program [41]. It can be regarded as a succes-
sor of the 80-core Teraflops Research Chip [42] which also known as Polaris [43].

With the Polaris processor, the SCC shares a tiled architecture. All tiles are connected
by an on-chip network. However, the SCC’s tiles are not based on a specifically
designed architecture, but on the well known x86 or IA-32 instruction set architecture.
This can be considered as a consequence of the limited programming capabilities of
the Polaris’ cores which were programmed by hand-crafted VLIW assembly instruc-
tions, offered no I/O features and did not provide an operating system [44]. Thus
programming the Polaris chip was limited to only a few researchers who were able to
deal with these limitations.

The purpose of the SCC is to investigate scalable many-core processor design as well as
further hard- and software-oriented research linked with this kind of architecture, such
as energy management and parallel programming. A crucial aspect of the design was
to drop coherence between the caches of the cores and support parallel applications
with hardware message passing features. [20]

2.2.1 Architectural Overview

In contrast to its predecessor, the SCC consists not of 80 but of 24 tiles which are
arranged in a 6×4 regular grid, as shown in Figure 2.2. Each of those tiles contains five
components: two cores with internal and externally attached caches, a Message Passing
Buffer (MPB), a Mesh Interface Unit (MIU), and a configuration register block located
in the latter unit. A technical in-detail description of those parts can be found in [45].
Based on that specification, the following sections describe the essential aspects of
these five components which are relevant for the presented work.

To connect the tiles with each other and external memory, the SCC possesses an
on-chip mesh network which is based on five-port routers. The local port of each
router is connected to a tile, the other four build up the two-dimensional mesh. The
network is packet-based and uses a static dimension-ordered routing [46, p. 8 f.]. That
is, packets traverse in x-direction first and are routed along the y-direction to their
target afterwards.

16

2.2 The Intel Single-Chip Cloud Computer

MC 0 MC 1

MC 2 MC 3

L2$

L2$

Core

Core

MIU MPB

R Tile

cores
0+1

cores
10+11

cores
36+37

cores
46+47

Figure 2.2: Overview of the tiled SCC architecture.

Further, the network attaches four DDR3 memory controllers to the chip. Six tiles
with a maximum vertial distance of two and a maximum horizontal distance of three
can be considered to belong to a memory controller domain (see Figure 2.2).

To access the chip, an external FPGA constitutes the system interface (SIF). An
external computer is attached to the SIF-FPGA via PCI Express. This connection
allows to inject and receive packets from the on-chip network. In addition, a voltage
controller is integrated into the chip to enable dynamic frequency and voltage scaling.
However, a discussion on energy-management is out of the scope of this work and
further details are therefore omitted. Relevant research on this domain has been
published in [47–49], among others.

Cores

The SCC cores are based on the 32-bit Pentium (P54C) architecture. Due the this
legacy, the core operate in-order. Instructions are executed in program order and are
not dynamically reordered by the processor, e.g. to hide memory latencies as it is
the case in contemporary architectures. In consequence, an SCC core stalls when a
memory operation is issued but a preceeding access was not yet completed.

Despite limited superscalar components in the Pentium design, the cores do not possess
other features that enable parallelism at hardware level. There are neither vector units,
multiple hardware threads, nor other instruction set extensions that can be found in
contemporary processors. Thus, the SCC’s performance is not comparable to such
CPUs. However, this it not a critical aspect for the main purpose of the chip which is
research.

17

2 Background

2.2.2 Memory Subsystem

For the work presented in this thesis, the memory subsystem is essential and is
therefore discussed in detail within this section. The descriptions are based on [20]
and [45], if not stated otherwise.

Caches

Two 16 KB L1 caches are integrated in each core, one for instructions and one for
data. Their size is doubled compared to the original Pentium architecture. A line in
those caches is 32 Byte large. The L1 cache can operate in write-through or write-back
mode, i.e. when cached data is written the memory will be updated immediately or
when the modified line is evicted, respectively.

In addition to the two integrated L1 caches, a second level cache is externally attached
to each core and closely located on the tile (see Figure 2.2). Each L2 cache has a
size of 256 KB and contains both data and instructions. It can operate in write-back
configuration only. The line size is equal to the L1 cache. Both cache levels to not
allocate lines when a write-miss occurs. In consequence, data is only cached on read
accesses.

A key point of the SCC’s architecture is the omitted cache coherence. There is neither
hardware-assisted coherence between the two caches on a single tile nor between
any caches on the overall chip. If such a property is desired, it has to be managed in
software.

Mesh Interface Unit, lookup tables and Address Translation

The L1 and L2 caches are connected to a cache controller via a Front Side Bus interface.
In case of a cache miss, the cache controller forwards the memory access to the Mesh
Interface Unit (MIU). This unit transforms the information from the cache controller
into a network packet.

During the transformation of the memory access, an address translation takes place.
Its input is the 32-bit physical address that was handed over to the MIU by the cache
controller. The output of the translation is a 36-bit system address along with routing

18

2.2 The Intel Single-Chip Cloud Computer

physical addressoffsetindex
31 23 0

45 34 33 0

system addressoffsetdestination

. . .

lookup table

LUT entry 8 bit

24 bit
22 bit

Figure 2.3: LUT-based translation of physical to system addresses by MIU.

information for the on-chip network. The translation is performed with the help of
lookup tables (LUTs) as illustrated in Figure 2.3.

In the LUT-based translation procedure of the SCC, the upper eight bits from the
physical address are used as index in a LUT. Each LUT entry is 22-bits large and
contains network routing information such as the coordinates of the destination
router/tile and the sub-target of the issued operation on that particular tile. The
sub-target includes the four router ports as well as the tile’s Message Passing Buffer and
configuration registers that reside in the MIU. Since the DDR3 memory controllers
are attached to router ports as well (e.g. on the west port of router at the lower left
corner of the chip, see Figure 2.2), the external RAM is addressable too.

The location inside the given destination is specified by the 34 bits offset in the system
address. It is constructed from 10 bits of LUT entry and the remaining 24 bits of the
physical address. Regarding the physical addresses, the LUT mechanism consequently
divides the addressable memory into 224 = 16MB large pages which are identified by
the data in an LUT entry.

The LUT-based address translation inside the MIU has several consequences:

1. The LUT mechanism provides access transparency. Independent of the ad-
dressed location, the required actions on software level are the same to perform
a memory operation. This is even true on a machine instruction level as the
translation happens outside the cores.

19

2 Background

2. To address a specific location in the system from software, the physical address
must be given. This is difficult when an operating system is used, which usually
prevents direct access to a specific physical memory location when virtual
address spaces are used.

3. The LUTs enable definition of shared memory. If more than one LUT contains
an entry with the same data, then different cores can access the same memory
region. However, care has to be taken when accessing these shared memory
areas due to the lack of hardware-based cache coherence.

The last consequence is further emphasized by the fact that a core’s LUT resides in the
configuration register block of the according tile. Accordingly, they are addressable
by memory accesses and are writeable as well. The LUT configuration can be changed
dynamically and memory can be easily turned into shared or private one at runtime.

The dynamic reconfiguration of the LUTs implies very little overhead since it just
involves writing to the configuration registers. The written changes take effect immedi-
ately. However, effects of caching must be accounted carefully during reconfiguration
since the caches operate with physical addresses. If a previously cached line is evicted
after reconfiguration, it will be stored in the current destination configured by the
LUT. It will not land in the position it was originally loaded from.

The concept of the address translation from a physical to a global (system) address is
not special to the SCC. For example, the shared physical address space machine Cray
T3D [50, p. 470 ff.] from 1993 used a similar scheme, where bits from the physical
address are used as index for the reconfigurable DTB annex register set [51, p. 3-17 ff.].
Therein, the destination in the system for memory accesses is identified. Similar to
the SCC, it is the software’s responsibility that an access to a virtual address ends up
at the right physical address and thus at the intended (remote) memory location.

Note that depending in the LUT configuration, the SCC can be classified differently.
As long as not shared memory is defined, the cores operate independent of each
other on isolated address spaces which makes the SCC a distributed system. That is
why the SCC is also often referred to as an on-chip cluster. Contrarily, when shared
memory is enabled by the LUT settings, the chip can be considered as a tightly coupled.
Combining both aspects, the SCC can be considered as hybrid system [52].

20

2.2 The Intel Single-Chip Cloud Computer

2.2.3 Message Passing Buffers

In addition to the cores and the caches, a 16 KB large SRAM memory, called Message
Passing Buffer (MPB), is placed on each tile and is connected to the MIU as well. In
total, there are 384 KB of the memory available on the chip. A primary advantage is
its lower latency compared to the external DRAM. An MPB access on a local tile only
involves the MIU and the network2. It is three times slower than the L2 cache (18 core
clock cycles) [46, p. 9]. Accessing remote MPBs adds further network hops. However,
it does not involve overhead by the memory controllers. Thus, the on-die MPBs are
still faster than the external memory. Additionally, due to the LUT mechanism, DDR
and MPB accesses are transparent for software and can therefore be used in the same
manner. Despite its name, the MPB can be used as general purpose memory. Thus
it is sometimes refererred to as local memory buffer. Since, the term MPB is more
common, it used in the remainder of this thesis.

2.2.4 Memory Types

As depicted in Section 2.2.2, the physical address controls the destination of a memory
access. This is because the physical address is used as input for the translation and
LUT lookup, respectively. Anyhow, the physical address itself is the result of another
translation process that converts a virtual address used by programs into a physical
one. The page tables involved in this virtual-to-physical translation define the behavior
of memory accesses in the system, i.e. the memory type.

The memory type is defined by bits in the page table entries. Generally, the page
table settings affect the cache behavior for the (usually) 4 kB large memory pages. It is
important to understand, that the memory type setting is independent of the desti-
nation setting. Both settings are applied in different stages of the overall translation
process that converts virtual addresses into SCC system addresses. This is illustrated
Figure 2.4. The following sections describe which memory types can be configured
by the page tables as well as their implications.

For the discussion, three bits of the page tables entries are relevant. The first one,
named PCD, controls caching. If this bit is set, caching for of memory accesses inside
the according page is disabled. If it is set, the usage of the second important bit, the

2In principle, network accesses should not be required to access local MPBs, but a documented hardware
bug prevents a network bypass which was originally intended by the designers.

21

2 Background

core’s LUT

on-chip
MPB

conf. reg.

off-chip
SIF/FPGA

DRAM

core’s MMU

non-cacheable
NCM

NCM-WCB

L1-only cacheable
MPBT-WT

MPBT-WB

L1+L2 cacheable DCM

system address

virtual address

physicaladdress destination
m
em
orytype

Figure 2.4: Address translation mechanisms involved in memory accesses on the SCC.

PWT bit, is useful. This one controls the L1 cache mode. As it abbreviation indicates,
a set PWT bit configures the L1 cache as write-through.

The third important bit was originally reserved in the Pentium page tables. For the
purpose of the SCC’s it was redefined and serves as utility for message passing. Its
designation is PMB and it disables the L2 caches for pages having the PMB bit set in
the page table entry. Thus, read accesses to such memory are cached only in the L1
cache. Further, the PMB bit enables a Write Combine Buffer (WCB). This component
can hold up to 32 write operations to subsequent bytes starting from an offset that
is a multiple of 32. When another write operations is issued, the buffered writes are
written to memory. The WCB is also flushed when it gets a write operations that does
not fall in to the same 32 byte offset as the previously buffered accesses.

The combinations of those bits define different memory types which are discussed in
the next paragraphs. Figure 2.4 gives an overview of the address translation processes,
the discussed memory types and the possible destinations of memory accesses.

Cacheable Memory

When the page table entry’s PCD bit is cleared, and the two other discussed bits are not
set as well, all cache levels are activated. Consequently, a load operation fills cache lines
in the L1 and L2 cache. Subsequent stores modify the cache lines and the modified

22

2.2 The Intel Single-Chip Cloud Computer

core memoryL1$ L2$

NCM

NCM-WCB

MPBT-WB

MPBT-WT

DCM

load
modified entry

(a) loads

core memoryL1$ WCB L2$

NCM

NCM-WCB

MPBT-WB

MPBT-WT

DCM

store after load
store without previous load
modified entry

(b) stores

Figure 2.5: Semantics of load (a) and store (b) operations of the SCC’s memory types.

data is written back only when a cache lines is replaced. This is the usual memory
that is exposed by an operating system to user space processes. Since the caches are
involved with this memory type, it is called definitely cacheable memory (DCM).

Combinations of DCM with the other two bits are hardly useful. PWT will cause
the L1 to be write-through but since the L2 cannot be configured is such, it keeps
the write-back semantics. Thus, writes will hit the L2 if the writes are issued on
already cached data. Using the PMB bit disables the L2 which contradicts the DCM
semantics.

Non-Cacheable Memory

The contrary memory type to DCM is the non-cacheable memory type (NCM). Here,
the PCD bit is set which disables all caches, regardless of the other bits’ setting. Thus,
a read operation will always access the addresses memory, not the cache. Similar,
writes go directly the memory, if the PMB bit is not set.

If the PMB bit is set, caches are still disabled, but theWCB is activated. Thus, writes
can be buffered. This can be beneficial, if performance is an issue. Since an SCC core
stalls when more than one memory access is in flight, it will observe long stalls when
frequent accesses to NCM are performed which involve two traversals of the on-chip

23

2 Background

network and latencies of the memory controllers. The WCB can be used to alleviate
the time the core stalls. To differentiate the NCM with activated WCB from the plain
NCM memory type, it is designated as NCM-WCB.

Message Passing Buffer Memory Types

The PMB bit in the page tables activates a memory type that is unique to the SCC. As
stated above, when this bit is set and caching is not completely disabled (see previous
section), only the L1 cache is activated. When an L1 cache line is filled due load
operations on such memory, the line is marked by setting an additional status bit.
Thus, cache lines originated from pages with set PMB bit can be identified by the
cache’s circuitry.

This feature is exploited by the only SCC-specific extension to the instruction set of
the Pentium cores, the CL1INVMB3 instruction. The operation invalidates all lines with
this bit and also clears the message buffer status bit on each line.

Due to the invalidation, cached and modified data is not written back but gets lost.
A flush operation for these specially marked lines is not present in the instruction
set. However, the privileged WBINV instruction writes back all L1 cache data and also
invalidates all lines in the buffer.

The feature of fast invalidation of the marked cache lines is heavily connected with
the MPB and supports fast on-chip message passing. Consequently, memory with
the PMB bit set is referred to as message passing buffer type (MPBT). A MPB can be
efficiently polled with this memory type for new data using a sequence of CL1INVMB
and read operations from the MPB. To write data in the MPB it must be ensured that
it is not stuck in the L1 cache due to previous reads from the MPB. In such a case, the
CL1INVMB instruction has to precede write operations.

Since MPBT memory is cached only in the L1 cache, the memory type has to be
distinguished in MPBT-WT and MPBT-WB, depending on the cache configuration
that is controlled by the PWT bit. The WT variant has the general advantage that
writes to cached data are also propagated to the targeted memory.

However, the MPBT memory activates the WCB. Consequently, writes to MPBT-
WT memory modify the cache (if a cache-hit occurs) and are buffered by the WCB.

3the mnemonic presumably stands for Cache Level 1 Invalidate Message Buffer lines

24

2.2 The Intel Single-Chip Cloud Computer

Hence, those operations materialize in the main memory only when the WCB is
flushed. As illustrated in Figure 2.5b, the WCB can be thought as being placed behind
the L1 cache. This also means, that writes to a cached line of MPBT-WB memory
reach neither the WCB nor the addressed memory location as long as no flush of the
written cache line is provoked. In absence of a cache flush based on addresses, there is
no efficient way to achieve this goal.

2.2.5 Configuration and Atomic Registers

As depicted in Section 2.2.2, the MIU allows addressing of MPBs, memory, and config-
uration registers. This also includes the LUTs which are writeable as well and are part
of the configuration register set. In addition, the core’s hardware status information,
thermal sensors, the tile frequency configuration, and the cache configuration are also
available as memory mapped registers. The set also includes the tile ID register, which
allows a tile’s core to determine the tile’s coordinates (x and y) and its own number z
inside the tile (either 0 or 1). Thus, the global core ID can be computed.

Aside the mentioned registers, the MIU also provides a single atomic register per
core that is denoted as test-and-set register (TSR). Such a register can be used for
synchronization purposes in software. On usual IA-32 processors, the legacy LOCK

machine instructions prefix from the Pentium architecture used in such cases. On bus-
based architectures it locks the whole memory bus and prevented other participants
(cores, e.g.) to perform memory operations. Thus, an atomic modification of a
memory location is possible. In more recent architectures, the cache coherence
protocol handles the LOCK prefix. Since cache coherence is missing on the SCC, the
usage of the LOCK prefix is of no benefit. Even if uncached memory accesses are involved
(see previous section), the implementation of a global memory lock operation seems
to be challenging, not scalable, and prone to high latencies.

In contrast, the TSRs provide a minimalistic mean to implement synchronization.
Initially, a value of one can be read from such a register. However, it atomically
switches its value such that subsequent reads return zero. Hence, if a process reads a
value of one it can be interpreted as having obtained the mutual exclusive lock. To
release that lock, a write operation has to be issued to the register. The actual value is
ignored, but usually zero is used to indicate a release. After such a write operation,
the register again returns the value of one for the very next read operation. To access
the memory mapped TSRs in the MIU and obtain the described synchronization
semantics, non-cached memory is the only option to do so. Cached operations would

25

2 Background

either prevent getting the most recent data from the TSR or would most likely be
caught by the cache when attempting to release the lock.

When multiple processes running on different SCC cores need to synchronize by
means of a single TSR the on-chip network is automatically involved. Since this is
done by a memory access which itself underlies NUMA characteristics, unfairness
occurs when cores on different tiles compete for the TSR [53]. This is especially the
case, when the TSR is contented, like for spin-locks.

To work around the limited number of TSRs and their mutex-only semantics, the
system’s FPGA-based chipset has been extended and subsequently provide 96 atomic
increment registers (AIR). Those offer semaphore behavior and atomically increment
on reads (and return the old value), respectively decrement on writes, and can be set
up with associated initialization registers [54, p. 11 ff.]. However, compared to the
TSRs, the latency of the AIRs is four times higher and unfairness is again inherited
from the on-chip network. Further, contention needs to be considered as every AIR
access is routed through the system interface [55].

2.2.6 Software Environment

On top the described hardware features, different software packages are available for
the SCC. Since the cores are based on the Pentium architecture, existing development
toolchains, i.e. compilers, linkers, as well as low-level libraries can be reused. This
enables compilation of most known software that supports the x86 architecture. Com-
patible software ranges from shells, basic command line utilities and scripting languages
(Python, Perl) to database systems (MySQL) and web server software (Apache).

Linux for the SCC

To run those user-space applications an operating system is required. For this purpose,
the Linux kernel was initially made SCC-compatible by Intel Labs as a customized
version that was bundled along with user-land applications as rckOS. Subsequent
work by SOBANIA, TRÖGER, AND POLZE improved the portability of the Linux
kernel [56]which resulted in the creation of sccLinux4. Both versions have in common,
that each core of the SCC runs a single instance of the operating system. This is mainly

4https://github.com/hpi-scc/sccLinux, last accessed 2016-04-25

26

https://github.com/hpi-scc/sccLinux

2.2 The Intel Single-Chip Cloud Computer

due to the nCC architecture of the SCC. Unless uncached memory is used, the Linux
kernel must be made ware of the missing cache coherence, especially for shared kernel
data structures. Although there are implementations of other operating systems [57],
bare-metal application frameworks [58], and hypervisors[59, 60], which enable to
run a single operating system instance (including Linux) on top of all SCC cores, this
work focuses on the case of 48 individual instances.

Default lookup table Configuration

To support booting and running 48 individual Linux instances, the default LUT
configuration is designed such that each core (and thereby each Linux instance) gets
an equal amount of private memory. That is, only a single LUT has an entry that
addresses a portion of the system’s RAM.

In case of the SCC hardware available for this work, 32 GB of RAM are available.
With a system page granularity of 16 MB (cf. Section 2.2.2), each core is assigned an
amount of b32GB/48/16MBc× 16MB= 672MB RAM. This equals 42 entries in an
LUT. Further, the LUT configuration ensures that the private memory of each core
is located in the most closest memory controller. Consequently, each controller takes
memory requests from 6 tiles or 12 cores respectively (cf. Figure 2.2 on page 17).
The hardware setup ensures that all memory controllers are equipped with the same
amount of RAM, i.e. 8 GB (8192 MB) per controller.

In addition to the private memory entries, the default LUT configuration includes
entries to access all MPBs and configuration registers which are per-tile entities (see
above) and thereby allocate 2× 24= 48 LUT entries in total. Two additional entries
are reserved for the voltage and frequency controller and the management interface.
A summarized layout of the default LUT configuration is shown in Table 2.1.

Legacy Shared Memory

In this setup, 256− 42− 48− 2= 164 LUT entries are not used by private memory or
other resources. In addition, the amount of private memory per memory controller
(12× 672MB = 8064MB) leaves 128 MB free for further usage. The default LUT
configuration defines one entry (16 MB) per controller that uses this spare area. As
the according entries are replicated for all cores, this portion of the system memory is
shared and is denoted as legacy shared memory (LSM).

27

2 Background

Table 2.1: Summary of the default LUT layout for an SCCsystem with 32 GB RAM.

Entry No. Entries Purpose

0 – 40 41 private memory
128 – 131 4 legacy shared memory
191 – 215 24 message passing buffers
224 – 247 24 tile configuration registers
250 – 251 2 voltage controller and management

255 1 private memory

all others 160 unused

Kernel Device Driver Support for the SCC

To access any shared memory region that is defined by the LUT (e.g. MPBs and the
legacy shared memory), the according entry must be traversed during the address
translation process (cf. Section 2.2.2). However, to explicitly address an LUT entry,
the physical address of a memory access must be set accordingly. Modern operating
systems and processors, like Linux on x86 processors, prevent such accesses with the
concept of the virtual address space and memory protection schemes.

To avoid this problem, the SCC-adopted Linux kernel adds additional device drivers.
Those are similar to the mem driver of the stock Linux kernel which enables an applica-
tion with root privileges to map a specific region of the physical address space into the
application’s virtual. For establishing such a mapping, the /dev/mem character device
is used along with the mmap system call.

In contrast to that device, the SCC-specific rckmem driver allows any non-root ap-
plication a perform such a mapping. In addition, the driver allows to specify the
memory type which should be setup in the according page table entries. By default,
the sccLinux kernel supports the NCM, DCM and MPBT-WB memory types with
similar named character devices, like dev/rckncm. To perform memory accesses to
a special component of the SCC, like an MPB, with the appropriate memory type,
an application has to open the character device file and must use the returned file
descriptor in a subsequent call to mmap. As a parameter to the latter function, the de-
sired physical address range specified. The resulting pointer inside the process address
space can then be used for regular memory operations to access data in the desired
resource.

28

2.2 The Intel Single-Chip Cloud Computer

0x00 0x006000
0x01 0x006029
0x02 0x006052

legacy shared memory

. . .

per core private memory POPSHM pages

core LUT data

POPSHM database

system
memory

Figure 2.6: POPSHM pages and database inside the legacy shared memory.

Privately-Owned Public Shared Memory

Besides the support by special device drivers, the adjusted kernel allows to export a
portion of the private memory to other cores. As a result, this memory can be shared
between multiple cores. Therefore, this portion of exposed per-core memory is called
privately-owned public shared memory (POPSHM).

At boot time, the kernel reserves a fixed amount of 16 MB large pages. The amount of
pages is given by a kernel command line parameter. Without further reasons, a hard
upper limit of four 16 MB pages is implemented. Although reserved, the kernel does
not use the pages in future and does not handle it over to applications. Hence, they
can be used for other purposes.

When the reservation is established, the kernel stores the number of registered pages
along with their according LUT entry data in a well-known location in thelegacy
shared memory. This is illustrated in Figure 2.6. This location is called POPSHM
database. With the help of SCC-specific kernel device drivers (see previous section),
an user-space application can access this database and read the LUT configuration
data for the exposed POPSHM pages of each core. As the LUTs are configurable
at runtime, this information from the database can be used to enable access to the
pages exposed by other cores. If all cores expose the maximum of four pages, then
this feature allows to create 3 GB of shared memory, noting that the 160 unused LUT
entries (see Table 2.1) are not sufficient to address all of that memory. However, the
usage of this memory is safe since pages do not contain sensitive kernel or user space
data, like stack or code data.

29

2 Background

2.3 Programming Models for Many-core Processors

Several programming models and according implementations are available to be used
on parallel computers, depending on the their hardware architecture. With a focus
on shared-memory-based non-cache-coherent processors, employing programming
models for shared memory appears to be valid. In those models, however, the whole
memory is shared by default and all units of execution, e.g. threads, may access any
part of the address space at any time without further actions. Implementing such a
model on a non-cache-coherent system causes high performance penalties due to the
management of cache coherence that needs to take care of every memory access since it
might access actually shared data [61]. For that reason, shared memory programming
models, like OpenMP [62, 63] or threading Libraries such as POSIX threads [64], are
build around the assumption of hardware-based cache coherence [62]. Hence, those
models are not considered any further within this thesis.

2.3.1 Message Passing Concepts

Message passing is a fundamental parallel programming paradigm that is used when
processes have to exchange data. It does not rely on shared memory but rather assumes
some kind of interconnect between the processes that run in parallel. Nevertheless,
shared memory can be used to transport the messages.

The concept of message passing for parallel programs dates back at least to HOARE’s
paper on „Communicating Sequential Processes“ (CSP) from 1978 [23]. Here, a sequen-
tially executed process with a given name can send data to another uniquely named
process via input and output commands. Those have to match each other. A process
is delayed until the matching operation in the other process is executed.

In general, message passing programming models have in common that there exist
multiple separate processes. Those can execute different programs as it is proposed by
HOARE [23]. In contrast, it is also common to follow the concept of single programm,
multiple data (SPMD). The processes execute the same program but operate an different
data sets, i.e. they do not share any information.

When it comes to communication, two types of processes can be identified. A sender
emits data or messages, which are transferred to the receiver. To address specific
processes, they need to bear an unique identifier, like a name. In general, a matching

30

2.3 Programming Models for Many-core Processors

between the sent and received messages by certain criteria is demanded. Those criteria
may include the identifier of the sending process, the structure of the message, or a tag
that labels messages of a certain type. Wildcards for those criteria may also be used.

The communication itself can be performed in different ways. It can block until
both processes have issued their communication calls, like it is the case in CSP [23].
A less restrictive way is to ensure that the provided data buffers can be reused after
the communication operation returned. In case of a receive, this also means that
a matching send operation has completed and application buffer was updated with
received data. In both approaches, the communication is often denoted as blocking
or synchronous since a synchronization between the processes is achieved when the
message was received.

Opposite to this, non-blocking communication, does not enable the reuse of the buffers
or requires matching operations on the sender side, respectively. This has two effects.
First, an application can continue with computations while the communication
system processes the issued operations. Therefore, an overlap of communication and
computation is possible, which can hide the latencies of communication operations.
Second, to check for the completion of message transfers, e.g. buffer updates on the
receiver side, separate means for synchronization are necessary.

2.3.2 The Message Passing Interface Standard

The Message Passing Interface (MPI) is the most prominent example of an interface that
builds upon the message passing programming model. This standard defines a set
of routines to enable platform-independent application programming interface (API)
for implementing parallel programs. The first version of the standard was released
in November 1993 [65, p. 2]. Subsequently, eight versions have been released, with
version 3.1 [65] from 2015 being the most current one at the time of writing.

The MPI specification is the de-facto standard for developing parallel applications in
the field of HPC. Implementations like MPICH, Open MPI, and MVAPICH are
prominent implementations of the standard’s API.

In MPI, every process is identified by a numerical rank. The processes are not required
to execute the same program [65, p. 20], but it is common for MPI application to
follow the SPMD concept (see above).

31

2 Background

proc. 0

rank 0

rank 0

proc. 1

rank 1

rank 1

proc. 2

rank 2

rank 2

proc. 3

rank 0

rank 3

proc. 4

rank 1

rank 4

proc. 5

rank 2

rank 5

MPI_SEND(..., dst=2, comm_A) MPI_SEND(..., dst=2, comm_B)

communicator A communicator B

MPI_COMM_WORLD

Figure 2.7: MPI processes, communicators, and communication within

Processes can be arranged in groups. In a group of n processes, the ranks from 0 to
n− 1 are present. To distinguish groups of the same processes, communicators define
a communication context. Messages are alyways sent within a communicator [65,
p. 27]. Together with the numeric rank, communicators are used to uniquely identify
a process as shown in Figure 2.7. The MPI_COMM_WORLD communicator contains all pro-
cesses. New communicators and groups can be derived from the world communicator
and its group, respectively.

Within the standard, different sets of routines are defined. Point-to-point routines [65,
§ 3], like MPI_SEND or MPI_RECV, enable the exchange of messages similar to the CSP
scheme by HOARE.

The exchange can be performed in a blocking or non-blocking fashion. In the notion
of the standard, non-blocking operations, like MPI_ISEND and MPI_IRECV do not have
any temporal properties, e.g. they do not have to finish work in a specific time frame.
Instead, non-blocking communication functions do not allow the usage of the supplied
buffers until the operation has completed. To check and wait for completion, calls like
MPI_WAIT are available. For blocking communication calls, like MPI_SEND or MPI_RECV,
it is ensured that the buffer can be reused when the function returns. In case of
MPI_RECV this implies that a matching send operation has been issues, the message was
received, and the supplied application buffer was updates with the message’s content.
Thus, synchronization between the sender and receiver implicitly performed.

All communication point-to-point operations have in common that they require the
specification of the sender and the receiver. That is, the user needs to specifiy the
communicator and the rank on both sides of the communication (see Figure 2.7). For
that reason, this communication scheme is also known as two-sided communication.

32

2.3 Programming Models for Many-core Processors

In addition to the sender and receiver, the message itself needs to be identified. Thus, a
tag is required upon message sending and reception. For receiving data, wildcards can
be used for the tag and the sender. The standard formalizes rules that describe when a
send and receive operation match each other based on the communicator, rank and
tag. Further, ordering rules are specified which an implementation must follow to
comply to the standard [65, § 3.5].

With increasing number of cores and, thus, more communication per processor,
maintaining these requirements becomes a performance criticial task within the im-
plementation of the MPI [66, 67]. Despite those issues, point-to-point messages are
probably the best known parts of the MPI standard. Together with collective oper-
ations, which are operations executed by all processes of a communicator, they are
integral building blocks of many parallel applications.

2.3.3 Message Passing on the Single-Chip Cloud Computer

Since the SCC was designed with support for message passing (see Section 2.2), ac-
cording libraries exist which support that programming model on that chip.

RCCE

RCCE5 is a lightweight library for implementing message-based parallel programs
on the SCC following the SPMD model [68]. It is based on operations, that store
data in the MPB and load data from there without participation from other processes.
It assumes that all MPBs are shared. Data therein must be allocated using collective
operations. This creates a symmetrical namespace. The library creates two regions,
one for internally used flags, and one for data to be exchanged. The flags are set by
send operations and polled by blocking receive operations.

In addition to the basic functionality for message transfers, communicators are pro-
vided in the basic library. RCCEComm [69] and iRCCE [70] extend the library by
collective operations and non-blocking operations, respectively.

While the extended functionality of RCCE enables programming of parallel applica-
tion on the SCC, it has to be considered, like the chip itself, as a research vehicle. It

5pronounced as “rocky”

33

2 Background

MPI_COMM_WORLD

. . .rank 0 rank n-1

core 0 core n-1

1:1

1:1

8 KB of MPB write section payload header

rank 1 rank n-2 rank n-1 rank 0 rank n-3 rank n-2... ...

Figure 2.8: RCKMPI’s original layout for the SCC’s Message Passing Buffers.

provides a lightweight and easily extendable message passing programming environ-
ment for the processor. To analyze the behavior of real-world application, porting
those to RCCE is required. Using MPI, for which a larger code base of applications
exists, is therefore an alternative for investigations.

RCKMPI

With RCKMPI [71] an MPI library for the SCC exists. It is based on MPICH and,
different to other attempts [68], does not rely on a TCP/IP network provided by
the Linux operating system. Instead, the MPBs are directly used for transferring data
between the cores.

The library allows only one MPI process to be executed on a single SCC core. Each
per-tile MPB is split into two 8 KB parts that are assigned to each of the two cores.
Thus, a per-core MPB is created. When n MPI processes are executed, this buffer is
logically divided into n− 1 exclusive write sections, dedicated to every MPI process
except the local one. This is illustrated in Figure 2.8

Within every write section, metadata and payload is stored (see Figure 2.8). A sender
writes the message into the payload area of the write section in the MPB of the remote
receiver. Afterwards a sequence number in the metadata is increased. The receiver
polls the send sequence number for changes. In case of a change, the data from the
payload area is extracted and the reception is acknowledged by increasing the receive
sequence number.

34

2.3 Programming Models for Many-core Processors

The sequence number based protocol is implemented in the lowest layer of MPICH
library. A so-called channel device implements both the transfer of outstanding
messages and the polling of the MPB to detect incoming messages to satisfy recevice
operations.

Besides the MPB, the MPBT-WB memory type and the CL1INVMB instruction are used
by RCKMPI. The MPB are mapped with the memory type in order to remove stale
data from the cache using the new machine instruction. This is required to observe
the sequence number changes in the metadata and to fetch the most recent data from
the payload section.

In addition to the MPB-based channel device, RCKMPI also offers two other channels
that use POPSHM with uncached memory accesses, and a combination of the MPB
and POPSHM channels. A performance analysis by CHRISTGAU AND SCHNOR [2]
showed that the pure MPB-based channel outperform the other ones in terms of
bandwidth. As a consequence, they are not considered within this thesis.

2.3.4 One-sided Communication

As described above, the concept of message passing in general requires both the receiver
and the sender to know when a message has to be received. Within an MPI application,
this implies to know the rank and the communicator of the sender, and the tag of
the expected message. This model applies well to static communication patterns.
However, when it comes to dynamic patterns, expressing the data transfers with a
two-sided approach becomes a complicated task even with the opportunity of using
wildcards.[72, pp. 133 ff.]

Besides those issues of expressing dynamic or irregular exchange patterns, two-sided
communication implies synchronization between the processes. That is, a receiver
cannot continue until the according data has been emitted by the sender. Similar
the sender might not continue until the receiver becomes ready to receive the data,
i.e. it allowed the transfer data into its local memory. This cooperation between
the processes can have an impact on performance. In MPI, frequent and implicit
synchronization by communication operations might be solved with non-blocking
communication [72, p. 120 f.], but it still has the problem for expressing dynamic
communication patterns.

35

2 Background

Concepts

The idea of one-sided communication (OSC) provides a solution for both issues. Within
the concept, only one process is required to specify the parameters of the communica-
tion, e.g. the amount and destination of transferred data. In addition, OSC breaks
the bonding between data transfer and synchronisation that is implicitly present in
two-sided communication.[72, p. 133]

To enable one-sided data transfers, access to remote memory is enabled between
processes. In contrast to shared memory programming schemes, only a portion of a
process’ address space is shared. Generally, the shared portions need to be explicitly
specified. In actual implementation of the model, this often implies that memory
needs to be registered shared [73, 74], either by explicit library calls [65, pp. 405 ff.]
or by special variable declaration [75, 76].

The described selective sharing of data does not imply that the underlying memory is
physically shared. Instead, the concept can be applied to both system with shared or
distributed memory [74].

This applies well to the cluster-like default configuration of the SCC where the cores
(and the processes running on them) have distinct address spaces in terms of system
addresses, but where shared memory can be created by means of the LUTs. Thus,
supporting the programming model of OSC is a valid choice on the SCC’s architec-
ture.

The communication itself is enabled by primitives that either fetch or replace remote
memory. Additional operations might be defined to support more complex or atomic
tasks [65, pp. 423 ff.]. The communication can also be hidden from the user by
language elements: The usage of variables that denote shared data might be translated
by the compiler into invocations of low-level communication operations [75, 76].

To ensure that communication occurs in an ordered manner, e.g. that the remote
memory contains the correct data or to notify a remote process about the end of
communication, synchronization is still necessary. However, as depicted above, the
synchronization is separated from the communication. So, explicit operations to
synchronize processes are required, but those can complete a bulk of communication
operations that have been issued beforehand. This is also known as bulk synchroniza-
tion [72, p. 133]

36

2.3 Programming Models for Many-core Processors

The explicit synchronization also enables implementations to ensure a coherent view
on the shared memory. The according synchronization operations can be used to per-
form the coherence operations. Those might be assisted by hardware mechanisms, but
they are not required to be so. Hence, the coherence management can be implemented
in software as well.

Implementations

The OSC model can be used either directly or indirectly. Libraries like BSPlib [74],
MPI [65, §11], or OpenSHMEM [77] provide direct access to memory registration
and communication primitives. Those can either be used to write applications using
OSC or provide libraries that also provide one-sided semantics. Language-based
approaches like Chapel [78], Co-array Fortran [75], or Unified Parallel C (UPC) [76]
aim to provide more productivity to the language user [78] by hiding the low-level
mechanisms.

These languages provide a partitioned global address space (PGAS) that creates the
illusion of shared memory although the data is actually distributed across different
address spaces. However, in languages like UPC, constructs exists that expose low-
level functionality to the user [79, p. 48]. In fact, PGAS languages are built on top
of communication libraries. Some use specialized libraries especially designed for
this type of language, like GASNet for UPC [80, 81]. However, MPI can be used
as a foundation for their implementation as well [82, 83], although there have been
limitation to do so in the past [84].

As apparent from above, several libraries could be considered for a discussion of the
OSC programming model on the SCC. Concerning performance, different studies
present different results: BAUER ET AL. [85] declare MPI as a winner over UPC and
Co-Array Fortran, BURKHART ET AL. [86] present “roughly the same [...] performance
numbers” for Chapel and MPI. Results from OHMANN reveal the same for MPI and
UPC, while MALLÓN ET AL. [88] observe slower performance for UPC than for
MPI due to a bad language implementation of UPC, and COARFA ET AL. [89] present
better speedup values for MPI than for UPC. The reverse result is presented by BELL

ET AL. [90] and MAYNARD [91] who clearly favor UPC over MPI based on the
observed performance.

While those mixed observations do not allow a clear assessment of which implemen-
tation of OSC is faster than the other, it shows that MPI can compete and even out-

37

2 Background

perform other libraries. Application developers also observe significant performance
benefits when using MPI’s one-sided communication with a well-tuned implementa-
tion [92]. Moreover, MPI is the dominating programming environment in the HPC
domain. A survey of 28 HPC centers in Europe revealed that out of 57 scientific
application none employs “any of the PGAS family of libraries/languages (e.g. CAF,
UPC, SHMEM)” [93, p. 19]. A marginally minority or even none of the surveyed
programmers use these languages, while MPI OSC is the fourth most used program-
ming interface [93, pp. 41 f.]. Consequently, this thesis focuses on the MPI version of
one-sided communication.

2.3.5 One-Sided Communication in the MPI standard

Within Chapter 11, the MPI standard defines interfaces for using one-sided communi-
cation [65]. Following the general concept, separate descriptions for communication
and synchronization functions are provided to complement the two-sided communica-
tion API of the standard. In addition, the memory model, semantics, and correctness
of the OSC interface are presented.

The details of these aspects are explained at the appropriate chapters within this thesis.
At this point, an overview of the programming environment is given. Additional
information on using the MPI’s OSC interface is provided by GROPP ET AL. [72, 94]
and HOEFLER ET AL. [73].

In MPI, processes enable access to their memory by opening a window to their ad-
dress space. The creation of such a window is a collective operation within an MPI
communicator, Functions that create a window are, for example, MPI_WIN_CREATE
and MPI_WIN_ALLOCATE. By those functions, a process-specific amount of memory is
exposed to other process as shown in Figure 2.9. In case of the latter function, the
memory is allocated by the MPI library. The other function accepts a user-provided
pointer to memory that should be exposed. This memory can be allocated by using
MPI_ALLOC_MEM as shown in Listing 2.1.

The window creation functions return a window object on every process. It serves as a
handle to the collectively created windows, which are the locally exposed memory
regions [72, p. 140]. Dynamic windows allow to attach and detach memory to an
existing window at runtime [65, pp. 410 ff.]. The standard also defines creation for
shared memory windows on coherent platforms [65, pp. 407], but their discussion as
well as dynamic windows is out of the thesis’ scope.

38

2.3 Programming Models for Many-core Processors

rank 0

window

window object

rank 1

window

window object

. . .

window

window object

rank n-1

window

window object

window’s communicator
ad
dr
es
ss
pa
ce

Figure 2.9: Asymmetric allocation of windows and the window object.

After successful creation, the windows object can be used in conjunction with a rank
to perform a remote memory access (RMA). The addressed process is denoted as target,
while the process that issues the RMA operation is called origin. According to the
programming model, only the origin has to issue a function call, like MPI_PUT in the
example, to perform communication.

The communication operations require a buffer containing the data which is going
to be communicated. Following the general style of MPI functions, the datatype of
the buffer, the amount of according elements in the buffer, and the rank of the target
need to be specified. Following the concept of OSC, the offset and the datatype in
the remote window are specified by the origin process as well.

Primitive communication operations are fetching data from a remote window, and
replacing remote data with local one. Those operations are generally referred as GET
and PUT. Additional operations may allow the combination of local and remote data
(ACCUMULATE) or perform atomic fetch-and-add or compare-and-swap tasks.

In order to communicate, the origin and target processes need to synchronize each
other. Compared to two-sided communication, this is a separated task and it has to be
explicitly performed. The MPI standard defines different ways to perform the syn-
chronization at different levels of granularity. In Listing 2.1, the fence synchronization
style is used.

39

2 Background

1 int* buffer;

2 int buffer_size, window_size;

3 MPI_Win win_obj;

4
5 MPI_Alloc_mem(buffer_size, MPI_INFO_NULL, &buffer);

6 MPI_Win_create(buffer, window_size, ..., MPI_COMM_WORLD, &win_obj);

7
8 /* synchronize */

9 MPI_Win_fence(..., win_obj);

10
11 /* distribute local buffer */

12 for (i = 0 ... n-1) {

13 int target = choose_target(i);

14 MPI_Put(&buffer[i], 1, MPI_INT, target, offset, 1, MPI_INT, win_obj);

15 }

16
17 /* (bulk) synchronize */

18 MPI_Win_fence(..., win_obj);

Listing 2.1: Example for window creation and performing RMA.

2.3.6 Discussion

As depicted above, the one-sided communication model offers a way to implement
parallel programs without the restrictions of message-passing. It provides the possi-
bility to selectively share memory and, thus, allows modifications of the shared data
without active participation of remote processes. In addition, the synchronization is
decoupled from the communication which also enables the management of coherence
in software, if it is not available in hardware.

Those concepts match to architectures like the SCC where the sharing of memory can
be configured, but where the coherence has to be managed by software. This removes
the burden from the hardware for which the transparent maintenance of coherence
has been shown to be challenging in high-bandwidth systems. Consequently, the
remainder of this thesis focuses on the design of efficient OSC on the non-cache-
coherent architecture of the SCC. The discussion is restricted to the OSC interface of
MPI, but the concepts might be applied to other — less frequently used — programming
environments as well.

40

2.4 Related Work

2.4 Related Work

As outlined in Section 2.2.2 the SCC can be considered as a distributed system as
the cores operate like an on-chip cluster. With regard to the coherence management,
the literature concerning distributed systems is vital. The topic is closely related to
maintaining memory consistency in distributed systems, where nodes are loosely
coupled but a shared memory programming environment should be provided. This
section focuses SCC-specific solutions but also mentions more general ones briefly.

2.4.1 Coherence and Consistency in Distributed Systems

Previous work on distributed systems repeatedly discussed the theory and practice how
to support shared memory programming for those platforms, also known as distributed
shared memory. This comes along with questions on maintaining consistency (cf.
Section 2.1.1).

The literature provides numerous work on the topic of distributed shared memory.
The bibliography of ESKICIOGLU from 1996 lists over four hundred related publica-
tions [95]. A full discussion of those is hardly feasible within the scope of this thesis.
Instead the main focus is on the release consistency (see p. 11) model, its application
to the SCC and alternative approaches for software-based cache coherence on that
particular chip.

2.4.2 Coherence via Release Consistency

There exists some research that focuses on release consistency for the SCC. ZHOU ET

AL. [96] sketch a software-based approach for managing cache coherence on the SCC
and on a conventional multi-core SMP machine that is based on the release consistency
model. The foundation of their approach is a domain management module and a
coherence policy module. Via the policy module a cache policy can be configured for
a certain domain of the employed platform. By doing so, multiple application that
run on different cores can use different cache policies.

Conforming to the RC model (see Section 2.1.2), a process needs to logically acquire
a shared memory location before modifications, since its view to the most recent

41

2 Background

changes of the shared data needs to be updated. After modifications have been per-
formed, a release operation is performed which makes the changes visible to the other
processes.

Additionally, the approach of ZHOU ET AL. is based on an extension to the C++

programming language and its runtime. It adds a new keyword to the language that
declares variables as shared or requires invocation of special allocation methods. Due
to this language restriction, the MPI interface cannot be addressed.

The Software-Managed Coherence (SMC) library provides the implementation of the
previous approach for the SCC [97]. It is based on a Linux kernel module that allows
to change the cache settings for a given virtual memory range via the mprotect system
call. The module is designed for the Linux kernel version 2.6 and required manual
manipulation of the system call dispatch table. In the user space, a library implements
the domain and policy controller.

The library uses the legacy shared memory (see Section 2.2.6) for the virtual shared
address space. It is mapped into every SMC program and thus part of the process’
virtual address space. Depending on the cache policy, the acquire and release functions
perform different actions.

In the most simplest case, i.e. when caching for the virtual shared address space is
disabled, the two functions do nothing. However, the default cache strategy employs
a write-through configuration of the L1 cache in pair with the MPBT memory type,
i.e. MPBT-WT (see Section 2.2.4). In this case, the acquire function invalidates the
cache using the CL1INVMB instruction. The release function flushes the Write Combine
Buffer that is activated when MPBT memory is used.

All other possible hardware cache policies are supported as well. The L2 cache must be
disabled to get those to work correctly because the L2 is not explictetly flushable. In
addition, the write-back configuration of the L1 cache should not be used since whole
cache lines are written back. If two processes update different data but on the same
cache line one update gets lost when the other propagates to the main memory.

The work of [97] and ZHOU ET AL. [96] demonstrates that a software-managed cache
coherence is feasible. However, the concept of a shared virtual address space that holds
symmetrically allocated data is not applicable to MPI’s one-sided communication.
Although windows are created collectively, the size of the window memory can vary
between processes as shown in Figure 2.9. Further, collective allocation does not
imply that all running MPI processes to be participants of a window creation, because

42

2.4 Related Work

creation can happen in sub-communicators of MPI_COMM_WORLD. Both circumstances
let address spaces become asymmetrically.

Shared Data in an ML Runtime

Using the SMC library, SIVARAMAKRISHNAN ET AL. [98] implement a runtime
library for ACML, an asynchronous and concurrent version of the ML functional
programming language on the SCC. They use the shared virtual memory for language
objects, which can be classified as mutable and immutable. An object of either type
can become shared among the ML threads if more than one thread references it. When
this happens, the object is moved from a local, i.e. private, heap into a shared, i.e.
public, one.

For both object types, dedicated heaps are available. A cached shared heap is used for
immutable objects. Since those objects do not change, the authors admit they do have
not to “deal with cache coherence issues” [98] when an object would be modified. The
SMC library with the MPBT-WT memory is used to access the cached shared heap.
To “circumvent [. . .] coherence issues” for mutable objects, uncached memory is used.
This does match well to the MPI model were windows hold arbitrary, thus writeable,
data and makes to ML approach unsuitable for MPI OSC.

In the experimental results, the authors compare their partitioned heap approach with
a single unified heap where all caches are disabled. The combined runtime of eight
different ML benchmarks is analyzed. Unsurprisingly, a better scalability is observed
for the partitioned heap where caches are enabled for immutable objects. The cause is
attributed to the caching of the MPBT-WT memory type. However, only 10% of the
benchmarks’ memory accesses reference shared data. The remaining fraction touches
the local heap only which is always cached.

2.4.3 Shared Virtual Memory

To support shared-memory-style programming in distributed systems, the illusion
of shared memory needs to be provided to the application. In 1989 LI ET AL. [99]
introduce the shared virtual memory (SVM) concept for loosely coupled systems.
Therein, a mapping manager is used to provide a view to the shared data. The data is
not physically shared but only virtually by the mapping manager.

43

2 Background

LI ET AL. discuss different options how to implement the SVM approach. They end
up using the page concept of operating systems and processor memory protection
features. A page that belongs to shared memory is owned by one of the executing
processors in the distributed system. Upon access the mapping manager transfers
ownership and updates the content of the page frame with the data from the referenced
memory page. Accesses to the shared memory page are detected by handling processor
faults, i.e. correctable errors, inside the operating system.

Concerning the SCC, several research works rely on the concept of SVM, where the
coherence of the caches has to be ensured in the presence of virtual shared memory.

MetalSVM

The Chair for Operating System of the RWTH Aachen University developed the
concept of a hypervisor for the SCC named MetalSVM [100]. Its aim is to provide
an operating system, Linux in their studies, a transparent coherence management
and, thus, a cc-NUMA view on the platform. The hypervisor works on top of the
hardware and underneath the targeted operating system which runs as virtualization
guest and without further modification.

In the (Metal)SVM approach a memory page is owned by a single core. The owner is
tracked in page frame metadata. Only the owner core can access the page and modify
the data. This is ensured by the page table entries. Page faults are caught by the
hypervisor of which one instance is running per core. The instances communicate
via messages and interrupts that can be sent between the cores. During page fault
handling, the current owner core of a page (if any) is requested to release the page by
a message. The owner flushes outstanding writes and cached content to the memory,
changes its local page table entry, and transfers the ownership to the requesting core.
This one invalidates the cache to get fresh data. As a result, a strong consistency is
implemented which prevents any core to access outdated memory. [101]

For the shared pages, MetalSVM uses the write-through cache configuration in the
page tables. In addition, L2 caches are completely disabled as its software-based flush
operation is considered as being too costly.

For the evaluation, the authors investigate a two-dimensional Laplace problem which
is solved with a five-point stencil application, which is similar to a cellular automaton
(CA). Results reveal that the message-based communication via the low-level non-

44

2.4 Related Work

blocking iRCCE library delivers the highest runtimes. Contrarily, the runtime of
MetalSVM-based versions is significantly lower (30 – 50%). Anyhow, the discussion
does not include a comparison with enabled L2 caches. Thus the reported absolute
runtimes might be higher than they could be when caches were activated.

RockyVisor

SOBANIA ET AL. [60] also present a hypervisor for the SCC that exposes a coherent
view onto the SCC. It is named named RockyVisor. Different to MetalSVM, Rock-
yVisor runs on top of an operating system, i.e. the sccLinux (see Section 2.2.6) which
was the outcome of preceeding work [56]. The concept of a single page owner appears
again in RockyVisor and so does the requirement to flush the cache when ownership is
transferred. The implementation of the software-managed coherence was in progress
when the article was published. However, no follow-up work is known.

Rhymes

With Rhymes, the authors of [102] present another shared virtual memory system
for the SCC. Different to the previous SVM approaches, Rhymes is built around the
Barrelfish operating system [103]. Rhymes supports two sharing modes for memory.
Both modes use lock/unlock routines with IDs that needs to be wrapped around
accesses on shared data.

The first mode is similar to MetalSVM and the SMC library, i.e. the MPBT-WT
memory configuration is used in conjunction with cache invalidation and flush of the
WCB. The authors point out that the write-through operations and the disabled L2
cache are clear drawbacks of this sharing mode.

The second mode needs to be explicitly activated via API calls. In this mode, read-only
copies of shared pages are created from a so-called golden copy upon first read access
on the shared data. The page tables are then exchanged transparently to point to
the fresh but read-only copy. When a write is issued, the subsequently invoked fault
handler creates a second but writeable twin copy. When the accesses to the shared data
are completed (indicated by an unlock call), the twin copy is synchronized with the
golden copy by comparing the data in the writeable twin copy with read-only copy.
When changes are detected they are written into the golden copy.

45

2 Background

The second mode delivers significant better performance in the conducted experi-
ments compared to the first MetalSVM-like mode. This is attributed to the higher
cache utilization which is prevented in the first mode as it uses the MPBT-WT mode.
However, the results for the employed Graph500 benchmark with speedup values
of up to 350 for 48 cores are questionable since the data — as stated by the authors —
nearly fits completely into the L2 cache with increasing core counts. Thus, it is not
clear whether the performance gain is due to the new share mode or a better cache
utilization. Furthermore, no comment is made on the baseline version. Thus, the
overhead compared to a pure sequential version without SVM is not discussed.

Ryhmes’ second mode can be applied to MPI’s window concept quite well. Before
accesses to a remote process are performed, a Ryhmes lock is acquired on the window
object and the second mode is activated. The modifications to the twin copy are
applied to the master copy, i.e. the remote window memory, when the access epoch
ends. However, for large windows, the overhead of synchronizing the twin copy with
the master copy might degrade the performance.

Saches

Finally, another implementation of a software-based shared virtual memory for the
SCC is presented by KIM ET AL. [104]. It enables multithreaded applications to be
started on the chip which appears as a single multicore CPU to those programs. Shared
memory is created via configuration of the LUTs. Shared data needs to be accessed
through so-called saches which provide a copy of the shared data and consistency
operations. Those update the main memory and the sache when required for the data
that is accessed through these objects.

As a consequence, every load and store operation to shared data needs to be preceded
or followed by sache consistency operations. The API offers optimizations for array
accesses which update the local data en block and not element-wise. Anyhow, existing
applications need heavy rewriting to add the required consistency operations.

Nevertheless, the authors do not attempt to ensure cache coherence between the cores
that access shared data. Instead, the shared data is accessed with uncached memory
accesses. The local sache appears to be cached, but this is not clearly stated in the
literature. On the other hand, disabling the caches appears to be adverse concerning
performance.

46

2.4 Related Work

Summary

In summary, shared virtual memory requires to keep track of current page owner
and data transfers to update the local copy of shared data. Most implementations
require support by the operating system or hypervisors (see above). As shown in
the literature, SVM can serve as base for providing a shared memory view on the
SCC. Though, using a software layer for providing a shared memory view on the
system in presence of physically shared memory is questionable. In addition, an
SVM implementation like MetalSVM would apply to the whole software stack. For
MPI’s one-sided communication, the coherence needs only to be managed for the
window which resides in shared memory, because the remaining parts of a process’
address space are kept private. For that reason, SVM approaches appear to be overhead
compared to a dedicated solution that manages the coherence of the shared memory
only.

2.4.4 Object-based approaches

In addition to the virtual shared memory that is — to the most extend — transparent
for applications, there are object-based solutions to provide coherence in the SCC. In
those cases, the usage of an object-oriented programming style is required to ensure
cache coherence. The concept ensures consistency of shared data on object granularity
but neither for the whole address space nor an address range.

MESH

MESH, a flexible and efficient sharing framework for many cores, is presented by
PRESCHER ET AL. [52]. It provides a replication mechanism for PGAS-like program-
ming environments where objects can be stored in a global address space. Multiple
memory locations can hold replicas of these objects, e.g. read-only objects, to avoid
memory controller congestion (see Section 3.4.5). The framework is written in C++

and is designed for the use in that language.

To access a remote object, an access object needs to be created. The access object takes
care of the cache coherence. Upon (automatic) destruction of the access object, issued
writes to the underlying object are propagated to the replica (in RAM). It does so by
flushing the according L1 and L2 cache lines with the help of the Linux kernel. The

47

2 Background

results show that a flush of single modified cache line takes 580 cycles, not including
the transition into kernel space. It has to be noted that the employed SCC system
was running at higher frequencies: 800 MHz for the cores and 1.6 GHz for the mesh
network which is nearly the doubled frequency of the default setting used within this
thesis.

The approach of MESH resembles the release consistency model. The creation of an
access object matches to the acquire operation while the destruction of the access object
matches to the release. However, MESH is limited to the C++ programming language.
A language-agnostic approach would require explicit calls for the release/acquire
operations as they are provided by MPI’s synchronization calls. Therein, the access
object is constituted by the window object.

Despite these similarities, the replica concept does not apply well to MPI windows.
Compared to generally small-sized C++ objects, MPI windows might have large sizes.
Maintaining replicas can therefore cause high runtimes due to memory transfers. In
addition, windows are generally not read-only which is one of the motivations for
using replicas. Further, the flush operations during the release-like destruction of
the access object causes is likely to create large amount of memory accesses. The
performance of cache line flushes for a whole window can be significant.

Moreover, the release operation of multiple origin processes after the synchronization
that concludes communication would cause race conditions. The performed flush
would cause the whole window content to be written back in main memory. Since
every origin process performs this operation, data that has been written into main
memory by one process will be overwritten by a subsequent origin that completes its
access epoch.

MESH and Cache Coherence

Following the work-in-progress publication, ROTTA ET AL. [100] present a software-
level cache coherence for the MESH framework with a focus on parallel graph ap-
plications. The authors employ the POPSHM library (cf. Section 2.2.6) to allocate
shared data. In addition the DCM, NCM and MPBT-WT memory types are used to
map the shared memory. Inside this region, shared objects are created that represent
elements of the graph.

Access to the shared object is only possible via access proxies (see access object from

48

2.4 Related Work

MESH). Those take care of coherence operations. When an access object for read or
write accesses is created, cache invalidation is performed. When a write access has
ended and the access object is destroyed, the cached content is written back to memory.
However, an application must follow a multiple reader/single writer pattern which
does not apply to MPI one-sided communication were multiple origins can perform
PUT operations at the same time.

Conceptually, the approach from [100] still has the drawback of using access objects
for shared data which is hardly compatible to MPI.

2.4.5 Software-Based Cache Coherence

The management of cache coherence by software has been discussed in previous
research. TARTALJA AND MILUTINOVIC [105] present a selection of papers dealing
with the topic. They differentiate between static and dynamic strategies, with the
first ones being applied at compile time and the last ones being applied at runtime of
the program. The authors also point out, that software-based coherence schemes can
reduce the complexity of the hardware, can compete with hardware-based approaches,
and are scalable as well [105, p. 1]. Thus, those schemes need to be considered as
well.

Already in 1987, CHEONG AND VEIDENBAUM [106] use a FORTRAN compiler
to detect DOALL loops in numerical applications which can be executed in parallel
on a nCC shared memory multiprocessor system. To manage cache coherence, the
authors extend the compiler and inject invalidation statements before and after the
loop body. Thereby, the latest computational results from before and after the loop
can be observed by participating processors.

The authors use a write-through cache policy as it avoids to keep track of which
cache line needs to be written back to memory. The approach of CHEONG AND

VEIDENBAUM requires a compiler that is able to detect parallelism and inject co-
herence management code. In case of MPI the compiler needs to be aware of the
synchronization methods. However, most, if not all, MPI implementations rely on
an existing compilers and provide library functions, but do not provide compiler
extensions. Thus, this approach is not followed within this thesis.

In subsequent work CHEONG AND VEIDENBAUM, enhance their compiler approach
to avoid “indiscriminiate invalidation” of the whole cache [107]. The approach is

49

2 Background

still compiler-based and injects invalidations instructions. The extension is based on
tracking the state of variables within the scope of a subroutine. If variables are only
read but not written (by any processor) no cache invalidation is required.

ASHBY, DIAZ, AND CINTRA advance the idea of a more selective software-based
cache invalidation [37]. Their concept relies on release consistency. Cache flushes and
invalidations are explicitly inserted in the release and acquire operations, respectively.
Locks serve as synchronization devices that provide release and acquire options.

In addition, the authors propose hardware extensions which support the invalidation
to affect only the memory location that were modified by other processes and belong
to a shared memory region. The hardware extension makes use of signatures based on
Bloom filters to keep track of changes by other processes. In combination with the
cache line tags a lock identifier is created using the filter. The identifier is associated
with the lock data structure. Upon acquire, all cache lines are invalidated whose
tag-based identifier is found in the Bloom-filter-based lock signature, i.e. those cache
lines are invalidated which belong to the set of changed lines associated with the lock.
For the release operation, an explicit write-back operation is proposed. [37]

The evaluation using a simulation of up to 32 UltraSPARC processors shows that a
full invalidation scheme “performs surprisingly well”. The proposed software-based
and hardware-assisted solutions offer only slight performance improvements of about
5% with respect to the runtime of a full invalidation solution. In some exceptions, the
runtime could be nearly halved. In addition, the software-based approach performs
nearly as the hardware-based MSI cache coherence protocol would do and both are
close to an ideal baseline.

The results from [37]— as well as the others — show that software-based coherence can
compete with hardware-based approaches. In addition, the release consistency-based
approach could be applied to MPI one-sided communication and the hardware-assisted
selective invalidation also matches the proposed SCOSCo approach. However, the
results were obtained using simulation only and were not applied to MPI’s OSC
programming model. The SCC, in contrast, allows an experimental evaluation and
application to the Message Passing Interface which was not addressed in detail in all
of the known publications. This motivates further investigations of the SCOSCo
idea.

Other software-based approaches often require special hardware support that assists
the coherence management. The dynamic schemes of SMITH [108] and CHERITON ET

AL. [109] are examples. Due to the lack of systems that support these techniques, they

50

2.5 Conclusion

are not considered further within this thesis. However, the technique of SMITH [108]
that uses invalidation of translation lookaside buffers upon synchronization events
might be applied to MPI’s one-sided communication as well if a processor would
support that feature.

Summary

The results from related work essentially reveal two aspects.

First, software-managed coherence has been widely discussed in the past. Different
implementations, that provide cache coherent environments and can compete with
solutions which are implemented purely in hardware, have been discussed in the past.
Thus, considering software-based cache coherence in the advent of nCC systems (see
Section 2.1.4) is a valid approach.

On the other hand, there is no software solution for cache coherence that specifically
addresses the one-sided communication model. While more general schemes apply to
a wider range of applications, including OSC, they cannot take advantage from the
explicit synchronization mechanisms that is mandatory within this communication
model.

2.5 Conclusion

As discussed in this chapter, cache coherence in shared memory systems that is purely
implemented in hardware faces practical challenges. While hardware based solutions
to the coherence problem are unlikely to vanish, a global support for interconnected
multi-core processors that provide shared memory become relevant in the foreseeable
future. It is therefore critical to consider concepts that are based on software, as it has
been done in the past.

In addition, one-sided communication was pointed out as being a programming model
that fits to non-cache-coherent systems, including many-cores with shared memory.
On the one hand, selective sharing of memory enables the accesses to remote memory
on which OSC relies on. On the other hand, the necessary synchronization provides
means for maintaining the cache coherence.

51

2 Background

For the above reasons, the remainder of the thesis focuses on the efficient support for
one-sided communication on the non-cache-coherent Single-Chip Cloud Computer.
As with one-sided communication itself, the discussion is split into synchronization
and communication. The latter includes the discussion on maintaining cache coher-
ence for the programming model in middleware. In the following two chapters, the
efficient design for both facets of OSC on the SCC are presented.

52

3 Synchronization for MPI One-Sided
Communication

In the previous chapter, one-sided communication of the Message Passing Interface
was identified as an adequate programming model for non-cache-coherent many-core
processors. One of the key aspects for OSC is the separation of communication and
synchronization.

This chapter sheds light on the details of the synchronization aspect. The according
application programming interface of MPI is illustrated in Section 3.1. A classification
of different implementation options is provided in the subsequent section. The existing
classification from the literature is extended to account more recently published work
and compensate the disadvantages of the known classes. The resulting classification
scheme is used to identify appropriate synchronization mechanisms for the SCC.
For this purpose, real-world implementations of the OSC synchronization API are
surveyed in Section 3.3 and classified according to the previously defined scheme.
Based on the outcome, beneficial concepts for nCC systems are identified and a
synchronization scheme for the SCC is developed in the subsequent section, followed
by an experimental evaluation of its implementation in Section 3.5.

The discussion of the implementation approach and its evaluation was published in
the Workshop Proceedings of the ARCS 2016 conference [3] and was presented in a
talk of the 12th PASA workshop on site.

3.1 Background: MPI Process Synchronization

The MPI standard requires that one-sided communication happens only after the
processes have agreed on the communication [65, § 11.5] (cf. Section 2.3.5). The
motivation for this is manifold. On the one hand, origin processes (those which
perform the communication) need to know when they are allowed to communicate

53

3 Synchronization for MPI One-Sided Communication

communication

active target

fence general active target

passive target

Figure 3.1: Synchronization styles for MPI one-sided communication

with a target process (the destination of the communication operation). For instance,
this is required to avoid accidentally overwritten data at the target process. In other
words, the targets have to signal their readiness for communication. Thus, the targets
participate actively in the synchronization. In this scenario, a second motivation
arises. The targets have to be informed about the end of communication, i.e. when
no more communication is performed and the window memory that was subject to
modifications is available for further usage by the target.

As indicated above, the MPI standard defines different synchronization styles that
address the described scenarios [65, §11.5]. Depending on whether the target pro-
cesses are involved in the communication (in the sense of data transfers), the standard
differentiates between active and passive target communication.

Although the target is never involved in data transfers from the perspective of the
MPI API level, this classification takes the required synchronization calls into account.
That is, in active target communication a target invokes synchronization methods
whereas in the passive class it does not. Figure 3.1 illustrates the hierarchy of the
different synchronization styles using the standard’s notation. The main principle of
OSC, i.e. the communication parameters are only provided by the origin, is still valid
within this classification.

Within the active target communication class, further distinction is made depending
on how the synchronization is performed. On the contrary, such a differentiation is
not made for passive target communication. The next subsections present key aspects
of the synchronization API and the differences between the synchronization styles.

Concerning synchronization API calls, all of them require a window object and a
so-called assertion as parameter. The window object is essential as the participating pro-
cesses synchronize on this parameter. Consequently, communication is coordinated
on a per-window basis, not necessarily in a global manner.

54

3.1 Background: MPI Process Synchronization

origin target

access epoch start

RMA access

access epoch end

exposure epoch start

exposure epoch end

one-sided communication

synchron
ization

synchronization

accessepoch

exposureepoch

Figure 3.2: Active target synchronization in MPI OSC programs.

The assertion may contain hints to the MPI implementation that are provided by an
application and describe the application’s behavior. Given such a contract between
the application and the middleware, the MPI library may take optimized code paths.
However, this argument is primary used for optimizations and usually set to zero,
meaning no assertion is made.

3.1.1 Synchronization Epochs

All synchronization style employ calls to start and finish a sequence of code in which
the communication can occur. The sequence is called epoch. Depending on which
type of process (origin or target) is considered, one can further distinguish between
access epochs and exposure epochs.

As illustrated in Figure 3.2, access epochs are found in origin processes. Within
an access epoch, communication calls, also called RMA accesses, can be performed.
Those calls operate on the exposed memory of target processes. In case of active
target communication (see above), the targets participate in the communication by
opening an exposure epoch. Within that time frame, they allow to be used as a
destination for communication operations. Since passive targets do not participate
in the communication at all, the concept of an exposure epoch does not apply. [65,
§ 11.5]

For active target communication, there must always be a match between access and
exposure epochs. That is, an origin cannot communicate to a target if that target does
not have an according exposure epoch. However, the MPI standard does not impose
restrictions on the temporal order. For example, an origin does not have to wait for

55

3 Synchronization for MPI One-Sided Communication

the target exposure epoch at the beginning of its access epoch. In contrast, it is a choice
of the implementation of when to actual perform the synchronization [65, p. 439].

Concerning the communication inside an access epoch, the standard requires that
those operations are non-blocking. Within the standard’s semantic this means the
API user is not allowed to access the provided buffer for other purposes. This does
not imply the immediate return of the communication operation. Rather, it means
that the reuse of buffers is only allowed after completion of these operations. Local
completion of RMA operations is ensured by closing an access epoch. Completion
on the target side is guaranteed by closing the exposure epoch. [65, pp. 11, 417]

3.1.2 Fence Synchronization

The first synchronization style to be discussed is the fence synchronization. It falls into
the category of active target synchronization, i.e. both target and origin processes
have to call according methods. In particular, the MPI_WIN_FENCE has to be called by
both sides. The call takes only two parameters: the assertion and the window object,
as mentioned above.

The MPI_WIN_FENCE routine has to be invoked collectively among all processes that
created the window, i.e. by all processes in the communicator which was used during
the collective creation of the window object (see Section 2.3.5). As its name sug-
gests, the actual implementation often “entails a barrier synchronization” [65, p. 441].
Communication operations (like PUT and GET) to any process of the window’s com-
municator can be issued between two fence calls. Listing 3.1 illustrates the usage of
fence synchronization.

The role of target and origin process is not fixed when the synchronization is carried
out. From the perspective of an application, it is not required to specify which role a
process will take in the subsequent communication phase. This makes fence synchro-
nization appropriate for global yet changing communication patterns where every
process (of the window’s communicator) can be chosen as a target for communication
and where this decision is made at runtime. [65, p. 437]

In actual implementations, the collective nature of the fence operation is exploited.
MPI libraries make use of other collective operations like barriers or reductions.
Optimizations of those fundamental operations have been widely discussed in the
literature, ranging from new algorithms to optimizations for certain architectures

56

3.1 Background: MPI Process Synchronization

1/* open access/exposure epoch */

2MPI_Win_fence(0, win);

3
4if (process_needs_to_communicate()) {

5/* application logic dynamically picks a target process */

6target_rank = choose_target_process(window_communicator);

7
8/* this process becomes origin, process target_rank becomes target */

9MPI_Put(..., target_rank, ..., win);

10}

11
12/* close opened epoch */

13MPI_Win_Fence(0, win);

Listing 3.1: Example for usage of MPI’s fence synchronization.

[110–114]. This also includes discussions of those operations for the SCC [53, 115–
117]. Consequently, the fence synchronization style is not discussed in more depth
within this thesis.

3.1.3 General Active Target Synchronization

Different to fence synchronization, the general active target synchronization (GATS)
allows to synchronize a subset of the processes in the window’s communicator. This
is advantageous if an application can determine which processes are going to commu-
nicate with each other. With GATS it is also possible to specify the roles a process is
going to take (origin and/or target).

In detail, the API of GATS consists of four methods that can be divided into two
groups, one for target and one for origin processes. Each group is constituted of one
routine that opens an epoch (exposure for target, access for origins) and one for closing
that epoch, namely:

MPI_WIN_START and MPI_WIN_COMPLETE open and close an access epoch at the origin
process. Similar to fence, the non-blocking communication operations can
only be issued between the invocation of these two synchronization methods.
The MPI_WIN_COMPLETE call ensures that all of the non-blocking communication

57

3 Synchronization for MPI One-Sided Communication

1 /* origin process(es) */

2 MPI_Win_start(start_group, 0, win);

3
4 /* access epoch */

5 if (need_to_communicate(target_rank)) {

6 MPI_Put(..., target_rank, ... win);

7 }

8
9 MPI_Win_complete(win);

/* target process(es) */

MPI_Win_post(post_group, 0, win);

/* exposure epoch */

/* no OSC communication operations */

MPI_Win_wait(win);

Listing 3.2: Example of MPI general active target synchronization for origin (left) and
target (right) processes.

calls have finished at the origin such that local buffers are ready for reuse after
communication. [65, p. 441 f.]

MPI_WIN_POST and MPI_WIN_WAIT are used for opening and closing an exposure epoch
at the target processes. While a call to MPI_WIN_POST can be considered as an indi-
cation for allowing communication, MPI_WIN_WAIT waits until all MPI_WIN_COMP-
LETE calls have been issued, i.e. all access epochs came to an end. [65, p. 443 f.]

Due to the names of the four methods, the GATS synchronization is also often referred
to as PSCW (Post-Start-Complete-Wait) synchronization.

Beside the assertion and the window parameter (see above), the two routines that
open epochs, MPI_WIN_START and MPI_WIN_POST, take a group argument as illustrated
in Listing 3.2. This argument is a handle to an MPI_GROUP object that represents an
ordered set (or list) of processes [65, § 6.2.1]. For MPI_WIN_START, the start group
(Gs) contains the processes to which the origin process can communicate within the
following access epoch. Vice versa, the group given to MPI_WIN_POST, the post group
(Gp), holds the ranks of origins that are allowed to communicate with the calling
target process. [65, § 11.5.2]

The given groups on both sides have to match each other. In a correct MPI program,
all target processes in an origin’s start group must have that particular origin process
in their post group [65, p. 441 f.]. Listing 3.2 illustrates the invocation of the synchro-
nization methods with the two group parameters. Given a single origin process with
rank 0 and two targets with rank 1 and 2, the start group has to contain the ranks 1
and 2. The post group of the two targets must have only one element, rank 0.

58

3.1 Background: MPI Process Synchronization

The reason for requiring the described matching is to ensure a correct synchronization
between the origin and target processes while the API is still convenient to use. Cor-
rectness is required to avoid deadlocks as illustrated in the following example: If not all
target processes given from the origin’s start group would issue their MPI_WIN_POST op-
eration, the origin would wait infinitely until the targets become ready. Therefore, the
origin will never perform the notification at the end of its access epoch. Consequently,
those targets that actually synchronized correctly would wait in their MPI_WIN_WAIT
calls for the completion of the origins access epoch, which will never happen.

The convenience aspect arises from the fact that the start group must be considered
as a list of possible rather than definitive target processes with which the origin will
communicate. As indicated in Listing 3.2, the origin can decide within the access
epoch if it actually needs to communicate with a certain target. This is similar to fence
synchronization (see Listing 3.1). The main difference is that the set of possible targets
is generally limited by the specified start group. However, at the end of a GATS access
epoch all targets that started an exposure epoch have to be notified to let these epochs
end. To prevent infinite waiting, this must done in any case with all processes from
the start group, i.e. even if no communication was performed with a particular target.
Otherwise, not all exposure epochs would come to an end. The MPI API facilitates
this with the pair of MPI_WIN_START and MPI_WIN_COMPLETE. By using these calls, there
is no need for manually synchronizing with each of the targets.

The laborious construction of the post and start group are not discussed here. This
“somewhat cumbersome” [118] step does not influence the synchronization process,
although it is required to construct the groups beforehand. In general, they have to be
derived from an existing group which itself must be queried from a communicator.
For details, refer to [65, § 6.3.2].

3.1.4 Passive Target Synchronization

As explained in the introduction of Section 3.1, in passive target communication
only the origin processes participate in the communication and synchronization.
Targets do nothing from the perspective of the MPI API. However, the targets are
still involved in the window creation, i.e. they expose a portion of their local memory
for accesses by other processes, including their own. These accesses still need to be
synchronize. For that purpose, the MPI standard uses the concepts of locks known
from shared memory programming. [65, p. 438]

59

3 Synchronization for MPI One-Sided Communication

1 if (need_to_communicate(target_rank)) {

2 MPI_Win_lock(MPI_LOCK_EXCLUSIVE, target_rank, 0, win);

3
4 /* access epoch (no exposure epoch on the target) */

5 MPI_Put(..., target_rank, ..., win);

6
7 MPI_Win_unlock(target_rank, win);

8 }

Listing 3.3: Example of passive target synchronization in MPI using an exclusive lock.

To access a window of a target process, an origin has to acquire a lock first. The lock
is specific to a window and a target. The two parameters need to be provided for the
synchronization method MPI_WIN_LOCK. As a result, the passive target synchronization
basically affects only the single targeted process. After acquisition of a lock, the access
epoch is opened. When all the intended accesses have been performed, the lock has to
be released with MPI_WIN_UNLOCK as shown in Listing 3.3. This operation also closes
the access epoch.

For the synchronization of the accesses, the MPI standard defines two lock types:
shared and exclusive locks [65, p. 445]. The latter type is beneficial to synchronize
write accesses with reads or other write accesses to the same location as only one
process can hold an exclusive lock. In contrast, the shared type can be acquired by
every process as long as no exclusive lock is set at the specified process. This is useful,
e.g., for concurrent read accesses which do not interfere.

In addition to MPI_WIN_LOCK, the function MPI_WIN_LOCK_ALL can be used to acquire
a shared lock on all processes that belong to the window [65, p. 446]. This can be
useful in a phase of communication where a process performs a lot of communication
operations to a high number of processes. To avoid frequently repeated calls to
lock/unlock a call to MPI_WIN_LOCK_ALL might be beneficial.

It has to be noted that if a process needs to access local memory that belongs to a
passively-synchronized window it must participate in the synchronization as well.
Otherwise local accesses (by conventional memory accesses, i.e. load and stores) will
interfere with RMA operations. Depending on the type of local access, a shared or
exclusive lock has to be acquired before any access. [65, p. 447]

The passive target synchronization enables implementations of PGAS runtimes of

60

3.2 Classification of Implementation Methods

programming languages [83, 119], which has been greatly supported by the MPI-
3 specification. In addition, PGAS oriented libraries, like GlobalArrays which is
used in computational chemistry [82], or distributed data structures, like hash maps
trees and linked lists [72, § 6] are supported by MPI’s passive communication API.
However, further discussion is out of this thesis’ scope. A discussion of an efficient
implementation for that synchronization style might be subject to future work. GER-
STENBERGER ET AL. [120] present an approach that appears to be a good candidate
for an implementation on the SCC.

3.2 Classification of Implementation Methods

As illustrated in Section 3.1.1, the MPI standard gives an implementation much free-
dom to realize the synchronization methods that were discussed in the previous
section. For example, MPI_WIN_START is not required to wait for all MPI_WIN_POST oper-
ations (see Section 3.1.3), but an implementation can choose to support this blocking
behavior [65, p. 439]. On the path to an implementation of the synchronization
primitives for the Intel SCC, it is beneficial to categorize existing implementations.
This facilitates the assessment of existing libraries based on their suitability for the
nCC many-core chip.

GROPP AND THAKUR [121] provide such a classification scheme for implementation
options of the MPI OSC synchronization. The two classes defined in their scheme
are deferred and immediate.

3.2.1 Deferred Method

For deferred synchronization, the execution of methods that open an access epochs is
delayed until the end of an access epoch. The same applies to the communication calls.
Their non-blocking characteristic supports the deferred scheme, since an application
should not touch the provided buffers until the access epoch has ended. As a result
of the deferred synchronization, the actual data transfers are neither performed nor
initiated until the access epoch has ended. Only after that the synchronization is
executed and the communication can proceed.

A primary downside of this approach is that optimizations, especially the overlap of
communication and computation which can hide communication latencies, are not

61

3 Synchronization for MPI One-Sided Communication

Table 3.1: Classification of synchronization for MPI one-sided communication.

Class Epoch Start Communication Overlap

deferred non-blocking delayed to epoch’s end not possible
immediate blocking prompt possible
trigger-only non-blocking prompt possible

possible. On the other hand, the deferral enables an MPI implementation to merge
and optimize multiple of the communication calls and consequently reduce the latency
for the data transfers. In addition, the deferred synchronization makes an application
less prone to process skew. That way, a delayed execution of a target’s synchronization
method (MPI_WIN_FENCE or MPI_WIN_POST) does not cause a delay on the origin side
when it enters the access epoch (by calling MPI_WIN_FENCE or MPI_WIN_START). The
same applies to passive target communication. Here, an origin process that holds an
exclusive lock does not cause another origin’s access epoch to start later.

3.2.2 Immediate Method

Opposite to the previous category, the starting synchronization calls (e.g., MPI_WIN_-
POST and MPI_WIN_START) of the immediate class perform the synchronization immedi-
ately when they are invoked. Usually, this leads to blocking implementations in which
the targets wait for the origins to become ready for the communication. This step
can be based on barriers or similar collective operations. For platforms with special
support for these tasks (like the IBM Blue Gene architecture [122]), the immediate
synchronization can be implemented efficiently.

A drawback of this synchronization scheme is its vulnerability to process skew (see
above). A late target process causes an origin to be delayed in the start of its access epoch
until the target performs it synchronization. On the other hand, this is also immediate
synchronization is advantageous as origin and target are ready for communication
after their epochs have been started. Therefore, communication can executed on
invocation.

This also offers the possibility to overlap communication and computation. In ad-
dition, GROPP AND THAKUR point out that this method is beneficial for systems
that support true one-sided communication, e.g. shared memory systems, where
communication can be performed upon invocation [121].

62

3.2 Classification of Implementation Methods

3.2.3 Trigger-Only Method

In addition to the classification from [121], a third class that combines the advantages
from deferred and immediate synchronization (see Table 3.1) can be identified. In
the trigger-only variant, the starting synchronization calls initiate synchronization
operations but does not block to wait for their completion. This is similar to the
deferred class. However, in the trigger-only scheme, it is a communication call (PUT or
GET, e.g.) that checks if its target has synchronized, not the ending synchronization
call (MPI_WIN_COMPLETE, e.g.). If the target is not yet ready, the communication call
blocks until the particular target process transitions into a synchronized state.

One of the beneficial aspects of the trigger-only method is that an origin waits for a
target process only when it is actually required, i.e. when communication should be
performed. This is different to a blocking/immediate synchronization that waits for all
processes (given in the start group, e.g.) even if no communication will be performed
with some of them inside the access epoch. This makes the trigger-only variant less
prone to process skew than an immediate implementation. In addition, after the
synchronization with a particular target is completed, all subsequent communication
with that process can be performed promptly which enables overlap of communication
and computation.

3.2.4 Discussion

Of the discussed synchronization methods, the immediate and trigger-only type are the
most suitable ones for an implementation on the Intel SCC. Both ensure that target
processes are ready for communication when it is invoked. Further, the SCC provides
the possibility to use shared memory based communication (see Section 2.2.2). As
pointed out in the discussed literature, the immediate method is well-suited for such a
case.

Because the trigger-only method combines the possibility of performing communica-
tion upon invocation with a relaxed start of the synchronization epoch, a trigger-only
method should be favored for an implementation. In contrast, the deferred method
should not be considered as implementation template due to the lack of possible
overlap and native support of one-sided communication by using shared memory on
the SCC.

63

3 Synchronization for MPI One-Sided Communication

3.3 Survey of Synchronization Implementations

For an efficient synchronization scheme on the SCC, the trigger-only and (with re-
strictions) the immediate methods were identified as eligible classes in the previous
section. The following section surveys the implementation of synchronization rou-
tines in existing MPI libraries. The aim of this step is to classify these implementations
according to the schema presented in the previous section and thereby evaluate their
suitability for the SCC. In addition, concepts that might be useful on the SCC will be
identified in this study. From the results, conclusions for the actual implementation
of the synchronization protocol will be drawn.

3.3.1 MPICH

MPICH [123, 124] is considered the reference implementation of the MPI standard.
One of its goals is easy portability. A layered software architecture that abstracts
communication devices supports this aim.

The implementation of the routines defined by the Message Passing Interface is realized
on top of Abstract Device Interface (ADI) as illustrated in Figure 3.3. This represents
the first layer of platform abstraction. To port MPICH to a new hardware architecture,
the ADI layer can be ported to that platform. However, this task is cumbersome, as
the ADI consists of many functions that basically map one-by-one to MPI functions
that deal with communication.

To ease the portability of MPICH, the Channel Device version 3 (CH3 device) im-
plements the ADI layer. It breaks the ADI’s functionality down into sending and
receiving of messages. The simplified platform-specific implementation of send and
receive operations is up to so-called channels. The focus of the following discussion
lies on the implementation of the synchronization function inside the CH3 device
because it is the device that is most commonly used. The analysis is based on MPICH
version 3.1.3 and was done by a source code review of the files ch3u_rma_sync.c and
ch3u_rma_ops.c in the src/mpid/ch3/src directory of the source code package.

The general scheme of the synchronization methods inside the CH3 device follows
the deferred method presented in Section 3.2.1. Since one of the goals of MPICH
is easy portability, the CH3 device does not assume the existence of any special
hardware features that enable fast and truly one-sided data transfers. It therefore

64

3.3 Survey of Synchronization Implementations

Message Passing Interface

MPICH (MPI Implementation)

Abstract Device Interface (ADI)

Channel (CH3) Device Version 3 BlueGene

CH3 Channel Interface

nemesis sock scc

Figure 3.3: Layered software architecture of MPICH.

employs an optimized message-based synchronization scheme that aims to minimize
the incorporated overhead as described in [125] and [126]. As a consequence of
the message-based abstraction that is employed by the CH3 channel, the one-sided
communication calls are also implemented with the help of messages.

GATS Synchronization

The GATS (or PSCW) synchronization follows a deferred approach that enqueues
all communication and processes the queue at the end of an access epoch, i.e. in
MPI_WIN_COMPLETE. The queued operations are only performed after the target process
has signalled its readiness for RMA operations.

To signal the origin the target’s readiness, an empty point-to-point message, i.e.
a control message handled internally by the CH3 device, is sent during a call to
MPI_WIN_POST. Due to the employed deferred synchronization method, the MPI_WIN_-

START routine does not wait until that control message has arrived from all processes
but does nothing except for saving the start group argument for later usage.

For the termination of the synchronization epoch, an integer variable is used. It
contains the number of origin processes that have finished their RMA operations on
the given target process. Therefore, the counter is designated as completion counter. Its
initial value is set to the number of processes in the post group (see Figure 3.4). The
MPI_WIN_WAIT progresses the reception of interal MPICH messages until the counter
reaches zero, meaning that all origins completed their access epoch.

65

3 Synchronization for MPI One-Sided Communication

origin (rank 0) target (rank 1)
MPI_Win_start({1})

MPI_Put(), deferred
MPI_Put(), deferred

MPI_Win_Complete()

MPI_Win_post({0})

MPI_Win_wait()
poll completion counter until 0

control messa
ge

put message
put message + final flag

completion counter
0

1

0

Figure 3.4: Sequence diagram for GATS synchronization of MPICH

To get the notification about the epoch’s completion, both the message-based im-
plementation and the deferred approach of the synchronization are exploited. The
deferral is achieved by storing the parameter of all communication operations in a
queue. The queue is processed in the ending MPI_WIN_COMPLETE. Here, the origin first
has to wait for all targets to become ready for communication, i.e. it has to check that
all of the empty control messages sent during POST have arrived. After that, the RMA
operations are performed by sending out corresponding internal messages. Those
emulate the one-sided operations.

When the final communication message is transmitted, a flag inside the internal
message header is set to signal the end of the access epoch to the target process. Upon
reception of that final message by the target, the flag is evaluated which results in the
decrement of the completion counter. If the counter reaches zero, all access epochs
that accessed the local process’ window have ended and the MPI_WIN_WAIT routine
returns. This process is illustrated in Figure 3.4.

Discussion

The approach of MPICH’s CH3 device employs a deferred scheme. As discussed in
Section 3.2.4, there is no benefit of using such a scheme on the SCC that supports
RMA operations with the help of LUTs. The authors of MPICH are aware of the
drawbacks but point out that the message-based implementation covers the “general
case”.1 Optimizations for Remote Direct Memory Access (RDMA)-capable networks
are in discussion at the time of writing [127]. However, the concept of completion

1https://wiki.mpich.org/mpich/index.php/RMA_Design last accessed 2016-06-27

66

https://wiki.mpich.org/mpich/index.php/RMA_Design

3.3 Survey of Synchronization Implementations

counters is a space-efficient way to implement synchronization at the end of access
and exposure epochs.

3.3.2 MVAPICH

MVAPICH [128] is a derivative of MPICH and is primarily developed as high quality
MPI implementation for high performance networks like InfiniBand which provide
RDMA support in contemporary high performance compute clusters. The implemen-
tation has been subject to numerous research activities2 including the optimization of
OSC.

GATS Synchronization for Shared Memory Systems

LAI, SUR, AND PANDA [129] put their focus on OSC for shared memory system like
contemporary multi-core and multi-socket systems. Those provide the opportunity
to implement MPI’s RMA features in a truly one-sided fashion. With the help of
kernel-based technologies and hardware assistance the message transfer is achieved
across process boundaries without requiring a shared-memory based window.

Concerning synchronization, only the general active target aspect is discussed by LAI,
SUR, AND PANDA [129]. In preceding work, SANTHANARAMAN ET AL. point out
that the deferred concept taken by MPICH “provides no scope [for] overlap” [110] and
thus a immediate approach was chosen. Complementary the authors of the follow-up
publication [110] neglect both a deferred and immediate method in advance of a
trigger-only (see Section 3.2.3) method. Herein, bit-vectors are exploited to perform
both the start/post and complete/wait operations.

Each process owns two bit vectors of the window’s communicator size, one for use
at the beginning of an epoch, one for its end. Each entry is dedicated to the process
whose rank in the window communicator matches the bit position. Both vectors
reside in shared memory. Upon MPI_WIN_START the origin process returns immediately.
The publication does not explicitly state when the vector is checked for a target to
have issued the POST operation. However, Figure 2(b) in [129] leads to the conclusion
that the vector is checked when an MPI RMA operation is performed as those “are
not deferred” [129, § 4.2].

2http://mvapich.cse.ohio-state.edu/publications/ lists several hundred publications

67

http://mvapich.cse.ohio-state.edu/publications/

3 Synchronization for MPI One-Sided Communication

The targets set their according bit when MPI_WIN_POST is called. Although it is not
clarified how the bits are set, it is very likely to be done with atomic bit operations
available in the Intel64 instruction set involved in the experimental evaluation.3

The completion of an epoch is realized with the second bit vector. Analogous to the
beginning of an epoch, the origins set their bit at the target side to indicate completion
of an access epoch within MPI_WIN_COMPLETE. On the target side, when MPI_WIN_WAIT

is invoked, the bit vector is polled until all origin processes have set their according
bit. Why completion counters are not employed is not motivated.

The presented synchronization method is reused in the succeeding publication of
POTLURI ET AL. [130]. The main difference to its precursor is the use of shared
memory not only for synchronization data but also for the windows data. If created
with MPI_ALLOC_MEM, a windows’ memory is backed by shared memory. This reliefs
the implementation from the usage of kernel assisted zero-copy data transfer across
process boundaries and enables direct memory access by an origin process.

Regarding the evaluation of the synchronization method, both publications ([130] and
[129]) do not specifically address the synchronization in the presented experiments.
Although both discussions involve comparison with stock MPI implementations, the
employed OSU micro benchmarks [131] always include communication. Due to
changes in both synchronization and data transfer methods (compared to stock imple-
mentation) the presented results do not allow an assessment of the synchronization
method and their benefit for an applications performance.

Discussion

The shared memory concept proposed by POTLURI ET AL. [130] is a good candidate
for an implementation on the SCC since shared memory can be easily created with
the help of LUTs. In addition, the concept of bit vectors does not rely on messages
and thus promises low overhead.

In addition, the proposed protocol falls into the trigger-only class and is therefore
beneficial (see Section 3.2.4). However, the reason for employing a bit vector at the
end of the synchronization epoch is not clear and nCC systems are not addressed in
the discussed literature.

3the LOCK prefix in pair with a bitwise OR or BTS (bitset) instruction are possible for an implementation

68

3.3 Survey of Synchronization Implementations

Open MPI core library

Byte Transfer Layer Collective
Operations

One-Sided
Communication

Timer Imple-
mentation

ba
sic

TC
P
(so
ck
et
)

sh
ar
ed
m
em
or
y

... ba
sic

tu
ne
d

sh
ar
ed
m
em
or
y

... ba
sic

rd
m
a

sm ... ba
sic

Li
nu
x

W
in
do
ws

...

Figure 3.5: Software architecture of Open MPI (based on [132, Fig. 15.2])

3.3.3 Open MPI

Aside of MPICH and its derivate MVAPICH, Open MPI is one of the best known MPI
implementations. It differs architecturally from MPICH. Instead of a fixed device
implementation compiled into the library, Open MPI’s functionality is split and imple-
mented in frameworks where plugins, called components, provide different realizations
of the frameworks functionalites [132]. Among others, prominent examples for frame-
works include collective operations, one-sided communication, or low-level routines
like timer implementations. Figure 3.5 illustrates the component-based architecture
of Open MPI.

Which component should be used at runtime can be chosen before program execution
without the need for recompilation of the library. The OSC framework allows the
selection of the pt2pt, sm or rdma component that provide implementations for
systems with shared memory and RDMA, respectively. In each of the components,
the synchronization methods are implemented differently.4

GATS Synchronization

BARRETT ET AL. [133] state that the synchronization mechanisms in Open MPI
are “similar to the design used by MPICH2”. This is still true for GATS in the pt2pt

4https://github.com/open-mpi/ompi-release/tree/v2.x/ompi/mca/osc/, last accessed 2016-06-21

69

https://github.com/open-mpi/ompi-release/tree/v2.x/ompi/mca/osc/

3 Synchronization for MPI One-Sided Communication

component5 in the latest stable version at the time of writing (version 2.0.1). The
concepts of control messages and completions counters are employed as in MPICH.

During MPI_WIN_POST, a control message is sent to the origin. Upon arrival, the origin
checks if the post message was expected. If not, the post operation is appended to a
list of unexpected posts. Such pending posts are evaluated during MPI_WIN_START. If
the post message is expected (or upon its reception by the progress engine), a counter
is increased. This counter was decremented by the number of processes in the start
group within the MPI_WIN_START method.

Nonetheless, the counter is not polled in the MPI_WIN_START routine for reaching zero
which would indicate completion of the post operations of all target processes. Instead,
this poll operation is performed in MPI_WIN_COMPLETE. As a consequence, communica-
tion calls are postponed until the end of an epoch. Therefore, the synchronization
method incorporated in Open MPI can be classified as deferred.

The completion of an access epoch is realized by the very same means as in MPICH, i.e.
by using completion counters. During MPI_WIN_POST, a target’s completion counter
is set to the negative number of origin processes specified in the method call’s group
argument. In MPI_WIN_COMPLETE, a message is issued signalling the end of the access
epoch. A notable difference to MPICH is that there is nothing like a final indicator
which is piggy-backed by a communication operation. Instead, a separate control
message is required for notification. Nevertheless, upon reception the completion
counter at the target side is increased by one. MPI_WIN_WAIT and MPI_WIN_TEST test the
counter for being zero in a blocking and non-blocking fashion respectively.

While the pt2pt component works with the deferred method, the rdma component
uses an immediate approach. Instead of messages, it is based on RDMA transactions
that modify synchronization data structures. For MPI_WIN_POST, instead of a control
message, the target directly modifies an array that indicates post operations of tar-
gets [134]. This array is polled in MPI_WIN_START until all targets have started their
access epoch, which is similar to MVAPICH’s shared memory approach (see above).

For the synchronization at the epoch end, the concept of completion counters is
used again. Similar to the POST/START operations, MPI_WIN_COMPLETE does not rely on
messages but increments a per-target completion counter directly via atomic RDMA
operations. Accordingly, MPI_WIN_WAIT polls the counter until it reaches zero.

5file rdma/pt2pt/osc_pt2pt_active_target.c

70

3.3 Survey of Synchronization Implementations

As described in Section 3.2.2, the employed immediate approach is advantageous
for systems that natively support RDMA. Thus, the choice of the synchronization
method is valid. However, this behavior changed between version 1.8 and 2.0 of
Open MPI. Before the newer version, the pt2pt module was named rdma but used the
deferred message-based method described above.6

GATS Synchronization for Shared Memory Systems

Although the rdma component employs a straight-forward protocol, the sm (shared
memory) component of Open MPI’s OSC framework used an even simpler one up to
version 1.8 (and all sub-versions, starting from version 1.7.5). It is automatically chosen
if the window was created using shared memory as backing store of the windows data
and all processes in the window’s communicator are executed on the same shared
memory system.

The simplified protocol extends the usage of completion counters. These are still
used for signalling the end of an access epoch to the targets. In addition, the concept
of completion counters is also used for the beginning of the access and exposure
epochs. Instead of using control messages and a list of received POST control messages
(see pt2pt component) or a directly modified array that indicates post operations
(see rdma component), the sm component uses a per-origin counter for START/POST
operations.

The counter is initialized to zero at window creation. At the beginning of an exposure
epoch it is increased atomically by every target process when they perform their post
operation. The origin process waits until the counter reaches the number of processes
in the start group. When the origin completes its access epoch, the counter is reset to
zero. This algorithm is illustrated in Figure 3.6.

However, this immediate protocol is actually error-prone. A target process from a
future epoch that does not belong to the start group can modify the counter during
its post operation as if it were a member of the current start group. Different to
the control messages in the former approaches, there can be no check if the process
belongs to the start group or not. This is due to the usage of counter residing in shared
memory. Say, for some reason, process skew occurs and the second target process in
Figure 3.6 (right most time line) can issue its post operation earlier than the expected
first target.

6https://github.com/open-mpi/ompi-release/commit/4fd518e last accessed 2016-06-21

71

https://github.com/open-mpi/ompi-release/commit/4fd518e

3 Synchronization for MPI One-Sided Communication

origin (rank 0) target 1 target 2

MPI_Win_start({1})

MPI_Put(1, ...)

MPI_Win_complete()

MPI_Win_start({2})

MPI_Win_Post({0})
atomic incre

ment

MPI_Win_Post({0})

atomic incre
ment

0

1

0

1

Figure 3.6: Erroneous shared memory synchronization scheme of Open MPI.

The origin process subsequently assumes that a member of the current start group
posted and continues with communication to a non-synchronized process as soon as
the counter reaches zero. This is likely to result in data corruption. Even deadlocks
are possible as the completion counter of the unsynchronized target process will be
incremented in the described situation. However, the result of this operation will
disappear when the target initializes the completion counter in the MPI_WIN_POST op-
eration. In the subsequent MPI_WIN_WAIT, it will wait for an increase of its completion
counter which will never happen.

This bug was present in Open MPI releases since 2014 until September 2015. It was
reported to the maintainers of Open MPI in the progress of this thesis7 and fixed in
version 2.0.8 Following a proposal of this thesis’ author, the new implementation
uses the concept of bit vectors from (see previous section) for the start of the syn-
chronization. However, the implementation lies in the immediate category, not the
trigger-only. Nevertheless, completion counters are still in use to synchronize the
processes at the end of the epochs.

Discussion

The Open MPI implementation of the synchronization methods does not provide
new concepts that are usable. The idea to use counters for beginning of the GATS
epochs was proven to be error-prone. The concepts known from MPICH and MVA-
PICH are employed for the GATS synchronization. Only small differences in the

7https://www.open-mpi.org/community/lists/users/2015/09/27622.php, last accessed 2016-08-03
8https://github.com/open-mpi/ompi/pull/925, last accessed 2016-06-21

72

https://www.open-mpi.org/community/lists/users/2015/09/27622.php
https://github.com/open-mpi/ompi/pull/925

3.3 Survey of Synchronization Implementations

implementation can be observed. One significant exception from MPICH is the usage
of immediate methods for shared memory and RDMA-capable systems.

3.3.4 FoMPI

GERSTENBERGER ET AL. present an implementation for both MPI active and passive
target synchronization for Cray’s massively parallel XC30/XC40 system [120, § 2.3].
The MPI implementation for this machine is called FoMPI.

GATS Synchronization

FoMPI’s implementation of the GATS routines is immediate as well. For the begin-
ning of an epoch a shared list which is called match list is used. The list is of fixed
size and is associated to an MPI window. The capacity of the list is not stated in the
literature. Rather, it is assumed that the number of neighbor processes that will enter
the list “is known to the implementation” [120, § 2.3]. It is likely that the list size is
either equal to the number of processes in the window object or a fixed number that
fits for the employed benchmarks.

Within MPI_WIN_POST a target process puts an entry in the list that identifies itself,
i.e. its rank inside the communicator associated to the window. The origin process
polls the list in MPI_WIN_START until all processes from the start group (the parameter
associated given to the routine) made an entry in the match list. Thus, MPI_WIN_START
is blocking and the whole scheme falls into the immediate class.

According to the publication, a target process uses a ring buffer to obtain an entry in
the match list. The buffer contains indices of free elements in the match list. A head
and a tail pointer are associated to the ring buffer. Upon free space acquisition, a target
process reads and increases the head pointer atomically from remote memory which is
supported by the XC’s hardware. Further, the tail pointer is fetched. If both pointers
differ, the ring buffer is not depleted. In that case, the element the head pointer points
to contains the index of a free item in the match list in which the target process can
make an entry. The free space management protocol is shown in Figure 3.7.

At the end of a GATS epoch, previously occupied items in the match list are freed, i.e.
their occupied indices are stored back into the free space ring buffer. However, the

73

3 Synchronization for MPI One-Sided Communication

origin target

atomic_fetch_and_inc(head)
head = 0

read(tail)
tail = 3

read(ring_buffer[head])
index = 7

7 8 9
head tail

7 8 9
head tail

7 8 9
head tail

ring buffer

Figure 3.7: Free space ring buffer protocol of FoMPI (based on [120, Fig. 2c]).

description in [120]makes no statement about which process removes the items from
the list.

To signal the end of an access epoch, the concept of completion counters is used
again, as it is in MPICH. Although the counter is manipulated via atomic RDMA
operations, the target polls the counter until it reaches zero during MPI_WIN_WAIT (see
Figure 3.8).

Although the description in [120] is quite precise, it leaves the question how large the
match list actually is. The published source code [135] of both the oldest (published
before [120]) and the latest (published half a year after the research paper) version
reveals discrepancies compared to the description given in [120]. In summary, no free
space protocol is present and a differnt match list design is used.

The actual implementation uses a dynamically allocated array of the window commu-
nicator’s size. That is, if the application does not create a special communicator before
window creation the list of 64-bit integer values is as large as the MPI_COMM_WORLD

communicator. Further, the list is created at every process and is remotely accessible
by all other processes. In contrast to the paper’s solution, the implemented approach
contradicts the “highly-scalable” objective of [120] since for PSCW synchronization
only a subset of all processes has to synchronize and not all processes. However, if
memory is not a matter of concern, a match list of 329 KiB per window might be
acceptable.9 In addition, a direct modification of an element in the match vector

9Piz Daint, the XC30 system in question, has 32 GB of RAM per each of its 5272 eight-core CPUs.
http://www.cscs.ch/computers/piz_daint_piz_dora/index.html, lass accessed 2016-06-24

74

http://www.cscs.ch/computers/piz_daint_piz_dora/index.html

3.3 Survey of Synchronization Implementations

origin (rank 0) target (rank 1)
MPI_Win_start({1}) MPI_Win_post({0})

poll match list until all procs posted

1

0
free space pr

otocol

put match lis
t entry

MPI_Win_Wait
poll completion counter until 1

1

MPI_Win_complete incr. completion counter

Figure 3.8: Overview of FoMPI’s general active target synchronization as described in the
literature (based on [120, Fig. 2d])

appears to be faster than involving the free space protocol, which is dsecribed in the
literature.

Contrarily to the differences in the literature and the actual realization of the start
of an PSCW epoch, finishing the epoch by means of a completion counter is in fact
implemented as described: The origin increments the counter while the targets wait
for the counter to reach the number of processes given in MPI_WIN_POST.

Discussion

Concerning the evaluation of FoMPI’s GATS implementation, both approaches (from
the literature and the source code) fall into the immediate method category introduced
in [121]. Partially, new concepts are used by FoMPI, but the key concepts are already
known from previously considered implementations.

The match vector resembles the bit vectors used by MVAPICH’s shared memory
synchronization (see Section 3.3.2). However, due to different architectures they
are accessed differently, i.e. with XC30 RDMA accesses in FoMPI and conventional
load/store operations in MVAPICH, and at a other granularity (bits vs. XC30 machine
words)

In contrast, the free space protocol to obtain a free position in the match list is a new
concept. However, its purpose and benefits remain unclear in the presence of the
differently implemented source code. Furthermore, the protocol appears to be slower
than a direct modification of the match list based on ranks (see above).

75

3 Synchronization for MPI One-Sided Communication

1 /* origin process */

2
3 /* put and notify target */

4 handle = NEON_Put(..., flag = 0);

5
6 /* wait for operation to complete */

7 NEON_Wait(handle);

/* target process */

/* expose memory to set of processes */

handle = NEON_Post(buffer, ranks, ...);

/* wait for all rank notifications */

NEON_Wait(handle);

Listing 3.4: Pseudo code for NEON API usage.

3.3.5 NEON

Although NEON [136] is not an MPI implementation, it aims to provide an enhanced
synchronization scheme for one-sided communication. Consequently, it is discussed
within this thesis as well.

The key idea of NEON with respect to the synchronization of processes is to separate
the notification of targets about an access epoch’s end from waiting for the local
completion of RMA operations. That way, the notification can be send as early as
possible, i.e. when the last RMA access (like PUT) to a certain target is issued, and not
as late as with MPI’s MPI_WIN_COMPLETE call. By doing so, the synchronization, i.e.
notification, can be overlapped with computation. In case of a capable network, the
notification message can be transferred along with the RMA operation which also
saves latency. [136, p. 85 ff.]

Synchronization Scheme

In essence, a NEON application has to follow the code paths sketched in Listing
3.4. Different to the MPI’s GATS routine, there is nothing like an MPI_WIN_START

or MPI_WIN_COMPLETE call in sense of remote process notification in NEON. For the
latter purpose, the notification is done in the communication calls with a flag that
must be provided by the application and indicates the end of an access. To ensure local
completion of communication operations, a NEON_Wait has to be called for all issued
operations using the returned wait objects. A call similar to MPI_WIN_START is omitted
in the NEON API by design as its task is said to be hidden in the middleware [136,
p. 91].

76

3.3 Survey of Synchronization Implementations

The implementation of the API supports two transports: streaming sockets (TCP)
and InfiniBand via queue pairs. The following considerations are based on the study
of NEON’s source code and the presentation from [136].

For InfiniBand, synchronization at the beginning of an epoch (NEON_Post) is based on
messages [136, § 5.4.2] as illustrated in Figure 3.9. A special control message is sent via
InfiniBand’s send queue by the target. Upon reception by the origin’s NEON progress
engine, the sending target process is internally marked as having posted its buffer.
Thus, it is ready for following RDMA operations. The target’s control message also
contains an unique identifier for the post operation. Later, the identifier is used to
signal the end of an access epoch.

During communication routines, the according target process and its remote buffer
is checked for readiness with the help of the internal flag set by the POST operation.
If it was not set, the operation is deferred (by means of a queue) until the control
message (see above) signals the target’s readiness. If that message has already arrived,
the communication is initiated immediately using InfiniBand’s RDMA capabilities.

A classification according to the scheme from Section 3.2 is difficult since NEON
is not an MPI implementation and an equivalent of MPI_WIN_START is intentionally
not present (see above). The deferral of communication complies to the deferred
method. However, as soon as the targets have synchronized, communication is
actually performed. This matches, to some extend, the trigger-only class. In contrast,
the communication calls do not wait for the target to have synchronized as they would
do for trigger-only. Consequently, NEON can not be clearly classified within the
existing MPI scheme.

To notify a target about the end of an origin’s access epoch, the application has to
provide a flag with value 0 to the communication call. This marks the origin’s com-
munication as the final one to the given target within its access epoch. When the
NEON middleware on the origin side encounters the zero flag, it issues an InfiniBand
immediate write along with the actual RDMA write operation (write with immedi-
ate). The immediate value contains the numeric identifier that was transfered during
NEON_Post (see above). When the InfiniBand hardware completes the RMA operation
it notifies the origin via its completion queue. The origin then marks the according
NEON handle of the RMA operation as finished.

On the target side, the handle identifier received from the last communication call is
used to mark the access of the origin process as finished. As soon as all final messages
from the origin processes, to which the buffer was announced during NEON_Post, have

77

3 Synchronization for MPI One-Sided Communication

origin target
handle1 = NEON_Put(...)

handle = NEON_Post(...)

NEON_Wait(handle)
post identifie

r

data transfer

handle2 = NEON_Put(..., final)

wait returns

data transfer + post identifier
NEON_Wait(handle1)

NEON_Wait(handle2)

Figure 3.9: Synchronization scheme of NEON.

arrived, the corresponding post handle is marked as finished. During the NEON_Wait

call, the state of the given handle is polled until it reaches the finished state. If required,
the progress engine is polled until the wait condition is fulfilled.

It has to be noted, that NEON’s InfiniBand implementation is not capable of posting
a buffer to multiple processes, although the API states to do so (see Listing 3.4 and
[136, p. 107]). Similar, the test/wait routines on target side only wait for one remote
process to finish its accesses, not all. Thus, no conclusions for all working GATS
implementation can be drawn from NEON. Further, the NEON API only supports
PUT operations, as GET is considered to be too expensive in terms of communication
and is consequently not implemented. [136, p. 110 ff.] This might be due to the fact
that a read operation with immediate write is not available in InfiniBand.

In case of TCP as implementation target, the message-based approach from the Infini-
Band implementation is used as well. Although, an additional thread is used to enable
communication without involving the application [136, § 5.3.3]. Further, the flag
indicating the final communication is stored inside an internal message header [136,
§ 5.3.2.3] that precedes all internal NEON messages.

Discussion

The NEON design for synchronization provides a concept different than the MPI
API. As a result, the implementation also differs from the previously considered MPI
libraries.

78

3.3 Survey of Synchronization Implementations

The most important difference of NEON is the removal of explicit synchronization
at an access epoch start. Nevertheless, the design decision has drawbacks that affects
an application’s implementation.

Target processes in NEON behave very similar to the ones in MPI. They issue POST

and WAIT operations. The important differences are found in the origins. Here, NEON
requires every origin, that was specified during a target’s post operation, to actually
perform communication with that particular target. It is required as the completion
of the access epoch is only signalled by communication methods (see above). This is
different to MPI where an explicit call to MPI_WIN_COMPLETE on the origin side signals
completion to all processes that posted buffers to the origin.

Considering Listing 3.2 on page 58, a process in MPI can dynamically decide if it
communicates to a target or not. In such a scenario, a NEON version of the program
has to manage the flag parameter that signals the final communication to every in-
dividual target. This can be a hard or tedious task. In addition, it implies sending
(empty) messages from the application if no communication to a certain target was
performed by the application but it is required to notify that target to release it from
a wait state. Given these restrictions, NEON is not suited for applications which
dynamically decide about communication. An example of this application type are
codes that simulate moving particles and perform load balancing when particles cross
the border of a process’ local compute domain. Depending on the actual trajectory
of the particles, communication has to be performed — or not. pCRASH [137] is a
representative of this class.

Furthermore, the API is not designed to perform the synchronization at an epoch
end inside the middleware as there is — by design — no other way of telling the library
the definitive end of an access. NEON therefore requires an application (on the origin
side) to know which processes will issue a POST operation. If the communication
pattern is not static, determining which processes need to be notified becomes difficult
(see above). If a target process is not informed about the completion (because the
origin was not aware of its POST operation), it will wait infinitely.

Ignoring these drawbacks that are experienced by the application, NEON’s latency-
saving idea of piggy-backing the final flag , i.e. the notification for a finished access,
within communication calls is not applicable for RMA operations on shared memory
systems, like the SCC. There is no way of transferring additional information with an
RMA access, i.e. memory transfer. Consequently, an additional transfer (or message)
needs to be started to send the notification. This adds latency.

79

3 Synchronization for MPI One-Sided Communication

Besides these API’s drawbacks, the implementation concept is different to all the
previously considered MPI libraries. Numeric identifiers for post operations are sent
from targets to origins to inform them about the synchronization step. The handles
are sent back and processed by the middleware to indicate the completion of an access
epoch. In that sense this matches the concept of control messages from MPICH
(see Section 3.3.1), but instead of counting the number of arrived post and complete
notifications, the handles are used. Although this appears to be different from the
MPI implementation, it is essentially a control message but with different internal
data. Nevertheless, concepts like completion counters and lists/vectors that record
post operations are not employed by NEON.

Finally, NEON’s essential concept of early notification to the targets, which was one
of the primary motivation for this work, has been discussed in the context of the MPI
API. It is considered to be a useful extension to the existing API [138].

3.3.6 Summary

The preceding discussion of the active target synchronization in different MPI imple-
mentations reveals different but similar approaches in the actual realization of the
MPI process synchronization API.

Table 3.2 summarizes the discussed implementations. A significant result is that all im-
plementations for special hardware systems, i.e. shared memory and RDMA-capable
systems, effectively adopt the recommendation from [121] and use an immediate or
trigger-only method to allow an efficient implementation of one-sided communication
(cf. Section 3.2.2).

For these non-deferred implementations, the beginning of an epoch at a target is
signalled to origins either by explicit messages or by the usage of shared memory
which is modified using atomic operations. Origin processes check for those messages
or a specific state in the shared memory to start their access epoch. When the following
communication actually happens is again specific to the implementation and the
classification of the synchronization as discussed in Section 3.2

The end of a GATS epoch is basically the reverse to the beginning of an epoch: the
origin notifies about the epoch completion using messages or shared media and the
target polls for the according messages or shared media state. A common mean for
this operation are completion counters, with MVAPICH — for unknown reasons —
being an exception as it uses bit vectors.

80

3.4 Synchronization for the SCC

Table 3.2: Overview of the presented MPI general active target synchronization protocols.

Implementation Method Means employed for Synchronization

MPICH deferred counter manipulating control messages for start
(explicit) and completion (piggy-backed)

MVAPICH (sm) trigger-only bit vectors for start and completion, both residing
in shared memory

Open MPI (pt2pt) deferred explicit control messages manipulating counters
for start and completion

Open MPI (rdma) immediate RDMA-based manipulation of post vector and
completion counters

Open MPI (sm) immediate atomic counters in shared memory for start and
completion (erroneous) / bit vectors for start and
completion counters

FoMPI (publ.) immediate targets acquire and set entry in match list during
post; atomic RDMA to completion counters

FoMPI (source) immediate fixed size array of ranks that posted; completion
counters

NEON (deferred) identifier of post operations handed over to ori-
gins and back

An exception in the above discussion is the NEON library which passes handle
identifiers between target and origin processes. Nevertheless, the API as well as its im-
plementation must be considered experimental since the synchronization of multiple
origins is not implemented and therefore not evaluated. Further it implies difficul-
ties for writing applications with dynamic communication patterns, as illustrated in
Section 3.3.5.

3.4 Synchronization for the SCC

Based on the survey and its result from the previous section, an optimized implemen-
tation for MPI process synchronization is developed.

In the outcome of the conducted survey it has been identified that for shared memory
systems, the usage of an immediate synchronization is beneficial and often applied

81

3 Synchronization for MPI One-Sided Communication

in implementations. Since the SCC can be also considered as a system with shared
memory support (cf. Section 2.2.2), the usage of an immediate approach is expected to
be beneficial. Nevertheless, the trigger-only class would be less prone to process skew
as discussed in Section 3.2.3. Consequently, an implementation that uses a trigger-only
method is designed in the following.

3.4.1 Analysis of RCKMPI’s Implementation

In addition to the previously presented implementations, the existing MPI imple-
mentation for the SCC, RCKMPI (see Section 2.3.3), is examined in the following
to identify its workings and possible drawbacks concerning the synchronization for
one-sided communication.

Essentially, RCKMPI uses an deferred approach. This is due to its heritage from
MPICH (see Section 3.3.1). That shortcoming emphasizes the need for a different
implementation for the SCC as the deferred synchronization has been identified for
being suboptimal for shared memory systems.

Ensuring Functionality

Besides the deferred synchronization, a further drawback inherited from MPICH is
the usage of control messages for synchronization. As a result, messages for this task
need to be assembled, copied into the remote Message Passing Buffer, and need to be
received and processed by the according destination process. For this case, several
functional requirements of MPICH’s CH3 device layer (see Section 3.3.1) to an CH3
channel need to be considered. However, the original implementation of RCKMPI
was not programmed to support one-sided communication. Most of the required
handling of the CH3 control messages for OSC was not realized correctly [4].

As a result, programs using the MPI OSC API were hardly working when the re-
quired erroneous implementation was employed. In the progress of this thesis, the
RCKMPI was fixed to provide a working message-based OSC API. In addition, the
SCC-specific CH3 channel implementation was migrated to a more recent version of
MPICH. This was necessary as MPICH2 1.2.1p, on which RCKMPI was originally
implemented, contained bugs in the one-sided API on its own. Consequently, it was
ultimately upgraded to MPICH 3.1.3. The channel device itself was streamlined: The

82

3.4 Synchronization for the SCC

External RAM
Controller A

External RAM
Controller B

Network
Core A Core B

MPB A MPB B

Message Assembly

Message Delivery

Message Reception

Message Processing

Figure 3.10: Memory transfers for RCKMPI’s synchronization messages.

additional CH3 channels that employ high latencies [2] by using uncached memory
were removed.

For the remainder of this thesis, RCKMPI refers to the MPICH 3.1.3 derivate for the
SCC that uses the purely MPB-based CH3 channel and was fixed to get a working
MPI OSC implementation [2]. If the original version which relied on MPICH 1.2.1
is referred to, it is explicitly stated.

Performance Considerations

Although implementation errors have been corrected in RCKMPI, the library still
suffers from the problems inherited from MPICH. A complete GATS cycle between
a single origin and a single target process costs at least two message transfers (one for
POST, one for COMPLETE) with the overhead described above.

While this drawback can be slightly compensated by the piggyback delivery of the
final synchronization message (see Section 3.3.1), the general disadvantage of message-
based synchronization still applies. Figure 3.10 illustrates which memory transfers are
required to assemble and deliver a message on the sender side and receive and process
it on the destination side. Note that the message transfers require data to be sent over
the on-chip network which may have large distances.

In case of RCKMPI it means that a message header for the internal control messages
needs to be constructed, filled with meaningful data, and copied into a remote MPB.

83

3 Synchronization for MPI One-Sided Communication

Then, the content of the receive buffer needs to be copied into the RAM of the
receiving process. Finally, it is processed by the internal MPICH progress engine.

In addition to the copy overhead of this scheme, the amount of data that is transferred
to signal both a POST and a COMPLETE operation (see Section 3.1.3) is large compared to
the transferred information. Even an empty control message of MPICH CH3 device
with a special tag requires 32 Byte of internal header information. Even though this fits
into a single cache line of the SCC’s core, the amount of data to signal the mentioned
operations is higher than required. At minimum it must include an identifier of the
operation (POST or COMPLETE), the window, and the sending process (rank).

3.4.2 Related Work

Other researchers investigated how to optimize synchronization on the SCC and
other nCC system as well. Thus an analysis of according publications is vital for this
thesis.

In [115] and [55], REBLE ET AL. present the design of a hypervisor that provides a
shared memory view onto the SCC hardware. It allows to run a single virtualized
Linux instance like on a conventional cache-coherent multi-core processor. The
hypervisor uses an ownership concept where every page frame of memory is owned
by a single core. The ownership can be transferred to another core if it accesses the
frame. However, the transfer needs to be synchronized between all cores.

The authors describe a hardware-based implementation of a barrier synchronization
which exploits the test-and-set register of the SCC (see Section 2.2.5). It is depicted that
contention on these registers has negative impact on the performance of the barrier
implementation. An exponential back-off method is used to lift the contention [115].
However, for small numbers of cores that participate in the synchronization, the
contention is not visible. Starting from 32 cores, the back-off method pays off. In
addition, this implementation outperforms the RCCE library barrier implementation
that needs 60 µs to synchronize all 48 cores where the TSR-based back-off approach
performs this operation in about 25 µs.

KOHLER AND RADETZKI [116] tune the collective operations of the RCCE library.
Among others, a reduce-scatter operation is improved which is the base for MPICH’s,
MVAPICH’s, and Open MPI fence operation. In general, optimizations like usage of
non-blocking send and receive operations, minimization of list-keeping overhead for

84

3.4 Synchronization for the SCC

managing non-blocking sends, and balancing of the data to be processed are included
in the presented library. In addition, the memory copy overhead that is caused
by message reception and processing (cf. Figure 3.10) is eliminated for data that is
only combined with local information and forwarded afterwards but not used locally
(reduce operations, e.g.). Nevertheless, the approach still relies on message transfers.

The results indicate significant performance benefit compared to both RCKMPI,
RCCE and even iRCCE, a non-blocking extension of RCCE [70]. The optimized
reduce-scatter operation requires about 200 µs for a data size of several 100 elements.
This is one third of the runtime required by the initially published RCKMPI library
for the same task. Additionally, the performance of an Monte Carlo application was
significantly reduced by applying the mentioned techniques. While those address
collective operations only, these can be the base for an implementation of MPI’s
synchronization methods as observed in the survey of Section 3.3.

Different to the previous work, AL-KHALISSI ET AL. [117] focus solely on barrier
synchronization for a possible OpenMP runtime. The authors take the findings from
REBLE ET AL. [115] (see above) into account and avoid contention on the SCC’s
atomic hardware registers and the MPB by using a “master-slave barrier” and omitting
centralized data structures. The authors present barrier algorithms that differ in the
location of the allocated memory and usage of interrupts to release slaves from wait
states.

The results in [117] show that the barrier latency can be slightly reduced by using
flags that are stored in memory nearby the master. Slaves use remote put operations
to indicate their participation in the barrier and the master polls its local memory to
detect the changed flags. In the experiments, the MPB turns out to be the flags location
that provides the lowest latency. The results also show that using interrupts instead
of polling does not yield a better performance for the synchronization. Contention
on the interrupt controller hardware is identified as reason for this.

A further optimization of the identified best barrier implementation is also presented.
The authors omit the usage of the MPBT memory type that requires manual cache
management, i.e. cache invalidation via the CL1INVD instruction and enforcing flushes
of the Write Combine Buffer (cf. Section 2.2.4). Instead, the authors use uncached
memory accesses with the NCM memory type. As a result of this optimization, the
time for a barrier is nearly halved, down to 18 µs for an barrier involving all 48 SCC
cores. This is a lower value than REBLE ET AL. [115] reported. Follow-up work
presented in [139] show additional algorithms that, among others, exploit unused LUT
entries (cf. Section 2.2.6) but do not provide additional performance advantages.

85

3 Synchronization for MPI One-Sided Communication

Besides the SCC-specific optimization of barrier and collective operations, there exist
publications that deal with the implementation and evaluation of these two aspects on
other hardware architectures. However, most of them are not applicable to the SCC
due to their hardware-specifics [111–114]. While TRÄFF ET AL. [113] deal with the
implementation of the one-sided MPI routines on the non-cache coherent NEC SX-5
machine, the synchronization is based on messages (likely due to MPICH heritage) and
therefore provides no new insights. However, the MPI/SX implementation follows a
trigger-only approach since the “communication calls [...] block until the target window
has become exposed” [113].

In conclusion, the literature presents large amount of research on barrier implementa-
tions and collective operations. The discussed research provides a solid base for the
implementation of fence synchronization with the help of the mentioned techniques
and hints to optimize synchronization in general. However, the general active target
synchronization is generally not extensively discussed. Additionally, there are no
attempts found in the literature to optimize this aspect of MPI on an nCC hardware
architecture like the SCC. Therefore, a protocol for general active target synchroniza-
tion is designed in the following section and provides one of the main contributions
of this work.

3.4.3 Design Overview

The classification from Section 3.2 and the results of the conducted survey (see Sec-
tion 3.3.6) revealed that immediate or trigger-only should be used within an imple-
mentation for an architecture that supports shared memory or RDMA transfers
respectively. Since the SCC can be considered as shared memory system, those two
classes are suited for this processor as they allow direct memory transfers.

The trigger-only variant should be favored as it is less prone to process skew (cf. p. 63).
As a result, the synchronization scheme of MVAPICH for shared memory, that is
also employed by FoMPI and MPI/SX (see above) at a conceptional level, is used as
foundation for the design of the synchronization protocol.

The concept of a bit vector is used for synchronization at the beginning of access
and exposure epoch. Different to the MVAPICH solution, the vector for signalling
completion of an access epoch is omitted. Instead, the concept of completion counters
is adapted to the SCC. The counters employ a both space and computational efficient
way to check for the completion of access epochs.

86

3.4 Synchronization for the SCC

Process 0

.

0

. . .

.

0

Process n - 1

.

0

Data for Window A

Match Vector

Completion Counter

Process 0

.

0

. . .

.

0

Process n - 1

.

0

Data for Window B

Match Vector

Completion Counter

Window Database

Figure 3.11: Per-process/window data structures for GATS on the SCC.

The bit vector and the completion counter can be stored inside a shared memory
location of the SCC, although it is an nCC architecture. However, using shared
memory allows direct modification of the synchronization data structures and avoids
the use of messages (see Section 3.4.1). It is shown in the following that implementing
the scheme of LAI ET AL. [129] on the non-cache-coherent SCC is both feasible and
efficient although the architectural properties needs to be considered carefully.

In the following, both the concept and the actual implementation details for the SCC
are discussed. First, the data structures are presented. A detailed discussion on their
physical placement is conducted is directly links to that matter. Subsequently, the
required operations of MPI’s GATS synchronization are discussed in more detail.

3.4.4 Data Structures

As outlined in the previous section, bit vectors and completion counters are the
essential data structures used for the synchronization. The data structures are created
on per-window basis, i.e. they are not shared among multiple windows. This is
because a window is the sole object that is used for synchronization in the MPI
API (see Section 3.1).

A completion counter and bit vector are allocated per window and process as shown in
Figure 3.11. It is required to allocate both data structures per process as it is unknown
if a process becomes origin or target or even both.

87

3 Synchronization for MPI One-Sided Communication

The bit vector that is used at the beginning of the GATS procedure is called match
vector. Similar to the match list introduced by GERSTENBERGER ET AL. [120], it is
used to detect the POST operations that match the START call on the origin. The vector
contains at least as many bits as processes in the window’s communicator. The vector
is logically owned by origin processes, as these are required to know when a target
has synchronized. The bit at position x inside the vector is dedicated to the process
with rank x inside the window communicator. If that bit is set, it indicates that the
process with rank x has entered its exposure epoch.

Opposite to the match vector, the completion counters are logically owned by target
processes since those processes need to know when access epochs are completed. The
counter itself is an unsigned integer variable. If the counter has a value of zero, no
accesses on the local window are performed. A non-zero value means that origin
processes are still accessing the window. In case of the SCC, its size is eight bit.

3.4.5 Window Database

The synchronization concept requires that the aforementioned data structures can be
manipulated directly to avoid message passing and processing. Therefore, they have
to be allocated in shared memory or at least must be created such that all processes
can access the data structures. Concerning the SCC, a process can reconfigure the
LUT of its core to access a remote vector or counter.

One could argue that when using conventional DCM memory (by using malloc/cal-

loc) the system address of the allocated data structures can be determined with the
help of the modified Linux kernel. The determined address could then be exchanged
and used by other cores to manipulate the LUT entries for further access. However,
this approach is not suitable for an efficient implementation as local memory loads
on the synchronization data are cached and there is no low overhead mechanism for
invalidation or flush for DCM to make local changes visible to remote processes.

As a result, the data structures need to be allocated with a different memory type
such as NCM or MPBT variants (see Section 2.2.4) to facilitate management of the
cache coherence. ROTTA [140] has shown that uncached memory access for small
data structures expose lower latencies than cached memory accesses. AL-KHALISSI

ET AL. [117] confirm these results. The usage of those memory types is only possible
with the help of the according device drivers that allow to specify a physical address
that is mapped into the virtual address space (cf. Section 2.2.6).

88

3.4 Synchronization for the SCC

This functionality of the device driver is useful when it is combined with the legacy
shared memory (cf. Section 2.2.6). The LSM has a fixed, thus well-known, address
range and is shared among all cores in the default LUT configuration. Since it is
mostly free (except for the POPSHM database, see page 29) it can be used for placing
the synchronization data structures inside that memory. The region in which this
data is placed is designated as window database.

Centralized Window Database

In a first approach, the 16 MB LSM in one of the four memory controllers (cf. Fig-
ure 2.2) is used to host the window database. The choice of the controller is arbitrary.
By using this approach, a centralized database is created in which all match vectors
and completion counters are placed.

For the allocation of the synchronization data, a simple “allocate and forget” allocator
is used: At the beginning of the window database, an integer is stored that contains
the beginning of the unused memory region in the database. Upon allocation, the
offset is increased by the amount of reserved memory. However, the free operation
does not change the offset and thus leaks memory.

While this approach is simple, other researchers observed that contention can occur on
centralized, i.e. shared, synchronization data structures (see Section 3.4.2). To analyze
the performance impact of the proposed centralized window database, an exemplary
application is studied along with a prototype implementation of the synchronization
that is based on the FoMPI (see Section 3.3.4) scheme from the literature [120].

Different to the literature, the free space protocol was omitted and replaced by linear
scan for finding free entries in the match list. However, with the match list and the
completion counters, similar data structures are used as in the proposed design.

The application that uses the GATS methods is a CA with a nine-point stencil (Moore
neighborhood) that operates on a field of 1600 lines each containing 8192 elements of
8-bit integers. One-dimensional domain decomposition is employed such that every
MPI process calculates equally sized portions of the compute domain. Excess lines
are distributed evenly among processes to avoid load imbalances. The chosen domain
dimensions ensure that the data does not fit into the cache which avoids super-linear
speedup. The update of the whole compute domain is performed 50 times.

89

3 Synchronization for MPI One-Sided Communication

Because of the stencil, the domain update requires halo/ghost zone exchange between
two neighboring processes. One-sided communication is used with GATS to per-
form this exchange. The exchange is performed as early as possible and overlapped
with computation. That is, the boundaries to be exchanged are computed first and
communicated concurrently with the computation of the remaining inner field.

However, to make the impact of synchronization and the centralized window database
visible, the communication operations (i.e. PUTs) were removed for the measurements.
The synchronization operations remained active for the purpose of this analysis.
While the computational results of the application are invalid due to the missing com-
munication, the performance gives insights in the impact of the synchronization.

Figure 3.12 shows strong scaling performance of the application in terms of speedup
relative to the sequential run. The runtime represents the time required to compute
the 50 iterations (see above). Overhead, for example from the initialization phase, is
omitted from timing measurement. Each of the presented runtimes is the median of
three gathered samples which did not vary by more than 5%. In addition, the memory
controller that hosts the window database was varied. Further, an application version
that does not use synchronization (and communication) was measured. It serves as an
embarrassingly parallel baseline for comparing the performance with synchronization
enabled. The mapping of the MPI processes to the cores was chosen such that the
memory controllers domains are filled first (see Figure 2.2 on page 17).

The obtained results are manifold. First, the memory-bound application without
synchronization scales linearly and is close to a parallel efficiency (speedup over
number of parallel processes) of one. This proves, that the SCC’s hardware, especially
the memory subsystem do not present a bottleneck for the application. This confirms
the results from VAN TOL ET AL. [141] which proved that all cores cannot saturate
the system’s memory controllers when a memory bound application is executed.

Second, the application performance is significantly affected when synchronization is
active. Independent of the memory controller that hosts the window database, the
speedup drops, especially for high core counts, down to about eight. This reveals
a contention on the memory subsystem, since the synchronization basically adds
memory accesses to the program.

Finally, the contention seems to appear at the memory controller or the on-chip
network, but not at the cores as the performance drop appears at different core counts
when the controller is changed. A reason for this might be the contention of the
responsible memory controller or its attached router. This is because the controller

90

3.4 Synchronization for the SCC

 0

 8

 16

 24

 32

 40

 48

 0 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

number of MPI processes

controller 3
controller 2
controller 1
controller 0
no sync.

Figure 3.12: Stencil application speedup with centralized window database.

not only has to serve the accesses to the synchronization data structures but also the
accesses from the memory-bound application. In combination, both types of access
saturate the controller.

Also the locks that are used by the implementation to achieve mutual exclusion might
be a reason for this, similar to the observations of [115]. An in-depth analysis of this
behavior is out of the thesis’ scope. However, the outcome of the experiment is clear:
The centralized window database is not an option for the implementation of GATS.

Distributed Window Database

The preliminary results in the previous section indicate that a centralized window
database is not suitable for the SCC or NUMA systems in general. The approach to
put all synchronization data in the same memory location is straight-forward for an
implementation. Nevertheless, it does not match the per-process nature of the data (cf.
Figure 3.11). As a consequence, the centralized approach is dropped and a distributed
window database is created instead.

Different to the centralized version, not a single fixed one but all four memory
controllers serve as a storage for the synchronization data. Only the cores that belong

91

3 Synchronization for MPI One-Sided Communication

to the controller’s domain (cf. Section 2.2.1) allocate storage in its memory. By doing
so, the bit vectors and completion counters get closer to the core that actually owns the
data. This has been found to be a beneficial approach in the literature (cf. Section 3.4.2
and [117]). Since the data is allocated in shared memory, it remains accessible by all
cores.

The results of other research groups also revealed that the MPB [117] or the LUT
entries [139] can serve as a location for the synchronization data and provide lower
access latencies (see Section 3.4.2). Anyhow, these locations are not usable in the
context of an MPI implementation on the SCC.

First, the MPB is a scarce resource on the processor. It is used by RCKMPI as trans-
port medium. Thus, using the MPB for additional purposes requires changes in the
MPI implementation and implies reducing the MPB memory size and therefore the
performance of point-to-point operations.

Second, the LUT entries play a crucial role for defining shared memory. Consequently,
wasting these entries for other purposes is not useful. To use the LUT entries for
multiple purposes (define shared, store synchronization data) a resource management
could be employed, but this is out of scope of this thesis. Thus the data is kept in the
main memory.

To evaluate the performance of the distributed window database, the same methodol-
ogy from the previous section is employed. The prototype implementation of the
synchronization scheme that is based on FoMPI [120] was changed accordingly to
follow the distributed database concept. Thus, the match list and the completion
counter are distributed across the four memory controllers. Again, the performance is
compared with a baseline application version that does not use synchronization. The
speedup relative to the sequential version is presented for the strong scaling scenario
in Figure 3.13.

The numbers confirm that the distributed approach does not lead to a performance
drop, i.e. reduced speedup with low efficiency, for high core counts. The application
now scales linearly for all numbers of started MPI processes. However, a slightly
reduced performance compared to the version without synchronization can be ob-
served. The reason is that synchronization adds serial overhead to the runtime which
in turn reduces the efficiency. Nevertheless, the results motivate to follow the concept
of a distributed database. It is therefore employed as synchronization data storage in
the following.

92

3.4 Synchronization for the SCC

 0

 8

 16

 24

 32

 40

 48

 0 4 8 12 16 20 24 28 32 36 40 44 48

sp
ee

du
p

number of MPI processes

with synchronization
no synchronization

Figure 3.13: Stencil application performance with distributed window database.

3.4.6 Window Creation

The previous analysis revealed that the location for the synchronization data should be
distributed. The per-process allocation of the match vector and completion counter in
the distributed window database is performed during the collective window creation
that precedes any OSC operation.

Independent of the actual creation call (such as MPI_WIN_CREATE or MPI_WIN_ALLOCATE),
the implementation of this operation is comprised of two steps: allocation and address
exchange of the allocated data. During allocation, memory for the match vector and
the completion counter is reserved in the distributed window database. The obtained
offsets in the database memory are made available in the exchange phase. The address
exchange is required to enable all processes to access the created data.

Since window creation is a collection operation, so is the allocation of the synchro-
nization data inside the shared window database. Therefore, the allocation itself must
be synchronized among the participating processes that access the same portion of
the distributed window database.

For the prototype implementation on the SCC, this implies that the allocation offset
in the window database must be protected against concurrent accesses. This is achieved

93

3 Synchronization for MPI One-Sided Communication

by using the mutex-like test-and-set registers (see Section 2.2.5). The TSR of the core
with an even ID that is next to the memory controller of the distributed database is
acquired upon allocation and released afterwards. In the outcome of the allocation
process, every process has allocated a chunk of memory and an offset in the window
database’s memory that addresses this chunk.

In the exchange phase, the obtained offsets are exchanged by a collective all-to-all oper-
ation. Thereby all processes know the offsets of the synchronization data structures
of all window processes. Since the data resides in the LSM, which is shared by default,
access to the synchronization objects is enabled. The conversion from the allocation
offset that was exchanged during window creation to the system memory address is
straight-forward. By adding the allocation offset to the start of a core’s nearest LSM,
the pointer to the data is obtained. As a result, every window process is able to address
the match vector and completion counter after window creation.

A drawback of this approach is that the offsets/pointers of the allocated synchroniza-
tion data is duplicated at every of the n processes of the window. Thus, the totally
required memory scales with n2. With a large many-core CPU in mind, i.e. the
number of cores reaches the order of hundreds or thousands, this leads to significant
memory overhead when a lot of processes participate in window creation. Ultimately,
this hinders scalability in terms of the MPI implementation memory usage [142]. A
solution for this issue would be to place the obtained offsets in the database as well.
However, this aspect and further analysis of contention or scalability is not part of
the discussion within this thesis.

3.4.7 Start and Post Operations

After discussing the storage prerequisites and the construction of the synchronization
data, the next two sections describe the actual implementation of the shared-memory-
based synchronization on the SCC. The discussion is separated into the operations at
the beginning and the end of the epochs. Figure 3.14 illustrates the coarse steps of the
implementation when two target processes synchronize with one origin. Details of
the sketched steps are provided in the following.

The MPI_WIN_START and MPI_WIN_POST function operate primarily on the match vector
that was allocated during window creation (see above). The pseudo-code for the two
operations is shown in Algorithm 1.

94

3.4 Synchronization for the SCC

target (rank 1) origin (rank 0) target (rank 2)

POST(Gp={0})
1CC

WAIT

0
WAIT returns

0 0 0 match vector

0 1 0

set match vector entry

START(Gs={1,2})
PUT(1, ...)

0 1 1
PUT(2, ...)

PUT returns
COMPLETE

decrement CC
0 0 0

set match vec
tor entry POST(Gp={0})

1
WAIT

0
WAIT returns

decrement CC

Figure 3.14: Sequence diagram for the SCC implementation of GATS.

When an MPI_WIN_POST operation is issued by a target process, it first initializes its
completion counter (abbreviated as CC in the figure) to the number of processes in the
post group Gp which contains all origin processes. Subsequently, the target iterates
through the group and notifies the origins about its readiness for communication.

In the implementation, the group member ranks are translated into the IDs of the
corresponding cores. To notify the origins, the TSR of the origin’s core is locked
to prevent concurrent modifications of the match vector. Subsequently, the byte
containing the bit of the (target) process is read, updated, and written back using
uncached memory.

Cached memory is unsuitable for this use-case since it would require an explicit write-
back of the cache line that contains the loaded byte. Such an operation is not supported
by the SCC’s cores. Only a write-back including an invalidation of the whole cache is
available in the instruction set. However, it is far slower than using uncached memory.
In addition, the match vector is not accessed by the targets for any other purpose
which makes caching unnecessary anyway.

On the origin side, the MPI_WIN_START function performs only bookkeeping operations
for the implementation. In particular, the currently used synchronization type is
stored in the window data structure since this is required by the upper layers of
MPICH. Additionally, the ranks from the start group are translated to core IDs
and stored in an array. Those IDs are used later on to notify the targets about the

95

3 Synchronization for MPI One-Sided Communication

Algorithm 1 Pseudocode for MPI_WIN_START and MPI_WIN_POST

function MPI_WIN_START(Gs : Group)
start_ranks← core ID’s of procs ∈Gs

end function

function MPI_WIN_POST(Gp : Group)
completion_counter← |Gp |
for all origins ∈Gp do

core← CORE_OF_PROC(origin)
LOCK_TSR(core)
match_vector[core][local_rank]← 1
UNLOCK_TSR(core)

end for
end function

completion. They have to be saved in MPI_WIN_START as this is the only function in
MPI that accepts the start group as parameter.

3.4.8 Polling the Match Vector

Since the synchronization ought to follow the trigger-only synchronization (see Sec-
tion 3.4.3), the match vector is not polled in the MPI_WIN_START. Instead, it is checked
in the communication calls. Hence, the target’s bit is polled until it has been set.

Polling is performed with uncached memory since cached reads would prevent the ori-
gin to observe a post operation. In addition, caching of the match vector is dangerous
in any case.

Suppose a match vector has been loaded into the origin’s cache and that the origin
can communicate with all targets of the current access epoch, i.e. all targets of the
current access epoch have synchronized. Independent from this, another target of
a subsequent access epoch (but of the same window) performs its MPI_WIN_POST call
and modifies the match vector in main memory. Due to the missing coherence, the
origin’s cached copy remains unchanged, and becomes stale. In case the origin’s cache
evicts the line (due memory accesses by computation or due to a context switch and
operations of another process) which contains the outdated match vector, it overrides
the manipulated match vector in the main memory.

96

3.4 Synchronization for the SCC

This would cause a deadlock. The origin would check for a POST operation that
actually took place but its effect was destroyed by the origin itself. Consequently, this
leads to an infinite loop at the origin. Therefore, uncached read accesses are the most
useful variant in this case since they ensure the observation and correct manipulation
of the bit vector.

However, to speed up polls of already synchronized targets, a local and cacheable copy
of the match vector is used. Inside a communication call the cached vector copy is
checked first. If there was no POST operation, the uncached match vector is polled
and upon detection of the target’s post operation, the cached copy is updated.

3.4.9 Complete and Wait Operations

At the end of an access epoch, i.e. in MPI_WIN_COMPLETE, each origin resets the match
vector entries corresponding to the targets in start group Gs . This applies both
to the uncached vector in main memory and the locally cached copy (see previous
subsection).

Subsequently, it decrements the targets’ completion counters. However, this noti-
fication at the end of the access epoch can only be performed after an origin has
successfully started its matching exposure epoch. Only then, the target’s completion
counter is in a valid state and can be modified when the origin completes. Thus, an
origin first ensures that every targets in Gs has synchronized (see Algorithm 2).

The origin then iterates over all targets and decrements their completion counter.
Similar to the targets’ accesses on the match vector, the completion counter is accessed
with uncached memory (Algorithm 2). To make the decrement atomic, the TSR of
the target’s core are used again.

On the target’s side, the WAIT call polls the completion counter with uncached memory
as well to observe the decrements made by the origins. Polling is performed until the
counter reaches zero (see Algorithm 2).

97

3 Synchronization for MPI One-Sided Communication

Algorithm 2 Pseudocode for MPI_WIN_COMPLETE and MPI_WIN_WAIT

function MPI_WIN_COMPLETE

for all targets ∈ start_ranks do . see MPI_WIN_START
repeat . busy wait for all targets
until match_vector[local_core][target]== 1
match_vector[local_core][target]← 0

end for

for all targets ∈ start_ranks do . notify all targets
core← CORE_OF_PROC(target)
LOCK_TSR(core)
CC[core]←CC[core]− 1 . decrement remote CC
UNLOCK_TSR(core)

end for
end function

function MPI_WIN_WAIT

repeat
until CC== 0 . poll local CC with uncached reads

end function

3.4.10 Summary

Putting the SCC-specific details aside, the previous subsections presented a shared-
memory-based synchronization scheme for an non-cache-coherent many-core chip.
It employs bit vectors and completion counters which are concurrently allocated
during window creation. To load balance memory accesses, the data is distributed
among the memory subsystem to keep the data structures close to their respective
owner. For remote manipulation of the data, uncached accesses are employed to avoid
more expensive cache flushes of data that is accesses once per synchronization cycle
only. However, concurrent accesses to the data structures needs to be synchronized
by other means (like locks or atomic modifications). Uncached accesses are employed
for local polling of the synchronization data to observe modifications by remote
sites. Thus, the approach avoids unnecessary caching for the synchronization data for
non-cache-coherent systems.

98

3.5 Experimental Evaluation

3.5 Experimental Evaluation

In the following, the implementation of concept from the previous section is evaluated.
This includes both tests on the functionality as well as an experimental investigation
on the implementation’s performance.

For the implementation of the synchronization approach, RCKMPI based on MPICH
3.1.3 was used (see Section 3.4.1). To override the message-based CH3 synchronization
functions, according function pointers in the internal MPICH window object were
modified during window creation. The default window creation functions were
overridden by setting function pointers in the MPIDI_CH3_Win_fns_init function that
is supplied by MPICH’s CH3 layer (cf. Figure 3.3 on page 65) especially for that
purpose.

It has to be noticed that the changes in the synchronization were implemented along-
side with the communication from the next chapter. This is due to the tight binding
between synchronization and communication in MPICH’s message-based CH3 imple-
mentation. As a result, solely switching away from a message-based synchronization
would also require changes to the communication part of the CH3 layer. For efficiency
reasons, this was not performed but the communication was reimplemented without
the CH3 legacy. However, for the sake of the presentation, the following discussion
deals only with the synchronization aspect of the implementation. Care is taken to
not include actual one-sided communication in the evaluation.

3.5.1 Environment

All the experiments were conducted on the SCC system that is lent by Intel to the
Operating Systems and Distributed Systems research group at the University of
Potsdam. It is equipped with 32 GB of RAM. The default frequency settings for the
system are used. That is, cores operate at 533 MHz whereas the on-chip network
routers and memory controllers run at 800 MHz. While higher frequency settings are
configurable, instabilities ranging from spontaneous OS crashes to non-booting cores
were observed with these higher frequencies. Therefore, these were not considered.

The employed software packages are listed in Table 3.3. The MPI library was compiled
with optimization enabled (Level 2), strict compilation mode, and without C++ and
Fortran support as there was no need for these language bindings. For MPI_Wtime,

99

3 Synchronization for MPI One-Sided Communication

Table 3.3: Employed software components for the experimental evaluation.

Component Software Package Version

SIF FPGA bitstream Intel sccKit 1.4.2.2
operating system Linux with sccLinux patches 3.1.4
user land BuildRoot-based with glibc and BusyBox 2011.11
cross compiler GNU Compiler Collection (C Compiler) 4.4.6
MPI library MPICH with RCKMPI CH3 channel device 3.1.3

the library was configured to use the RDTSC machine instruction. Thus, it provides
accurate timings on the SCC. On all experiments, care was taken to provide a low-
noise environment. Hence, all unnecessary processes on the SCC were terminated.
Those include the syslog processes, mouse emulation, and SCC-specific CPU usage
reporting tool. Especially the last one is critical as is periodically performs file system
operations as well as memory accesses inside the LSM.

3.5.2 Functional Tests

To verify the functionality of the new implementation for GATS, the MPICH test
suite was used. It contains twelve test cases that include the implemented MPI syn-
chronization scheme. Except for nullpscw, all of them also use communication. In
case the employed communication is supported by the implementation (see next chap-
ter), the tests were included into the test set. Finally, these are (with number of used
processes according to the MPICH test suite): manyrma2 (2, with -put and -pscw ar-
guments), nullpscw (7), pscw_ordering (4), test2_am (2), test3_am (2), transpose3 (2),
and wintest (2). Thus, seven out of twelve tests are used for testing.

The tests were executed with the runtests Perl script from the MPICH test suite. In
the outcome, all of the named test cases completed successfully. This indicates that
the implementation and the underlying algorithm of the synchronization fulfill the
requirements of MPICH and thus those of MPI, although the number of number of
tests is comparable small.

100

3.5 Experimental Evaluation

3.5.3 Benchmark Methodology

Besides their functionality, the performance of synchronization in general and GATS
in particular is critical for MPI OSC applications. Therefore, both the performance
and scalability of the according MPI synchronization routines MPI_Post, MPI_Start,
MPI_Complete, MPI_Wait is evaluated. In addition, a comparison with RCKMPI’s
message-based implementation of GATS is performed to assess the performance. The
latency of each of the operations is chosen as the performance metric. The number of
processes that synchronize with a target is selected as the main factor in the following
experiments.

Using a benchmark that uses both communication and synchronization of the MPI
OSC API will generate meaningless results if two different implementations are com-
pared. For example, with MPICH’s/RCKMPI’s original deferred synchronization,
the final synchronization call actually performs the queued communication opera-
tions. In such a case, the true costs, i.e. the required time, of process synchronization
are hidden. Therefore, no communication should be performed by the benchmark.

Considering existing benchmarks, the OSU Micro-benchmarks [131] basically focus
on the performance of communication operations, like PUT and GET, in terms of
latency and bandwidth. The benchmarks generally measure the time required to
perform the communication including the synchronization. The suite does not
include benchmarks that solely analyze the performance of any MPI synchronization
scheme. The same applies to the Intel MPI Benchmarks.10 As a result, both are
unsuited for the experiments.

Different to the pre-defined micro-benchmarks of the OSU suite, SKaMPI [143]
allows to create MPI benchmark scripts that are interpreted upon execution. Those
can include calls to predefined measurement routines that benchmark some of MPI’s
functions. Concerning the API’s OSC fraction, all synchronization routines can be
measured. However, the environment in which the routine is measured is defined
in the according built-in function of the benchmark. For MPI_WIN_POST this means
that the post group parameter, the behavior of the origins, and a barrier used for
synchronization are predefined inside the SKaMPI source code. In addition, each time
when a synchronization method like MPI_WIN_POST is measured, a window is created
and destroyed which does not match an application’s behavior.

As a consequence from the above, a simple benchmark that involves only synchroniza-

10https://software.intel.com/en-us/articles/intel-mpi-benchmarks/, last accessed 2016-07-25

101

https://software.intel.com/en-us/articles/intel-mpi-benchmarks/

3 Synchronization for MPI One-Sided Communication

1 for (i = 0; i < NUM_ITERATIONS; i++) {

2 if (comm_rank == 0) {

3 ts[i] = time_of(MPI_Win_start(start_group /* = rank 1...n-2 */, 0, win));

4 /* access epoch (nop) */

5 tc[i] = time_of(MPI_Win_complete(win));

6 } else {

7 tp[i] = time_of(MPI_Win_post(post_group /* = rank 0 */, 0, win));

8 /* exposure epoch (nop) */

9 tw[i] = time_of(MPI_Win_wait(win));

10 }

11 }

Listing 3.5: Pseudocode of the GATS microbenchmark.

tion and no communication (unlike OSU or IMB) is created. Different to SKaMPI,
a single window is created once at the beginning of the benchmark. The started
processes synchronize on that single window repeatedly in a tight loop. By doing so,
the existence of contention effects like those observed by REBLE ET AL. [115] can be
examined.

The benchmark records the time each of the four GATS API calls requires to complete
its operation. For timekeeping, MPI_Wtime is employed. The gathered timings are
recorded for 1001 iterations (arbitrary choice) to get statistical valuable data. Pseudo-C
code of the benchmark is shown in Listing 3.5. The real code was compiled with
optimization enabled (-O2).

During one iteration, a single origin process, which is always the process with MPI
world rank 0, starts its access epoch using MPI_WIN_START to k = n−1 target processes,
where n denotes the number of started MPI processes. On the other hand, the target
processes start their exposure epoch with MPI_WIN_POST. They expose the window
only to the single origin process. Immediately after starting their epochs, the processes
close them by calling MPI_WIN_COMPLETE and MPI_WIN_WAIT respectively.

A barrier at the beginning of the loop’s body (as it would be used by SKaMPI) is
intentionally omitted for two reasons. First, all processes are synchronized after one
iteration of the loop. Thus, invoking the barrier is redundant. Second, using a barrier
affects the measurement results as it is unclear (without further knowledge of the
implementation) which process leaves the barrier at which point in time. For example,
targets may leave the barrier earlier than the single origin process, which causes process

102

3.5 Experimental Evaluation

skew and thereby a delay of MPI_WIN_START. As a result, the timings for MPI_WIN_WAIT
(MPI_WIN_POST does not wait for START) are affected. Without a barrier this negative
effect is avoided.

3.5.4 Scaling

With the described benchmark, a strong scaling analysis of the GATS calls latency
is performed first. Starting from two processes, the number of MPI processes was
increased up to a number of 32. The processes were mapped to the core with the
corresponding MPI world rank Figure 2.2). Consequently, the number of targets k
was varied between one and 31 while keeping the number of origins at one for all
experiments. More targets were not started, because using nearly all of the 48 possible
processes on the SCC questions the usage of GATS, which is more fine-grained than
fence synchronization (see Section 3.1).

In the following, the presented numbers are the medians of the recorded timings. In
case of the targets, all 1001 samples tp,i and tw,i from all k target processes are collected
and the medians tp and tw are obtained from the k × 1001 samples. Besides outliers
caused from process scheduling of the OS, only little deviation from the reported
values was observed: For all measurements, the first and third quartile of the four
measured timings never deviated by more than 5% for origin and 10% for targets from
the reported median. Figure 3.15 shows the obtained latencies of the GATS calls split
between the targets (a) and the single origin (b).

The presented results show a nearly constant-looking runtime for the MPI_WIN_START

and MPI_WIN_POST operations. However, for an increasing number of targets, the
latency of MPI_WIN_POST increases as well, starting from 3 µs for a single target to 8 µs
for all 31 targets. The reason for this increase can be attributed to the increasing
distance of the targets to the origin core and therefore its test-and-set register which
must be acquired in order to modify the match vector. Thus, it requires more hops
on the on-chip network to read (and modify) the TSR resulting in higher access times
that has been observed by REBLE ET AL. [115].

Moreover, the more processes participate in the synchronization, the more they
compete for acquiring the TSR of the origin’s core. REBLE ET AL. [55] observed
contention on the TSR that caused exponential increasing latency when more than 24
cores compete for a spin-lock. TSRs are used for the GATS implementation as well.
Thus, the impact of TSR acquisition is analyzed more deeply.

103

3 Synchronization for MPI One-Sided Communication

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 8 16 24 32

lat
en

cy
 /

us

number of targets

 POST (tp)
 WAIT (tw)

(a) target processes

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 8 16 24 32

lat
en

cy
 /

us

number of targets

 START (ts)
 COMPLETE (tc)

(b) origin process

Figure 3.15: Scaling of GATS functions on the SCC.

To analyze the TSR acquisition impact, a new metric is introduced. The metric
counts the number of tight loops required to successfully acquire the TSR during
MPI_WIN_POST (see Algorithm 1 on page 96). Using the same setup for gathering the
timing data, the average number of loops to acquire the lock is measured per target
process. The first row in Table 3.4 shows the median number of the per-process
average loop count among the given number of target processes. The second row lists
the total time required to acquire the TSR, modify the match vector, and release the
TSR. Those steps constitute the essential steps for synchronization. The total time to
modify the match vector is obtained in the same way as the number of acquisition
loops, i.e. the median of the average per-process timings is gathered. To allow a better
comparison with the literature, the number of targets of is increased to 47, meaning
that all cores (including the single origin process) were in use.

The data reveals, that both the number of acquisition loops and the time required to
modify the bit vector, i.e. to notify the origin, expose no scalability issues. Opposite to
the observations in REBLE ET AL. [115], both measures do not increase exponentially
but roughly linearly. In addition, the observed overall latency of the POST operation is
still far below the latency of the simple and contention-prone spin-lock implementa-
tion shown in the publication of REBLE ET AL. Furthermore, MPI_WIN_POST is faster
than the optimized tournament spin-lock implementation from [115] that avoids

104

3.5 Experimental Evaluation

Table 3.4: Selected metrics of the POST and START operations.

Number of Targets

Metric 1 2 4 8 16 24 31 47

POST: number of acquisition loops 0 1 1 7 26 27 33 69
POST: vector modification time/µs 0.8 1.1 1.1 2.1 4.9 5.7 6.7 12.5

rank conversion time/µs 1.3 1.3 1.4 1.6 2.5 3.6 4.1 5.1
time for MPI_WIN_START ts/µs 1.7 2.0 2.3 2.1 2.8 4.3 5.3 5.8

contention and takes around 20 µs for 24 and 48 cores respectively. SCOSCo’s POST
operation requires only 5.7 µs and 12.5 µs (see Table 3.4) to modify the match vector
which includes lock acquisition and release.

These results lead to the conclusion that the implementation of the POST operation
does not suffer from contention on the TSRs. This can be explained by the synchro-
nization that follows in the COMPLETE/WAIT function call pair as this step prevents the
measurement loop of the micro-benchmark from being a tight one. Each MPI process
is delayed by that synchronization and thus breaks the tight loop. Consequently, in
real applications, where access and exposure epochs are unlikely to be empty (as in
the benchmark), there will be no tight loop as well and thus no contention on the
TSR that is caused by the MPI implementation.

In case of MPI_WIN_START, there is again a very slight increase in latency from 1.7 µs
to 5.8 µs (see Table 3.4). Nevertheless, there is no operation concerning the actual
synchronization as the implementation follows the trigger-only concept (see Algo-
rithm 1). The increase in latency is due to the conversion from ranks in the start group
to ranks of MPI’s world communicator which is required to derive the core number
in later RMA accesses and in the MPI_WIN_COMPLETE call. Since the number of targets
increases, the conversion needs more time as shown in the last row of Table 3.4. The
data also reveals that the time for the rank conversion contributes about 80% to the
time required for the MPI_WIN_START call.

Comparing the latency of the POST operation with the one of the rank conversion
shows that both are in the same order of magnitude. Further, the time for the match
vector modification is even smaller for target counts up to four. This emphasizes
the lightweight implementation of the POST operation as it is comparable fast as a
conversion of numeric identifiers.

105

3 Synchronization for MPI One-Sided Communication

Different to the two epoch starting routines, MPI_WIN_COMPLETE’s and MPI_WIN_WAIT’s
runtime clearly exhibit linear scaling (see Figure 3.15). Concerning the MPI_WIN_-

COMPLETE call, this has two reasons. First, the origin needs to notify all targets which
is done in a loop and thus causes linear scaling behavior. To do so, it has to wait for
all targets to be synchronized (cf. Algorithm 2 on page 98) which also scales linearly.
As a result, the behavior of origin affects the MPI_WIN_WAIT on the target side which
shows linear scaling as well.

3.5.5 Comparison with MPICH/RCKMPI

Next, the performance of the presented approach is compared against MPICH’s
message-based synchronization. RCKMPI is chosen as reference implementation, i.e.
as performance baseline, since it is already tuned to the SCC and uses the fast on-chip
MPBs to transfer messages including those for GATS (cf. Section 3.4.1).

The micro-benchmark and the methodology from the previous sections were reused.
However, the recorded median times of the origin, i.e. ts and tc , were summed, giving
the total time to required to perform the GATS synchronization on the origin side.
The same was done for the recorded median of the target times (tp and tw) leading to tt .
Figure 3.16 shows the obtained times to and tt for both RCKMPI and the optimized
shared-memory synchronization protocol for different number of targets.

The results reveal that despite RCKMPI’s usage of the fast on-chip MPB, the perfor-
mance of the message-based synchronization from MPICH delivers latencies more
nearly five times higher (e.g., 11 targets: 17.9 µs vs. 89.2 µs) than the presented optimiza-
tions. Since both implementations share the same library infrastructure of MPICH,
they also experience the same software layer overheads. Hence, the difference in the
aggregated latency are caused by the implementation of the synchronization itself. As
a result, the higher latency of RCKMPI can be attributed to the messaging overhead
illustrated in Section 3.4.1.

The significant differences between RCKMPI and the developed synchronization
scheme underline that even in presence of a tuned implementation for message transfer,
a shared memory approach is more appropriate on the SCC. Bearing in mind, this is
possible without hardware support for cache coherence which is in fact not needed in
the presented approach as it uses uncached memory accesses.

106

3.6 Summary

 0

 50

 100

 150

 200

 250

 300

 0 4 8 12 16 20 24 28 32

ag
gr

eg
at

ed
 la

te
nc

y /
 u

s

number of targets

to origin (shared memory)
tt target (shared memory)

to origin (RCKMPI/message based)
tt target (RCKMPI/message based)

Figure 3.16: Performance comparison for general active target synchronization

3.6 Summary

This chapter presented the synchronization aspect of MPI’s one-sided communication
API, especially its implementation on the non-cache-coherent Single-Chip Cloud
Computer. Based on the literature, an existing classification scheme for implemen-
tations has been extended. The newly defined trigger-only class has been identified
as most beneficial one for the shared-memory system, even in the absence of cache
coherence. It enables data transfers as early as possible and thereby overlap of commu-
nication and computation. Additionally, it is more tolerant of process skew than a
immediate synchronization style.

Existing MPI libraries and their implementation of OSC synchronization were studied
and classified according to the scheme. As a result of the survey, a severe implementa-
tion error has been identified in Open MPI, one of the best known MPI implemen-
tations. Common concepts for implementing general active target synchronization
have been identified. Among them are completion counters which are used to detect
the and access epochs and vectors/lists that are used to detect active exposure epochs
of remote processes. Those concepts are shared by well-established MPI implementa-
tions. However, none of them provides an implementation for a non-cache-coherent
shared memory system. This gap is closed by the presented synchronization scheme.

107

3 Synchronization for MPI One-Sided Communication

Although originated from a cache-coherent architecture, it was shown that it can be
adopted to a non-coherent architecture.

Uncached memory accesses are used to poll and modify the synchronization data
structures. Caching has been identified as unnecessary mean for the task of synchro-
nization in case for nCC systems. Despite the uncached memory accesses, the shared
memory approach clearly outperforms the message-based implementation on the
SCC which was designed with support for message passing. That way, the feasibility
and efficiency of a synchronization scheme for non-cache-coherent shared memory
system has been demonstrated.

With this, one of the two building blocks of MPI one-sided communication has been
investigated. Within the next chapter, the communication itself is discussed.

108

4 Software-Managed Cache Coherence for MPI
One-Sided Communication

In the previous chapter the first of the two aspects of MPI one-sided communication,
namely the synchronization, was discussed. An efficient scheme that does not rely
on cache coherence was designed and implemented for the Intel Single-Chip Cloud
Computer. Now, this chapter deals with the second aspect, the communication.

The focus of the discussion is on the design of an efficient communication scheme
for the SCC. Although the SCC has been designed with message passing in mind, a
closer look at both the MPI OSC programming model and the SCC hardware reveals
that an implementation based on shared memory is more suitable for the architecture
than a message-based. However, the SCC does not support cache coherence from
the hardware side. Hence, the primary challenge is to manage this aspect within the
context of one-sided communication in software. The development of a solution to
this problem is the second major contribution of this thesis.

In the following section, a brief introduction into the communication part of the
MPI OSC API is given along with an analysis of the existing implementation of one-
sided communication on the SCC. From these findings, the Software-managed Cache
Coherence for One-Sided Communication (SCOSCo) is developed in Section 4.2. In
Section 4.3 the implementation of the developed SCOSCo approach is presented.
Further, its performance is evaluated using micro-benchmarks and applications in
Section 4.4 which also reveals a hardware malfunction of the SCC. Conclusions
for the design of future hardware systems and possible optimization are drawn in
Section 4.5 and 4.6 which are followed by the conclusion.

The contributions presented in this chapter have been published in the Proceedings
of the 7th International Workshop on Programming Models and Applications for
Multicores and Manycores of the PPoPP conference [5] and of the 6th Many-Core
Research Community Symposium [4]. They have been presented in a talk during at
the workshop and the symposium, respectively.

109

4 Software-Managed Cache Coherence for MPI One-Sided Communication

4.1 Background

The next sections provide an overview of one-sided communication from the per-
spective of both the MPI standard and its implementation for the SCC, in particular
RCKMPI.

4.1.1 MPI One-Sided Communication

As pointed out in Section 2.3.5, MPI defines one-sided communication as an alterna-
tive scheme to the point-to-point communication. Essentially, communication and
synchronization are split from each other. While the synchronization was widely
discussed in the previous chapter, the communication is in the focus of the following
discussion. Here, the term communication refers to the operations that are listed in
Section 11.3 of the MPI 3.1 standard [65], e.g. MPI_PUT, MPI_GET, and MPI_ACCUMULATE.
Different to this, one-sided communication names the overall concept including the
synchronization.

Communication Operations

Operations defined by the MPI standard can be divided into two classes. Within the
first class, methods that move data between a target and origin process are defined. The
second class provides operations to combine data at the target side with data from the
origin. Some of those operations also return the targets data before the combination
was performed. All of the operations have in common that they have to be non-
blocking. There is no guarantee that the operation is finished after the function
has returned [65, §11.3]. Consequently, the application-provided buffers are not
available until the operation has been completed, i.e. synchronization was performed.
A summary of the communication operations is illustrated in Figure 4.1.

The data movement operations include PUT and GET. The two methods simply move
data of given size and MPI data type between the origin and the target. PUT replaces
data in the targets window with the data provided by the origin. Vice versa, GET fetches
the addressed data from the target’s window into the origin’s private memory. Note
that for any communication operation, the data on the origin side do not have to
reside in a window.

110

4.1 Background

communication operations

data movement

PUT GET

accumulation

ACCUMULATE GET_ACCUMULATE FETCH_AND_OP COMPARE_AND_SWAP

Figure 4.1: Communication operations for MPI one-sided communication.

To facilitate modifications, ACCUMULATE is provided by the standard and is a presentative
of the second class of communication operations which is denoted as accumulate
function [65, §11.3.4]. Instead of replacing the data in a target’s window via PUT

it combines the remote and locally provided data with predefined operations, like
addition, multiplication etc. As a further extension GET_ACCUMULATE retrieves the data
from the target’s window before the subsequent modification.

FETCH_AND_OP is similar to GET_ACCUMULATE but restricts the usage to one element of
data of a single data type. Due to these restrictions, the implementations can benefit
from better support of the underlying hardware if it provides according routines to
fetch and manipulate machine words.

Finally, COMPARE_AND_SWAP can be used to atomically set a value in the targets window
if it matches a compare value provided by the origin. If both compare value and the
addressed remote value are equal, the target data is atomically replaced by a third value.
In any case, the original value in the targets window is returned to the origin. The
semantics of COMPARE_AND_SWAP is similar to, e.g., the CMPXCHG machine instruction
of the IA-32 architecture that can be used as foundation for synchronization data
structures, such as mutexes or semaphores. However, the MPI call restricts the usage
of datatypes to integers.

Except for the FETCH_AND_OP method, all of the above calls have a request-based coun-
terpart. That is, the operation can be issued and returns immediately, like MPI_ISEND

does. Similar to this non-blocking communication call, the request-based counter
parts return a handle that can be used in combination with the MPI_WAIT or MPI_TEST
function to check for their completion. That way, the completion of a certain OSC
operation can be ensured. However, the usage of those request based operations is
restricted to passive target communication (see Section 3.1) which are not discussed in
this thesis.

111

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Memory Models

The aforementioned communication operations manipulate data of a target process’s
memory that is exposed by the means of a window. However, when the hardware is
considered, the question arises which part of the memory subsystem is affected by these
operations and when operations become visible at either side of the communication.
To abstract from hardware, the MPI standard assumes that data of a window can exist
in private and public memory at the same time. The data that resides there is called
private copy and public copy accordingly. [65, §11.4]

The public memory is globally accessible memory. Shared memory or memory
regions registered to InfiniBand can be considered as an example of this class. Every
process that has the required information, i.e. the address of the shared memory or
the InfiniBand remote key respectively, can access those regions.

Moreover, systems mostly have faster but local memory that is not accessible globally
but can be part of the memory hierarchy. Especially, caches inside the memory
hierarchy can be considered as an example of such private memories where a private
copy of a window data can be stored.

In addition to these types of memory, the standard further defines two models which
describe if the two copies are affected by communication operations. By definition,
the operations manipulate on the public copy since this is accessible for the other
processes. Thus, the remaining question is how changes to the public copy propagate
to the private copy.

Until version 3.0 of the standard, the Message Passing Interface defined only a single
model, namely the separate memory model. Within this model, the two copies are
considered to be logically separate. That is, the private copy is not automatically
updated when the public copy gets modified. Vice versa, when the private copy is
accessed, the changes it will not become visible until according action is taken.

Starting with version 3.0, the standard added a unified memory model. This one is
the opposite of the separate model. When either the private or the public copy gets
modified, the other is updated automatically. To provide an example, if a PUT operation
modifies the public copy of a window, the private copy will be updated as well. A
subsequent load operation will — opposite to the separate window model — retrieve
the recently modified data. Figure 4.2 illustrates the differences. The motivation for
the unified memory model in MPI was to support shared memory systems which

112

4.1 Background

public/private copy

process

store load

PUT GET

(a) Unified memory model.

private copy

process

store load

synchronization

public copy
PUT GET

(b) Separate memory model.

Figure 4.2: MPI’s separate and unified memory model (based on [73])

provide transparent, i.e. hardware-based, cache coherence and can be considered as
the most prominent building block in contemporary HPC environments.

Concerning the SCC, only the separate memory model can be applied. Due to the
missing cache coherence, the caches of the SCC’s cores are not synchronized with
any other memory component of the system. If a modification occurs in either of
the components it will not become visible in the other one. Consequently, only the
separate window model is considered for the SCC in the remainder of this thesis.

Semantics

The communication operations of the MPI one-sided communication API are re-
quired to be non-blocking. This also applies to the calls that do not return a request
handle. Due to their non-blocking nature, the completion of the issued communica-
tion operations must be ensured differently. In addition, the MPI standard defines
restrictions for performing communication operations in order to be correct. [65,
§ 11.7]

For those calls (see above) that do not return a handle, their completion cannot be
ensured until the access epoch ends. That is, a final synchronization method needs
to be issued which closes the access epoch (e.g. MPI_WIN_COMPLETE). After that, only
the local completion at the origin is ensured, so local buffers can be re-used. For the
target, a method which closes the exposure epoch (e.g. MPI_WIN_WAIT) must be called
to complete the operation and thus make changes visible.

Concerning the update of the private and public copy when one of them was modified,
the standard defines the following semantics for the separate window model that

113

4 Software-Managed Cache Coherence for MPI One-Sided Communication

applies to the SCC: Local store operations that modify the private copy become
visible in the public copy only when the exposure epoch starts, e.g. MPI_WIN_POST
is called. Similar, changes by MPI_PUTs or accumulate calls apply to the public copy.
They become visible in private copies only after the exposure epoch has been ended,
e.g. by calling MPI_WIN_WAIT. To summarize, the synchronization operations not only
synchronize processes but also update the private and public window copy in the
separate window model.

In addition to the semantic concerning the completion of the communication opera-
tions, the MPI standard defines further restrictions for those operations. For example,
multiple modifications of the same window location result in undefined behavior.
While it was forbidden to perform such accesses in MPI-2, it has been changed to
be undefined since MPI-3. This can be considered as result of criticism on the previ-
ous API version which prevented the implementation of PGAS languages on top of
MPI [65, p. 454][84, 144]

Opposed to the undefined behavior of concurrent PUT operations, the outcome of
multiple accumulate operations is defined. That is, if multiple of these operations (like
FETCH_AND_OP or COMPARE_AND_SWAP) are concurrently issued on the same destination
with the same data type, the result is as if the operations were issued “in some serial
order” [65, p. 461]. The atomic modifications are defined element-wise not for the
complete portion of the window specified by the function arguments [65, §11.7.2].

However, the most important restrictions are provided by the rules S1–S3 and U1–U5
which a program must follow to use MPI correctly. Essentially, those rules forbid
local operations on an exposed window that might interfere with RMA operations.
That is, while an exposure epoch is active, neither local load nor store operations
should be performed. This is not restricted to the portions of the window that will
actually be modified but applies to the complete window. [65, p. 454 ff.]

4.1.2 One-Sided Communication in RCKMPI

As pointed out in Section 2.3.3, RCKMPI, the SCC-specific MPI implementation,
uses the Message Passing Buffers to transfer data. Because it is derived from MPICH
the transfer is based on messages This applies not only to the point-to-point communi-
cation scheme or the synchronization for one-sided communication (see Section 3.3.1)
but also the communication operations of the OSC API.

114

4.1 Background

Application
MPICH

MPI_WIN_WAITMPI_SEND MPI_RECV

CH3 Device

progress engine

hardware (MPB)

send request recv request

request queue request queue

message handling

send & poll

Figure 4.3: Message reception and delivery inside MPICH.

Implementation of One-Sided Communication

As a consequence of the message-based implementation, the realization of one-sided
communication requires active participation on the target side. This contradicts
the goal of the scheme to not involve the target in the communication operations.
However, achieving the goal of portability justifies this design decision of MPICH,
since truly one-sided communication is not possible on every platform, e.g. in cluster
computers connected via standard Ethernet. Thus messages are used for the imple-
mentation.

Since MPICH also employs the deferred synchronization scheme (cf. Section 3.2.1),
the arguments of a function call are stored inside a queue rather than being executed
right away. The deferred synchronization assists this approach, since it is not possi-
ble to execute operations within that scheme when the synchronization is not yet
performed.

Figure 4.3 shows the basic principles of the message reception and delivery by the
progress engine of MPICH’s CH3 device. Point-to-Point send operations as well as
one-sided operations, due to their message-oriented implementation, create so-called
request objects. These are generic containers for outstanding operations such as sends
and receives. When a send operation is issued, a send request is created and stored in a
queue from where it is picked up by the progress engine. The progress engine needs
to be actively triggered. Most communication operations do so to ensure progress or

115

4 Software-Managed Cache Coherence for MPI One-Sided Communication

even completion of the issued operation.

When the progress engine is invoked, it processes outstanding send requests from the
queue by transmitting them over the underlying hardware. In addition, the hardware
is also checked for incoming data. When an MPICH message is completely received, it
is handed over to the CH3 device layer for further processing. The responsible routine
is determined by a type field of the message’s header which makes this approach
similar to active messages. During processing, the message handler decides whether
the request is completed, is stored in a queue for pickup by receive functions (like
MPI_RECV) or needs more data from the channel. The device layer can also create new
(send) requests during message handling.

The implementation of OSC operations inside the CH3 device relies on specific
message handlers. For PUT messages the, target side handler copies the data from the
received message into the local window memory. The message handlers for GET and
the accumulate functions at the target side generate new send requests that return the
requested data to the origin. There, another message handler copies the received data
to the buffer in the application memory.

Implementation issues

The description given above applies to MPICH and thus to RCKMPI as well since it is
an MPICH derivate. However, the implementation of the MPB-based CH3 channel
device in the original RCKMPI version contained flaws that prevented one-sided
communication to work correctly on the SCC.

First, the message handlers were not correctly invoked. Instead, every received package
was stored in the receive request queue. This prevented both the synchronization
and the communication operations to work correctly (see Section 3.4.1). Second,
the progress engine of the CH3 channel did not account changes in the generated
requests by the CH3 device. That is, after reception of a full message, every request
was considered to be completed. However, some RMA operations, such as GET,
require multiple messages rather than a single one. As a result, the library got stuck
when a subsequent message is not processed as expected and the according request
was considered to be completed. Third and finally, data that has been received was
not copied into a provided buffer when required by the library. Thus, even when
the message handler was invoked a PUT operation did not replace data at the target
side. [4]

116

4.1 Background

sender receiver

SEND

RECV

SEND

RECV

data message

data
mess

age
2∆t

(a) two-sided version

sender receiver

START

PUT

POST

COMPLETE

WAIT

contr
ol me

ssage

put message

∆t

(b) one-sided version

Figure 4.4: Message flow of RCKMPI for the OSU latency benchmark.

As sketched in Section 3.4.1, these issues have been resolved as part of the research
for this thesis [4]. Required but missing code paths were added to comply with the
CH3 device requirements. These fixes in the implementation were carried out after
extensive debugging and source code study of the library. After the errors have been
fixed, the MPICH test suite (cf. Appendix A) succeeded in mostly all test cases with
regard to one-sided communication. Exceptions are those cases which test MPI-3
functions that address the unified memory model and therefore rely on cache-coherent
shared memory systems. Those fail for obvious reasons on the SCC.

Performance

Besides the (resolved) implementation issues, MPICH’s approach itself constitutes an-
other issue for efficient OSC in the SCC. Since messages are used, the immanent copy
overheads (see page 83 and Figure 3.10) make the communication inefficient. Com-
pared to two-sided communication (with MPI_SEND or MPI_RECV) where the progress
engine only creates receive requests for later pickup by the receive calls, additional
message handling is required at the CH3 layer.

To assess the performance degradation by the message handling, the raw commu-
nication performance is analyzed in the following. The OSU micro-benchmarks
version 5.0 [131] are employed for the experiments. Both latency and bandwidth are
examined for two-sided and one-sided communication. For the two-sided version,
the osu_latency and the osu_bw are used. The latency benchmark is a ping-pong
benchmark (see Figure 4.4a) where the derived latency (∆t) is half the round-trip
time of the message sent using blocking calls (MPI_SEND and MPI_RECV). Differently,

117

4 Software-Managed Cache Coherence for MPI One-Sided Communication

the bandwidth benchmark sends multiple messages in a non-blocking fashion and
waits for a single (empty) reply from the partner. The time to complete to all transfers
is used to derive the bandwidth.

The one-sided benchmarks are osu_put_latency and osu_put_bw. Both behave similar
to the two-sided counter parts. To determine the latency, the total time for an access
epoch containing a single put operation and including the synchronization (see Fig-
ure 4.4b) is recorded. For the bandwidth, multiple puts are issued within the access
epoch and the total time for the epoch is recorded. Thus, all benchmarks include the
cost for both implicit (two-sided) and explicit (one-sided) synchronization.

Moreover, the internal behavior of MPICH/RCKMPI concerning the message flow
at CH3 level is nearly identical for the two communication schemes (see Figure 4.4).
However, the one-sided version appears to be more lightweight as the control message
does not contain data as it is the case for the “pong” message in the two-sided version.

In the experiments, no more than two processes are started. The processes run
on core 0 and 1, respectively. For the one-sided benchmarks, general active target
synchronization is employed. The remaining settings of the OSU benchmark were
kept at the defaults. All other system settings are identical to those described in
Section 3.5.1 on page 99. The tests were conducted until a message size of 1 MB was
reached which is already far above the size of the MPB (8 KB) that serves as message
transport medium.

Figure 4.5 presents the result of the latency and bandwidth benchmarks. It is evident
that the performance of the one-sided communication is significantly slower in terms
of bandwidth and latency than for the two-sided version. Nevertheless, the number
of messages is equal between those versions. In case of the one-sided benchmark fewer
data is transferred, as the initial control message does not contain data since it is the
case for the acknowledge message in the two-sided benchmark (see Figure 4.4).

The reason for the latency differences can be attributed to the message processing on
the receiver (target) side. This step causes a delay of the next control message (issued
during POST) which in turn prolongs the access epoch since COMPLETE waits for the
arrival of that control message. As a result, the latency is increased. In contrast, the
actual transfer time of the PUT’s data is very likely to be equal to the two-sided one
since the same amount of data is transferred.

The lower performance of RCKMPI’s implementation of OSC also affects application
performance. Figure 4.6 shows the strong scaling of the cellular automaton application

118

4.1 Background

 1

 10

 100

 1000

 10000

 1 16 256 4096 65536

lat
en

cy
 /

us

message size / Byte

two-sided
one-sided

(a) latency benchmark

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 1 16 256 4096 65536
ba

nd
wi

dt
h

/ M
B/

s

message size / Byte

two-sided
one-sided

(b) bandwidth benchmark

Figure 4.5: Performance comparison of RCKMPI’s two and one-sided communication.

that was used for preliminary investigations in Section 3.4.5. In the application, two
neighboring processes of a one-dimensional torus-shaped process topology have to
exchange ghost zones for the employed stencil computation. The application uses
2400 lines, each having a size of 8 kB. The resulting problem size exceeds the capacity
of the caches even when 48 processes are used. Two lines are exchanged per iteration
and process. In total, 50 iterations are performed during the runtime of the application.
The application was executed nine times per given number of MPI processes. The
median of these nine runs is displayed in Figure 4.6. As apparent from the results, the
one-sided version scales significantly worse than the two-sided version on the SCC.

For comparison, the one-sided version was also executed on an InfiniBand-based
cluster with 28 nodes and using one process per node. The cluster’s parameters are
listed in Appendix C. The runs on the cluster, 24000 lines were used to account the
larger caches of the installed Nehalem Xeon processors and avoid super-linear speedup
caused by problems fitting into the cache. The source was compiled using GCC
C-Compiler version 4.9.1, and Open MPI 1.8.2 was employed as InfiniBand-aware
MPI implementation. The results from that platform confirm that one-sided commu-
nication can deliver close-to-linear scaling. However, it also emphasizes the drawback
of the message-based implementation that RCKMPI inherits from MPICH.

119

4 Software-Managed Cache Coherence for MPI One-Sided Communication

 0

 4

 8

 12

 16

 20

 24

 0 4 8 12 16 20 24

sp
ee

du
p

number of MPI processes

two-sided (SCC)
one-sided (SCC)

one-sided (cluster)
ideal speedup

Figure 4.6: Cellular automaton scaling using one and two-sided communication.

4.1.3 Other MPI Implementations

In addition the original RCKMPI, library extensions to the library exists as well as
other MPI implementations that address nCC systems, inluding the SCC.

RCKMPI Extensions

To improve RCKMPI’s partitioning scheme (see Section 2.3.3) that distributes memory
equally to all processes, providing topology information using the MPI API have been
identified as a beneficial measure by CHRISTGAU ET AL. [2] and in the author’s
master thesis [6]. By passing the topology information, the more space inside the
buffer is attributed to the communication partners thus increasing the bandwidth
between them. Experimental results show a four to five times higher bandwidth
between communication partners compared to the original implementation when a
one-dimensional ring topology is applied.

Opposite to the explicit approach presented in [2], UREÑA AND GERNDT [145]
discuss an implicit solution named RCKMPI2. The static partitioning is kept but does
not depend on process count anymore. Instead, a fixed number of 48 write sections is

120

4.1 Background

allocated in the MPB. However, their size is reduced 64 bytes, leaving 5 KB free for
other packages. Of this free space, 4 KB are used to store larger message fragments
at the sender side for pickup by remote processes. Protocol meta data is used to
signal presence and position of data in the 4 KB region. Experiments with SKaMPI
(see Section 3.5.3) show latency improvements by a factor of 3 to 6 for multiple MPI
collective operations, especially for high core counts and message sizes. Also, a slightly
improved performance of the NAS parallel benchmarks kernels can be observed.

Although these two extensions address the channel implementation and improve the
message performance, which theoretically would improve the one-sided performance
as well, they are still affected from the problems depicted in Section 3.4.1 and 4.1.2.
That is, they do not provide a working implementation for one-sided communication.
Even in that case, their message-based heritage would cause performance similar to
the one observed in the previous section.

SCC-MPICH

CLAUSS ET AL. [146] developed another MPICH-derivate for the SCC, called SCC-
MPICH. It introduces additional transfer protocols that avoid copies into buffers by
the MPI library. Nevertheless, it is still a message-based implementation.

An approach to support MPI OSC by means of shared memory is described in [53].
But, REBLE ET AL. disable the caches for memory regions that belong to windows
created and allocated by MPI_WIN_ALLOCATE, e.g. Despite the disabled caches, the
authors apply the unified memory model of MPI to the SCC (cf. Section 4.1.1). This
is at least questionable as the concept of private (located in the cache) and public
window (located in memory) copies is merely applicable for disabled, i.e. practically
non-existing, caches. As a consequence, the challenge of managing the cache coherence
and synchronization between the two types of copies is not faced.

Concerning performance, the message-based approach still outperforms the shared
memory approach by a factor of up to 2 for message sizes between 1 and 256 KB when
using UniDir-Put of the Intel MPI Benchmarks. For all other sizes, messaging is sig-
nificantly slower. For small message sizes, the authors attribute the slow performance
to the signaling and list-keeping overhead required inside the MPI library. However,
the maximum bandwidth is 40 MB/s which is below the performance of RCKMPI’s
one and two-sided communication (cf. Figure 4.5).

121

4 Software-Managed Cache Coherence for MPI One-Sided Communication

MPI/SX

TRÄFF ET AL. [113] describe the implementation of MPI’s one-sided communication
for NEC SX-5 vector supercomputer. Those machines are made out of shared-memory
nodes which are connected via a crossbar switch. Each of these nodes contains up to
16 vector processors. Data transfers between the nodes can be offloaded from the CPU
to the switch hardware. In addition, the hardware allows to use global shared memory
that is accessible across the nodes via dedicated copy functions of the switch hardware.
However, cache coherence is not maintained “for performance reasons” [113].

The MPI implementation for the SX-5 is called MPI/SX. It makes use of the global
shared memory and the switch hardware capabilities. Thanks to both features, data
transfers can be issued solely by the origin and do not need interaction with the target
(besides the synchronization). To maintain the coherence of the caches, a “cache clear
operation” is issued in the ending FENCE or WAIT calls of an exposure epoch. A write-
through cache policy is used to enforce the visibility of updates in main memory [144].
However, the direct data transfers are only possible if the window memory was
allocated inside the global shared memory using MPI’s MPI_ALLOC_MEM. If the window
memory resides in the private process memory, the implementation falls back to a
message-based data transfer. The underlying data transfers then still relies on the same
switch hardware capabilities as for the truly one-sided implementation.

Concerning the performance, the authors observe a significant advantage for windows
in global shared memory. It outperforms the message-based OSC implementation by
a factor of up to 2.9 when exchanging a contiguous data block between eight processes.
This is notable as the message-based implementation uses the same hardware features
for the data transfers.

Nevertheless, even the fastest implementation of the OSC exchange benchmark is
drastically slower than a two-sided exchange using MPI_SENDRECV. Only for very large
data exchange sizes the one-sided benchmark outperforms the two-sided. The effect is
attributed to the additional effort of explicit synchronization for the one-sided version.
However, the work shows that a truly one-sided implementation of the MPI API can
clearly outperform a solution that requires participation of the target side.

In summary, the available MPI libraries for the SCC implement one-sided commu-
nication over messages. In presence of shared memory, this is inefficient as depicted
in Section 4.1.2. As a result, an improved scheme for one-sided communication that
addresses nCC systems is developed in the remainder of this chapter.

122

4.2 SCOSCo: An Approach for the Intel SCC

core A

core B

virtual address space
lookup table main memory

MPI_PUT

mapped remote
window memory

mapped local
window memory

window
memory
of core B
(shared)

private memory

Figure 4.7: Using LUTs to define shared memory for windows.

4.2 SCOSCo: An Approach for the Intel SCC

From the analysis of RCKMPI’s implementation and the conducted experiments, it is
clear that a message-based implementation of one-sided communication is not optimal
for the SCC. This is also supported by observations in other research, such as the
work on MetalSVM, where it was found that message passing introduces significant
overhead compared to direct memory accesses (see Section 2.4.3).

While RCKMPI supports the principle of one-sided communication, i.e. providing
the communication parameters only at the origins, at an API level, the actual im-
plementation still requires close interaction between origins and target. Within the
following sections, it is shown that this concept is sub-optimal and shared memory
can be used to achieve true one-sided communication even on an non-cache-coherent
architecture.

To address the mentioned conceptual and performance issues, the hardware features
of the SCC are exploited. Given a window is created in the main memory, its system
address is known or at least can be derived by assistance of the underlying operating
system. The system address of the window can be exchanged with all origin processes.
As shown in Figure 4.7, free entries of the core LUTs (cf. Section 2.2.6) can be
reconfigured to create shared memory between origin target processes.

123

4 Software-Managed Cache Coherence for MPI One-Sided Communication

main memory / public copy

cache / private copy stale copy

stale copy

remote update

local load (stale data)

remote fetch (stale data)

local store/update

Figure 4.8: Cacheing issues for shared-memory-based one-sided communication

Subsequently, the established shared memory can be used to access the window mem-
ory directly, i.e. without message creation and processing overheads. As in other
MPI implementations for shared memory system, the PUT and GET operations become
memcpy operations, while the accumulate can be implemented by accessing the remote
memory directly.

4.2.1 Cache Coherence Management

As discussed in Section 4.1.1, the separate memory model of MPI applies to the SCC.
This is because changes that have been applied to the public window copy (residing
in the main memory) are not automatically propagated to the private copy which
might be stored in a core’s cache. The same applies to the other direction: local
modifications are not automatically committed into RAM but only affect the local
cache if the modification is applied on cached data. These situations are illustrated in
Figure 4.8.

In summary, caches can hold copies of window data. If multiple accesses to the same
window (memory) location are performed and at least one of them is a write (i.e. local
store or PUT operations) the changes should be observed by the other (subsequent)
read operations. This is known as cache coherence problem. [27, p. 10]

The obvious reason for this issue on the SCC is the lack of hardware-based cache co-
herence. As a result, the cache coherence needs to be managed in software. SCOSCois
the name under which this concept and its implementation with a focus on one-sided
communication is designed in the remainder of this thesis.

124

4.2 SCOSCo: An Approach for the Intel SCC

(remote) window
access allowed

(local) window
access allowed

(local) window
access allowed

origin target

MPI_Win_start() = ACQUIRE

MPI_Win_complete() = RELEASE

MPI_Win_post() = RELEASE

MPI_Win_wait() = ACQUIRE

Figure 4.9: Matching of release consistency operations to MPI’s GATS calls

4.2.2 Memory Model

The management of cache coherence is essential to get a working shared-memory based
implementation of MPI’s one-sided communication. However, a memory model is
required which describes when changes have to be observed by processes. As pointed
out in Section 4.1.1, the MPI standard defines the according semantics for different
hardware architectures. The separate model has been identified as the appropriate one
that matches to the SCC.

Nevertheless, as outline in Section 2.1.2 the literature defines different memory models,
i.e. consistency models which “define the allowed behavior of [. . .] programs executing
with shared memory” [27, p. 21].

Of the memory consistency models, the RC model is a good match to MPI’s separate
memory model for one-sided communication. This model requires an acquire opera-
tion to precede memory accesses to a shared location. On the other hand, a release
operation ensures that all previously issued operations have been performed, i.e. their
effect became visible to other processes. [30]

The release and acquire operation resemble the methods of general active target syn-
chronization from MPI (cf. Section 3.1.3) to some extent when the whole window
is considered as a single shared memory location. Figure 4.9 illustrates the matches
between the release consistency model and MPI RMA model.

With MPI_WIN_POST, an origin process ensures the private and the public copy a window
are synchronized. That is, any change by a store operation is made visible [65, p. 453,

125

4 Software-Managed Cache Coherence for MPI One-Sided Communication

rule 5]. In addition, it serves as kind of a local memory barrier that ensures comple-
tion of all previously issued memory reads from the window. Thus, a MPI_WIN_POST

matches a release. Vice versa, a call to MPI_WIN_START has to precede all operations
on a remote window (shared memory in sense of RC) which makes it an acquire
operation.

Similar, MPI_WIN_COMPLETE ensures completion of all window accesses, such as PUTs
[65, p. 453, rule 3]. Thus, it is a release operation. Because a MPI_WIN_WAIT call has to
be performed before any subsequent local access in order to make the effects of RMA
accesses visible [65, p. 453, rule 6], it has to be considered as an acquire operation.
The MPI separate model supports this argumentation as it forbids local accesses to
memory while an exposure epoch is active [65, p. 455].

Different to the RC semantics, the acquire and release operations in context of MPI’s
one-sided communication have to be distinguished depending on which process they
are executed. The release (MPI_WIN_POST) and acquire (MPI_WIN_WAIT) methods on the
target side must be considered as exclusive. That is, only the calling process (the target)
can access the memory after completion of the acquire method. This matches the RC
model.

However, for the targets, an acquire does not imply exclusive access. Because access to
the window is possible for all origins that issues an acquire operation (MPI_WIN_START),
it has to be considered as an shared access.

4.2.3 Requirements for MPI One-Sided Communication

To realize the RC-like separate memory model, the coherence of the private and
public window copy has to be managed by the SCOSCo approach. This involves the
following tasks of both the origin and the target side.

1. Target processes have to ensure the following:

a) Potentially cached data of a local window is written back to main memory
when an exposure epoch starts. Consequently, remote operations like GET

retrieve the most current data from the public copy (i.e. memory).
b) Contrary, potentially cached but stale data of a local window needs to

be invalidated when an exposure epoch is closed. This enables the target
process to load current data from the local window that was potentially
modified by remote PUT operations.

126

4.2 SCOSCo: An Approach for the Intel SCC

2. Origin processes have to perform the following steps:

a) At the beginning of an access epoch, an origin process needs to invalidate
all cache lines originated from remote windows that have been accessed
in previous access epochs. This is required as such data might be mod-
ified meanwhile by other origins or the target itself. In this case, GET
operations would return stale cache lines.

b) In addition, all outstanding (cached or buffered) modifications of remote
memory have to be flushed to become visible in the public window copy
when the origin closes its access epoch.

In essence, these tasks require to invalidate cache portions and to flush cached data
with the restriction to a specific window. This approach prevents invalid cache states
based on software actions. Thus SCOSCo is a software-based self-invalidate method
which does not rely on invalidation actions by a hardware cache coherence protocol.

4.2.4 Memory Type Considerations

When a window is stored in shared memory, the different memory types of the SCC
(cf. Section 2.2.4) can be used to map it into the address space of an MPI process. De-
pending on the memory type, the costs in terms of runtime overhead for the required
invalidation and flush operations (see above) have to be considered. In the optimal
case, they should not impose additional costs that outweigh the advantage of the
proposed memcpy-based communication operation over the message-based approach.
Thus, the four available types and their implications on the coherence management
and performance are discussed in detail.

DCM (definitely cacheable memory) The privileged x86 instruction WBINVD can be used to
flush and invalidate the cache. While the Pentium’s instruction set specifies that
this opcode flushes and invalidates both internal and external caches, the actual
implementation on SCC only affects the L1 cache content. The same applies to
INVD which only invalidates the L1 cache but does not affect the L2.

To invalidate and flush the L1 content with WBINVD, the instruction requires
more than 10,000 clock cycles (equaling about 18 µs at a clock rate of 533 MHz)
in addition to the transition into kernel space which takes around another
2,000 clock cycles [141]. Since the complete L1 cache and not only the win-
dow’s data is invalid afterwards, the instruction leaves the application with a
completely cold L1 cache. The same drawback applies to INVD.

127

4 Software-Managed Cache Coherence for MPI One-Sided Communication

To work around the issue of a missing hardware-based L2 flush, the modified
kernel offers an address range-based method. It reads garbage data to enforce
write-backs. This will take even more cycles than the L1 flush. Even worse, the
offered method invalidates the cache without respect to its content. Given a
window that is larger than the L2 cache, all data will be flushed and invalidated,
not just the window data which might constitute only a small fraction of the
cache. Also, no pure per-line invalidation is available, only a write-back.

Due to the large overhead of cache invalidation and flushes as well as the lack of
pure invalidation that drops data from the cache without writing it back, this
memory type is not considered to be managed by software cache coherence.

NCM (non-cacheable memory type) Obviously, the use of non-cacheable memory relieves
an implementation of the task of maintaining the cache coherence, since no
caches will be involved when all window memory is mapped with this type.
Due to its poor performance [53], it is not considered as a solution here.

MPBT-WB (message passing buffer type – write-back) When memory is mapped with the
MPBT memory type (independent of the cache write policy) the cached lines
are marked with a bit indicating the memory type (Section 2.2.4). The CL1INVMB
instruction can be used to invalidate only those tagged lines. This partially
solves the problem of DCM’s complete cache invalidation although it does not
provide an address based operation. Thus, using the CL1INVMB instruction, the
required cache invalidation can be achieved.

To propagate write operations to memory, the WCB that comes with MPBT
can be flushed explicitly (cf. Section 2.2.4). Together with the CL1INVMB instruc-
tion, the WCB flush fulfills the requirements for origins (flush of outstanding
writes and invalidation of window memory) and partially for target processes
(invalidation).

However, a cache flush dedicated only to MPBT lines is not available. This is
the missing requirement for targets in order to ensure that stores are pushed
into memory. Alternatives, like WBINVD or a manual flush, which also imply
invalidation, are costly anyway (see DCM above) even if the MPBT is only L1-
cacheable. Despite the fast invalidation, the missing fast cache flush for targets
makes the MPBT-WB a less favorable choice for a window’s memory type.

MPBT-WT (message passing buffer type – write-through) This type would circumvent the
need for cache flushes as the write-through semantic ensures updates of the

128

4.2 SCOSCo: An Approach for the Intel SCC

public copy and thus solves the missing issue of MPBT-WB. The other beneficial
features of MPBT memory (explicit and fast invalidation, flush of WCB) still
apply.

The additional latency penalties that come with write-through semantics might
be hidden by the WCB. Anyhow, as with MPBT-WB, the drawback of MPBT-
WT is the restriction to the L1 cache.

From the discussion, MPBT-WT appears to a valid choice for a memory type for the
memory that is exposed through a MPI window. This is supported by observations
of other researchers.

ROTTA ET AL. [100] (see Section 2.4.4) report the costs for L2 cache write-back,
which implies usage of DCM memory, to be 7500 clock cycles per cache line (while
running the cores at 800 MHz). The cost for flushing the whole L2 cache takes
about 600,000 cycles which equals around 700 µs. If a completly modified L2 cache
is written back the time doubles according to the data provided in the publication,
which underlines the high performance penalty for L2 cache line flushes.

In their analysis, the authors also observe congestion on the memory controllers
when more than three processes perform concurrent read accesses. This questions
the usage of write-through memory, but it clearly contradicts the results from VAN

TOL ET AL. [141] where using more than 12 cores, i.e. more than the cores assigned
to a memory controller, exhibit congestion. However, the measurement setups were
different, as VAN TOL ET AL. use copy operations and ROTTA ET AL. discuss read
operation latency.

For their examined graph applications with software-based coherence, ROTTA ET

AL. [100] observe highest runtimes and therefore a bad scaling behavior for the when
DCM is used for memory. Even using the NCM provides better performance. Further
improvements are achieved by using the MPBT-WT variant. This is attributed to the
L1 cache which is activated by that memory type. The effect of the WCB on memory
accesses is not mentioned in the publication. Nevertheless, the authors present another
application where the cache flushing overhead of DCM is compensated by more
computational demanding tasks than in the first application. Overall, the difference
to the MPBT-WT version is small and their investigation of different memory types
confirms that MPBT-WT memory can facilitate software-managed cache coherence
as it is flushable and modifications become visible in main memory after an explicit
flush.

129

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Another notable argumentation for using the write-through memory according to
CHEONG AND VEIDENBAUM [107] type is to avoid bursts on the interconnect when
a cache flush is issued. Since this operation occurs at synchronization points (e.g.
after a access epoch and before and exposure epoch), multiple processors would send
large amounts over the network, which is time-intensive (see discussion for DCM in
Section 4.2.4) and might cause network congestion. The MPBT-WT in combination
with the Write Combine Buffer, as they are used by SCOSCo, avoids these issues as
well. Note that write-through configurations were used in other systems as well, such
as the NEC SX [144] and the IBM RP3 [147] where the programmer is responsible
for managing the coherence [148].

In consequence of the above analysis, MPBT-WT is most appropriate for SCOSCo.
It enables to manage the cache coherence with only little software overhead for the
coherence management, i.e. careful invalidation of cached data and flush of the WCB.
This is supported as only MPBT cache lines are affected by an invalidation performed
with CL1INVMB and does not cause the whole cache to be wiped.

4.2.5 Implementation Sketch

When the chosen memory MPBT-WT type is used for MPI windows, the cache coher-
ence management can be implemented within the MPI synchronization calls. Thereby,
MPI’s separate window model is realized. The following discussion concentrates on
the GATS scheme and describes the additional steps that need to be performed to
fulfill the requirements from Section 4.2.3.

MPI_WIN_POST For targets, the WCB is flushed before the synchronization with origins
starts to update the public window copy as it could buffer writes to the window
memory that is accessed within the following access epoch (requirement 1a).

MPI_WIN_START The origin invalidates potentially cached window memory with the
CL1INVMB instruction which fulfills requirement 2a. To ensure that no mod-
ifications to local memory are lost due to invalidation, the WCB is flushed
beforehand.

MPI_WIN_COMPLETE As for the targets’ POST operation, the WCB is flushed when an
access epoch ends to ensure completion of outstanding write operations to
remote windows caused by PUTs (requirement 2b).

130

4.3 Implementation

MPI_WIN_WAIT The target invalidates the cache with CL1INVMB to read the most current
data from the (potentially modified) public window copy (requirement 1b).

As illustrated, the MPBT-WT memory type allows to fulfill the requirements for
cache coherence and thus the RC-like separate memory model of MPI with little
overhead in terms of an implementation of SCOSCo.

4.3 Implementation

Based on the presented sketch, the implementation of the SCOSCo is discussed in
the following. The implementation of the cache coherence and communication
operations was done along with the optimized synchronization scheme presented
in Chapter 3. Thus, MPICH 3.1.3 with the MPB-based channel from RCKMPI (see
Section 3.4.1) was used as foundation for the following changes.

The required methods were added by providing the MPIDI_CH3_Win_fns_init function,
which initializes a function pointer table. The according entries were modified to
override the default CH3 routines and to point to the new implementation

4.3.1 Window Creation

As outlined in Section 2.3.5, the collective creation of a window object is a prerequisite
for one-sided communication in MPI. The window creation is typically connected
with allocation of according memory that will be exposed with a window. For the
SCOSCo approach, other processes need to access this memory directly with the
help of the LUT re-configuration. For this, the system address of the locally allocated
memory is required to be known because parts of the address constitute the LUT
entry information (cf. Section 2.2.2).

To compute the system address of a given virtual address, the physical address of that
memory region needs to be obtained. Using the physical address, the used LUT entry
can be determined. Thereby its content is known which is the system address of the
matching system memory page (see Figure 2.3). The physical address of any virtual
address is obtainable with the help of the SCC-specific kernel driver providing the
/dev/dcm device.

131

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Memory Allocation

The device driver enables to determine the physical address of an arbitrary virtual
memory address and, thus, allows making every memory be part of a window that
is exposed to other processes. However, the MPBT-WT memory type has been
identified to be used for window memory in order to fulfill the requirements for
one-sided communication (see Section 4.2.3). The memory type can be changed on a
page basis only. That is, other data residing on a page will be affected as well. This
exposes risks to the proper execution of an application. If data residing on the stack is
used for a window, a change in memory type can corrupt local variables and function
return addresses.

To avoid these issues, the prototypical implementation of SCOSCo requires allocating
memory for a window via MPI_ALLOC_MEM. This function allows reserving memory
that is suited for OSC [65, § 8.2]. Alternatively, the MPI_WIN_ALLOCATE routine can be
used which allocates a memory and creates a window for it in one step.

However, a custom implementation of memory allocation inside MPICH’s CH3
channel was — different to many other OSC-related functions — not possible. To
overcome this lack of functionality, a patch was provided to the MPICH developers.
It was accepted and integrated into the main source code tree of the library1 enabling
future implementations to adjust a CH3 channel to allocate RMA-friendly memory.

Inside the implementation, the POPSHM memory area of the SCC (cf. Section 2.2.6)
is used to hold the window memory. It is used for window data only. At process
startup, the local core’s POPSHM memory is mapped into the address space of the
MPI process. The memory type used for the mapping can be configured via an
environment variable2. While the MPBT-WT memory is the first choice, all other
previously discussed memory types (DCM, NCM and MPBT-WB) are possible as
well.

Similar to the synchronization data inside the window database, a simple allocator
is used that increases an offset upon allocation. The offset holds the distance from
the start of the POPSHM memory to the first unused byte. A more sophisticated
allocation scheme is omitted in the prototype. As a result, the MPI_FREEMEM operation
does not free memory.

1http://lists.mpich.org/pipermail/devel/2015-March/000528.html last accessed 2016-09-16
2RCKMPI_LOCAL_MAP_MODE

132

http://lists.mpich.org/pipermail/devel/2015-March/000528.html

4.3 Implementation

ex
ch
an
ge
d

of
fse
ts

lo
ca
lP
OP
SH
M
m
em
or
y

core A/rank 0

offset = 640

offsetrank
6400
.
128n-1

core Z/rank n-1

offset = 128

offsetrank
6400
.
128n-1

POPSHM database
core LUT data
A 0xABCD
.
Z 0x1234

Figure 4.10: POPSHM data and exchanged offset enable access to remote windows.

Address exchange

Using the POPSHM approach also facilitates the system address determination of a
remote window memory. The POPSHM database (see Section 2.2.6) holds the LUT
information for any remote core’s POPSHM memory region. In combination with
the offset from the memory allocation, the base address of a remote window can be
derived.

In order to access a remote window, the memory allocation offset of a remote win-
dow inside the owner’s POPSHM memory must be known. This is achieved by
performing an MPI_ALLGATHER operation during the collective window creation, e.g. of
MPI_WIN_CREATE. The all-gather operation fills a data structure with information about
all remote windows (see Figure 4.10). Besides the allocation offset, it also includes
sizes of all windows.

The above mechanism causes data duplication. Every process hosts the window
information data structure that contains the same information on every process. Using
the POPSHM or legacy shared memory it would be possible to reduce the memory
footprint and make the data structure more scalable when considering higher core
counts [118]. Albeit this might be a critical issue in future systems, this optimization
and a discussion of its potential trade-offs (de-duplication vs. higher access latencies) is
left out for the prototypical implementation of SCOSCo.

133

4 Software-Managed Cache Coherence for MPI One-Sided Communication

4.3.2 Communication Operations

To access the window of a remote process, the exchanged offsets and the system
addresses from the POPSHM database (see above) are used.

Before an RMA operation is to be performed, the unoccupied LUT entries 132 to
190 (see Table 2.1 on page 28) of the local core are reconfigured with the address
information of the target memory. Thereby, shared memory is created. To access this
memory, again the special kernel devices are utilized to map the matching physical
addresses into the virtual address space of the origin MPI process (see Figure 4.7).
After that, remote memory can be accessed in the same way as local memory. Similar
to the local window memory, the type used for mapping remote memory can be
configured via an environment variable3.

When the mapping is established, the complete POPSHM memory of the remote core
is mapped in to the address space of the accessing MPI process. By default every core
reserves four 16 MB pages of system memory for POPSHM. Those need four LUT
entries to be made accessible. Thus, the available (free) 58 LUT entries can hold up
to 14 mappings to remote POPSHM memory regions. If more mappings need to be
established, existing mappings are removed from the LUT. A least-used replacement
strategy is used to select the mapping for eviction. Usage is counted by the number of
RMA operations (PUT and GET).

With an established mapping, PUT and GET operations are basically implemented as
calls to memcpy. For the prototypical implementation, all remaining operations, like
ACCUMULATE or FETCH_AND_OP are left unimplemented. However, their realization
appears to be feasible, e.g. by re-using the MPICH’s default implementation for
shared memory systems for applying the MPI operations for different datatypes. The
required atomicity of COMPARE_AND_SWAP could be achieved with the help of locks.

4.3.3 Management of the Cache Coherence

As outlined in Section 4.2.5, the synchronization is performed inside the synchro-
nization calls. It was implemented for general active target synchronization and fence
synchronization.

3RCKMPI_REMOTE_MAP_MODE

134

4.3 Implementation

1 MPIDI_CH3I_win_start(...)

2 {

3 /* init local data for sync. */

4
5 /* coherence management */

6 MPIDI_CH3I_CL1INVMB;

7 }

8
9 MPIDI_CH3I_win_complete(...)

10 {

11 /* coherence management */

12 MPIDI_CH3I_Flush_WCB();

13
14 /* synchronize with targets */

15 }

MPIDI_CH3I_win_post(...)

{

/* coherence management */

MPIDI_CH3I_Flush_WCB();

/* synchronize with origins */

}

MPIDI_CH3I_win_wait(...)

{

/* synchronize with origins */

/* coherence management */

MPIDI_CH3I_CL1INVMB;

}

Listing 4.1: Coherence management implementation in the GATS routines.

For GATS, the methods that open epochs (MPI_WIN_POST and MPI_WIN_START) per-
form the coherence operations before the actual synchronization takes place. This
ensures an up-to-date state of the public copy when processes get synchronized. The
reverse applies to the calls closing an epoch (MPI_WIN_COMPLETE and MPI_WIN_WAIT).
In those cases, the private copy (i.e. the caches) is updated when the processes have
synchronized. The pseudo-code in Listing 4.1 shows the explained steps for the GATS
routines.

In order to invalidate the window data, the CL1INVMB instruction is issued in MPI_-

WIN_START, MPI_WIN_WAIT, and MPI_WIN_FENCE. To flush the Write Combine Buffer
during MPI_WIN_POST, MPI_WIN_COMPLETE, and MPI_WIN_FENCE, a dummy variable that
is allocated in the legacy shared memory is written. The according memory region
of the LSM is mapped as MPBT-WB which ensures, that the WCB is affected by the
write. No other data lies on the cache line of the dummy variable. Thus, a write to
that variable flushes the WCB.

135

4 Software-Managed Cache Coherence for MPI One-Sided Communication

4.4 Experimental Evaluation

The presented implementation of the software-managed cache coherence and the
shared-memory based one-sided communication is evaluated within the next sub-
sections. The experiments are conducted in the same environment described in
Section 3.5.1. For all performance measurements, the extended RCKMPI library was
compiled with optimization (level 2). The same applies to the benchmarks.

4.4.1 Functional Tests

To verify that the implementation fulfills the functionality specified in the MPI stan-
dard, test cases from the MPICH test suite are reused. As this thesis focuses on
one-sided communication, only tests from the rma sub-tree were used to check for
bugs in the implementation of both the synchronization and the data transfer.

The sub-tree contains 122 test-cases addressing one-sided communication. Since only
the fence and GATS synchronization styles have been implemented with support to
cache coherence, only those were considered for inclusion in the final test set. Since the
SCOSCo implementation requires window data to be allocated with MPI_ALLOC_MEM

or MPI_WIN_ALLOCATE (see Section 4.3.1), the final number of tests was reduced to eight
tests with communication.

The set includes the seven tests from the evaluation of the synchronization calls (see
Section 3.5.2) with the exception of nullpscw which does not use communication.
In addition, the putfidx and the test5_am test case were used. Further, allocmem,
attrorderwin, badrma, wincall, winname, and window_creation were employed using
two procosses (as defined in MPICH’s test suite) to ensure that the supporting func-
tions of MPI still work after the modifications in the CH3 channel implementation.

The tests were executed using the MPBT-WT memory type to map both the local and
remote window memory. The result was that all tests passed with no errors. This
also includes checks for the validity of the transferred data. Thus, the tests show that
the implementation of SCOSCo provides a working MPI library.

136

4.4 Experimental Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 4 16 64 256 1k 4k 16k 64k 256k 1M

ba
nd

wi
dt

h
/ M

B/
s

data size / Byte

DCM
 MPBT-WB
 MPBT-WT

NCM

Figure 4.11: Store bandwidth of the SCC’s memory types with a warm cache.

4.4.2 Memory Performance

The SCOSCo implementation requires an application to allocate window memory
via the MPI library. This is required to ensure that memory is mapped with the
MPBT-WT memory type which in turn is a prerequisite for the software-based cache
coherence management. Even though MPBT-WT is considered to be well-suited in
terms of software managed cache coherence, its performance especially with regard to
the write performance has to be evaluated. This will support a better understanding
of application performance.

To evaluate the performance, a simple load and store benchmark is used since loads
and stores are the foundation of the OSC implementation. The benchmark is based on
the work of by VAN TOL ET AL. [141]. If compared to the usual DCM memory type,
the possible performance penalty of MPBT-WT due to its write-through semantic and
the limitation to the L1 cache are revealed. The measurements from [141] compared
the DCM, NCM and MPBT-WB memory types, but lack an investigation of the
MPBT-WT, especially its read performance.

The benchmark loads/stores 4 byte from/into a 32-bit general purpose register at a
time with the MOV machine instruction and measures the time to do so for a given
amount of memory. The time is obtained from RDTSC readings. This step is repeated

137

4 Software-Managed Cache Coherence for MPI One-Sided Communication

 0

 50

 100

 150

 200

 250

 300

 350

 4 16 64 256 1k 4k 16k 64k 256k 1M

ba
nd

wi
dt

h
/ M

B/
s

data size / Byte

DCM
 MPBT-WB
 MPBT-WT

NCM

Figure 4.12: Load bandwidth of the SCC’s memory types with a warm cache.

501 times and the median of the measured times is reported. Before each repetition,
data is prefetched into the cache by reading the memory in the same direction as in
the subsequent measurement loop. Appendix B.1 provides an extract of the essential
source code. The benchmark was executed on core 0.

Figure 4.11 shows the obtained bandwidth of store operations. The results clearly
show the effects of the warm caches. The bandwidth drops when data exceeds cache
level size. Because the SCC caches are write-around, they do not cause eviction of
present lines when a write miss occurs. Thus, write hits are observed for the fraction
of data that is still in the cache after warm up. Therefore, the bandwidth gradually
declines rather than dropping immediately when the cache is exceeded. The observed
bandwidths qualitatively validate the results from [141] for DCM, NCM as well as
MPBT-WB.

Concerning the memory types, the non-cacheable characteristics of NCM is apparent
by a low store bandwidth. On the other hand, DCM and MPBT-WB benefit from the
cache warm-up and subsequent cache hits which cause high bandwidths. MPBT-WT
exposes the effects of the write-through cache configuration and the Write Combine
Buffer. The write bandwidth is lower than for cached memory. This can clearly be
attributed to the write-through configuration. Nevertheless, without the WCB every
write to memory would go through the on-chip network and low bandwidth would be

138

4.4 Experimental Evaluation

 13

 14

 15

 16

 17

 18

 19

 20

 4 8 16 32 64 128 256 512 1024 2048

ba
nd

wi
dt

h
/ M

B/
s

data size / Byte

cache disabled (PCD)
cache disabled, MPBT memory (PCD+MPBT)

write-through (PWT)
write-through, cache disabled (PWT+PCD)

write-through, MPBT memory (PWT+MPBT)
write-through, cache disabled, MPBT memory (PWT+PCD+MPBT)

Figure 4.13: Load bandwidth for different page table settings.

observed as it is with NCM. However, the behavior of the benchmark is synthetic. By
writing to subsequent addresses, the WCB is fully exploited and constitutes a best-case
scenario. Depending on its actual access pattern, a real application would observe
effective bandwidths between NCM and MPBT-WT.

In Figure 4.12, the obtained load bandwidths are shown. Sharp bandwidth reductions
are observed when the cache level size is exceeded. This is the result of using the same
direction during cache warm up and the measurement (see above). For DCM, the
impact of the first and second level caches is clearly visible. As MPBT-WB memory is
only cached in L1 the bandwidth drops at 16 kB.

The most notable result, however, is the load bandwidth of MPBT-WT. Since the
MPBT memory type is L1-cacheable, an identical bandwidth as for the MPBT-WB
should be observable. However, the bandwidth matches the one of the NCM memory,
which is not cached. In order to verify this effect, different page table settings were used
and the according memory load bandwidth was measured using the same methodology
as above.

The results are illustrated in Figure 4.13. The data reveals that whenever the L1 cache
behavior was configured as write-through, the read performance dropped to the NCM
level.

139

4 Software-Managed Cache Coherence for MPI One-Sided Communication

A consulted Intel engineer, Werner Haas of the SCC team, confirmed this conclusion
and suspected this might be due to the chip’s design since the design of the L2 cache is
not compatible with the original specification. Final confirmation was not possible as
the servers with the design files had been finally shut down after Intel decided to stop
research on the SCC.4

As evident from the results above, the MPBT-WT memory type would cause low
application performance, if a local window memory is mapped with this type and
the application operates much on that local window data. However, this is due to
the (potential) bug in the SCC’s hardware but not due to the concept of SCOSCo.
To show that the concept is working and produces correct results, the MPBT-WT
memory type is used in the further experimental evaluation as the default setting. As
explained, this might be at the cost of absolute application performance.

The performance results from above seem to contradict the results in previous work,
especially ROTTA ET AL. [100]. Therein, the MPBT-WT memory type is used
and a better performance for this memory type is observed which is attributed to
an activated L1 cache (see page 48 ff.). However, the publication only provides an
according statement rather than experimental evidence if the observed performance
gain is in fact due to the L1 cache. It is also possible that the performance is improved
due to the WCB. This argumentation is supported by the relatively small difference
between NCM and MPBT-WT memory observed in [100]

Similar, SIVARAMAKRISHNAN ET AL. [98] observed better performance when the
MPBT-WT memory type is employed (see page 43 ff.). Similar to ROTTA ET AL. [100],
neither a comparison for different memory types nor a raw performance comparison
is conducted. Of the observed memory accesses, only 10% actually hit MPBT-WT
memory. A ratio between read and write accesses is not stated in the article. Thus,
the performance gain, which is around 40% for object mutation, can be attributed to
the WCB as well.

LAM ET AL. [102] (see page 45 ff.) also used the MPBT-WT memory configuration
for data sharing on the SCC. Compared to the introduced virtual shared memory
mode, the MPBT-WT memory exhibits lower performance. This is attributed to the
smaller cache size that is available to that memory type.

4“ Tja Steffen, deine Daten sind wirklich ueberzeugend [. . .] Ich wuerde fast den gleichen Schluss ziehen.[. . .]
Ich koennte mir vorstellen, dass man WT ‘kaputt’ gemacht hat weil der L2 ja nicht der Spezifikation der
Intel Architektur entspricht (siehe WBINVD). Leider wurden inzwischen die Server in Braunschweig
abgeschaltet und so kann ich nicht mehr einfach im Design nachsehen.” Werner Haas, personal e-mail
correspondance, 2014-04-30.

140

4.4 Experimental Evaluation

However, the authors also point out that the performance counters indicate “many
times higher” bus utilization and stall cycle counts than in their developed SVM mode.
Those effects can also be attributed to the bandwidth results presented above.

Subsuming the above, previously presented results can be explained with the lack
of cachability and positive effects of the WCB rather than the limited size of the L1
cache. A validation of this hypothesis by repeating the other researchers’ experiments
was out of the scope of this thesis. At least, the previous results do not contradict the
observed low load bandwidth of the MPBT-WT memory type.

4.4.3 OSU Micro-Benchmarks

To assess the raw performance of the proposed approach, the one-sided PUT band-
width benchmark of the OSU benchmark suite is employed. MPBT-WT memory
type is used to map the remote window into the local address space. It is also used to
map the local window memory into the processes memory. To fulfill the requirement
of SCOSCo, the benchmark was configured to use the MPI_WIN_ALLOCATE function for
memory allocation and window creation (see Section 4.3.1). Further, GATS synchro-
nization is used which includes the software-managed cache coherence (see above).
The two processes were mapped to cores 0 and 1.

The benchmark itself uses a pre-allocated buffer (in conventional cacheable memory)
to read data from. The data is subsequently transferred from the origin via MPI_PUTs
into the (remote) window of the single target process. Local windows are not accessed
by the benchmark in its original version. However, to ensure correct data transfer, the
benchmark was extended to validate the received data against expected one after the
exposure epoch has ended. The transferred data was adjusted to be unique in every
PUT operation.

The bandwidth for the SCOSCo implementation of OSC is compared with the
message-based OSC implementation and its two-sided counter-part from RCKMPI
(using the two-sided PUT benchmark). The results for the latter two were already
presented in Section 4.1.2. For each employed implementation, 25 warm-ups and
50 measurement iterations were performed by the OSU benchmark. Nine runs of
the OSU benchmark were executed and the median of the reported bandwidth per
message size is taken. The range between minimum at maximum was never higher
than 10% of the minimum bandwidth.

141

4 Software-Managed Cache Coherence for MPI One-Sided Communication

 0

 20

 40

 60

 80

 100

 120

 1 4 16 64 256 1k 4k 16k 64k 256k 1M

ba
nd

wi
dt

h
/ M

B/
s

message size / Byte

two-sided (RCKMPI)
one-sided (RCKMPI)
one-sided (SCOSCo)

Figure 4.14: Results for the OSU one-sided PUT bandwidth benchmark.

In Figure 4.14, the results of the put bandwidth benchmark are shown. In all experi-
ments, the correct data was observed by the target, especially in case for the SCOSCo
implementation.

The CH3 channel that realizes SCOSCo clearly outperforms the message-based chan-
nel from RCKMPI. For small messages, an improvement by a factor of two is achieved,
while larger messages are transferred at five times higher bandwidths. The data also
reveals that the bandwidth exceeds the bandwidth of the two-sided communication
that uses the fast on-chip Message Passing Buffer. Here, the benefit is lower, but
still significant. That is, the SCOSCo variant is 20 MB/s faster using a two-sided
message-based data transfer. Note that the results also show a clear improvement
compared to the maximum bandwidth of 40 MB/s reported in [53] for message sizes
between 64 Byte and 1 MB.

The results underline the benefit of true one-sided data transfers via shared-memory.
These avoid processing overhead at the target side and message fragmentation from
which the RCKMPI channel implementation suffers.

Furthermore, the results reveal that the write-combine buffer, which is activated
when an MPBT memory type is used, contributes to a high and steady bandwidth.
RCKMPI’s CH3 device employs the WCB as well, but suffers from MPB-to-memory
transfers and message fragmentation which attenuate the effect of the WCB.

142

4.4 Experimental Evaluation

 1

 10

 100

 1000

 10000

 100000

 1 4 16 64 256 1k 4k 16k 64k 256k 1M

lat
en

cy
 /

us

message size / Byte

two-sided (RCKMPI)
one-sided (RCKMPI)
one-sided (SCOSCo)

Figure 4.15: Results for the OSU one-sided PUT latency benchmark.

Figure 4.15 shows the results from the OSU latency benchmark. The same system
and benchmark settings as in the bandwidth analysis were used. Again, the results are
compared with the ones obtained in the preliminary performance studies of RCKMPI
from Section 4.1.2.

As for the bandwidth, the performance of SCOSCo in terms of latency is significantly
better than for the one-sided latency of RCKMPI. For the smallest displayed message
size, i.e. 1 Byte, the SCOSCo latency is smaller by a factor of 2.7 (9.1 µs vs. 24.8 µs).
The gap increases with increasing message size. For messages of 4 kB, SCOSCo is 3.7
times faster than one-sided RCKMPI.

Opposite to the above results, the two-sided latency is smaller for messages up to
512 Bytes. For 1 Byte messages, only 6.4 µs are required to transfer the data. Thus,
SCOSCo is slower by a factor of 1.4.

The reason for this behavior can be attributed to the implementation of the MPI_PUT.
Here, it must be checked if a mapping to the addressed window exists, and it must be
established if it does not exist. In addition, checks for contiguous MPI datatypes must
be performed, but those might be suboptimal compared MPICH’s. However starting
from 512 Byte, the data transfer latency for RCKMPI is higher than for SCOSCo and
increases to the level of the message-based OSC implementation.

143

4 Software-Managed Cache Coherence for MPI One-Sided Communication

4.4.4 Three-Dimensional Fast Fourier Transform

To examine the performance of a real-world application, a parallel three-dimensional
fast Fourier transform (3D-FFT) is analyzed. It exhibits a large fraction of com-
munication and is suited for a realization in OSC [90, 120]. In his diploma thesis,
OHMANN [87] evaluated the usage of different programming APIs, including UPC
and MPI’s one- and two-sided communication. With respect to their performance, no
notable differences were observed for an InfiniBand-based Cluster environment [87,
§ 5.3]. Despite their different programming approaches the examined implementa-
tions do not differ significantly regarding the code used for communication. The MPI
source code that was created within the progress of the diploma thesis is re-used for
the experimental investigations in this section.

Application Overview

The (discrete) three-dimensional Fourier transform is based on the repeated application
of the one-dimensional Fourier transforms. In general, a Fourier transform, converts
periodic signals from the spatial domain into their matching frequency spectrum. The
mathematical key concept is that a signal is the result of the superposition of trigono-
metric functions with different frequency and amplitudes. A deeper discussion is out
of scope of this thesis. Details can be found in OHMANN [87, § 2] and BUTZ [149].

A 3D-FFT operates on a regular three-dimensional grid of complex numbers. The
outcome of the transform is as if the one-dimensional transform was successively
applied to every dimension of the grid. Applications of the (multi-dimensional) FFT
range from signal processing to solving partial differential equations.

The benchmark employed in the analysis constitutes a kernel of an application solv-
ing such an equation. It comes from the NAS parallel benchmark suite which was
developed at NASA and is named FT. As stated in the benchmarks description, “it is
a rigorous test of long-distance communication performance” [150]. Thus it is suited to
serve as a benchmark for the SCOSCo implementation.

The NPB benchmark defines several problem classes. This includes both the size of
the grid and the number of iterations. Within a single iteration, a full 3D-FFT of the
compute domain is computed. Table 4.1 lists the problem classes used for the analysis
within this section.

144

4.4 Experimental Evaluation

Table 4.1: Parameters of the NAS FFT benchmark classes.

Class Iterations Problem Size Messages Transf. Data

S 6 64× 64× 64 15 360 39 MB
W 6 128× 128× 128 30 720 78 MB
A 6 256× 256× 128 61 440 1.3 GB
B 20 512× 256× 256 409 600 17 GB

Benchmark Implementation

The implementation used for the analysis is based on the UPC version of the bench-
mark5 which itself has been converted from the original Fortran source. In this bench-
mark, a two-dimensional domain decomposition is applied to the three-dimensional
grid of complex numbers. As a result, each process owns a chunk of memory in which
only one dimension of the grid is completely present.

To compute the FFT for a single dimension, it is required to have all grid elements
of that dimension in the local memory. After the first FFT, this condition is not
met anymore. Thus, communication is required to exchange the elements such that
the data is transposed between each application of the one-dimensional FFT. This
includes exchange of the data and rearrangement of the received data such that it
is correctly transposed. Figure 4.16 illustrates the exchange of data with different
colors and shades. Note the changes in the coordinate systems which represent the
orientation of the data.

In order to optimize the performance of the 3D-FFT, the exchange of already computed
FFTs can be overlapped with computation of the next ones [90]. That is, the data is
not communicated in a single large block after all local FFTs have been completed
(Figure 4.17a). Instead, a single plane is communicated in a non-blocking fashion
as soon as it was transformed (see Figure 4.17b). More fine-grained schemes are
possible [90] as shown in Figure 4.17c, but they turn out to cause large overheads [87,
151]. Subsequently, they are not disucssed in this thesis.

Two basic versions of the benchmark are used. They differ in the style of communi-
cation used for the data transfer. The first version uses non-blocking two-sided calls
(MPI_ISEND and MPI_IRECV) for the communication. The second one employs one-

5https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-
rfp/nersc-8-trinity-benchmarks/npb-upc-ft/

145

https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Proc 8

Proc 9

Proc 10

Proc 11

Proc 12

Proc 13

Proc 14

Proc 15

Proc 4

Proc 5

Proc 6

Proc 7

Proc 0

Proc 1

Proc 2

Proc 3

z

x

y z

y

x y

z

x

1D-FFT in

x-dimension

1D-FFT in

y-dimension

1D-FFT in

z-dimension

Message

Passing within

Plane Groups

Message

Passing within

Row Groups

All-to-all

Communication

All-to-all

Communication

to get

y-dimension data

locally contiguous

to get

z-dimension data

locally contiguous

Figure 4.16: 2D domain decomposition and communication of the 3D-FFT [87].

sided communication using MPI_PUTs. GATS is used as synchronization style. Due to
the limited number of communication partners, this synchronization style is the best
fit from an application programmer’s perspective. However, fence synchronization
may achieve similar performance [87, p. 49].

In case of the OSC version, the computed FFT slabs are moved to a remote window
which is solely dedicated to data transfer. In a subsequent transpose step, a target
process takes the transferred FFT results out of the window, transposes them, and
finally rearranges the data in another buffer for performing further FFTs. This
combination of local computation, data transfer, and transposing data is performed
twice per time step, followed by a third FFT.

In essence, the application only reads from the local window memory during the
transpose step. The local window is modified only by the RMA operations. After the
aforementioned steps, pre-defined elements of the compute domain are summed and
checked against pre-computed values.

146

4.4 Experimental Evaluation

NY / TY

NZ / TZ

NZ

NY

NX

(a) packed slabs

NY / TY

NZ / TZ

NZ

NY

NX

(b) slabs

NY / TY

NZ / TZ

NZ

NY

NX

(c) pencils

Figure 4.17: Communication variants of the 3D FFT benchmark [87].

In the experimental study the two-sided version is used to compare the performance of
SCOSCo against an implementation of the benchmark that uses both explicit messages
and the fast on-chip Message Passing Buffer. As underlying MPI library, RCKMPI is
used. This program version is denoted as RCKMPI/2SC.

For the one-sided benchmark version, two versions are employed in the following.
One uses RCKMPI and thus the message-based OSC implementation with deferred
synchronization (see Section 3.3.1). This is labeled RCKMPI/OSC. The other one
uses the implementation of SCOSCo and is labeled accordingly. All three benchmark
variants use FFTW6 (version 3.3.4) as basic FFT library.

Performance Considerations

As discussed at the end of Section 4.4.2, the MPBT-WT memory type is used for both
the local and remote windows in the experimental evaluation to assess the performance
of SCOSCo despite the bad performance delivered by that memory type. Because of
the SCC’s behavior for MPBT-WT, a high number of non-cacheable memory accesses
will occur when the local window is accessed. In case of the FFT, this affects the
aforementioned transpose step. As a result, the benchmark’s runtime for the transpose
step is likely to increase for the SCOSCo variants and thus may increase the overall
runtime as well. The benchmark versions that use RCKMPI’s channel implementation
will not face this situation. This channel is not able to map memory with different
memory types and always use conventional, i.e. DCM, memory for windows.

6http://www.fftw.org, last accessed 2016-10-01

147

http://www.fftw.org

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Results

The benchmark was executed for the problem classes listed in Table 4.1 using a static
process layout of 4×8 processes which were assigned to the cores 0 to 31. The compute
domain of the next larger problem class C has a size of 512× 512× 512 elements.
With two double precision floating point values (8 bytes) for each complex value of a
grid point, this results in a overall data size of 2 GB. The available POPSHM memory
which contains the window memory has exactly the same size (32× 64MB= 2GB).
However, some of SCOSCo’s internal data structures are allocated in that memory as
well and therefore prevent usage of class C in the experiments.

During the experiments, three measurements were performed for each of the problem
sizes. All time stamps were recorded with MPI_WTIME that is implemented using
the RDTSC machine instruction. No frequency scaling was performed during the
experiments, so the readings of the time-stamp counter deliver stable data. The
MFLOPS rate was obtained following the original NPB source. For each of the
examined NPB classes, the MFLOPS rate showed less than 3% deviation between the
individual measurements. As a result, the median is taken as reported value.

The results, in terms of MFLOPS, are shown in Table 4.2. Using RCKMPI, the OSC
variant of the benchmark is always slower compared to the two-sided implementation
(2SC). However, for all NPB classes, both the one-sided and the two-sided versions
of RCKMPI are outperformed by SCOSCo. In the fourth column of Table 4.2,
the MFLOPS performance using the de-facto uncached MPBT-WT memory for the
window is shown. Compared to RCKMPI’s OSC version, the gain in performance
ranges from 19% (for class A) up to 30% for class S. For the RCKMPI-based versions
and the SCOSCo MPBT-WT variant, the checksum verification of the computed
result succeeded in all experiments.

To analyze the reason for this improvement and identify possible side-effects, the
contribution of communication to the overall runtime is examined for each of the
NPB problem classes and each of the benchmark versions. For this purpose, the
individual runtimes of all 32 processes are summed up and broken down into the time
for computing the FFT on the local sub-domain, performing the communication of
the obtained results, and transposing the received input data into the required local
format (see above). Communication includes both data movement (MPI_ISEND and
MPI_PUT) and synchronization operations (MPI_WAITALL and GATS calls). In addition,
the time for internal bookkeeping, like memory initialization, and for barriers to
synchronize the computation stages is recorded.

148

4.4 Experimental Evaluation

Table 4.2: MFLOPS performance of the NPB FFT benchmark.

RCKMPI SCOSCo

Class 2SC OSC MPBT-WT Impr. DCM Impr.

S 512.9 477.2 618.0 30% 639.4 34%
W 514.8 487.7 586.5 20% 712.2 46%
A 595.3 577.9 685.9 19% 835.1 45%
B 483.9 473.7 569.2 20% 663.7 40%

From the illustrated breakdown (shown in Figure 4.18), the reason for the improved
application performance can be clearly identified: The share of communication on
the runtime is reduced drastically. In case for class B the time is reduced by a factor of
4.3 from about 2100s (for both two-sided and RCKMPI one-sided) down to 524 s for
SCOSCo using MPBT-WT memory. For class A, the overall communication cost is
even reduced by a factor of 4.95.

For class B, the aggregated time for communication is composed of 414 s for RMA
operations, i.e. data transfer, and 110 s for synchronization operations. This equals
26% for invoking the PSCW routines. Note that this large fraction is caused by process
skew as the time for computing the FFT and performing the transposition differs per
process because of the SCC’s NUMA characteristics. For class A, W, and S the share
of synchronization routines is 16%, 17%, and 14%, respectively. The process skew is
observed in those cases as well.

The results from Figure 4.18 also reveal that the different communication schemes and
their implementation do not affect the local FFT computation and the NAS-specific
bookkeeping steps. Hence, the approach of SCOSCo has no negative side effect on
the application’s computation. However, barriers take even less time (for class S and
W) compared to the other program versions when SCOSCo is used. We attribute this
to different process skews.

A significant change in runtime share is observed for the transpose step. When
the MPBT memory is used, its runtime is tripled compared to the two RCKMPI
benchmark variants. The reason for this is the bad load performance of the MPBT-
WT memory type that is used for the local window. Thus, reading from the local
window during the transposition step causes a performance degradation as discussed
in the previous subsection.

149

4 Software-Managed Cache Coherence for MPI One-Sided Communication

 0

 5

 10

 15

 20

RCKMPI/2SC

RCKMPI/OSC
MPBT-W

T DCM

bookkeeping
local FFT

communication
transpose

barriers

class S

 0

 5

 10

 15

 20

 25

RCKMPI/2SC

RCKMPI/OSC
MPBT-W

T DCM

class W

 0

 50

 100

 150

 200

 250

 300

 350

 400

RCKMPI/2SC

RCKMPI/OSC
MPBT-W

T DCM

class A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

RCKMPI/2SC

RCKMPI/OSC
MPBT-W

T DCM

class B

Figure 4.18: Runtime breakdown of the 3D FFT. Note the different runtimes scales.

To assess the performance when MPBT memory would cache the data, we conducted
the same experiments as above using DCM memory for accessing the local window.
The remote window was mapped using MPBT-WT. The implemented cache coherence
operations remained active and therefore are included in the timing data.

Because DCM allows no (efficient) invalidation of cached data (the CL1INVMB instruc-
tion only affects MPBT memory), stale data from the window is read if it is not
removed from the cache otherwise. As a result, wrong checksums are observed for
class S and W.

In contrast, class A and B show correct results since the stale data is evicted from the
cache by the behavior of the application which operates on much more data. The
eviction/invalidation would normally be managed by SCOSCo. The timings for the
two large classes therefore show what would be possible with a correct working, i.e.
cacheable, MPBT-WT memory.

Due to the DCM memory, the transpose performance reduces to the time found in
the RCKMPI variants (see Figure 4.18). With the time for data transfer unchanged
(due to the usage of MPBT-WB memory for the remote window), the application’s
runtime decreases and the performance is significantly increased (see last column of
Table 4.2).

150

4.4 Experimental Evaluation

Process n-1

. . .

Process 0

ghost zone

ghost zone

local domain

nine-point stencil

Figure 4.19: Stencil and domain decomposition of the cellular automaton.

4.4.5 Cellular Autotomaton

A prominent type of applications in the field of high-performance computing are
stencil computations. Within this section, the one-sided implementation of an in-
stance of this class is examined with respect to its performance using the SCOSCo
implementation.

Application Overview

The regarded stencil application is a CA. It is based on the automaton presented by
SANDERS AND WORSCH [152, § 4]7. Each cell of regular two-dimensional grid has
two possible states. The application performs a given number of iterations and evolves
the state of each grid cell according to a given automaton. The inputs for the per-cell
automaton are the state of the considered cell and the states of the surrounding eight
cells. Thus, the application uses a nine-point stencil with a Moore neighborhood and
radius of one as illustrated in Figure 4.19.

In the implementation, two arrays are employed. The first one holds the current state
of the grid, while the second one is used to store the outcome of the state transition.

7http://www.cs.uni-potsdam.de/bs/research/labsCa.html, last accessed 2016-12-23

151

http://www.cs.uni-potsdam.de/bs/research/labsCa.html

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Pointer switching is used to swap both arrays at the end of a time step. As a result,
neither the code that computes the stencil must be replicated nor a transfer between
the arrays must be performed.

Parallel Versions

The above description applies both the serial and the parallel versions of the appli-
cations. Two different parallel versions were created for the purpose of this thesis.
They share a domain decomposition approach but differ in the way communication
is performed.

Both versions use one-dimensional domain decomposition. That is, each process
allocates only a fraction of the overall grid in its local memory. To avoid large load
imbalances, excess lines occurring when the number of grid lines is not a multiple of
the process count are distributed among the processes. To compute the lines at the
horizontal border of the local grid according to the stencil, the states from border
lines of remote processes are required. Those lines are buffered locally as so-called
ghost zones.

Those ghost zones also allow the overlap of communication and computation. To
achieve this overlap, the application first computes the local grid boundary lines and
initiates their transfer to the remote ghost zones. This includes the early initiation of
an according reception of the remotely computed data in the local ghost zones. While
these communication steps may still be in progress, the computation of the remaining
i.e. the inner lines of the local grid can be conducted.

In the first parallel version of the CA, two-sided communication is used to transfer the
ghost zones. MPI_Irecv and MPI_Isend are used in conjunction with MPI_Waitall. The
receive operation is initiated first to receive the ghost zones required for the next time
step. After that, the local boundary is computed which in turn precedes the transfer of
those lines. Then, the remaining local grid is computed. The wait operation is issued
at the end of the time-step to complete the send and receive operation. Appendix B.3.1
provides code of the time step.

The one-sided version uses GATS (see Section 3.1.3) for the synchronization along
with MPI_PUTs for the data transfer. Two windows are created, one for each of the
two arrays (see above). Depending on the time step, the appropriate window which
receives the computed boundaries is selected. On each process, access and exposure

152

4.4 Experimental Evaluation

epochs are opened at the same time to allow both the access of remote processes to
the local window as well as transfer manipulation of the remote ghost zones. Overlap
is enabled by the application by opening and closing the epochs as early and as late as
possible.

Memory Type Issues

Since the two data arrays are entirely placed in a window, all of their memory has
the same type. For a fair comparison between all three versions, the memory type
has to be equal. However, the two- and one-sided RCKMPI versions are not able
to map the data array with a memory type other than DCM which is the memory
type of conventional memory allocations. While it would be possible to put only
an additional buffer that contains the ghost zone data it would create an application
version that artificially contradicts MPI’s one-sided programming paradigm. It would
require the application to copy data from the window into the real ghost zone buffer.
Consequently, the DCM memory is chosen for the SCOSCo variant of the CA as
well. Using other memory types reduces application performance significantly due
to limited or missing caching. However, DCM prevents correct cache coherence
management as outlined in Section 4.2.4.

As a result of the DCM usage, the computational result is incorrect because the
requirements for correct one-sided communication for the nCC architecture (see
Section 4.2.3) are not fulfilled. This causes transferred, i.e. PUT’ed, ghost zone data to
be overridden with stale data that is evicted from the cache due to the application’s
behavior.

Nevertheless, the evaluation using the DCM memory type is considered to provide
an upper bound for the application’s performance using SCOSCo. Correct results can
be obtained if an invalidation of memory is available. Especially an invalidation of
potentially cached data that was affected by the ghost zone transfer would be beneficial.
However, since neither such a mechanism nor a lightweight invalidation is available
for DCM, valid computational results are not achievable without large performance
penalties.

In addition, using other memory types for the evaluation is not possible. RCKMPI
lacks support for specifying the memory type of a window. Even if it would be
possible, three memory types are left, but those expose other disadvantages: NCM
exhibits huge performance penalties since the cellular automaton is heavily memory-

153

4 Software-Managed Cache Coherence for MPI One-Sided Communication

bound. Thus, the computation takes considerably more time than the communication
which will hide potentially improvements. The same applies to MPBT-WT which has
shown to behave like uncached memory for reads. Finally, the MPBT-WB type suffers
from the same problem as DCM which prevents efficient invalidation or flushes of
cached data.

Results

For assessing the performance impact of SCOSCo on the application, both the two-
sided and the one-sided version of the automaton are examined. For comparison, the
one-sided version uses either the message-based RCKMPI implementation of MPI’s
OSC or the SCOSCo implementation.

The experiments were conducted in the same environment as in the previous ones.
The automaton was configured to have 8190 elements per line of the compute grid.
Including the two vertical border cells that mimic torus-like boundary conditions
(see Figure 4.19), the size of a single line in the grid is exactly 8 KB. This equals the
message size during ghost zone exchange.

The number of grid lines was kept constant at 2400 and a strong scaling analysis was
conducted. Even for the maximum number of 48 processes each of them computes 50
lines and therefore holds 400 KB per each of the two grid arrays. This clearly exceeds
the size of the cache which avoids super-linear speedup.

As depicted above, the strong scaling analysis was performed despite the presence of
wrong computational results. The local windows were mapped using DCM memory.
Whereas remote windows use the MPBT-WT as in the 3D-FFT (see previous Section).
The number of iterations, i.e. time steps, of the benchmark was set to 100. The
time to complete all iterations loop was recorded. Initialization overhead is therefore
not accounted in the results. Further, each of the three application versions was
executed three times per process count. The median of these three times was selected
to compute the speedup. The individual timings showed deviations of less than 1.7%
on average. The employed serial baseline is shared among all versions. Its runtime
was 401.05 s.

The results of the strong scaling are shown in Figure 4.20. Compared to the scaling on
the InfiniBand-based cluster from Figure 4.6, the nearly ideal speedup is not achieved.
The reason for this outcome is the NUMA-characteristic of the SCC. Figure 4.21

154

4.4 Experimental Evaluation

 0

 8

 16

 24

 32

 40

 48

 0 8 16 24 32 40 48

sp
ee

du
p

number of MPI processes

two-sided (RCKMPI)
one-sided (RCKMPI)
one-sided (SCOSCo)

ideal speedup

Figure 4.20: Strong scaling of the cellular automaton application.

shows the per-process time to compute the local array for the median run from
Figure 4.20 using all 48 cores. Due to different times to compute the local domain,
process skew is introduced. Because of the CA’s torus-like process topology, this
affects the whole application and reduces the parallel efficiency.

In the results, RCKMPI’s one-sided communication exhibits a low scaling which was
already discussed in Section 4.1.2. In contrast, the SCOSCo version of the automaton
scales well and nearly identical to RCKMPI’s two-sided version with a slight advantage
for the latter one.

On the one hand, these results show a clear benefit of the SCOSCo version over
RCKMPI’s message-based OSC implementation. On the other hand, SCOSCo per-
forms slightly worse than the message-based two-sided variant. This appears to con-
tradict the previously presented results which indicated superior performance in
micro-benchmarks (see Section 4.4.3) and communication-intense applications (cf.
Section 4.4.4) where SCOSCo clearly outperforms two-sided communication.

To analyze the reasons, the recorded application runtime was split, similar to the
analysis in Section 4.4.4. The time for computation, communication (MPI_ISEND/I-
RECV and MPI_PUT), as well as synchronization (MPI_WAITALL and the GATS routines)
was recorded separately. The communication and synchronization costs were grouped
as they represent the overhead introduced by the parallelization.

155

4 Software-Managed Cache Coherence for MPI One-Sided Communication

ve
rti

ca
l t

ile

horizontal tile

8.990

9.004

8.982

9.005

9.537

9.516

9.477

9.477

9.582

9.573

9.599

9.057

9.072

9.444

9.474

9.079

9.089

9.505

9.524

9.697

9.709

9.661

9.679

9.963

9.951

9.963

9.948

9.753

9.764

10.262

10.268

9.801

9.813

10.263

10.267

9.809

9.812

10.000

10.009

9.775

9.790

9.995

10.007

9.777

9.765

9.603

9.762

9.764

 8.8

 9

 9.2

 9.4

 9.6

 9.8

 10

 10.2

 10.4

co
m

pu
te

 ti
m

e /
 s

Figure 4.21: Time to compute the CA’s local domain using the whole SCC.

Table 4.3 shows the obtained runtime shares of the application runtime. The timing
data was taken for rank 0 from the same run that was used as median to compute the
speedup in Figure 4.20. Results are shown for the runs with 24 and 48 processes only,
but similar results were observed for all process counts larger than 16.

The data reveals that the time for data exchange (communication + synchronization)
closely matches the two-sided RCKMPI and the one-sided SCOSCo variant of the CA.
However, the share of computation differs slightly although the algorithmic structure
of the kernels are kept equal (see Appendix B.3).

The reason for this lies in the implementation of the non-blocking since two-sided
communication which is actually deferred. Upon a non-blocking send, the library
tries to send data to the receiver. However, at most one internal MPICH packet is
sent. If the data could not be communicated at once, the remaining data is transferred
during the synchronization calls (MPI_WAITALL, e.g.).

In case of the CA this means that the majority of boundary data is actually com-
municated at the end of of each time-step. As a result, their data is copied from the
application to the MPB. Thereby, the boundaries are also fetched into the cache
again. When the next time-step starts, the new boundaries are computed first and
the old boundary data can be fetched from the cache and the computation runs

156

4.4 Experimental Evaluation

Table 4.3: Runtime breakdown of the cellular automaton application.

24 processes 48 processes

two-sided SCOSCo two-sided SCOSCo

computation time / s 17.270 17.897 8.644 8.990
comm. + sync. time / s 2.473 2.568 1.442 1.301

faster. The SCOSCo version does not offer this benefit to the application since data is
communicated directly when the communication calls are issued. The cache benefit
outweighs the benefit from the communication and therefore causes better speedup
values. Nevertheless, the absolute runtime differences are small.

In order to proof that the communication share was reduced by SCOSCo, the runtime
breakdown is also applied to the one-sided RCKMPI version of the CA. Figure 4.22
shows the summed communication and synchronziation times for the median run
from Figure 4.20. As apparent from the data, the deferred message-based OSC imple-
mentation is clearly outperformed by SCOSCo and also by the two-sided non-blocking
implementation.

Since both the two- and the one-sided RCKMPI version used deferred data transfers
and rely on messages, the reason for the high amount of communication time must be
found at deeper levels. Concerning the one-sided version, more efforts are required in
processing the internal messages. In addition, the OSC synchronization contributes
additional message exchanges (see Section 3.3.1) to the runtime. With SCOSCo, these
disadvantages are removed and a fast implementation of one-sided communication is
provided.

4.4.6 Summary

Overall, the results clearly show the performance benefits of the SCOSCo approach
even in the presense of a low memory performance due to a possible bug of the
SCC’s hardware. Both explicit message passing and and the implicit usage of mes-
sages for implementing one-sided communication have been outperformed by the
implementation of the truely one-sided SCOSCo concept. It was also shown that
software-managed cache coherence does not have negative performance impacts which
confirmed findings from the literature (see Section 2.4). In addition, the hardware and
software features of the SCC were beneficial for the SCOSCo implementation.

157

4 Software-Managed Cache Coherence for MPI One-Sided Communication

 0.01

 0.1

 1

 10

 100

 1000

 0 8 16 24 32 40 48

ru
nt

im
e o

f c
om

m
un

ica
tio

n
an

d
sy

nc
hr

on
iza

tio
n

/ s

number of MPI processes

two-sided (RCKMPI)
one-sided (RCKMPI)
one-sided (SCOSCo)

Figure 4.22: Time for communication and synchronization of the CA.

4.5 Possible Optimization

Although the results presented above show significant performance improvements,
further optimizations are possible. As introduced in Section 3.1, the MPI synchro-
nization calls allow to specify so-called assertions. Those describe the application
behavior and allow the MPI library to omit certain steps inside the implementation
when an assertion is provided.

The MPI standard defines some pre-defined assertions. Among them are MPI_MODE_NO-
STORE and MPI_MODE_NOPUT which apply to MPI_WIN_FENCE and MPI_WIN_POST calls
which open an exposure epoch. The assertions specify that the window was not
subject to local stores before the exposure epoch (NOSTORE) and is not going to be
modified by remote PUT/ACCUMULATE operations within the exposure epoch, respec-
tively. As the standard states, they “may avoid the need for cache synchronization”.[65,
p. 450]

In case of SCOSCo, these predefined assertions can be used to omit some of the
required steps in the cache coherence management. If the NOSTORE assertion is pro-
vided, the application guarantees that the local window was not modified before the
synchronization. In that case, committing the data into the RAM, i.e. the public copy,

158

4.6 Conclusions for Future Systems

is not required since it still holds the most recent data. Regarding the NOPUT assertion,
it would enable to omit the cache invalidation at the end of an exposure epoch. This
is because no modification of the public window copy was performed. As a result,
the private copy still contains valid data.

Beyond those pre-defined assertions and their semantics, further ones can be consid-
ered for SCOSCo. The NOPUT can be applied to access epochs as well. When an access
epoch is started with that assertion, the flush of outstanding writes that might be
buffered within the WCB at its end can be omitted.

4.6 Conclusions for Future Systems

From the experiments and the theoretical discussion in the previous sections, rec-
ommendations for potential future non-cache-coherent architectures are compiled to
support SCOSCo.

4.6.1 Configurable Shared Memory and Memory Registration

To define arbitrary memory regions as being shared, a feature like the dynamically
reconfigurable LUTs is a very basic requirement for the presented SCOSCo approach.
In case of the SCC, it is required to know the system address of the shared mem-
ory region (see Section 4.2) to configure the LUT accordingly. As it is possible to
configure any memory region as shared, the direct manipulation of the LUTs with
system addresses is usually a dangerous approach as it subverts the memory protec-
tion mechanisms of the operating system and the CPU’s memory management unit.
Consequently, an API has to be provided by both the hardware and the operating
system to support the middleware in creating shared memory regions between the
cores at runtime.

With respect to the concept of MPI windows, the API should provide means to
collectively create a handle to which memory regions can be attached. During the
collective window creation such a handle is allocated by a single process and exchanged
to all other processes. With that shared handle, the API must allow registration of a
local memory region (a base pointer and size) along with an unique identifier, like
the rank of the process performing the registration. With the help of the operating
system, the physical and thereby the system address is determined and attached to the

159

4 Software-Managed Cache Coherence for MPI One-Sided Communication

shared handle. When a target window is accessed, the shared handle and the rank of
the target process (stored as unique identifier during registration) are used to create a
mapping to the shared memory in the local virtual address space.

This approach is similar to memory registration used in InfiniBand applications and
lifts SCOSCo’s restriction to use memory from the POPSHM area for windows.
In addition, the concept of POPSHM is generalized and is not restricted to a fixed
number of pages reserved by the kernel (see Section 2.2.6). In conjunction with
the process identifier attached to memory location, the presented API serves as an
abstraction to the window database from Section 4.3.1.

4.6.2 Guaranteed Commit to RAM

To fulfill both requirements 1a and 2b cached data must be committed to RAM. For
this purpose, two approaches can be considered.

Write-Through Memory

A cache configuration that allows write-through behavior for all cache levels with little
to no performance penalty would support the software managed cache coherence
to a great extend (cf. Section 4.2.4). Additionally, a write combine buffer that is
explicitly flushable (like on the SCC), e.g. with a memory write barrier used in
contemporary CPUs, should be present to speed up performance of such memory
for write accesses.

Selective Cache Line Write-Back

The previous approach requires to have a write-through configuration of the page
table entries that are used for the window memory. In the concept of SCOSCo,
this is ensured by using a mapping with the MPBT-WT memory type. However, a
write-through configuration might be slower than a conventional write-back setup. In
addition, the page-based configuration granularity of cache behavior causes a perfor-
mance degradation for all accesses on that page, not only for the window data, which
can reside on the stack as well.

160

4.6 Conclusions for Future Systems

Instead of using such a write-through configuration, a forced write-back of modified
cache lines would achieve the aforementioned requirements. This is actually supported
by the IBM Power and the most recent Intel instruction set architecture (Intel 64) with
instructions like dcbst [153, p. 773] and CLWB [154, p. 3-146] respectively. During
MPI_WIN_POST and MPI_WIN_COMPLETE those instructions can be used to make changes
on the given window visible in RAM. However, the performance of that approach
has to be analyzed.

4.6.3 Selective Invalidation of Cache Lines

To invalidate a cached region of memory containing window data (see requirements
1b and 2a), an invalidation instruction like the CL1INVMB is required. However, the
instruction suffers from drawbacks in its current version. The instruction invalidates
all cache lines of this type. If both local and remote memories are mapped with a
MPBT memory type, its invocation removes the cache lines of both memories, even
in the case where only the cached memory of the local window memory needs to be
invalidated (cf. requirement 1b in Section 4.2.3). Moreover, such a general invalidation
may also affect other memory regions, like other windows or even memory of other
processes using the same memory type. This maliciously influences application
performance.

Selective Line Invalidation in Local Caches

With respect to these drawbacks, more fine-grained invalidation is required to prevent
wasteful invalidation. Therefore, it would be beneficial to supply the starting (virtual)
address and the size of the region to the invalidation instruction. Similar to the
selective cache line write-back (see previous subsection), the invalidation of the local
window (according to the requirements) could be performed by the middleware.

However, such a selective invalidation could be used to omit the invalidation of the
whole window memory on the origin side. To fulfill requirement 2a with respect to
GET operations, the invalidation may only be done when such an operation is issued
and only invalidates the cached data that will be actually accessed. Since the virtual
address used to access the mapped remote window memory is known when a GET

operation is issued, the MPI implementation can invalidate according cache lines which
may contain outdated data. The subsequent accesses to the remote window are then

161

4 Software-Managed Cache Coherence for MPI One-Sided Communication

GET(..., buf, len)

local cache window/RAM

outdated copy

1.) invalidate

2.) memcpy

Figure 4.23: Local selective cache line invalidation for GETs.

guaranteed to result in caches misses. Consequently, the most recent data is retrieved
from the window when it is accessed (see Figure 4.23).

Selective Remote Cache Line Invalidation

Thinking the previous idea further, such an address based approach can also be used
to avoid whole window invalidation at the target (req. 1b) if explicit invalidation
of remote cache lines is supported. In that case, an origin process could remotely
invalidate the cache lines which will be affected by PUT operations and transfer the
data as illustrated in Figure 4.24. This ensures that the target fetches the most recent
data when its exposure epoch ends. Since, the target will not access the modified data
before that epoch ends, the order of data transfer and remote cache invalidation inside
the PUT operation does not matter.

To support such an operation in hardware, an instruction that invalidates a line with
a given system address in all caches of a given (remote) core would be required. The
system address can be derived from the parameters of the PUT operation and the
window database (or generalized approach from Section 4.6.1). Side effects from
the invalidation of remotely cached data, such as deletion of modified application
data, are not expected for the MPI OSC use-case since processes have synchronized
before communication and therefore committed any changes on window memory to
RAM. In addition, target processes should not access their exposed window memories
according to the standard [65, § 11.7].

4.6.4 Non-blocking Data Transfer

To enable non-blocking communication calls as required by the MPI standard, an
efficient data transfer mechanism like a DMA engine would be beneficial. VAN

TOL ET AL. [141] proposed the concept of copy cores. With such a component,
communication/computation overlap would be possible.

162

4.7 Summary

PUT(..., dst, len)

window/RAM remote cache

invalidate

memcpy

Figure 4.24: Remote selective cache line invalidation for PUTs

4.7 Summary

After the previous chapter dealt with the synchronization of MPI’s one-sided commu-
nication on non-cache-coherent many-cores, this one discussed the communication
part on those platforms. Due to the consciously abandoned hardware support for
cache coherence, a software-based approach was developed for the SCC.

In the outcome, SCOSCo a concept that uses shared memory and realized coherence
transparently within the MPI synchronization calls was developed. With that, ac-
cording requirements were formulated which include the need for fast and selective
invalidation as well as the possibility for guaranteed, i.e. committed, memory store
operations.

Based on these general requirements, a careful discussion on memory types that match
the requirements was conducted. The SCC’s MPBT-WT memory-type was identified
to match those requirements.

Subsequently, a prototype implementation of SCOSCo was integrated in the MPICH-
based RCKMPI library. It exploits architectural features of the SCC, such as config-
urable lookup tables to define shared memory, an explicitly flushable Write Combine
Buffer, and the POPSHM software library for shared memory.

However, based on the experimental observations, a performance critical malfunction
in the SCC’s memory subsystem that affects the load operations on the chosen MPBT-
WT memory was documented. Using this memory for local application data was
therefore not considered. Nevertheless, when using this type along with SCOSCo
for storing information in remote memory, turns out to be beneficial. In terms of
bandwidth it is 2× to 5× faster than the SCC’s tuned message-based implementation
of one-sided communication. In terms of latency, an improvement of 1.4× to 2.7×
was observed.

163

4 Software-Managed Cache Coherence for MPI One-Sided Communication

Considering the application performance, the communication-intense NPB 3D-FFT
benchmark exhibited a significant improvement in runtime and performance in terms
of MFLOPS. This was due to a 5× reduction of communication compared to a two-
sided non-blocking implementation of the application. For the less communication-
intense cellular automaton application, such a performance gain was not observed
and the one-sided SCOSCo version shows nearly identical runtimes as a two-sided
version. However, compared to the message-based implementation of one-sided
communication, the runtime was halved. This shows that the SCOSCo approach can
deliver superior or at least comparable performance while managing cache coherence
in software.

To optimize the performance and assist implementations for future non-cache-coherent
systems, recommendations from the experiences on the SCC were concluded. These
primarily include the need for explicit write-backs to memory and invalidation of
cache lines. Especially a remote invalidation would support implementations of
software based coherence to great extend.

164

5 Conclusions and Outlook

This thesis focused the one-sided communication model and its efficient realization
on a shared-memory-based non-cache-coherent many-core CPU. It was discussed that
such systems are becoming relevant with the still increasing number of cores on a CPU,
the technical limits of cache coherence and the advent of large-scale shared-memory
systems.

One-sided communication does not rely on coherence and thus makes it an appropriate
choice as programming model for those platforms. Within this thesis, one-sided
communication was considered with focus on the Message Passing Interface standard.
Both essential aspects, i.e. synchronization and communication, were extensively
discussed in the progress of the thesis.

5.1 Results and Discussion

Chapter 3 presented the design of an efficient MPI general active target synchronization
scheme for the non-cache-coherent SCC. It was shown that schemes from coherent
shared memory architectures can be adopted to non-cache coherent ones. Despite
the lack of hardware-based coherence, shared memory can be efficiently used in
combination with uncached accesses to implement the synchronization. The efficiency
of that approach was proven by comparison to a tuned message-based implementation.
In the outcome, the shared memory solution could outperform the message-based
one in terms of synchronization latency by a factor of up to five.

As an additional benefit of the discussion, an existing classification scheme for GATS
implementations was extended. Together with the presented survey and classification
of contemporary implementations, the categorization provides a condensed overview
of best practices which might ease the development of future synchronization algo-
rithms. Further, the survey also revealed an erroneous scheme in a production MPI
library.

165

5 Conclusions and Outlook

Concerning the communication on a shared-memory nCC system, the software-based
management of cache coherence becomes a critical aspect. With SCOSCo, a concept
for maintaining the coherence with respect to the MPI standard was designed in
Chapter 4.

Requirements for a software-based approach were formulated. Based on those, an
appropriate choice of memory type and the cost of the required operations was
discussed. While being well-suited for the desired use-case, the selected memory type
turned out to provide only very low performance; an observation that was not made in
previous research but was confirmed by measurements and is supported by an involved
engineer. Nevertheless, the conducted experiments using adequate substitutes for the
memory type revealed significant performance improvements compared to the tuned
message-based MPI implementation on the Single-Chip Cloud Computer. For both
micro-benchmarks and two application workloads significant lower communication
costs were observed. In case of the presented 3D-FFT benchmark, a reduction by a
factor of up to five was achieved.

The presented results confirm that even with software-based cache coherence directly
accessed remote memory outperforms messaged-based transfers for which the SCC’s
hardware was originally designed for. In addition to these experimental results, explicit
flushes to memory along with local and remote cache line invalidation were identi-
fied as properties to support the presented SCOSCo approach in future many-core
architectures.

The aforementioned results show that the MPI notion of the one-sided communication
programming model can be efficiently supported on a nCC many-core architecture.
On a conceptual level the presented work might also be applied to other programming
environments that support OSC. UPC with its underlying GasNET library is a
possible target for adopting the SCOSCo approach.

Nevertheless, the results of this thesis do not demand to use OSC in all parallel
programs that are used on nCC systems. It has been shown in previous research
that "‘classic"’ two-sided communication and its implementation in middleware can
provide good application performance and scaling properties (cf. Figure 4.20 on
page 155). Thus, the choice of the programming and communication model is still
a task for the application programmer. With SCOSCo, it was shown that even on
non-cache-coherent many-core architectures one-sided communication can compete
with message passing (see cellular automaton in Section 4.4.5) and if the application fits
to the programming model even outperforms two-sided communication (see 3D-FFT
in Section 4.4.4).

166

5.2 Future Work

5.2 Future Work

The discussion of the process synchronization in Chapter 3 focused on the general
active target synchronization scheme from the MPI standard. An analysis of the
passive target synchronization scheme was left out (see Section 3.1.4). However, it
enables a more shared memory-like programming style, e.g. to facilitate programming
distributed data structures [91]. Both the process synchronization and the manage-
ment of the cache coherence are to be considered. GERSTENBERGER ET AL. [120]
present a scalable protocol for the passive target synchronization. An analysis of its
suitability for nCC architectures or an alternative scheme is required. In addition, the
requirements for the cache coherence need to be reconsidered since only access epoch
exists and the completion of remote accesses can be enforced during such an epoch (cf.
Section 3.1.4).

For the synchronization as well the allocation of window data and memory, atomic
operation on integers was employed. On the SCC, the only possibility to implement
this kind of access is the usage of the per-core test-and-set register. Different to
preceding works, no contention on this scarce resource was observed (cf. Section 3.5.4).
However, having only a single resource for atomic operations per core appears to be a
architectural drawback of the SCC’s architecture. Future work on the architecture of
many-core processors might focus on more sophisticated support for atomic operations
to provide synchronization primitives like atomic compare-and-swap or fetch-and-add
operations.

To analyze the performance impact of the proposed forced cache flush, a performance
study on processors where such operations are available (see Section 4.6) can be
conducted. With this, the benefits or drawback of such an operation in the context of
SCOSCo can be assessed.

It will be interesting to see if and how efficient the suggested enhancements (cf. Sec-
tion 4.6) are getting implemented in future platforms. Those would also provide
the opportunity to confirm the benefits of SCOSCo and the synchronization on
platforms other than the SCC.

167

A Employed MPICH test cases

The following enumerations list the unit test cases shipped with MPICH version 3.1.3
that were used to check the RCKMPI implementation for errors (cf. Section 4.1.2)
after applying the necessary fixes to get a working one-sided communication imple-
mentation. The lists shows the test case name and the number of processes MPICH’s
test suite uses respective outcome of the test. The list does not apply to the SCOSCo
extension.

A.1 Succeeded Test Cases

rma/winname (2), rma/allocmem (2), rma/putfence1 (4), rma/putfidx (4), rma/get-
fence1 (4), rma/accfence1 (4), rma/adlb_mimic1 (3), rma/accfence2 (4), rma/putp-
scw1 (4), rma/accpscw1 (4), rma/getgroup (4), rma/transpose1 (2), rma/transpose2 (2),
rma/transpose3 (2), rma/transpose3_shm (2), rma/transpose5 (2), rma/transpose6 (1),
rma/transpose7 (2), rma/test1 (2), rma/test2 (2), rma/test2_shm (2), rma/test3 (2),
rma/test3_shm (2), rma/test4 (2), rma/test5 (2), rma/lockcontention (3), rma/lock-
contention2 (4), rma/lockcontention2 (8), rma/lockcontention3 (8), rma/lockopts (2),
rma/transpose4 (2), rma/fetchandadd (7), rma/fetchandadd_tree (7), rma/wintest (2),
rma/wintest_shm (2), rma/contig_displ (1), rma/test1_am (2), rma/test2_am (2),
rma/test2_am_shm (2), rma/test3_am (2), rma/test3_am_shm (2), rma/test4_am (2),
rma/test5_am (2), rma/fetchandadd_am (7), rma/fetchandadd_tree_am (7), rma/acc-
fence2_am (4), rma/test1_dt (2), rma/nullpscw (7), rma/nullpscw_shm (7), rma/at-
trorderwin (1), rma/wincall (2), rma/baseattrwin (1), rma/fkeyvalwin (1), rma/-
selfrma (1), rma/mixedsync (4), rma/epochtest (4), rma/locknull (2), rma/rman-
ull (2), rma/rmazero (2), rma/strided_acc_indexed (2), rma/strided_acc_onelock (2),
rma/strided_acc_subarray (2), rma/strided_get_indexed (2), rma/strided_putget_-
indexed (4), rma/strided_putget_indexed_shared (4), rma/strided_getacc_indexed (4),
rma/strided_getacc_indexed_shared (4), rma/window_creation (2), rma/contention_-
put (4), rma/contention_putget (4), rma/put_base (2), rma/put_bottom (2), rma/-
win_flavors (4), rma/manyrma2 (2), rma/manyrma2_shm (2), rma/manyrma3 (2),

169

A Employed MPICH test cases

rma/win_shared_noncontig_put (4), rma/win_zero (4), rma/win_dynamic_acc (4),
rma/get_acc_local (1), rma/linked_list (4), rma/linked_list_fop (4), rma/compare_-
and_swap (4), rma/win_info (4), rma/pscw_ordering (4), rma/pscw_ordering_shm
(4), rma/badrma (2), rma/acc-loc (4), rma/fence_shm (2), rma/win_shared_zero-
byte (4), rma/win_shared_put_flush_get (4), errors/rma/winerr (2), errors/rma/win-
err2 (2), errors/rma/win_sync_unlock (2), errors/rma/win_sync_free_pt (2), errors/-
rma/win_sync_free_at (2), errors/rma/win_sync_complete (2), errors/rma/win_-
sync_lock_at (2), errors/rma/win_sync_lock_pt (2), errors/rma/win_sync_nested (2),
errors/rma/win_sync_op (2)

A.2 Failed Test Cases

rma/win_shared (4), rma/win_shared_noncontig (4), rma/fetch_and_op_char (4),
rma/fetch_and_op_short (4), rma/fetch_and_op_int (4), rma/fetch_and_op_long (4),
rma/fetch_and_op_double (4), rma/fetch_and_op_long_double (4), rma/get_accu-
mulate_double (4), rma/get_accumulate_double_derived (4), rma/get_accumulate_-
int (4), rma/get_accumulate_int_derived (4), rma/get_accumulate_long (4), rma/get_-
accumulate_long_derived (4), rma/get_accumulate_short (4), rma/get_accumulate_-
short_derived (4), rma/flush (4), rma/reqops (4), rma/req_example (4), rma/req_-
example_shm (4), rma/linked_list_lockall (4), rma/linked_list_bench_lock_all (4),
rma/linked_list_bench_lock_excl (4), rma/linked_list_bench_lock_shr (4), rma/link-
ed_list_bench_lock_shr_nocheck (4), rma/mutex_bench (4), rma/mutex_bench_-
shared (4), rma/mutex_bench_shm (4), rma/rma-contig (2), rma/get-struct (2), rma/-
at_complete (2)

170

B Source Codes Extracts

In the following source code extracts for the employed benchmarks are presented.

B.1 Load and Store Latencies

1for (i = 0; i < num_tries; i++) {

2prefetch((char*) src, size);

3times[i] = rdtsc();

4
5asm volatile (

6"pushl %%eax;\n\t"

7"pushl %%ebx;\n\t"

8"pushl %%ecx;\n\t"

9"1:"

10#ifdef READ

11"movl (%%eax), %%ebx;\n\t" /* read */

12#else

13"movl %%ebx, (%%eax);\n\t" /* write */

14#endif

15"addl $4, %%eax;\n\t"

16"loop 1b;\n\t"

17"popl %%ecx;\n\t"

18"popl %%ebx;\n\t"

19"popl %%eax;\n\t"

20/* output: none */

21:

22/* input: src -> EAX, size/4 -> ECX */

23: "a" (src),

24"c" (size/4)

25: "memory"

26/* no clobber, as we push registers */

27);

28times[i] = rdtsc() - times[i];

29};

171

B Source Codes Extracts

This is the essential loop to measure the latency of load and store operations for
different memory types. Different version were compiled to get separate binaries for
load and stores operations. The memory buffer (src) is allocated dynamically and
prefetched before each iteration (line 2).

B.2 GATS Synchronization Benchmark

The GATS synchronization benchmark is used in Chapter 3 to asses the pure synchro-
nization latency. The times for synchronization calls in each loop iteration is stored
in array. I/O operations are omitted as they generate more traffic on the on-chip
network, compared to storing the obtained timings in the data.

1 for (i = 0; i < NUM_REPS; i++) {

2 if (comm_rank == 0) {

3 /* origin */

4 ta = MPI_Wtime();

5 MPI_Win_start(start_group, 0, win);

6 tb = MPI_Wtime();

7 times_start[i] = tb - ta;

8
9 /* access epoch (nop) */

10
11 ta = MPI_Wtime();

12 MPI_Win_complete(win);

13 tb = MPI_Wtime();

14 times_complete[i] = tb - ta;

15 } else {

16 /* target */

17 ta = MPI_Wtime();

18 MPI_Win_post(post_group, 0, win);

19 tb = MPI_Wtime();

20 times_post[i] = tb - ta;

21
22 /* exposure epoch (nop) */

23
24 ta = MPI_Wtime();

25 MPI_Win_wait(win);

26 tb = MPI_Wtime();

27 times_wait[i] = tb - ta;

28 }

29 }

172

B.3 Cellular Automaton

B.3 Cellular Automaton

B.3.1 Two-Sided Time Step Kernel

This is a pseudo-code version for kernel of the two-sided version of the cellular au-
tomaton. Note that the ghost zone data for the first iteration can either be transferred
before the loop or may be computed locally during the initialization phase. For the
thesis, the former variant was chosen and an MPI_Sendrecv call preceeds the loop.
Timing using MPI_WTIME is performed immediately before and after the shown loop.

1for (i = 0; i < its; i++) {

2/* post receive buffer asap */

3MPI_Irecv(new_local_domain[0], ..., &req[0]);

4MPI_Irecv(new_local_domain[num_local_lines + 1], ..., &req[1]);

5
6/* update boundaries of local domain */

7ca_simulate(old_local_domain, new_local_domain, 1, 1);

8ca_simulate(old_local_domain, new_local_domain, num_local_lines, 1);

9
10/* transfer buffer asap */

11MPI_Isend(new_loocal_domain[1], ..., &req[2]);

12MPI_Isend(new_loocal_domain[num_local_lines], ..., &req[3]);

13
14/* update inner part of local domain */

15ca_simulate(old_local_domain, new_local_domain, 2, 1);

16
17swap(old_local_domain, new_local_domain);

18
19/* synchronize */

20MPI_Waitall(4, req, ...);

21}

B.3.2 One-Sided Time Step Kernel

For the one-sided version a window for the upper and lower bound in each of the
two arrays for the local compute domain are used. Similar to the two-sided version,
the initial ghost zone exchange is performed before the main loop starts. Timing is
performed as in the two-sided version (see above).

173

B Source Codes Extracts

1 for (i = 0; i < its; i++) {

2 wnd_idx = (i + 1) % 2;

3
4 /* compute boundaries */

5 ca_simulate(old_local_domain, new_local_domain, 1, 1);

6 ca_simulate(old_local_domain, new_local_domain, num_local_lines, 1);

7
8 /* start exposure and access epoch */

9 MPI_Win_post(nb_group, 0, win_upper_bound[wnd_idx]);

10 MPI_Win_post(nb_group, 0, win_lower_bound[wnd_idx]);

11
12 MPI_Win_start(nb_group, 0, win_upper_bound[wnd_idx]);

13 MPI_Win_start(nb_group, 0, win_lower_bound[wnd_idx]);

14
15 /* transfer of boundaries */

16 MPI_Put(new_local_domain[1], ..., win_lower_bound[wnd_idx]);

17 MPI_Put(new_local_domain[lines], ..., win_upper_bound[wnd_idx]);

18
19 /* update inner part of local domain */

20 ca_simulate(old_local_domain, new_local_domain, 2, 1);

21
22 /* close epochs */

23 MPI_Win_complete(win_upper_bound[wnd_idx]);

24 MPI_Win_complete(win_lower_bound[wnd_idx]);

25
26 MPI_Win_wait(win_upper_bound[wnd_idx]);

27 MPI_Win_wait(win_lower_bound[wnd_idx]);

28
29 swap(old_local_domain, new_local_domain);

30 }

B.4 Communication Patterns

The following two graphics illustrate the communication patterns of the cellular
automaton and the 3D fast Fourier transform when using 32 processes for each of the
two application. The color of the rectangle the intersection of sender and receiver
depicts the intensity of the communication between those two processes in terms of
uni-directional transferred application data. The darker the gray level, the more data
is sent. The scale is relative to the overall maximum.

174

B.4 Communication Patterns

ra
nk

 of
 re

ce
ive

r (
ta

rg
et

)

rank of sender (origin)

 0

 8

 16

 24

 0 8 16 24
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

MB
 tr

an
sfe

rre
d

Figure B.1: Total amount of transferred data for the CA using 50 iterations.

ra
nk

 of
 re

ce
ive

r (
ta

rg
et

)

rank of sender (origin)

 0

 8

 16

 24

 0 8 16 24
 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

MB
 tr

an
sfe

rre
d

Figure B.2: Total amount of transferred data for the 3D-FFT (class S, 32 processes).

175

C Compute Cluster Properties

The following table shows the system properties and parameters of the InfiniBand-
based compute cluster used for the scaling experiments in Section 4.1.2. The cluster
consists of 27 heterogenous node, plus one master and one management node, con-
nected to a single 36-port switch. The Gigabit Ethernet management network was
not used for communication within the scope of this thesis.

property value

system Dell PowerEdge R610
processor 2x Intel Xeon E5520 (Nehalem micro-architecture)
data caches L1: 16 KB, L2: 256 KB, L3: 8 MB
base frequency 2.27 GHz, TurboBoost and HyperThreading disabled
main memory 48 GB DDR3 1066 MHz
InfiniBand HCA Mellanox MHGH19-XTC ConnectXZ (20 Gb/s)

operating system Scientific Linux 5.11
Linux kernel version 2.6.18-406.el5
C compiler GCC C Compiler, version 4.9.1
MPI library Open MPI 1.8.2

InfiniBand switch Mellanox MTS3600R-1UNC

177

List of Figures

1.1 Growth of processor frequency since 1978 2
1.2 Schematic overview of a multi-core CPU with shared last level cache. 3

2.1 Messages in a QuickPath-connected system of multi-core processors . 13
2.2 Overview of the tiled SCC architecture. 17
2.3 LUT-based translation of physical to system addresses by MIU. 19
2.4 Memory address translations on the SCC 22
2.5 Semantics of load and store operations for the SCC’s memory types . 23
2.6 POPSHM pages and database inside the legacy shared memory. . . . 29
2.7 MPI processes, communicators, and communication within 32
2.8 RCKMPI’s original layout for the SCC’s Message Passing Buffers. . . 34
2.9 Asymmetric allocation of windows and the window object. 39

3.1 Synchronization styles for MPI one-sided communication 54
3.2 Active target synchronization in MPI OSC programs. 55
3.3 Layered software architecture of MPICH. 65
3.4 Sequence diagram for GATS synchronization of MPICH 66
3.5 Software architecture of Open MPI . 69
3.6 Erroneous synchronization scheme of Open MPI. 72
3.7 Free space ring buffer protocol of FoMPI 74
3.8 Overview of FoMPI’s general active target synchronization 75
3.9 Synchronization scheme of NEON. 78
3.10 Memory transfers for RCKMPI’s synchronization messages. 83
3.11 Per-process/window data structures for GATS on the SCC. 87
3.12 Stencil application speedup with centralized window database. 91
3.13 Stencil application performance with distributed window database. . 93
3.14 Sequence diagram for the SCC implementation of GATS. 95
3.15 Scaling of GATS functions on the SCC. 104
3.16 Performance comparison for general active target synchronization . . 107

4.1 Communication operations for MPI one-sided communication. . . . 111
4.2 MPI’s separate and unified memory model. 113

179

List of Figures

4.3 Message reception and delivery inside MPICH. 115
4.4 Message flow of RCKMPI for the OSU latency benchmark. 117
4.5 Performance of RCKMPI’s two- and one-sided communication 119
4.6 Cellular automaton scaling using one and two-sided communication. 120
4.7 Using LUTs to define shared memory for windows. 123
4.8 Cacheing issues for shared-memory-based one-sided communication 124
4.9 Matching of release consistency operations to MPI’s GATS calls . . . 125
4.10 POPSHM data and exchanged offset enable access to remote windows. 133
4.11 Store bandwidth of the SCC’s memory types with a warm cache. . . 137
4.12 Load bandwidth of the SCC’s memory types with a warm cache. . . 138
4.13 Load bandwidth for different page table settings. 139
4.14 Results for the OSU one-sided PUT bandwidth benchmark. 142
4.15 Results for the OSU one-sided PUT latency benchmark. 143
4.16 Decomposition and communication of the 3D-FFT 146
4.17 Communication variants of the 3D FFT benchmark 147
4.18 Runtime breakdown of the 3D FFT benchmark 150
4.19 Stencil and domain decomposition of the cellular automaton. 151
4.20 Strong scaling of the cellular automaton application. 155
4.21 Time to compute the CA’s local domain using the whole SCC. 156
4.22 Time for communication and synchronization of the CA. 158
4.23 Local selective cache line invalidation for GETs. 162
4.24 Remote selective cache line invalidation for PUTs 163

B.1 Total amount of transferred data for the CA using 50 iterations. . . . 175
B.2 Total amount of transferred data for the 3D-FFT (class S, 32 processes). 175

180

List of Tables

2.1 Default LUT for a SCC system with 32 GB RAM 28

3.1 Classification of synchronization for MPI one-sided communication. 62
3.2 Overview of the presented MPI GATS protocols. 81
3.3 Employed software components for the experimental evaluation. . . 100
3.4 Selected metrics of the POST and START operations. 105

4.1 Parameters of the NAS FFT benchmark classes. 145
4.2 MFLOPS performance of the NPB FFT benchmark. 149
4.3 Runtime breakdown of the cellular automaton application. 157

Listings

2.1 Example for window creation and performing RMA. 40

3.1 Example for usage of MPI’s fence synchronization. 57
3.2 Example of MPI general active target synchronization 58
3.3 Example of passive target synchronization in MPI 60
3.4 Pseudo code for NEON API usage. 76
3.5 Pseudocode of the GATS microbenchmark. 102

4.1 Coherence management implementation in the GATS routines. . . . 135

B.1 Load and store bandwidth benchmark . 171
B.2 GATS synchronization micro-benchmark 172
B.3 Two-sided kernel of the cellular automaton 173
B.4 Two-sided kernel of the cellular automaton 174

181

List of Abbrevations

API application programming interface . 31
CA cellular automaton . 44
DCM definitely cacheable memory . 23
HPC High Performance Computing . 9
GATS general active target synchronization . 57
LSM legacy shared memory . 27
LUT lookup table . 19
MIU Mesh Interface Unit . 18
MPB Message Passing Buffer . 21
MPBT message passing buffer type . 24
MPI Message Passing Interface. .31
NCM non-cacheable memory type . 23
nCC non-cache-coherent . 15
NUMA non-uniform memory access . 10
OSC one-sided communication . 36
RC release consistency . 11
POPSHM privately-owned public shared memory . 29
PGAS partitioned global address space .37
RDMA Remote Direct Memory Access .66
RMA remote memory access . 39
SCC Single-Chip Cloud Computer . 16
SPMD single programm, multiple data . 30
TSR test-and-set register . 25
WCB Write Combine Buffer . 22

183

Index

access epoch, 59, 61, 92, 119, 133, 166
active target communication, 58
assertion, 58, 166

Barrelfish, 48
BSPlib, 40

cache, 1, 10, 118
cache coherence, 2, 11, 17, 44, 52, 130
cellular automaton, 48, 95, 125, 158
Chapel, 40
CL1INVMB, 26, 135, 141
Co-Array Fortran, 40
collective operation, 36, 41, 98
communication operations, 39, 42, 116
communicator, 34, 36, 41, 63
completion counter, 70, 74, 78, 92, 97
consistency, 10, 44, 131
CSP, 33

DCM, 24, 31, 93, 134, 145, 160
deferred synchronization, 65, 74, 87
directory protocol, 12

epoch, 59
EUROSERVER, 3, 16
exposure epoch, 59, 62, 71, 120, 133

fast Fourier transform, 151
fence synchronization, 60, 61
FoMPI, 77, 91, 97
free space protocol, 78

GATS, 61, 85, 91, 107, 137
general active target synchronization,

see GATS

immediate synchronization, 66, 75, 76,
78, 80, 86

iRCCE, 36, 48

Knights Landing, 3, 16

legacy shared memory, see LSM
Linux, 28, 47, 89, 93
lookup table, see LUT
LSM, 29, 32, 45, 94, 140
LUT, 20, 27, 29, 39, 93, 130, 141, 171

match list, 77, 97
match vector, 92, 100, 101
memory consistency, 10
memory model, 10, 118, 131
MESH, 51
mesh interface unit, see MIU
MESI, 12
message passing buffer, see MPB
Message Passing Interface

see MPI, 34
MetalSVM, 47, 129
MIU, 17, 20, 23
ML, 46
MPB, 23, 26, 29, 31, 36, 37, 88, 121
MPBT, 26, 31, 38, 45, 135, 139, 145
MPI, 34, 37, 40, 41, 57, 116, 118

185

Index

MPI/SX, 91, 128
MPICH, 34, 68, 73, 77, 85, 87, 121, 127,

143
MVAPICH, 34, 71, 77, 80, 85, 91

NCM, 25, 31, 94, 134, 145
NEON, 81, 86
non-cacheable memory, see NCM

one-sided communication, 38, 41, 116,
121, 151

Open MPI, 34, 73, 126
OpenMP, 33
OpenSHMEM, 40
origin process, 42, 63, 133
OSU benchmarks, 106, 148

passive target synchronization, 63, 175
PGAS, 40, 51, 64
Polaris, 17
POPSHM, 31, 38, 52, 139, 167
POSIX threads, 33
post group, 62, 100
private window copy, 118, 120, 132
process group, 34, 63
programming model, 32
PSCW, see GATS
public window copy, 118, 120, 130, 132

QuickPath, 3, 14

rank, 34, 42
RCCE, 36
RCKMPI, 37, 87, 97, 104, 111, 121, 126,

142, 162
relaxed consistency, 11
release consistency, 11, 44, 131, 137
Rhymes, 48
RockyVisor, 48

Saches, 49

SCC, 17
memory subsystem, 20
memory types, 23, 134, 143, 160

SCC-MPICH, 127
SCOSCo, 131
semantics, 119
separate memory model, 118, 131, 132
sequential consistency, 11
shared memory, 1, 22
shared virtual memory, 47, 48
Single-Chip Cloud Computer, see SCC
SKaMPI, 106, 127
snooping protocol, 12
SPMD, 36
start group, 62, 101, 102
SX-5, 91, 128
synchronization, 34, 57, 95
synchronization classes, 65
system address, 20, 130

tag, 33, 35
target process, 42, 63, 64, 133
The Machine, 3, 16
total store order model, 11
trigger-only synchronization, 67, 82,

91, 101
TSR, 27, 99, 100, 175
two-sided communication, 35, 151

unified memory model, 118, 128
UPC, 40, 151, 174

WCB, 24, 25, 45, 135, 171
window, 41, 46, 116
window database, 94, 97, 98, 139, 170
window object, 41, 58
write combine buffer, see WCB
write section, 37, 127

186

Bibliography

Author’s Publications

[1] Steffen Christgau, Johannes Spazier, and Bettina Schnor. A cross-platform
performance and scalability analysis of the tsunami simulation EasyWave on
different multi-core architectures. Tech. rep. TR-2015-01. ISSN: 0946-7580. Pots-
dam, Germany: University Potsdam, Institute of Computer Science, 2015.

[2] Steffen Christgau and Bettina Schnor. „Awareness of MPI Virtual Process
Topologies on the Single-Chip Cloud Computer“. In: 26th IEEE International
Parallel and Distributed Processing Symposium Workshops & PhD Forum, IPDPS
2012, Shanghai, China, May 21-25, 2012, HIPS Workshop. IEEE Computer
Society, 2012, pp. 529–536. DOI: 10.1109/IPDPSW.2012.71.

[3] Steffen Christgau and Bettina Schnor. „Synchronization of One-Sided MPI
Communication on a Non-Cache Coherent Many-Core System“. In: ARCS
2016 - 29th International Conference on Architecture of Computing Systems,
Workshop Proceedings, April 4-7, 2016, Nuremberg, Friedrich-Alexander Univer-
sity, Erlangen-Nürnberg. Ed. by Ana Lucia Varbanescu. VDE Verlag / IEEE
Xplore, 2016.

[4] Steffen Christgau and Bettina Schnor. „One-Sided Communication in RCK-
MPI for the Single-Chip Cloud Computer“. In: MARC Symposium. Ed. by
Eric Noulard. ONERA, The French Aerospace Lab, 2012, pp. 19–23.

[5] Steffen Christgau and Bettina Schnor. „Software-managed Cache Coherence
for fast One-Sided Communication“. In: Proceedings of the 7th International
Workshop on Programming Models and Applications for Multicores and Many-
cores, PMAM@PPoPP 2016, Barcelona, Spain, March 12-16, 2016. Ed. by Pavan
Balaji and Kai-Cheung Leung. ACM, 2016, pp. 69–77. DOI: 10.1145/2883404.
2883409.

187

http://dx.doi.org/10.1109/IPDPSW.2012.71
http://dx.doi.org/10.1145/2883404.2883409
http://dx.doi.org/10.1145/2883404.2883409

Bibliography

[6] Steffen Christgau. „Optimierung von Anwendungen auf dem Single-Chip
Cloud Computer“. Master’s Thesis. Potsdam: Universität Potsdam, Nov. 2011.
URL: http://www.cs.uni-potsdam.de/bs/research/student-thesis/thesis/
Christgau_2011/MaThesis.pdf.

[7] Johannes Spazier, Steffen Christgau, and Bettina Schnor. „Automatic gener-
ation of parallel C code for stencil applications written in MATLAB“. In:
Proceedings of the 3rd ACM SIGPLAN International Workshop on Libraries,
Languages, and Compilers for Array Programming, ARRAY@PLDI 2016, Santa
Barbara, CA, USA, June 14, 2016. Ed. by Martin Elsman, Clemens Grelck,
Andreas Klöckner, and David A. Padua. ACM, 2016, pp. 47–54. DOI: 10.
1145/2935323.2935329.

[8] Bettina Schnor and Steffen Christgau. Tagungsband – GI/ITG KuVS Fachge-
spräch "Sensornetze". Tech. rep. ISSN 0946-7580 TR-2014-1. Universität Pots-
dam, Institut für Informatik, 2014.

[9] Steffen Christgau et al. „A comparison of CUDA and OpenACC: Accelerat-
ing the Tsunami Simulation EasyWave“. In: ARCS 2014 - 27th International
Conference on Architecture of Computing Systems, Workshop Proceedings, Febru-
ary 25-28, 2014, Luebeck, Germany, University of Luebeck, Institute of Computer
Engineering. Ed. by Walter Stechele and Thomas Wild. VDE Verlag / IEEE
Xplore, 2014, pp. 1–5.

[10] Steffen Christgau, Simon Kiertscher, and Bettina Schnor. „The Benefit of
Topology Awareness of MPI Applications on the SCC“. In: MARC Symposium.
Ed. by Diana Göhringer, Michael Hübner, and Jürgen Becker. KIT Scientific
Publishing, Karlsruhe, 2011, pp. 47–51.

[11] Philipp Mahr, Steffen Christgau, Christian Haubelt, and Christophe Bobda.
„Integrated Temporal Planning, Module Selection and Placement of Tasks for
Dynamic Networks-on-Chip“. In: IPDPS Workshops. IEEE, 2011, pp. 258–
263.

[12] Steffen Christgau and Bettina Schnor. „Exploring One-Sided Communication
and Synchronization on a non-Cache-Coherent Many-Core Architecture“.
In: Concurrency and Computation: Practice and Experience 29 (2017). invited
paper for special issue, in review.

[13] Johannes Spazier, Steffen Christgau, and Bettina Schnor. „Efficient Paralleliza-
tion of MATLAB Stencil Applications for Multi-core Clusters“. In: Proceedings
of the Sixth International Workshop on Domain-Specific Languages and High-
Level Frameworks for HPC. WOLFHPC ’16. Salt Lake City, Utah: IEEE Press,
2016, pp. 20–29. DOI: 10.1109/WOLFHPC.2016.7.

188

http://www.cs.uni-potsdam.de/bs/research/student-thesis/thesis/Christgau_2011/MaThesis.pdf
http://www.cs.uni-potsdam.de/bs/research/student-thesis/thesis/Christgau_2011/MaThesis.pdf
http://dx.doi.org/10.1145/2935323.2935329
http://dx.doi.org/10.1145/2935323.2935329
http://dx.doi.org/10.1109/WOLFHPC.2016.7

References

References

[14] John L. Hennessy and David A. Patterson. Computer Architecture - A Quanti-
tative Approach (5. ed.) Morgan Kaufmann, 2012.

[15] Johannes Hofmann, Jan Treibig, Georg Hager, and Gerhard Wellein. „Perfor-
mance Engineering for a Medical Imaging Application on the Intel Xeon Phi
Accelerator“. In: ARCS 2014 - 27th International Conference on Architecture
of Computing Systems, Workshop Proceedings, February 25-28, 2014, Luebeck,
Germany, University of Luebeck, Institute of Computer Engineering. Ed. by
Walter Stechele and Thomas Wild. VDE Verlag / IEEE Xplore, 2014, pp. 1–8.

[16] Bryan Veal and Annie P. Foong. „Performance scalability of a multi-core web
server“. In: Proceedings of the 2007 ACM/IEEE Symposium on Architecture
for Networking and Communications Systems, ANCS 2007, Orlando, Florida,
USA, December 3-4, 2007. Ed. by Raj Yavatkar, Dirk Grunwald, and K. K.
Ramakrishnan. ACM, 2007, pp. 57–66. DOI: 10.1145/1323548.1323562.

[17] Sylvain Genevès. An Analysis of Web Servers Architectures Performances on
Commodity Multicores. Research Report. June 2012. URL: https://hal.inria.
fr/hal-00674475/file/paper_submitted.pdf.

[18] Sabela Ramos and Torsten Hoefler. „Modeling communication in cache-
coherent SMP systems: a case-study with Xeon Phi“. In: The 22nd Interna-
tional Symposium on High-Performance Parallel and Distributed Computing,
HPDC’13, New York, NY, USA - June 17 - 21, 2013. Ed. by Manish Parashar,
Jon B. Weissman, Dick H. J. Epema, and Renato J. O. Figueiredo. ACM, 2013,
pp. 97–108. DOI: 10.1145/2462902.2462916.

[19] Timothy Prickett Morgan. More Knights Landing Xeon Phi Secrets Unveiled.
http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-
phi-secrets-unveiled/ last accessed 2015-11-02. Mar. 2015.

[20] Jason Howard et al. „A 48-Core IA-32 message-passing processor with DVFS
in 45nm CMOS“. In: IEEE International Solid-State Circuits Conference, ISSCC
2010, Digest of Technical Papers, San Francisco, CA, USA, 7-11 February, 2010.
IEEE, 2010, pp. 108–109. DOI: 10.1109/ISSCC.2010.5434077.

[21] Jake Edge. A look at The Machine. online. https://lwn.net/Articles/655437/,
last accessed 2017-01-06. Aug. 2015.

189

http://dx.doi.org/10.1145/1323548.1323562
https://hal.inria.fr/hal-00674475/file/paper_submitted.pdf
https://hal.inria.fr/hal-00674475/file/paper_submitted.pdf
http://dx.doi.org/10.1145/2462902.2462916
http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/
http://www.nextplatform.com/2015/03/25/more-knights-landing-xeon-phi-secrets-unveiled/
http://dx.doi.org/10.1109/ISSCC.2010.5434077
https://lwn.net/Articles/655437/

Bibliography

[22] Yves Durand et al. „EUROSERVER: Energy Efficient Node for European
Micro-Servers“. In: 17th Euromicro Conference on Digital System Design, DSD
2014, Verona, Italy, August 27-29, 2014. online http://paul-carpenter.org/
durand2014dsd.pdf, last accessed 2017-01-06. IEEE Computer Society, 2014,
pp. 206–213. DOI: 10.1109/DSD.2014.15.

[23] C. A. R. Hoare. „Communicating Sequential Processes“. In: Communications
of the ACM 21.8 (1978), pp. 666–677. DOI: 10.1145/359576.359585.

[24] András Vajda. Programming Many-Core Chips. 1st edition. Springer Publishing
Company, Incorporated, 2011.

[25] Gudula Rünger and Thomas Rauber. Parallel Programming - for Multicore and
Cluster Systems; 2nd Edition. Springer, 2013. DOI: 10.1007/978-3-642-37801-0.

[26] Kai Hwang and Zhiwei Xu. Scalable Parallel Computing: Technology, Architec-
ture, Programming. New York, NY, USA: McGraw-Hill, Inc., 1998.

[27] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory
Consistency and Cache Coherence. Synthesis Lectures on Computer Archi-
tecture. Morgan & Claypool Publishers, 2011. DOI: 10 . 2200/S00346E -
D1V01Y201104CAC016.

[28] Leslie Lamport. „How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs“. In: IEEE Trans. Computers 28.9 (1979),
pp. 690–691. DOI: 10.1109/TC.1979.1675439.

[29] Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and
Magnus O. Myreen. „x86-TSO: a rigorous and usable programmer’s model for
x86 multiprocessors“. In: Communications of the ACM 53.7 (2010), pp. 89–97.
DOI: 10.1145/1785414.1785443.

[30] Kourosh Gharachorloo et al. „Memory Consistency and Event Ordering in
Scalable Shared-Memory Multiprocessors“. In: Proceedings of the 17th Annual
International Symposium on Computer Architecture. Seattle, WA, June 1990.
Ed. by Jean-Loup Baer, Larry Snyder, and James R. Goodman. ACM, 1990,
pp. 15–26. DOI: 10.1145/325164.325102.

[31] David Mosberger. „Memory Consistency Models“. In: Operating Systems
Review 27.1 (1993), pp. 18–26. DOI: 10.1145/160551.160553.

[32] Daniel Molka, Daniel Hackenberg, Robert Schöne, and Wolfgang E. Nagel.
„Cache Coherence Protocol and Memory Performance of the Intel Haswell-
EP Architecture“. In: 44th International Conference on Parallel Processing,
ICPP 2015, Beijing, China, September 1-4, 2015. IEEE Computer Society, 2015,
pp. 739–748. DOI: 10.1109/ICPP.2015.83.

190

http://paul-carpenter.org/durand2014dsd.pdf
http://paul-carpenter.org/durand2014dsd.pdf
http://dx.doi.org/10.1109/DSD.2014.15
http://dx.doi.org/10.1145/359576.359585
http://dx.doi.org/10.1007/978-3-642-37801-0
http://dx.doi.org/10.2200/S00346E-D1V01Y201104CAC016
http://dx.doi.org/10.2200/S00346E-D1V01Y201104CAC016
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/1785414.1785443
http://dx.doi.org/10.1145/325164.325102
http://dx.doi.org/10.1145/160551.160553
http://dx.doi.org/10.1109/ICPP.2015.83

References

[33] Avinash Sodani et al. „Knights Landing: Second-Generation Intel Xeon Phi
Product“. In: IEEE Micro 36.2 (2016), pp. 34–46. DOI: 10.1109/MM.2016.25.

[34] Intel. An Introduction to the Intel QuickPath Interconnect. online. http://
www.intel.de/content/dam/doc/white-paper/quick-path- interconnect-
introduction-paper.pdf, last accessed 2017-01-18. Jan. 2009.

[35] Alain Greiner. „Tsar: a scalable, shared memory, many-cores architecture with
global cache coherence“. In: 9th International Forum on Embedded MPSoC
and Multicore (MPSoC’09). Vol. 15. slides, online: http://www.mpsoc-forum.
org/previous/2009/slides/greiner.pdf, last accessed 2017-01-19. 2009.

[36] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. „Why On-chip Cache
Coherence is Here to Stay“. In: Commun. ACM 55.7 (July 2012), pp. 78–89.
DOI: 10.1145/2209249.2209269.

[37] Thomas J. Ashby, Pedro Diaz, and Marcelo Cintra. „Software-Based Cache
Coherence with Hardware-Assisted Selective Self-Invalidations Using Bloom
Filters“. In: IEEE Trans. Computers 60.4 (2011), pp. 472–483. DOI: 10.1109/
TC.2010.155.

[38] Michael Feldman. HPE Unveils Prototype of The Machine. online https://www.
top500.org/news/hpe-unveils- prototype-of- the-machine/, last accessed
2017-01-19. Dec. 2016.

[39] Curt Hopkins. An Oral History of The Machine—Chapter Five: Hardware.
online. https ://community.hpe.com/t5/Behind- the- scenes - Labs/An-
Oral-History-of-The-Machine-Chapter-Five-Hardware/ba-p/6918755, last
accessed 2017-01-19. Nov. 2016.

[40] John Goodacre. Scaling Mobile Compute to the Data Center. online. keynote
talk at 26th International Symposium on Computer Architecture and High
Performance Computing, http://sbac.lip6.fr/2014/GoodacreKeynote.pdf,
last accessed 2017-01-20. Oct. 2014.

[41] Jim Held, Jerry Bautista, and Sean Koehl. From a Few Cores to Many: A Tera-
scale Computing Research Overview. online. http://www.intel.com/content/
dam/www/public/us/en/documents/technology-briefs/intel- labs- tera-
scale-research-paper.pdf last accessed 2015-11-24. 2006.

[42] Sriram R. Vangal et al. „An 80-Tile 1.28TFLOPS Network-on-Chip in 65nm
CMOS“. In: 2007 IEEE International Solid-State Circuits Conference, ISSCC
2007, Digest of Technical Papers, San Francisco, CA, USA, February 11-15, 2007.
IEEE, 2007, pp. 98–589. DOI: 10.1109/ISSCC.2007.373606.

191

http://dx.doi.org/10.1109/MM.2016.25
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.intel.de/content/dam/doc/white-paper/quick-path-interconnect-introduction-paper.pdf
http://www.mpsoc-forum.org/previous/2009/slides/greiner.pdf
http://www.mpsoc-forum.org/previous/2009/slides/greiner.pdf
http://dx.doi.org/10.1145/2209249.2209269
http://dx.doi.org/10.1109/TC.2010.155
http://dx.doi.org/10.1109/TC.2010.155
https://www.top500.org/news/hpe-unveils-prototype-of-the-machine/
https://www.top500.org/news/hpe-unveils-prototype-of-the-machine/
https://community.hpe.com/t5/Behind-the-scenes-Labs/An-Oral-History-of-The-Machine-Chapter-Five-Hardware/ba-p/6918755
https://community.hpe.com/t5/Behind-the-scenes-Labs/An-Oral-History-of-The-Machine-Chapter-Five-Hardware/ba-p/6918755
http://sbac.lip6.fr/2014/GoodacreKeynote.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/intel-labs-tera-scale-research-paper.pdf
http://dx.doi.org/10.1109/ISSCC.2007.373606

Bibliography

[43] Jerry Bautista. Tera-scale Computing and Interconnect Challenges – 3D Stacking
Considerations. Online. http://www.hotchips.org/wp-content/uploads/hc_
archives/hc20/1_Sun/HC20.24.130.pdf, last accessed 2015-11-24. 2007.

[44] Timothy G. Mattson, Rob F. Van der Wijngaart, and Michael A. Frumkin.
„Programming the Intel 80-core network-on-a-chip terascale processor“. In:
Proceedings of the ACM/IEEE Conference on High Performance Computing, SC
2008, November 15-21, 2008, Austin, Texas, USA. IEEE/ACM, 2008, p. 38.
DOI: 10.1145/1413370.1413409.

[45] Theodore Kubaska et al. SCC External Architecture Specification (EAS). Intel
Labs. Nov. 2010.

[46] The SCC Programmer’s Guide. Revision 1.0. Intel Labs. Jan. 2012.

[47] Patrick Cichowski, Jörg Keller, and Christoph W. Kessler. „Modelling Power
Consumption of the Intel SCC“. In: 6th Many-core Applications Research Com-
munity (MARC) Symposium. Proceedings of the 6th MARC Symposium, 19-20 July
2012, Toulouse, France. Ed. by Eric Noulard. ONERA, The French Aerospace
Lab, 2012, pp. 46–51. URL: http://hal.archives-ouvertes.fr/hal-00719033.

[48] Pollawat Thanarungroj and Chen Liu. „Power and energy consumption analy-
sis on Intel SCC many-core system“. In: 30th IEEE International Performance
Computing and Communications Conference, IPCCC 2011, Orlando, Florida,
USA, November 17-19, 2011. Ed. by Sheng Zhong, Dejing Dou, and Yu Wang.
IEEE, 2011, pp. 1–2. DOI: 10.1109/PCCC.2011.6108095.

[49] Ehsan Totoni, Babak Behzad, Swapnil Ghike, and Josep Torrellas. „Com-
paring the power and performance of Intel’s SCC to state-of-the-art CPUs
and GPUs“. In: 2012 IEEE International Symposium on Performance Analysis
of Systems & Software, New Brunswick, NJ, USA, April 1-3, 2012. Ed. by Ra-
jeev Balasubramonian and Vijayalakshmi Srinivasan. IEEE Computer Society,
2012, pp. 78–87. DOI: 10.1109/ISPASS.2012.6189208.

[50] David E. Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel computer
architecture - a hardware / software approach. Morgan Kaufmann, 1999.

[51] Cray T3D System Architecture Overview. http://bitsavers.trailing-edge.com/
pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.
pdf, last accessed 2015-11-30. Cray Research Inc. Chippewa Falls, Sept. 1993.

[52] Thomas Prescher, Randolf Rotta, and Jörg Nolte. „Flexible Sharing and Repli-
cation Mechanisms for Hybrid Memory Architectures“. In: Proceedings of the
4th Many-Core Applications Research Community (MARC) Symposium. Ed. by
Peter Tröger and Andreas Polze. Universitätsverlag Potsdam, Jan. 2012, pp. 67
–72. URL: http://pub.ub.uni-potsdam.de/volltexte/2012/5789/.

192

http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/1_Sun/HC20.24.130.pdf
http://www.hotchips.org/wp-content/uploads/hc_archives/hc20/1_Sun/HC20.24.130.pdf
http://dx.doi.org/10.1145/1413370.1413409
http://hal.archives-ouvertes.fr/hal-00719033
http://dx.doi.org/10.1109/PCCC.2011.6108095
http://dx.doi.org/10.1109/ISPASS.2012.6189208
http://bitsavers.trailing-edge.com/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
http://bitsavers.trailing-edge.com/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
http://bitsavers.trailing-edge.com/pdf/cray/HR-04033_CRAY_T3D_System_Architecture_Overview_Sep93.pdf
http://pub.ub.uni-potsdam.de/volltexte/2012/5789/

References

[53] Pablo Reble, Carsten Clauss, and Stefan Lankes. „One-sided communication
and synchronization for non-coherent memory-coupled cores“. In: Interna-
tional Conference on High Performance Computing & Simulation, HPCS 2013,
Helsinki, Finland, July 1-5, 2013. IEEE, 2013, pp. 390–397. DOI: 10.1109/
HPCSim.2013.6641445.

[54] The SccKit 1.4.x User’s Guide. Revision 1.1. Intel Labs. Nov. 2011.

[55] Pablo Reble, Stefan Lankes, Florian Zeitz, and Thomas Bemmerl. „Evaluation
of Hardware Synchronization Support of the SCC Many-Core Processor“.
In: 4th USENIX Workshop on Hot Topics in Parallelism, Poster Paper. https:
//www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf.
2012.

[56] Jan-Arne Sobania, Peter Tröger, and Andreas Polze. „Linux Operating System
Support for the SCC Platform - An Analysis“. In: 3rd Many-core Applications
Research Community (MARC) Symposium. Proceedings of the 3rd MARC Sym-
posium, Ettlingen, Germany, July 5-6, 2011. Ed. by Diana Göhringer, Michael
Hübner, and Jürgen Becker. KIT Scientific Publishing, Karlsruhe, 2011, pp. 31–
34. URL: http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937.

[57] Simon Peter, Adrian Schüpbach, Dominik Menzi, and Timothy Roscoe. „Early
experience with the Barrelfish OS and the Single-Chip Cloud Computer“. In:
3rd Many-core Applications Research Community (MARC) Symposium. Pro-
ceedings of the 3rd MARC Symposium, Ettlingen, Germany, July 5-6, 2011.
Ed. by Diana Göhringer, Michael Hübner, and Jürgen Becker. KIT Scien-
tific Publishing, Karlsruhe, 2011, pp. 35–39. URL: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000023937.

[58] Michael Ziwisky and Dennis Brylow. „BareMichael: A Minimalistic Bare-
metal Framework for the Intel SCC“. In: 6th Many-core Applications Research
Community (MARC) Symposium. Proceedings of the 6th MARC Symposium,
19-20 July 2012, Toulouse, France. Ed. by Eric Noulard. ONERA, The French
Aerospace Lab, 2012, pp. 66–71. URL: http://hal.archives-ouvertes.fr/hal-
00719038.

[59] Pablo Reble, Jacek Galowicz, Stefan Lankes, and Thomas Bemmerl. „Efficient
Implementation of the bare-metal Hypervisor MetalSVM for the SCC“. In: 6th
Many-core Applications Research Community (MARC) Symposium. Proceedings
of the 6th MARC Symposium, 19-20 July 2012, Toulouse, France. Ed. by Eric
Noulard. ONERA, The French Aerospace Lab, 2012, pp. 59–65. URL: http:
//hal.archives-ouvertes.fr/hal-00719037.

193

http://dx.doi.org/10.1109/HPCSim.2013.6641445
http://dx.doi.org/10.1109/HPCSim.2013.6641445
https://www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf
https://www.usenix.org/system/files/conference/hotpar12/hotpar12-final9.pdf
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://hal.archives-ouvertes.fr/hal-00719038
http://hal.archives-ouvertes.fr/hal-00719038
http://hal.archives-ouvertes.fr/hal-00719037
http://hal.archives-ouvertes.fr/hal-00719037

Bibliography

[60] Jan-Arne Sobania, Peter Tröger, and Andreas Polze. „Towards Symmetric
Multi-Processing Support for Operating Systems on the SCC“. In: Proceedings
of the 4th Many-core Applications Research Community (MARC) Symposium.
Ed. by Peter Tröger and Andreas Polze. Universitätsverlag Potsdam, Feb. 2012,
pp. 73–78. URL: http://pub.ub.uni-potsdam.de/volltexte/2012/5789/.

[61] Jay Hoeflinger and Larry Meadows. OpenMP on Clusters. last accessed 2017-
01-09. May 2006. URL: https://www.hpcwire.com/2006/05/19/openmp_
on_clusters-1/.

[62] Leonardo Dagum and Ramesh Menon. „OpenMP: An Industry-Standard API
for Shared-Memory Programming“. In: IEEE Comput. Sci. Eng. 5.1 (Jan. 1998),
pp. 46–55. DOI: 10.1109/99.660313.

[63] OpenMP Architecture Review Board. OpenMP Application Program Interface
Version 4.5. Nov. 2015. URL: http://www.openmp.org/wp-content/uploads/
openmp-4.5.pdf.

[64] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Pro-
gramming. Sebastopol, CA, USA: O’Reilly & Associates, Inc., 1996.

[65] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Version 3.1. http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf.
Stuttgart: High Performance Computing Center Stuttgart, June 2015.

[66] Mario Flajslik, James Dinan, and Keith D. Underwood. „Mitigating MPI
Message Matching Misery“. In: High Performance Computing - 31st Interna-
tional Conference, ISC High Performance 2016, Frankfurt, Germany, June 19-23,
2016, Proceedings. Ed. by Julian M. Kunkel, Pavan Balaji, and Jack Dongarra.
Vol. 9697. Lecture Notes in Computer Science. Springer, 2016, pp. 281–299.
DOI: 10.1007/978-3-319-41321-1_15.

[67] Hoang-Vu Dang, Marc Snir, and William Gropp. „Towards millions of com-
municating threads“. In: Proceedings of the 23rd European MPI Users’ Group
Meeting, EuroMPI 2016, Edinburgh, United Kingdom, September 25-28, 2016. Ed.
by Jack Dongarra, Daniel Holmes, Antonia B. K. Collis, Jesper Larsson Träff,
and Lorna Smith. ACM, 2016, pp. 1–14. DOI: 10.1145/2966884.2966914.

[68] Timothy G. Mattson et al. „The 48-core SCC Processor: the Programmer’s
View“. In: Conference on High Performance Computing Networking, Storage
and Analysis, SC 2010, New Orleans, LA, USA, November 13-19, 2010. IEEE,
2010, pp. 1–11. DOI: 10.1109/SC.2010.53.

194

http://pub.ub.uni-potsdam.de/volltexte/2012/5789/
https://www.hpcwire.com/2006/05/19/openmp_on_clusters-1/
https://www.hpcwire.com/2006/05/19/openmp_on_clusters-1/
http://dx.doi.org/10.1109/99.660313
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://dx.doi.org/10.1007/978-3-319-41321-1_15
http://dx.doi.org/10.1145/2966884.2966914
http://dx.doi.org/10.1109/SC.2010.53

References

[69] Ernie Chan. RCCE_comm: A Collective Communication Library for the Intel
Single-chip Cloud Computer. online http://communities.intel.com/servlet/
JiveServlet/previewBody/5629-102-1-8718/RCCE_comm.pdf, last accessed
2017-01-10. Sept. 2010.

[70] Carsten Clauss, Stefan Lankes, Thomas Bemmerl, Jacek Galowicz, and Simon
Pickartz. iRCCE: A Non-blocking Communication Extension to the RCCE
Communication Library for the Intel Single-Chip Cloud Computer. Tech. rep.
online http://www.lfbs.rwth-aachen.de/publications/files/iRCCE.pdf, last
accessed 2017-01-10. Chair for Operating Systems, RWTH Aachen University,
Nov. 2011.

[71] Isaías A. Comprés Ureña, Michael Riepen, and Michael Konow. „RCKMPI
- Lightweight MPI Implementation for Intel’s Single-chip Cloud Computer
(SCC)“. In: Recent Advances in the Message Passing Interface - 18th European
MPI Users’ Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21,
2011. Proceedings. Ed. by Yiannis Cotronis, Anthony Danalis, Dimitrios S.
Nikolopoulos, and Jack Dongarra. Vol. 6960. Lecture Notes in Computer
Science. Springer, 2011, pp. 208–217. DOI: 10.1007/978-3-642-24449-0_24.

[72] William Gropp, Ewing Lusk, and Rajeev Thakur. Using MPI-2: Advanced
Features of the Message-Passing Interface. Cambridge, MA, USA: MIT Press,
1999.

[73] Torsten Hoefler et al. „Remote Memory Access Programming in MPI-3“. In:
ACM Transactions on Parallel Computing 2.2 (2015), 9:1–9:26. DOI: 10.1145/
2780584.

[74] Jonathan M. D. Hill et al. „BSPlib: The BSP programming library“. In: Parallel
Computing 24.14 (1998), pp. 1947–1980. DOI: 10.1016/S0167-8191(98)00093-
3.

[75] Robert W. Numrich and John Reid. „Co-array Fortran for Parallel Program-
ming“. In: SIGPLAN Fortran Forum 17.2 (Aug. 1998), pp. 1–31. DOI: 10.1145/
289918.289920.

[76] William W. Carlson et al. Introduction to UPC and language specification.
Tech. rep. CCS-TR-99-157. Second Printing. Center for Computing Sciences,
Institute for Defense Analyses, May 1999.

[77] OpenSHMEM Application Programming Interface. http://openshmem.org/
site/sites/default/site_files/OpenSHMEM-1.3.pdf, last accessed 2017-01-13.
Feb. 2016.

195

http://communities.intel.com/servlet/JiveServlet/previewBody/5629-102-1-8718/RCCE_comm.pdf
http://communities.intel.com/servlet/JiveServlet/previewBody/5629-102-1-8718/RCCE_comm.pdf
http://www.lfbs.rwth-aachen.de/publications/files/iRCCE.pdf
http://dx.doi.org/10.1007/978-3-642-24449-0_24
http://dx.doi.org/10.1145/2780584
http://dx.doi.org/10.1145/2780584
http://dx.doi.org/10.1016/S0167-8191(98)00093-3
http://dx.doi.org/10.1016/S0167-8191(98)00093-3
http://dx.doi.org/10.1145/289918.289920
http://dx.doi.org/10.1145/289918.289920
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf
http://openshmem.org/site/sites/default/site_files/OpenSHMEM-1.3.pdf

Bibliography

[78] Bradford L. Chamberlain, David Callahan, and Hans P. Zima. „Parallel Pro-
grammability and the Chapel Language“. In: IJHPCA 21.3 (2007), pp. 291–312.
DOI: 10.1177/1094342007078442.

[79] UPC Language Specifications Version 1.3. online https://upc-lang.org/assets/
Uploads/spec/upc-lang-spec-1.3.pdf, last accessed 2017-01-13. UPC Consor-
tium. Nov. 2013.

[80] Dan Bonachea and Jaein Jeong. „GASNet: A Portable High-Performance
Communication Layer for Global Address-Space Languages“. http://www.cs.
berkeley.edu/~bonachea/upc/paper.pdf, last accessed 2014-09-30. 2002.

[81] Dan Bonachea. GASNet Specification. Version 1.8, Rev 1.44. http://gasnet.
lbl.gov/dist/docs/gasnet.pdf, last accessed 2014-09-30. LBNL FTG and U.C.
Berkeley. Nov. 2006.

[82] James Dinan, Pavan Balaji, Jeff R. Hammond, Sriram Krishnamoorthy, and
Vinod Tipparaju. „Supporting the Global Arrays PGAS Model Using MPI
One-Sided Communication“. In: 26th IEEE International Parallel and Dis-
tributed Processing Symposium, IPDPS 2012, Shanghai, China, May 21-25, 2012.
IEEE Computer Society, 2012, pp. 739–750. DOI: 10.1109/IPDPS.2012.72.

[83] Jeff R. Hammond, Sayan Ghosh, and Barbara M. Chapman. „Implement-
ing OpenSHMEM Using MPI-3 One-Sided Communication“. In: OpenSH-
MEM and Related Technologies. Experiences, Implementations, and Tools - First
Workshop, OpenSHMEM 2014, Annapolis, MD, USA, March 4-6, 2014. Pro-
ceedings. Ed. by Stephen W. Poole, Oscar R. Hernandez, and Pavel Shamis.
Vol. 8356. Lecture Notes in Computer Science. Springer, 2014, pp. 44–58.
DOI: 10.1007/978-3-319-05215-1_4.

[84] Dan Bonachea and Jason Duell. „Problems with using MPI 1.1 and 2.0 as
compilation targets for parallel language implementations“. In: International
Journal of High Performance Computing and Networking 1.1/2/3 (2004), pp. 91–
99. DOI: 10.1504/IJHPCN.2004.007569.

[85] Martin Bauer, Christian Kuschel, Daniel Ritter, and Klaus Sembritzki. „Com-
parison of PGAS Languages on a Linked Cell Algorithm“. In: Parallel-
Algorithmen und Rechnerstrukturen. Vol. 30. Mitteilungen. 25th PARS Work-
shop, Erlangen, Germany: Gesellschaft für Informatik e.V., Sept. 2013,
pp. 115–122.

[86] Helmar Burkhart, Madan Sathe, Matthias Christen, Olaf Schenk, and Max
Rietmann. „Run, Stencil, Run! – HPC Productivity Studies in the Class-
room“. In: The 6th Conference on Partitioned Global Address Space Program-

196

http://dx.doi.org/10.1177/1094342007078442
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
https://upc-lang.org/assets/Uploads/spec/upc-lang-spec-1.3.pdf
http://www.cs.berkeley.edu/~bonachea/upc/paper.pdf
http://www.cs.berkeley.edu/~bonachea/upc/paper.pdf
http://gasnet.lbl.gov/dist/docs/gasnet.pdf
http://gasnet.lbl.gov/dist/docs/gasnet.pdf
http://dx.doi.org/10.1109/IPDPS.2012.72
http://dx.doi.org/10.1007/978-3-319-05215-1_4
http://dx.doi.org/10.1504/IJHPCN.2004.007569

References

ming Models. https://docs.google.com/viewer?a=v&pid=sites&srcid=
bGJsLmdvdnxwZ2FzMTJ8Z3g6NWIzZTBhZTI2ZGEzZDRkZQ. 2012.

[87] Martin Ohmann. „Implementation and evaluation of three-dimensional FFT
using modern parallel programming APIs“. Diploma Thesis. Potsdam: Uni-
versität Potsdam, Aug. 2015.

[88] D. A. Mallón et al. „UPC Performance Evaluation on a Multicore System“.
In: Proceedings of the Third Conference on Partitioned Global Address Space
Programing Models. PGAS ’09. Ashburn, Virginia: ACM, 2009, 9:1–9:7. DOI:
10.1145/1809961.1809974.

[89] Cristian Coarfa et al. „An Evaluation of Global Address Space Languages:
Co-array Fortran and Unified Parallel C“. In: Proceedings of the Tenth ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming. PPoPP
’05. Chicago, IL, USA: ACM, 2005, pp. 36–47. DOI: 10 . 1145/1065944 .
1065950.

[90] Christian Bell, Dan Bonachea, Rajesh Nishtala, and Katherine A. Yelick.
„Optimizing bandwidth limited problems using one-sided communication and
overlap“. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS) 2006, Proceedings, 25-29 April 2006, Rhodes Island, Greece. IEEE, 2006.
DOI: 10.1109/IPDPS.2006.1639320.

[91] C. M. Maynard. „Comparing UPC and one-sided MPI: A distributed hash
table for GAP“. In: Fifth Conference on Partitioned Global Address Space Pro-
gramming Models (PGAS11). online http://pgas11.rice.edu/papers/Maynard-
Distributed-Hash-Table-PGAS11.pdf, last accessed 2017-01-01. Oct. 2011.

[92] William M. Tang et al. „Extreme scale plasma turbulence simulations on top
supercomputers worldwide“. In: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2016, Salt
Lake City, UT, USA, November 13-18, 2016. Ed. by John West and Cherri M.
Pancake. ACM, 2016, p. 43.

[93] Mark Bull, Xu Guo, and Ioannis Liabotis. Applications and user requirements
for Tier-0 systems. PRACE-1IP deliverable D7.4.1. online http://www.prace-
ri.eu/IMG/pdf/D7-4-1.pdf last accessed 2017-01-13. PRACE Consortium
Partners, Feb. 2011.

[94] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Using
Advanced MPI: Modern Features of the Message-Passing Interface. The MIT Press,
2014.

197

https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwZ2FzMTJ8Z3g6NWIzZTBhZTI2ZGEzZDRkZQ
https://docs.google.com/viewer?a=v&pid=sites&srcid=bGJsLmdvdnxwZ2FzMTJ8Z3g6NWIzZTBhZTI2ZGEzZDRkZQ
http://dx.doi.org/10.1145/1809961.1809974
http://dx.doi.org/10.1145/1065944.1065950
http://dx.doi.org/10.1145/1065944.1065950
http://dx.doi.org/10.1109/IPDPS.2006.1639320
http://pgas11.rice.edu/papers/Maynard-Distributed-Hash-Table-PGAS11.pdf
http://pgas11.rice.edu/papers/Maynard-Distributed-Hash-Table-PGAS11.pdf
http://www.prace-ri.eu/IMG/pdf/D7-4-1.pdf
http://www.prace-ri.eu/IMG/pdf/D7-4-1.pdf

Bibliography

[95] M. Rasit Eskicioglu. „A Comprehensive Bibliography of Distributed Shared
Memory“. In: Operating Systems Review 30.1 (1996), pp. 71–96. DOI: 10.1145/
218646.218651.

[96] Xiaocheng Zhou et al. „A case for software managed coherence in manycore
processors“. In: Poster on 2nd USENIX Workshop on Hot Topics in Parallelism
HotPar10. 2010. URL: http://static.usenix.org/event/hotpar10/tech/full_
papers/Zhou.pdf.

[97] Software-Managed Cache Coherence for SCC. Revision 1.5. Intel Corperation.
Nov. 2011.

[98] K. C. Sivaramakrishnan, Lukasz Ziarek, and Suresh Jagannathan. „A Coher-
ent and Managed Runtime for ML on the SCC“. In: Many-core Applications
Research Community (MARC) Symposium at RWTH Aachen University, Novem-
ber 29th-30th 2012, Aachen, Germany. Ed. by Stefan Lankes and Carsten Clauss.
RWTH Aachen University, 2012, pp. 20–35. URL: http://nbn-resolving.de/
urn:nbn:de:hbz:82-opus-43835.

[99] Kai Li and Paul Hudak. „Memory Coherence in Shared Virtual Memory
Systems“. In: ACM Trans. Comput. Syst. 7.4 (1989), pp. 321–359. DOI: 10.
1145/75104.75105.

[100] Randolf Rotta, Thomas Prescher, Jörg Nolte, and Jana Traue. „Data Sharing
Mechanisms for Parallel Graph Algorithms on the Intel SCC“. In: 6th Many-
core Applications Research Community (MARC) Symposium. Proceedings of the
6th MARC Symposium, 19-20 July 2012, Toulouse, France. Ed. by Eric Noulard.
ONERA, The French Aerospace Lab, 2012, pp. 13–18. URL: http://hal.
archives-ouvertes.fr/hal-00718993.

[101] Stefan Lankes, Pablo Reble, Carsten Clauss, and Oliver Sinnen. „The Path
to MetalSVM: Shared Virtual Memory for the SCC“. In: Proceedings of the
4th Many-core Applications Research Community (MARC) Symposium. Ed. by
Peter Tröger and Andreas Polze. Universitätsverlag Potsdam, Feb. 2012, 7–14.
URL: http://pub.ub.uni-potsdam.de/volltexte/2012/5789/.

[102] King Tin Lam et al. „Rhymes: A shared virtual memory system for non-
coherent tiled many-core architectures“. In: 20th IEEE International Conference
on Parallel and Distributed Systems, ICPADS 2014, Hsinchu, Taiwan, December
16-19, 2014. IEEE Computer Society, 2014, pp. 183–190. DOI: 10.1109/
PADSW.2014.7097807.

198

http://dx.doi.org/10.1145/218646.218651
http://dx.doi.org/10.1145/218646.218651
http://static.usenix.org/event/hotpar10/tech/full_papers/Zhou.pdf
http://static.usenix.org/event/hotpar10/tech/full_papers/Zhou.pdf
http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835
http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835
http://dx.doi.org/10.1145/75104.75105
http://dx.doi.org/10.1145/75104.75105
http://hal.archives-ouvertes.fr/hal-00718993
http://hal.archives-ouvertes.fr/hal-00718993
http://pub.ub.uni-potsdam.de/volltexte/2012/5789/
http://dx.doi.org/10.1109/PADSW.2014.7097807
http://dx.doi.org/10.1109/PADSW.2014.7097807

References

[103] Andrew Baumann et al. „The multikernel: a new OS architecture for scalable
multicore systems“. In: Proceedings of the 22nd ACM Symposium on Operating
Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-14,
2009. Ed. by Jeanna Neefe Matthews and Thomas E. Anderson. ACM, 2009,
pp. 29–44. DOI: 10.1145/1629575.1629579.

[104] Junghyun Kim, Sangmin Seo, and Jaejin Lee. „An efficient software shared
virtual memory for the single-chip cloud computer“. In: APSys ’11 Asia Pacific
Workshop on Systems, Shanghai, China, July 11-12, 2011. Ed. by Haibo Chen,
Zheng Zhang, Sue Moon, and Yuanyuan Zhou. ACM, 2011, p. 4. DOI: 10.
1145/2103799.2103804.

[105] Igor Tartalja and Veljko Milutinovic. The Cache Coherence Problem in Shared-
Memory Multiprocessors: Software Solutions. Los Alamitos, CA, USA: IEEE
Computer Society Press, 1997.

[106] Hoichi Cheong and Alexander V. Veidenbaum. „The Performance of Software-
managed Multiprocessor Caches on Parallel Numerical Programs“. In: Su-
percomputing, 1st International Conference, Athens, Greece, June 8-12, 1987,
Proceedings. Ed. by Elias N. Houstis, Theodore S. Papatheodorou, and Con-
stantine D. Polychronopoulos. Vol. 297. Lecture Notes in Computer Science.
Springer, 1987, pp. 316–337. DOI: 10.1007/3-540-18991-2_19.

[107] Hoichi Cheong and Alexander V. Veidenbaum. „A Cache Coherence Scheme
With Fast Selective Invalidation“. In: Proceedings of the 15th Annual Interna-
tional Symposium on Computer Architecture. Honolulu, Hawaii, May-June 1988.
Ed. by Howard Jay Siegel. IEEE Computer Society, 1988, pp. 299–307. DOI:
10.1109/ISCA.1988.5240.

[108] A. J. Smith. „CPU Cache Consistency with Software Support and Using
’One-Time Identifiers’“. In: The Cache Coherence Problem in Shared-Memory
Multiprocessors: Software Solutions. Ed. by Igor Tartalja and Veljko Milutinovic.
IEEE Computer Society Press, 1997, pp. 193–201.

[109] David R. Cheriton, Gert A. Slavenburg, and Patrick D. Boyle. „Software-
controlled caches in the VMP multiprocessor“. In: The Cache Coherence Prob-
lem in Shared-Memory Multiprocessors: Software Solutions. Ed. by Igor Tartalja
and Veljko Milutinovic. IEEE Computer Society Press, 1997, pp. 184–192.

[110] Gopalakrishnan Santhanaraman, Tejus Gangadharappa, Sundeep Narravula,
Amith R. Mamidala, and Dhabaleswar K. Panda. „Design alternatives for
implementing fence synchronization in MPI-2 one-sided communication for
InfiniBand clusters“. In: Proceedings of the 2009 IEEE International Conference
on Cluster Computing, August 31 - September 4, 2009, New Orleans, Louisiana,

199

http://dx.doi.org/10.1145/1629575.1629579
http://dx.doi.org/10.1145/2103799.2103804
http://dx.doi.org/10.1145/2103799.2103804
http://dx.doi.org/10.1007/3-540-18991-2_19
http://dx.doi.org/10.1109/ISCA.1988.5240

Bibliography

USA. IEEE Computer Society, 2009, pp. 1–9. DOI: 10.1109/CLUSTR.2009.
5289200.

[111] Sameer Kumar and Michael Blocksome. „Scalable MPI-3.0 RMA on the Blue
Gene/Q Supercomputer“. In: 21st European MPI Users’ Group Meeting, Eu-
roMPI/ASIA ’14, Kyoto, Japan - September 09 - 12, 2014. Ed. by Jack Dongarra,
Yutaka Ishikawa, and Atsushi Hori. ACM, 2014, p. 7. DOI: 10.1145/2642769.
2642778.

[112] Sameer Kumar, Amith R. Mamidala, Philip Heidelberger, Dong Chen,
and Daniel Faraj. „Optimization of MPI collective operations on the IBM
Blue Gene/Q supercomputer“. In: International Journal of High Perfor-
mance Computing Applications 28.4 (2014), pp. 450–464. DOI: 10 . 1177/
1094342014552086.

[113] Jesper Larsson Träff, Hubert Ritzdorf, and Rolf Hempel. „The Implementa-
tion of MPI-2 One-Sided Communication for the NEC SX-5“. In: Proceedings
Supercomputing 2000, November 4-10, 2000, Dallas, Texas, USA. IEEE Com-
puter Society, CD-ROM. Ed. by Jed Donnelley. IEEE Computer Society, 2000,
p. 1. DOI: 10.1109/SC.2000.10023.

[114] Stephen Booth and Fernando Elson Mourão. „Single sided MPI implemen-
tations for SUN MPI“. In: Proceedings Supercomputing 2000, November 4-10,
2000, Dallas, Texas, USA. IEEE Computer Society, CD-ROM. Ed. by Jed Don-
nelley. IEEE Computer Society, 2000, p. 2. DOI: 10.1109/SC.2000.10022.

[115] Pablo Reble, Stefan Lankes, Carsten Clauss, and Thomas Bemmerl. „A Fast
Inter-Kernel Communication and Synchronization layer for MetalSVM“. In:
3rd Many-core Applications Research Community (MARC) Symposium. Pro-
ceedings of the 3rd MARC Symposium, Ettlingen, Germany, July 5-6, 2011.
Ed. by Diana Göhringer, Michael Hübner, and Jürgen Becker. KIT Scien-
tific Publishing, Karlsruhe, 2011, pp. 19–23. URL: http://digbib.ubka.uni-
karlsruhe.de/volltexte/1000023937.

[116] Adán Kohler and Martin Radetzki. „Latency-optimized Collectives for High
Performance on Intel’s Single-chip Cloud Computer“. In: Many-core Appli-
cations Research Community (MARC) Symposium at RWTH Aachen Univer-
sity, November 29th-30th 2012, Aachen, Germany. Ed. by Stefan Lankes and
Carsten Clauss. RWTH Aachen University, 2012, pp. 7–12. URL: http://nbn-
resolving.de/urn:nbn:de:hbz:82-opus-43835.

[117] Hayder Al-Khalissi, Andrea Marongiu, and Mladen Berekovic. „Low-Over-
head Barrier Synchronization for OpenMP-like Parallelism on the Single-
Chip Cloud Computer“. In: Many-core Applications Research Community
(MARC) Symposium at RWTH Aachen University, November 29th-30th 2012,

200

http://dx.doi.org/10.1109/CLUSTR.2009.5289200
http://dx.doi.org/10.1109/CLUSTR.2009.5289200
http://dx.doi.org/10.1145/2642769.2642778
http://dx.doi.org/10.1145/2642769.2642778
http://dx.doi.org/10.1177/1094342014552086
http://dx.doi.org/10.1177/1094342014552086
http://dx.doi.org/10.1109/SC.2000.10023
http://dx.doi.org/10.1109/SC.2000.10022
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835
http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835

References

Aachen, Germany. Ed. by Stefan Lankes and Carsten Clauss. RWTH Aachen
University, 2012, pp. 26–31. URL: http://nbn-resolving.de/urn:nbn:de:hbz:
82-opus-43835.

[118] Pavan Balaji et al. „MPI on millions of Cores“. In: Parallel Processing Letters
21.1 (2011), pp. 45–60. DOI: 10.1142/S0129626411000060.

[119] Chaoran Yang, Wesley Bland, John M. Mellor-Crummey, and Pavan Balaji.
„Portable, MPI-interoperable coarray fortran“. In: ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, PPoPP ’14, Orlando, FL,
USA, February 15-19, 2014. Ed. by José E. Moreira and James R. Larus. ACM,
2014, pp. 81–92. DOI: 10.1145/2555243.2555270.

[120] Robert Gerstenberger, Maciej Besta, and Torsten Hoefler. „Enabling highly-
scalable remote memory access programming with MPI-3 one sided“. In:
International Conference for High Performance Computing, Networking, Storage
and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013. Ed. by William
Gropp and Satoshi Matsuoka. ACM, 2013, 53:1–53:12. DOI: 10.1145/2503210.
2503286.

[121] William D. Gropp and Rajeev Thakur. „An Evaluation of Implementation
Options for MPI One-Sided Communication“. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 12th European PVM/MPI Users’
Group Meeting, Sorrento, Italy, September 18-21, 2005, Proceedings. Ed. by
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra. Vol. 3666.
Lecture Notes in Computer Science. Springer, 2005, pp. 415–424. DOI: 10.
1007/11557265_53.

[122] George Almási et al. „An Overview of the Blue Gene/L System Software
Organization“. In: Euro-Par 2003. Parallel Processing, 9th International Euro-Par
Conference, Klagenfurt, Austria, August 26-29, 2003. Proceedings. Ed. by Harald
Kosch, László Böszörményi, and Hermann Hellwagner. Vol. 2790. Lecture
Notes in Computer Science. Springer, 2003, pp. 543–555. DOI: 10.1007/978-
3-540-45209-6_79.

[123] William Gropp, Ewing L. Lusk, Nathan E. Doss, and Anthony Skjellum.
„A High-Performance, Portable Implementation of the MPI Message Passing
Interface Standard“. In: Parallel Computing 22.6 (1996), pp. 789–828. DOI:
10.1016/0167-8191(96)00024-5.

[124] William Gropp. „MPICH2: A New Start for MPI Implementations“. In:
Recent Advances in Parallel Virtual Machine and Message Passing Interface, 9th
European PVM/MPI Users’ Group Meeting, Proceedings. Vol. 2474. Lecture
Notes in Computer Science. Springer, 2002, p. 7. DOI: 10.1007/3-540-45825-
5_5.

201

http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835
http://nbn-resolving.de/urn:nbn:de:hbz:82-opus-43835
http://dx.doi.org/10.1142/S0129626411000060
http://dx.doi.org/10.1145/2555243.2555270
http://dx.doi.org/10.1145/2503210.2503286
http://dx.doi.org/10.1145/2503210.2503286
http://dx.doi.org/10.1007/11557265_53
http://dx.doi.org/10.1007/11557265_53
http://dx.doi.org/10.1007/978-3-540-45209-6_79
http://dx.doi.org/10.1007/978-3-540-45209-6_79
http://dx.doi.org/10.1016/0167-8191(96)00024-5
http://dx.doi.org/10.1007/3-540-45825-5_5
http://dx.doi.org/10.1007/3-540-45825-5_5

Bibliography

[125] Rajeev Thakur, William Gropp, and Brian R. Toonen. „Optimizing the Syn-
chronization Operations in Message Passing Interface One-Sided Communi-
cation“. In: International Journal of High Performance Computing Applications
19.2 (2005), pp. 119–128. DOI: 10.1177/1094342005054258.

[126] Rajeev Thakur, William D. Gropp, and Brian R. Toonen. „Minimizing Syn-
chronization Overhead in the Implementation of MPI One-Sided Communi-
cation“. In: Recent Advances in Parallel Virtual Machine and Message Passing
Interface, 11th European PVM/MPI Users’ Group Meeting, Budapest, Hungary,
September 19-22, 2004, Proceedings. Ed. by Dieter Kranzlmüller, Péter Kacsuk,
and Jack Dongarra. Vol. 3241. Lecture Notes in Computer Science. Springer,
2004, pp. 57–67. DOI: 10.1007/978-3-540-30218-6_15.

[127] James Dinan et al. „An implementation and evaluation of the MPI 3.0 one-
sided communication interface“. In: Concurrency and Computation: Practice
and Experience (2016). DOI: 10.1002/cpe.3758.

[128] Network-Based Computing Laboratory Ohio State University. MVAPICH:
MPI over InfiniBand, 10GigE/iWARP and RoCE. online. http://mvapich.cse.
ohio-state.edu/.

[129] Ping Lai, Sayantan Sur, and Dhabaleswar K. Panda. „Designing truly one-sided
MPI-2 RMA intra-node communication on multi-core systems“. In: Computer
Science - R&D 25.1-2 (2010), pp. 3–14. DOI: 10.1007/s00450-010-0115-3.

[130] Sreeram Potluri, Hao Wang, Vijay Dhanraj, Sayantan Sur, and Dhabaleswar K.
Panda. „Optimizing MPI One Sided Communication on Multi-core Infini-
Band Clusters Using Shared Memory Backed Windows“. In: Recent Advances
in the Message Passing Interface - 18th European MPI Users’ Group Meeting,
EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings. Ed. by
Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack
Dongarra. Vol. 6960. Lecture Notes in Computer Science. Springer, 2011,
pp. 99–109. DOI: 10.1007/978-3-642-24449-0_13.

[131] Ohio State University. OSU Micro-Benchmarks. Online. http://mvapich.cse.
ohio-state.edu/benchmarks/, last accesses 2015-09-14.

[132] Jeff Squyres. „Open MPI“. In: The Architecture of Open Source Applications.
Ed. by Amy Brown and Greg Wilson. Vol. II. http://aosabook.org/en/
openmpi.html, last accessed 2015-08-19. 2014.

[133] Brian Barrett, Galen M. Shipman, and Andrew Lumsdaine. „Analysis of
Implementation Options for MPI-2 One-Sided“. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 14th European PVM/MPI User’s
Group Meeting, Paris, France, September 30 - October 3, 2007, Proceedings. Ed. by

202

http://dx.doi.org/10.1177/1094342005054258
http://dx.doi.org/10.1007/978-3-540-30218-6_15
http://dx.doi.org/10.1002/cpe.3758
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://dx.doi.org/10.1007/s00450-010-0115-3
http://dx.doi.org/10.1007/978-3-642-24449-0_13
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://aosabook.org/en/openmpi.html
http://aosabook.org/en/openmpi.html

References

Franck Cappello, Thomas Hérault, and Jack Dongarra. Vol. 4757. Lecture
Notes in Computer Science. Springer, 2007, pp. 242–250. DOI: 10.1007/978-
3-540-75416-9_35.

[134] Nathan Hjelm. „An Evaluation of the One-Sided Performance in Open MPI“.
In: Proceedings of the 23rd European MPI Users’ Group Meeting, EuroMPI 2016,
Edinburgh, United Kingdom, September 25-28, 2016. Ed. by Jack Dongarra,
Daniel Holmes, Antonia B. K. Collis, Jesper Larsson Träff, and Lorna Smith.
ACM, 2016, pp. 184–187. DOI: 10.1145/2966884.2966890. URL: http://doi.
acm.org/10.1145/2966884.2966890.

[135] Scalable Parallel Computing Lab. FoMPI Source Code. online. http://spcl.inf.
ethz.ch/Research/Parallel_Programming/foMPI/foMPI-0.2.1.tar.gz. Sept.
2013.

[136] Lars Schneidenbach. „The benefits of one-sided communication interfaces for
cluster computing“. PhD thesis. University of Potsdam, 2009.

[137] Adrian M. Partl, Antonella Maselli, Benedetta Ciardi, Andrea Ferrara, and
Volker Müller. „Enabling parallel computing in CRASH“. In: Monthly Notices
of the Royal Astronomical Society 414.1 (2011), p. 428. DOI: 10.1111/j.1365-
2966.2011.18401.x.

[138] Roberto Belli and Torsten Hoefler. „Notified Access: Extending Remote Mem-
ory Access Programming Models for Producer-Consumer Synchronization“.
In: 2015 IEEE International Parallel and Distributed Processing Symposium,
IPDPS 2015, Hyderabad, India, May 25-29, 2015. IEEE Computer Society, 2015,
pp. 871–881. DOI: 10.1109/IPDPS.2015.30.

[139] Hayder Al-Khalissi, Syed Abbas Ali Shah, and Mladen Berekovic. „An Ef-
ficient Barrier Implementation for OpenMP-Like Parallelism on the Intel
SCC“. In: 22nd Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing, PDP 2014, Torino, Italy, February 12-14, 2014.
IEEE Computer Society, 2014, pp. 76–83. DOI: 10.1109/PDP.2014.25.

[140] Randolf Rotta. „On Efficient Message Passing on the Intel SCC“. In: 3rd
Many-core Applications Research Community (MARC) Symposium. Proceedings
of the 3rd MARC Symposium, Ettlingen, Germany, July 5-6, 2011. Ed. by Diana
Göhringer, Michael Hübner, and Jürgen Becker. KIT Scientific Publishing,
Karlsruhe, 2011, pp. 53–58. URL: http://digbib.ubka.uni-karlsruhe.de/
volltexte/1000023937.

203

http://dx.doi.org/10.1007/978-3-540-75416-9_35
http://dx.doi.org/10.1007/978-3-540-75416-9_35
http://dx.doi.org/10.1145/2966884.2966890
http://doi.acm.org/10.1145/2966884.2966890
http://doi.acm.org/10.1145/2966884.2966890
http://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/foMPI-0.2.1.tar.gz
http://spcl.inf.ethz.ch/Research/Parallel_Programming/foMPI/foMPI-0.2.1.tar.gz
http://dx.doi.org/10.1111/j.1365-2966.2011.18401.x
http://dx.doi.org/10.1111/j.1365-2966.2011.18401.x
http://dx.doi.org/10.1109/IPDPS.2015.30
http://dx.doi.org/10.1109/PDP.2014.25
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937

Bibliography

[141] Michiel W. van Tol, Roy Bakker, Merijn Verstraaten, Clemens Grelck, and
Chris R. Jesshope. „Efficient Memory Copy Operations on the 48-core Intel
SCC Processor“. In: 3rd Many-core Applications Research Community (MARC)
Symposium. Proceedings of the 3rd MARC Symposium, Ettlingen, Germany, July
5-6, 2011. Ed. by Diana Göhringer, Michael Hübner, and Jürgen Becker. KIT
Scientific Publishing, Karlsruhe, 2011, pp. 13–18. URL: http://digbib.ubka.
uni-karlsruhe.de/volltexte/1000023937.

[142] David Goodell, William Gropp, Xin Zhao, and Rajeev Thakur. „Scalable
Memory Use in MPI: A Case Study with MPICH2“. In: Recent Advances in
the Message Passing Interface - 18th European MPI Users’ Group Meeting, EuroMPI
2011, Santorini, Greece, September 18-21, 2011. Proceedings. Ed. by Yiannis
Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra.
Vol. 6960. Lecture Notes in Computer Science. Springer, 2011, pp. 140–149.
DOI: 10.1007/978-3-642-24449-0_17.

[143] Werner Augustin, Marc-Oliver Straub, and Thomas Worsch. „Benchmarking
One-Sided Communication with SKaMPI 5“. In: Recent Advances in Parallel
Virtual Machine and Message Passing Interface, 12th European PVM/MPI Users’
Group Meeting, Sorrento, Italy, September 18-21, 2005, Proceedings. Ed. by
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra. Vol. 3666.
Lecture Notes in Computer Science. Springer, 2005, pp. 301–308. DOI: 10.
1007/11557265_40.

[144] Vinod Tipparaju, William Gropp, Hubert Ritzdorf, Rajeev Thakur, and
Jesper Larsson Träff. „Investigating High Performance RMA Interfaces for the
MPI-3 Standard“. In: ICPP 2009, International Conference on Parallel Processing,
Vienna, Austria, 22-25 September 2009. IEEE Computer Society, 2009, pp. 293–
300. DOI: 10.1109/ICPP.2009.54.

[145] Isaías A. Comprés Ureña and Michael Gerndt. „Improved RCKMPI’s SC-
CMPB Channel: Scaling and Dynamic Processes Support“. In: Proceedings
of the 4th Many-core Applications Research Community (MARC) Symposium.
Ed. by Peter Tröger and Andreas Polze. Universitätsverlag Potsdam, Feb. 2012,
1–6. URL: http://pub.ub.uni-potsdam.de/volltexte/2012/5789/.

[146] Carsten Clauss, Stefan Lankes, and Thomas Bemmerl. „Performance Tuning
of SCC-MPICH by Means of the Proposed MPI-3.0 Tool Interface“. In: Recent
Advances in the Message Passing Interface - 18th European MPI Users’ Group
Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings.
Ed. by Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and
Jack Dongarra. Vol. 6960. Lecture Notes in Computer Science. Springer, 2011,
pp. 318–320. DOI: 10.1007/978-3-642-24449-0_37.

204

http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000023937
http://dx.doi.org/10.1007/978-3-642-24449-0_17
http://dx.doi.org/10.1007/11557265_40
http://dx.doi.org/10.1007/11557265_40
http://dx.doi.org/10.1109/ICPP.2009.54
http://pub.ub.uni-potsdam.de/volltexte/2012/5789/
http://dx.doi.org/10.1007/978-3-642-24449-0_37

[147] Gregory F. Pfister et al. „The IBM Research Parallel Processor Prototype
(RP3): Introduction and Architecture“. In: International Conference on Parallel
Processing, ICPP’85, University Park, PA, USA, August 1985. IEEE Computer
Society Press, 1985, pp. 764–771.

[148] Mats Brorsson. „Local vs. global memory in the IBM RP3: experiments and
performance modelling“. In: Proceedings of the Third IEEE Symposium on
Parallel and Distributed Processing, SPDP 1991, 2-5 December 1991, Dallas,
Texas, USA. IEEE Computer Society, 1991, pp. 496–503. DOI: 10.1109/SPDP.
1991.218258.

[149] Tilman Butz. Fouriertransformation für Fußgänger. 7. Auflage. Wiesbaden:
Vieweg+Teubner Verlag, 2012. DOI: 10.1007/978-3-8348-8295-0.

[150] David H. Bailey et al. „The NAS Parallel Benchmarks“. In: International
Journal of High Performance Computing Applications 5.3 (1991), pp. 63–73.
DOI: 10.1177/109434209100500306.

[151] Rajesh Nishtala, Paul Hargrove, Dan Bonachea, and Katherine A. Yelick.
„Scaling communication-intensive applications on BlueGene/P using one-
sided communication and overlap“. In: 23rd IEEE International Symposium on
Parallel and Distributed Processing, IPDPS 2009, Rome, Italy, May 23-29, 2009.
IEEE, 2009, pp. 1–12. DOI: 10.1109/IPDPS.2009.5161076.

[152] Peter Sanders and Thomas Worsch. Parallele Programmierung mit MPI - ein
Praktikum, Programmtexte im Internet. Logos Verlag, 1997.

[153] Power ISA Version 2.07. online http://fileadmin.cs.lth.se/cs/education/
EDAN25/PowerISA_V2.07_PUBLIC.pdf, last accessed 2016-12-29. IBM.
May 2013.

[154] Intel 64 and IA-32 Architectures Software Developer’s Manual. Volume 2: In-
struction Set Reference, A-Z. online https://software.intel.com/sites/default/
files/managed/a4/60/325383-sdm-vol-2abcd.pdf, last accessed 2016-12-29.
Intel Corperation. Sept. 2016.

http://dx.doi.org/10.1109/SPDP.1991.218258
http://dx.doi.org/10.1109/SPDP.1991.218258
http://dx.doi.org/10.1007/978-3-8348-8295-0
http://dx.doi.org/10.1177/109434209100500306
http://dx.doi.org/10.1109/IPDPS.2009.5161076
http://fileadmin.cs.lth.se/cs/education/EDAN25/PowerISA_V2.07_PUBLIC.pdf
http://fileadmin.cs.lth.se/cs/education/EDAN25/PowerISA_V2.07_PUBLIC.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf
https://software.intel.com/sites/default/files/managed/a4/60/325383-sdm-vol-2abcd.pdf

Author’s Declaration

I hereby declare that this thesis is the result of my own investigations and research
work, except where specific references are made to publications of others. Work done
in collaboration with, or with the assistance of others, is indicated as such. This thesis
has neither been accepted, rejected nor concurrently submitted in candidature for any
other degree to any other faculty or university.

Potsdam, February 1, 2017

Steffen Christgau

207

	Introduction
	Motivation
	Outline
	Contributions
	Publications
	Scope
	Conventions

	Background
	Shared Memory Processors
	Memory Consistency and Coherence
	Memory Consistency
	Cache Coherence
	Limitations of Cache Coherence

	The Intel Single-Chip Cloud Computer
	Architectural Overview
	Memory Subsystem
	Message Passing Buffers
	Memory Types
	Configuration and Atomic Registers
	Software Environment

	Programming Models for Many-core Processors
	Message Passing Concepts
	The Message Passing Interface Standard
	Message Passing on the Single-Chip Cloud Computer
	One-sided Communication
	One-Sided Communication in the MPI standard
	Discussion

	Related Work
	Coherence and Consistency in Distributed Systems
	Coherence via Release Consistency
	Shared Virtual Memory
	Object-based approaches
	Software-Based Cache Coherence

	Conclusion

	Synchronization for MPI One-Sided Communication
	Background: MPI Process Synchronization
	Synchronization Epochs
	Fence Synchronization
	General Active Target Synchronization
	Passive Target Synchronization

	Classification of Implementation Methods
	Deferred Method
	Immediate Method
	Trigger-Only Method
	Discussion

	Survey of Synchronization Implementations
	MPICH
	MVAPICH
	Open MPI
	FoMPI
	NEON
	Summary

	Synchronization for the SCC
	Analysis of RCKMPI's Implementation
	Related Work
	Design Overview
	Data Structures
	Window Database
	Window Creation
	Start and Post Operations
	Polling the Match Vector
	Complete and Wait Operations
	Summary

	Experimental Evaluation
	Environment
	Functional Tests
	Benchmark Methodology
	Scaling
	Comparison with MPICH/RCKMPI

	Summary

	Software-Managed Cache Coherence for MPI One-Sided Communication
	Background
	MPI One-Sided Communication
	One-Sided Communication in RCKMPI
	Other MPI Implementations

	SCOSCo: An Approach for the Intel SCC
	Cache Coherence Management
	Memory Model
	Requirements for MPI One-Sided Communication
	Memory Type Considerations
	Implementation Sketch

	Implementation
	Window Creation
	Communication Operations
	Management of the Cache Coherence

	Experimental Evaluation
	Functional Tests
	Memory Performance
	OSU Micro-Benchmarks
	Three-Dimensional Fast Fourier Transform
	Cellular Autotomaton
	Summary

	Possible Optimization
	Conclusions for Future Systems
	Configurable Shared Memory and Memory Registration
	Guaranteed Commit to RAM
	Selective Invalidation of Cache Lines
	Non-blocking Data Transfer

	Summary

	Conclusions and Outlook
	Results and Discussion
	Future Work

	Employed MPICH test cases
	Succeeded Test Cases
	Failed Test Cases

	Source Codes Extracts
	Load and Store Latencies
	GATS Synchronization Benchmark
	Cellular Automaton
	Two-Sided Time Step Kernel
	One-Sided Time Step Kernel

	Communication Patterns

	Compute Cluster Properties
	Index
	Bibliography

