The Word Problem for Finitary Automaton Groups

Maximilian Kotwosky ${ }^{1}$ Jan Philipp Wächter ${ }^{2,3}$
${ }^{1}$ Universität Stuttgart, Institut für Formale Methoden der Informaik
${ }^{2}$ Politecnico di Milano, Dipartimento di Matematica
${ }^{3}$ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 492814705

6 July 2023

- Consider a group G

The Word Problem of a Group

- Consider a group G generated by a finite set Q
i. e. every element $g \in G$ can be written as $g=q_{1}^{\delta_{1}} \ldots q_{\ell}^{\delta_{\ell}}$ with $q_{i} \in Q, \delta_{i} \in\{-1,1\}$
- Consider a group G generated by a finite set Q i. e. every element $g \in G$ can be written as $g=q_{1}^{\delta_{1}} \ldots q_{\ell}^{\delta_{\ell}}$ with $q_{i} \in Q, \delta_{i} \in\{-1,1\}$
- The word problem of G is the decision problem

Constant: the group G generated by Q
Input: \quad a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?

The Word Problem of a Group

- Consider a group G generated by a finite set Q
i. e. every element $g \in G$ can be written as $g=q_{1}^{\delta_{1}} \ldots q_{\ell}^{\delta_{\ell}}$ with $q_{i} \in Q, \delta_{i} \in\{-1,1\}$
- The word problem of G is the decision problem

Constant: the group G generated by Q
Input: \quad a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?
■ ...as a formal language: $W_{Q}(G)=\left\{\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*} \mid \boldsymbol{q}=\mathbb{1}\right.$ in $\left.G\right\}$

The Word Problem of a Group

- Consider a group G generated by a finite set Q
i. e. every element $g \in G$ can be written as $g=q_{1}^{\delta_{1}} \ldots q_{\ell}^{\delta_{\ell}}$ with $q_{i} \in Q, \delta_{i} \in\{-1,1\}$
- The word problem of G is the decision problem

Constant: the group G generated by Q
Input: \quad a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?
■ ... as a formal language: $\mathrm{WP}_{Q}(G)=\left\{\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*} \mid \boldsymbol{q}=\mathbb{1}\right.$ in $\left.G\right\}$
Fact (Anisimov 1971)

$$
G \text { is finite } \Longleftrightarrow \mathrm{WP}_{Q}(G) \text { is regular }
$$

But: We can also consider the group as part of the input!

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem
Input:
a group G generated by Q and
a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question:
is $q=\mathbb{1}$ in G ?

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem
Input: a group G generated by Q and
a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?

- Problem: How can we give a group as an input to an algorithm?

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem
Input: a group G generated by Q and
a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G=\left\langle Q \mid r_{1}=\mathbb{1}, \ldots, r_{k}=\mathbb{1}\right\rangle$

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem
Input: a group G generated by Q and
a word $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $q=\mathbb{1}$ in G ?

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G=\left\langle Q \mid r_{1}=\mathbb{1}, \ldots, r_{k}=\mathbb{1}\right\rangle$

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

$$
\begin{array}{ll}
\text { Input: } & \text { a group } G \text { generated by } Q \text { and } \\
& \text { a word } \boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*} \\
\text { Question: } & \text { is } q=\mathbb{1} \text { in } G ?
\end{array}
$$

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G=\left\langle Q \mid r_{1}=\mathbb{1}, \ldots, r_{k}=\mathbb{1}\right\rangle$
"finitely presented"
- Today: We only consider finite groups!

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

$$
\begin{array}{ll}
\text { Input: } & \text { a group } G \text { generated by } Q \text { and } \\
& \text { a word } \boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*} \\
\text { Question: } & \text { is } q=\mathbb{1} \text { in } G ?
\end{array}
$$

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G=\left\langle Q \mid r_{1}=\mathbb{1}, \ldots, r_{k}=\mathbb{1}\right\rangle$
"finitely presented" - Today: We only consider finite groups! Possible: $Q=G$

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

```
Input: a group G generated by Q and
    a word }\boldsymbol{q}\in(\mp@subsup{Q}{}{\pm1}\mp@subsup{)}{}{*
Question: is q=\mathbb{1 in G}\mathrm{ ?}
```

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G=\left\langle Q \mid r_{1}=\mathbb{1}, \ldots, r_{k}=\mathbb{1}\right\rangle$
- Today: We only consider finite groups! Possible: $Q=G$

■ Possible descriptions: Cayley tables, Cayley graphs, matrices, permutations, ...

Some Known Results: Upper Bounds

Some Known Results: Upper Bounds

Fact

The word problem for groups given as Cayley tables
Input: a Cayley table $G \times G \rightarrow G,(g, h) \mapsto g h$ of a finite group G and group elements $g_{1}, \ldots, g_{n} \in G$
Question: is $g_{1} \cdot \ldots \cdot g_{n}=\mathbb{1}$?
is in LogSpace.

Some Known Results: Upper Bounds

Fact

The word problem for groups given as Cayley tables
Input: a Cayley table $G \times G \rightarrow G,(g, h) \mapsto g h$ of a finite group G and group elements $g_{1}, \ldots, g_{n} \in G$
Question: is $g_{1} \cdot \ldots \cdot g_{n}=\mathbb{1}$?
is in LOGSPACE.

Theorem (Lipton, Zalcstein 1977/Simon 1979)

The word problem of a finitely generated linear group
Constant: $\quad G \leq G L(d, \mathbb{F})$
Input: \quad matrices $M_{1}, \ldots, M_{n} \in G$
Question: is $M_{1} \cdot \ldots \cdot M_{n}$ the identity matrix?
is in LOGSPACE.

Some Known Results: Lower Bounds

[^0]
Theorem (Cook, McKenzie 1987)

The problem
Input: permutations $\pi_{1}, \ldots, \pi_{\ell}$ in cycle notation
Output: the product $\pi_{1} \ldots \pi_{\ell}$ in cycle notation is complete for functional LOGSPACE.

Some Known Results: Lower Bounds

Theorem (Cook, McKenzie 1987)

The problem
Input: permutations $\pi_{1}, \ldots, \pi_{\ell}$ in cycle notation
Output: the product $\pi_{1} \ldots \pi_{\ell}$ in cycle notation
is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem $\mathrm{WP}\left(A_{5}\right)$ of the group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$ is NC^{1}-complete.

Some Known Results: Lower Bounds

Theorem (Cook, McKenzie 1987)

The problem
Input: permutations $\pi_{1}, \ldots, \pi_{\ell}$ in cycle notation
Output: the product $\pi_{1} \ldots \pi_{\ell}$ in cycle notation
is complete for functional LogSpace.

Theorem (Barrington 1986)

The word problem $\mathrm{WP}\left(A_{5}\right)$ of the group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$ is NC^{1}-complete. Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth; $\mathrm{NC}^{1} \subseteq$ LoGSPACE

Some Known Results: Lower Bounds

Theorem (Cook, McKenzie 1987)

The problem
Input: permutations $\pi_{1}, \ldots, \pi_{\ell}$ in cycle notation
Output: the product $\pi_{1} \ldots \pi_{\ell}$ in cycle notation
is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem $\mathrm{WP}\left(A_{5}\right)$ of the group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$ is NC^{1}-complete. Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth: In fact: this holds for any non-solvable finite group!

Some Known Results: Lower Bounds

Theorem (Cook, McKenzie 1987)

The problem
Input: permutations $\pi_{1}, \ldots, \pi_{\ell}$ in cycle notation
Output: the product $\pi_{1} \ldots \pi_{\ell}$ in cycle notation
is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem $\mathrm{WP}\left(A_{5}\right)$ of the group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$ is NC^{1}-complete.- Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth; In fact: this holds for any non-solvable finite group! $\mathrm{NC}^{1} \subseteq$ LogSpace This yields: The uniform word problem for any group presentation (allowing A_{5}) is $N C^{1}$-hard!

Presenting Groups Using Automata

Automata

■ In this setting, a \mathscr{G}-automaton is a

- finite-state,

■ letter-to-letter
transducer
■ without final or initial states which is

- complete,
- deterministic and
- invertible.

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

- p induces the identity function

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

- p induces the identity function

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

- p induces the identity function

$0 \quad 0 \quad 0$	$q \circ 000=100$
$q \checkmark p \downarrow p \downarrow p$	$q \circ 100=010$
100	$q \circ 010=110$
$q \underset{\downarrow}{\downarrow} q \underset{\downarrow}{\downarrow}$ ¢ p	
$0 \quad 1 \quad 0$	

State Actions

■ Idea: every state q induces a bijection $\Sigma^{*} \rightarrow \Sigma^{*}$ mapping input to output words Example

- p induces the identity function

$\rightsquigarrow q$ increments (reverse) binary representation (least significant bit first)

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a $\operatorname{group} \mathscr{G}(\mathcal{T})$:

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

Automaton Groups

 it is the closure under composition of the bijections induced by the states and their inverses.

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$:

$$
\begin{aligned}
& \text { Such a group is an } \\
& \text { automaton group. } \\
& \tau) \text { : }
\end{aligned}
$$ it is the closure under composition of the bijections induced by the states and their inverses.

Example

- p : identity
- q : increment

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a $\operatorname{group}^{\mathscr{G}}(\mathcal{T})$:

$$
\begin{aligned}
& \text { Such a group is an } \\
& \text { automaton group. } \\
& \tau) \text { : }
\end{aligned}
$$ it is the closure under composition of the bijections induced by the states and their inverses.

Example

- p : identity
- q : increment
- $q p=p q=q$ in $\mathscr{G}(\mathcal{T})$

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a $\operatorname{group}^{\mathscr{G}}(\mathcal{T})$:

$$
\begin{aligned}
& \text { Such a group is an } \\
& \text { automaton group. } \\
& \tau) \text { : }
\end{aligned}
$$ it is the closure under composition of the bijections induced by the states and their inverses.

Example

- p : identity
- q : increment
- $q p=p q=q$ in $\mathscr{G}(\mathcal{T})$

■ $q q \circ 000=q \circ 100=010$

- q^{n} : "add n "

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a $\operatorname{group} \mathscr{G}(\mathcal{T})$:

$$
\begin{aligned}
& \text { Such a group is an } \\
& \text { automaton group. } \\
& \tau) \text { : }
\end{aligned}
$$ it is the closure under composition of the bijections induced by the states and their inverses.

Example

- p : identity
- q : increment, q^{-1} : decrement
- $q p=p q=q$ in $\mathscr{G}(\mathcal{T})$

■ $q q \circ 000=q \circ 100=010$
■ q^{n} : "add n ", q^{-n} : "subtract n "

Automaton Groups

- A \mathscr{G}-automaton \mathcal{T} with state set Q generates a $\operatorname{group}^{\mathscr{G}}(\mathcal{T})$:

$$
\begin{aligned}
& \text { Such a group is an } \\
& \text { automaton group. } \\
& \mathcal{T}) \text { : }
\end{aligned}
$$ it is the closure under composition of the bijections induced by the states and their inverses.

Example

- p : identity
- q : increment, q^{-1} : decrement
- $q p=p q=q$ in $\mathscr{G}(\mathcal{T})$

$$
\mathscr{G}(\mathcal{T})=F(q) \simeq \mathbb{Z}
$$

- $q q \circ 000=q \circ 100=010$

■ q^{n} : "add n ", q^{-n} : "subtract n "

Finitary Automaton Groups

Finitary Automaton Groups

A finitary automaton has no cycles except for self-loops at the identity state

Finitary Automaton Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Finitary Automaton Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Example

Finitary Automaton Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Finitary Automaton Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Effectively all functions are $\Sigma^{d} \rightarrow \Sigma^{d}$

Finitary Automaton Groups as Finite Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Effectively all functions are $\Sigma^{d} \rightarrow \Sigma^{d}$
\rightsquigarrow all finitary automaton groups are finite

Finite Groups as Finitary Automaton Groups

An arbitrary finite group $G=\left\{\operatorname{id}, g_{1}, \ldots, g_{n}\right\}$ is generated by the finitary \mathscr{G}-automaton

Finite Groups as Finitary Automaton Groups

An arbitrary finite group $G=\left\{\mathrm{id}, g_{1}, \ldots, g_{n}\right\}$ is generated by the finitary \mathscr{G}-automaton

Fact

$$
G \text { is finite } \Longleftrightarrow G \text { is a finitary automaton group }
$$

Because: the presentation using automata is powerful

Because: the presentation using automata is powerful

- General case: Many groups with interesting properties are automaton groups

Because: the presentation using automata is powerful

- General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group

Why Automata?

Because: the presentation using automata is powerful

- General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented.

Why Automata?

Because: the presentation using automata is powerful

- General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented. \rightsquigarrow finite automata can encode groups without traditional finite presentations

Why Automata?

Because: the presentation using automata is powerful
■ General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented. \rightsquigarrow finite automata can encode groups without traditional finite presentations
■ For finite groups: We can achieve a doubly exponential compression

Why Automata?

Because: the presentation using automata is powerful

■ General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented. \rightsquigarrow finite automata can encode groups without traditional finite presentations

- For finite groups: We can achieve a doubly exponential compression For Example:

Why Automata?

Because: the presentation using automata is powerful

■ General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented.
\rightsquigarrow finite automata can encode groups without traditional finite presentations

- For finite groups: We can achieve a doubly exponential compression For Example:

$$
\begin{aligned}
& \text { Automorphism group of } \\
& \text { the regular binary tree } \\
& \text { of depth } n \\
& \qquad \mathcal{T} \mid=n+1 \\
& \mathscr{G}(\mathcal{T})=\text { Aut } B_{n}
\end{aligned}
$$

Why Automata?

Because: the presentation using automata is powerful

■ General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented.
\rightsquigarrow finite automata can encode groups without traditional finite presentations

- For finite groups: We can achieve a doubly exponential compression For Example:

$$
\begin{aligned}
& \text { Automorphism group of } \\
& \text { the regular binary tree } \\
& \text { of depth } n \\
& |\mathcal{T}|=n+1 \\
& \mathscr{G}(\mathcal{T})=\text { Aut } B_{n} \\
& \Longrightarrow|\mathscr{G}(\mathcal{T})|=2^{2^{n}-1}
\end{aligned}
$$

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups
Input:

$$
\text { a finitary } \mathscr{G} \text {-automaton } \mathcal{T}=(Q, \Sigma, \delta)
$$

$$
\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}
$$

Question:
is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}($ i. e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T}))$?
is coNP-complete.

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups
Input:

$$
\begin{array}{ll}
\text { Input: } & \text { a finitary } \mathscr{G} \text {-automaton } \mathcal{T}=(Q, \Sigma, \delta) \quad \text {...It is } \\
& \boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*} \\
\text { Question: } & \text { is } \boldsymbol{q} \circ u=u \text { for all } u \in \Sigma^{*}(\text { i. e. } \boldsymbol{q}=\mathbb{1} \text { in } \mathscr{G}(\mathcal{T})) \text { ? }
\end{array}
$$ is coNP-complete.

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups
Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)?
general -complete for W., Weir (2020) is coNP-complete.

Proof (complement is in NP).

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups
Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? is coNP-complete.

Proof (complement is in NP).

- For the depth $d<|Q|$, we have:

$$
\boldsymbol{q} \underset{v}{u} \operatorname{id}^{|\boldsymbol{q}|} \quad \text { for all } u \in \Sigma^{\geq d} .
$$

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups
Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$

Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)?
gender ace-complete for general automaton groups W., Weir (2020) is coNP-complete.

Proof (complement is in NP).

- For the depth $d<|Q|$, we have:
$■ \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T}) \Longrightarrow \exists u \in \Sigma^{d}: \boldsymbol{q} \circ u \neq u$
u

$$
\boldsymbol{q} \underset{v}{\leftrightarrows} \mathrm{id}^{|\boldsymbol{q}|} \quad \text { for all } u \in \Sigma^{\geq d} .
$$

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? is coNP-complete.

Proof (complement is in NP).

- For the depth $d<|Q|$, we have:

$$
\square \boldsymbol{q} \neq \mathbb{1} \text { in } \mathscr{G}(\mathcal{T}) \Longrightarrow \exists u \in \Sigma^{d}: \boldsymbol{q} \circ u \neq u
$$

$$
\boldsymbol{q} \underset{v}{u} \mathrm{id}^{|\boldsymbol{q}|} \quad \text { for all } u \in \Sigma^{\geq d} .
$$

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? is coNP-complete.

Proof (complement is in NP).

- For the depth $d<|Q|$, we have:

$$
\square \boldsymbol{q} \neq \mathbb{1} \text { in } \mathscr{G}(\mathcal{T}) \Longrightarrow \exists u \in \Sigma^{d}: \boldsymbol{q} \circ u \neq u
$$

$$
\boldsymbol{q} \underset{v}{u} \mathrm{id}^{|\boldsymbol{q}|} \quad \text { for all } u \in \Sigma^{\geq d} .
$$

- Algorithm: "guess \& check"
- Guess witness u with $|u|<|Q|$ (in time $|Q|$).

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

Input:
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
$\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q} \circ u=u$ for all $u \in \Sigma^{*}$ (i.e. $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? is coNP-complete.

Proof (complement is in NP).

- For the depth $d<|Q|$, we have:
- $\boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T}) \Longrightarrow \exists u \in \Sigma^{d}: \boldsymbol{q} \circ u \neq u$

$$
\boldsymbol{q} \underset{v}{u} \mathrm{id}^{|\boldsymbol{q}|} \quad \text { for all } u \in \Sigma^{\geq d} .
$$

- Guess witness u with $|u|<|Q|$ (in time $|Q|$).
- Check $\boldsymbol{q} \circ u \neq u($ in time $\approx|Q| \cdot|\boldsymbol{q}|)$.

Barrington's Idea (1986)

A_{5} : Group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$

Barrington's Idea (1986)

A_{5} : Group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$
Fact $\quad \sigma^{\alpha}=\alpha^{-1} \sigma \alpha$
There are $\sigma, \alpha, \beta \in A_{5}$ with $\sigma \neq \mathrm{id}$ and $\sigma=\left[\sigma^{\beta}, \sigma^{\alpha}\right]$.

$$
[h, g]=h^{-1} g^{-1} h g
$$

Barrington's Idea (1986)

A_{5} : Group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$

Fact $\sigma^{\alpha}=\alpha^{-1} \sigma \alpha$

There are $\sigma, \alpha, \beta \in A_{5}$ with $\sigma \neq \mathrm{id}$ and $\sigma=\left[\sigma^{\beta}, \sigma^{\alpha}\right]$.

$$
[h, g]=h^{-1} g^{-1} h g
$$

Definition (Balanced Commutator)

$$
\begin{aligned}
B\left[\boldsymbol{q}_{1}\right] & =\boldsymbol{q}_{1} \\
B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{1}\right] & =\left[B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor+1}\right]^{\beta}, B\left[\boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor}, \ldots, \boldsymbol{q}_{1}\right]^{\alpha}\right]
\end{aligned}
$$

Barrington's Idea (1986)

It's a logical conjunction!
A_{5} : Group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$

Fact

 $\sigma^{\alpha}=\alpha^{-1} \sigma \alpha$
Proposition

There are $\sigma, \alpha, \beta \in A_{5}$ with $\sigma \neq \mathrm{id}$ and $\sigma=\left[\sigma^{\beta}, \sigma^{\alpha}\right]$.

$$
[h, g]=h^{-1} g^{-1} h g
$$

$$
\begin{aligned}
& g_{1}, \ldots, g_{t} \in\{\sigma, \text { id }\} \\
& B\left[g_{t}, \ldots, g_{1}\right]= \begin{cases}\sigma & \forall i: g_{i}=\sigma \\
\text { id } & \text { otherwise }\end{cases}
\end{aligned}
$$

Definition (Balanced Commutator)

$$
\begin{aligned}
B\left[\boldsymbol{q}_{1}\right] & =\boldsymbol{q}_{1} \\
B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{1}\right] & =\left[B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor+1}\right]^{\beta}, B\left[\boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor}, \ldots, \boldsymbol{q}_{1}\right]^{\alpha}\right]
\end{aligned}
$$

Barrington's Idea (1986)

It's a logical conjunction:
A_{5} : Group of even permutations over $\left\{a_{1}, \ldots, a_{5}\right\}$
Fact $\sigma^{\alpha}=\alpha^{-1} \sigma \alpha$

Proposition

There are $\sigma, \alpha, \beta \in A_{5}$ with $\sigma \neq \mathrm{id}$ and $\sigma=\left[\sigma^{\beta}, \sigma^{\alpha}\right]$.

$$
g_{1}, \ldots, g_{t} \in\{\sigma, \mathrm{id}\}
$$

$$
[h, g]=h^{-1} g^{-1} h g
$$

$$
B\left[g_{t}, \ldots, g_{1}\right]= \begin{cases}\sigma & \forall i: g_{i}=\sigma \\ \text { id } & \text { otherwise }\end{cases}
$$

Definition (Balanced Commutator)

Proposition

$\begin{aligned} B\left[\boldsymbol{q}_{1}\right] & =\boldsymbol{q}_{1} \\ B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{1}\right] & \left.=\left[B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor+1}\right]^{\beta}, B\left[\boldsymbol{q}_{\left\lfloor\frac{t}{2}\right\rfloor}\right\rfloor, \ldots, \boldsymbol{q}_{1}\right]^{\alpha}\right]\end{aligned}$
$B\left[\boldsymbol{q}_{t}, \ldots, \boldsymbol{q}_{1}\right]$ can be computed in LogSpace.

Proof (complement is NI-hard)

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with $C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}}$ over variables $\mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}$ Question: $\quad \exists \mathcal{A}: \mathcal{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with $C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}}$ over variables $\mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}$
Question: $\quad \exists \mathcal{A}: \mathbb{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.

- We need a $\operatorname{map} \varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with $C_{k}=(\neg) X_{n_{k}, 3} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}}$ over variables $\mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}$
Question: $\exists \mathcal{A}: \mathcal{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.

- We need a map $\varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\}$

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with $C_{k}=(\neg) X_{n_{k}, 3} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}}$ over variables $\mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}$ Question: $\exists \mathcal{A}: \mathcal{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.
■ We need a map $\varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\} \ni \perp, \top$

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with $C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}}$ over variables $\mathbb{X}=\left\{X_{1}, \ldots, X_{N}\right\}$ Question: $\exists \mathcal{A}: \mathcal{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.

- We need a $\operatorname{map} \varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\} \ni \perp, \top \quad\langle\mathcal{A}\rangle \in\{\perp, \top\}^{N}$: encoding of \mathcal{A}

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with

$$
C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}} \text { over variables } \mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}
$$

Question: $\quad \exists \mathcal{A}: \mathbb{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?
to the complement of the word problem.

- We need a $\operatorname{map} \varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\} \ni \perp, \top \quad\langle\mathcal{A}\rangle \in\{\perp, \top\}^{N}$: encoding of \mathcal{A}
- technical states:

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with

$$
C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}} \text { over variables } \mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}
$$

Question: $\quad \exists \mathcal{A}: \mathbb{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?

to the complement of the word problem.

- We need a $\operatorname{map} \varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\} \ni \perp, \top \quad\langle\mathcal{A}\rangle \in\{\perp, \top\}^{N}$: encoding of \mathcal{A}
- technical states:

Proof (complement is NP-hard)

- We reduce 3SAT

Input: boolean formula $\varphi=\bigwedge_{k=1}^{K} C_{k}$ with

$$
C_{k}=(\neg) X_{n_{k, 3}} \vee(\neg) X_{n_{k, 2}} \vee(\neg) X_{n_{k, 1}} \text { over variables } \mathbb{K}=\left\{X_{1}, \ldots, X_{N}\right\}
$$

Question: $\quad \exists \mathcal{A}: \mathbb{X} \rightarrow \mathbb{B}: \mathcal{A}=\varphi$?

to the complement of the word problem.

- We need a $\operatorname{map} \varphi \mapsto(\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma=\left\{a_{1}, \ldots, a_{5}\right\} \ni \perp, \top \quad\langle\mathcal{A}\rangle \in\{\perp, \top\}^{N}$: encoding of \mathcal{A}
- technical states:

- same for β

Proof (continued)

■ Important part:

Proof (continued)

■ Important part:

Proof (continued)

■ Important part:

missing transition go to id with b / b

Proof (continued)

- Important part: Example: $C_{k}=X_{n_{3}} \vee \neg X_{n_{2}} \vee X_{n_{1}}$ (w.I. o.g.: $n_{3}<n_{2}<n_{1}$)

missing transition go to id with b / b

Proof (continued)

- Important part: Example: $C_{k}=X_{n_{3}} \vee \neg X_{n_{2}} \vee X_{n_{1}}$ (w.I. org.: $n_{3}<n_{2}<n_{1}$)

$$
\begin{aligned}
& c_{k, N} \xrightarrow[T / T]{\perp / \perp} \cdots \xrightarrow[T / \top]{\perp / \perp} c_{k, n_{3}} \\
& c_{k, n_{3}-1}^{\xrightarrow[T / \top]{\perp / \perp} \cdots \xrightarrow[T / \top]{\perp} c_{k, n_{2}}^{\perp}+1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { a/ } \sigma(a)
\end{aligned}
$$

missing transition go to id with b / b

Proof (continued)

- Important part: Example: $C_{k}=X_{n_{3}} \vee \neg X_{n_{2}} \vee X_{n_{1}}$ (w.I. o.g.: $n_{3}<n_{2}<n_{1}$)

missing transition go to id with b / b

Proof (continued)

- Important part: Example: $C_{k}=X_{n_{3}} \vee \neg X_{n_{2}} \vee X_{n_{1}}$ (w. I. o. g.: $n_{3}<n_{2}<n_{1}$)

missing transition go to id with b / b

Proof (continued)

- Important part: Example: $C_{k}=X_{n_{3}} \vee \neg X_{n_{2}} \vee X_{n_{1}}$ (w.I. o.g.: $n_{3}<n_{2}<n_{1}$)

missing transition go to id with b / b
Invariant for $w \in \Sigma^{N .} \quad c_{k}=c_{k, N} \underset{w}{\longrightarrow} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \mid=C_{k} \\ \text { id } & \text { otherwise }\end{cases}$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\stackrel{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$

Let $w \in \Sigma^{N}$.

$$
\begin{aligned}
& c_{1} \underset{w}{\downarrow} \sigma_{0} \text { or id } \\
& \vdots \quad \vdots \quad \vdots \\
& \text { w } \\
& c_{k} \underset{w}{\downarrow} \sigma_{0} \text { or id } \\
& \vdots \quad \vdots \quad \vdots \\
& \text { w } \\
& c_{K} \xrightarrow{\downarrow} \sigma_{0} \text { or id } \\
& \text { w }
\end{aligned}
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \stackrel{\underset{w}{\rightleftarrows}}{\stackrel{w}{\rightleftarrows}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Let $w \in \Sigma^{N}$.

$$
\begin{aligned}
& c_{1} \underset{w}{\downarrow} \sigma_{0} \text { or id } \\
& \vdots \quad \vdots \quad \vdots \\
& c_{k} \xrightarrow[w]{\downarrow} \sigma_{0} \text { or id } \\
& \text { w } \\
& \vdots \quad \vdots \quad \vdots \\
& \text { w } \\
& c_{K} \underset{w}{\downarrow} \sigma_{0} \text { or id }
\end{aligned}
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \stackrel{\underset{w}{\rightleftarrows}}{\stackrel{w}{\rightleftarrows}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $w \in \Sigma^{N}$.

$$
\begin{aligned}
& c_{1} \underset{w}{\downarrow} \sigma_{0} \text { or id } \\
& \vdots \quad \vdots \quad \vdots \\
& \text { w } \\
& c_{k} \xrightarrow{\downarrow} \sigma_{0} \text { or id } \\
& \text { w } \\
& \vdots \quad \vdots \\
& \text { w } \\
& c_{K} \underset{w}{\downarrow} \sigma_{0} \text { or id }
\end{aligned}
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\downarrow} \stackrel{w}{w} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Let $w \in \Sigma^{N}$.

Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

$\underset{\infty}{c_{K}} \stackrel{w}{\downarrow} \underset{\infty}{\downarrow} \sigma_{0} \sigma_{0}$ or id

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\underset{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $w=\langle\mathcal{A}\rangle$ for $\mathcal{A} \models \varphi$.

$$
\overline{c_{1}} \underset{w}{\downarrow} \stackrel{\sigma_{0} \text { or id }}{w}
$$

$$
\begin{array}{ccc}
\vdots & \vdots & \vdots \\
& c_{k} \xrightarrow{w} \\
\\
w
\end{array}
$$

$$
\vdots \quad \vdots
$$

$$
\underset{\infty}{c_{K}} \stackrel{w}{\downarrow} \stackrel{\sigma_{0} \text { or id }}{\underset{\infty}{\gtrless}}
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\underset{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right] \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $w=\langle\mathcal{A}\rangle$ for $\mathcal{A} \models \varphi$.

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\underset{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $w=\langle\mathcal{A}\rangle$ for $\mathcal{A} \not \vDash \varphi$.

$$
\vdots \quad \vdots
$$

$$
\underset{\infty}{c_{K}} \stackrel{w}{\downarrow} \underset{\infty}{\downarrow} \sigma_{0}^{\infty} \text { or id }
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\underset{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $w=\langle\mathcal{A}\rangle$ for $\mathcal{A} \not \vDash \varphi$.

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\downarrow} \stackrel{w}{w} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $\boldsymbol{w} \notin\{\perp, \top\}^{N}$.

$$
\begin{aligned}
& \overline{c_{1}} \underset{w}{\downarrow} \stackrel{\sigma_{0} \text { or id }}{w} \\
& \vdots \quad \vdots \quad \vdots \\
& c_{k} \xrightarrow{\downarrow} \sigma_{0} \text { or id } \\
& \text { w } \\
& \vdots \quad \vdots \\
& \underset{\infty}{c_{K}} \stackrel{w}{\downarrow} \underset{\infty}{\downarrow} \sigma_{0} \sigma_{0} \text { or id }
\end{aligned}
$$

Proof (continued further)

Invariant for $w \in \Sigma^{N}$:
$c_{k} \underset{w}{\underset{w}{w}} \begin{cases}\sigma_{0} & \text { if } w=\langle\mathcal{A}\rangle, \mathcal{A} \models C_{k} \\ \text { id } & \text { otherwise }\end{cases}$
Goal:
φ is satisfiable $\Longleftrightarrow \boldsymbol{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
Set $q=B_{N}\left[c_{K}, \ldots, c_{1}\right]$
Convention: B_{n} uses α_{n} and β_{n} instead of α and β

Let $\boldsymbol{w} \notin\{\perp, \top\}^{N}$.

The uniform compressed word problem for finitary automaton groups
Input: \quad a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$?

The uniform compressed word problem for finitary automaton groups
Input: \quad a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: \quad is $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$?
a context-free grammar generating a single word

The Uniform Compressed Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups
Input: \quad a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question:

$$
\begin{array}{ll}
\text { is } \boldsymbol{q}=\mathbb{1} \text { in } \mathscr{G}(\mathcal{T}) ? & \text { a context-free grammar } \\
\text { mplete. } & \text { generating a single word }
\end{array}
$$

is PSPACE-complete.

The Uniform Compressed Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

Input:

Question:
is PSpACE-complete.
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
is $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$?
... it is Expspace-complete for
general automaton general automaton groups

The Uniform Compressed Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

Input:

Question:
is PSpACE-complete.
a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
is $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$? a context-free gingle word

```
...it is Expspace-complete for
                                general automaton groups
                                    W., Weiß (2020)
```

- We prove this using a similar reduction form QBF.

The Uniform Compressed Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

Input:

a finitary \mathscr{G}-automaton $\mathcal{T}=(Q, \Sigma, \delta)$
a straight-line program encoding $\boldsymbol{q} \in\left(Q^{ \pm 1}\right)^{*}$
Question: is $\boldsymbol{q}=\mathbb{1}$ in $\mathscr{G}(\mathcal{T})$?
is PSPACE-complete.
a context-free grammar
generating a single word
...it is Expspace-complete for
general automaton groups general automaton groups

- We prove this using a similar reduction form QBF.
- However: One may also finitely approximate various other groups with PSPACE-complete compressed word problem

Thank you!

[^0]: Some Known Results: Lower Bounds

