The Word Problem for Finitary Automaton Groups

Maximilian Kotwosky¹ Jan Philipp Wächter^{2,3}

¹Universität Stuttgart, Institut für Formale Methoden der Informalk

²Politecnico di Milano, Dipartimento di Matematica

 3 funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 492814705

6 July 2023

■ Consider a group *G*

■ Consider a group G generated by a finite set Q i. e. every element $g \in G$ can be written as $g = q_1^{\delta_1} \dots q_\ell^{\delta_\ell}$ with $q_i \in Q$, $\delta_i \in \{-1,1\}$

- Consider a group G generated by a finite set Qi. e. every element $g \in G$ can be written as $g = q_1^{\delta_1} \dots q_\ell^{\delta_\ell}$ with $q_i \in Q$, $\delta_i \in \{-1, 1\}$
- The word problem of *G* is the decision problem

Constant: the group G generated by Q

Input: a word $\mathbf{q} \in (Q^{\pm 1})^*$

- Consider a group G generated by a finite set Q i. e. every element $g \in G$ can be written as $g = q_1^{\delta_1} \dots q_\ell^{\delta_\ell}$ with $q_i \in Q$, $\delta_i \in \{-1, 1\}$
- The word problem of *G* is the decision problem

Constant: the group G generated by Q

Input: a word $\mathbf{q} \in (Q^{\pm 1})^*$

Question: is q = 1 in G?

 \blacksquare ...as a formal language: $WP_Q(G) = \{ \boldsymbol{q} \in (Q^{\pm 1})^* \mid \boldsymbol{q} = \mathbb{1} \text{ in } G \}$

- Consider a group G generated by a finite set Qi. e. every element $g \in G$ can be written as $g = q_1^{\delta_1} \dots q_\ell^{\delta_\ell}$ with $q_i \in Q$, $\delta_i \in \{-1, 1\}$
- The word problem of *G* is the decision problem

Constant: the group G generated by Q

Input: a word $\mathbf{q} \in (Q^{\pm 1})^*$

Question: is q = 1 in G?

 \blacksquare ...as a formal language: $WP_Q(G) = \{ \boldsymbol{q} \in (Q^{\pm 1})^* \mid \boldsymbol{q} = \mathbb{1} \text{ in } G \}$

Fact (Anisimov 1971)

G is finite
$$\iff$$
 WP_Q(G) is regular

But: We can also consider the group as part of the input!

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word ${m q} \in ({m Q}^{\pm 1})^*$

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word $extbf{ extit{q}} \in (extbf{ extit{Q}}^{\pm 1})^*$

Question: is q = 1 in G?

■ Problem: How can we give a group as an input to an algorithm?

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word ${m q} \in ({\it Q}^{\pm 1})^*$

- Problem: How can we give a group as an input to an algorithm?
- Typically: using a finite presentation $G = \langle Q \mid r_1 = 1, ..., r_k = 1 \rangle$

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word $\mathbf{q} \in (Q^{\pm 1})^*$

- Problem: How can we give a group as an input to an algorithm?
- $lacksymbol{\mathbb{T}}$ Typically: using a finite presentation $G=\langle Q \mid r_1=1,\ldots,r_k=1 \rangle$ "tinitely presented"

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word $\mathbf{q} \in (Q^{\pm 1})^*$

- Problem: How can we give a group as an input to an algorithm?
- $lacksymbol{\mathbb{Z}}$ Typically: using a finite presentation $G=\langle Q \mid r_1=1,\ldots,r_k=1 \rangle$ "tinitely presented"
- Today: We only consider finite groups!

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word ${m q} \in ({m Q}^{\pm 1})^*$

Question: is q = 1 in G?

Problem: How can we give a group as an input to an algorithm?

 $lacksymbol{\mathbb{T}}$ Typically: using a finite presentation $G=\langle Q \mid r_1=1,\ldots,r_k=1 \rangle$ "finitely presented"

■ Today: We only consider finite groups! Possible: Q = G

But: We can also consider the group as part of the input!

Definition

The uniform word problem for groups is the decision problem

Input: a group G generated by Q and

a word ${m q} \in ({m Q}^{\pm 1})^*$

- Problem: How can we give a group as an input to an algorithm?
- $lacksymbol{ iny Typically: using a finite presentation } G = \langle Q \mid r_1 = 1, \ldots, r_k = 1 \rangle$ "tinitely presented"
- Today: We only consider finite groups! Possible: Q = G
- Possible descriptions: Cayley tables, Cayley graphs, matrices, permutations, ...

Fact

The word problem for groups given as Cayley tables

Input: a Cayley table $G \times G \rightarrow G$, $(g, h) \mapsto gh$ of a finite group G and

group elements $g_1, \ldots, g_n \in G$

Question: is $g_1 \cdot \ldots \cdot g_n = 1$?

is in LogSpace.

Fact

The word problem for groups given as Cayley tables

Input: a Cayley table $G \times G \rightarrow G$, $(g, h) \mapsto gh$ of a finite group G and

group elements $g_1, \ldots, g_n \in G$

Question: is $g_1 \cdot \ldots \cdot g_n = 1$?

is in LogSpace.

Theorem (Lipton, Zalcstein 1977/Simon 1979)

The word problem of a finitely generated linear group

Constant: $G \leq GL(d, \mathbb{F})$

Input: $matrices M_1, \ldots, M_n \in G$

Question: is $M_1 \cdot \ldots \cdot M_n$ the identity matrix?

is in LOGSPACE.

Theorem (Cook, McKenzie 1987)

The problem

Input:

permutations π_1, \ldots, π_ℓ in cycle notation

Output: the product $\pi_1 \dots \pi_\ell$ in cycle notation

is complete for functional LOGSPACE.

Theorem (Cook, McKenzie 1987)

The problem

Input: permutations π_1, \ldots, π_ℓ in cycle notation

Output: the product $\pi_1 \dots \pi_\ell$ in cycle notation

is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem WP(A_5) of the group of even permutations over $\{a_1, \ldots, a_5\}$ is NC¹-complete.

Theorem (Cook, McKenzie 1987)

The problem

Input: permutations π_1, \ldots, π_ℓ in cycle notation

Output: the product π_1, \ldots, π_ℓ in cycle notation

is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem WP(A_5) of the group of even permutations over $\{a_1, \ldots, a_5\}$ is NC¹-complete. Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth; NC¹ \subset LogSpace

Theorem (Cook, McKenzie 1987)

The problem

Input: permutations π_1, \ldots, π_ℓ in cycle notation

Output: the product π_1, \ldots, π_ℓ in cycle notation

is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem WP(A_5) of the group of even permutations over $\{a_1, \ldots, a_5\}$ is NC¹-complete. Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth; NC¹ \subset LogSpace

In fact: this holds for any non-solvable finite group!

Theorem (Cook, McKenzie 1987)

The problem

Input: permutations π_1, \ldots, π_ℓ in cycle notation

Output: the product $\pi_1 \dots \pi_\ell$ in cycle notation

is complete for functional LOGSPACE.

Theorem (Barrington 1986)

The word problem WP(A_5) of the group of even permutations over $\{a_1, \ldots, a_5\}$ is NC¹-complete. Boolean circuits, bounded fan-in, $\mathcal{O}(\log n)$ depth; NC¹ \subset LogSpace

In fact: this holds for any non-solvable finite group!

This yields: The uniform word problem for any group presentation (allowing A_5) is NC^1 -hard!

Presenting Groups Using Automata

Automata

- In this setting, a *G*-automaton is a
 - finite-state.
 - letter-to-letter

transducer

without final or initial states

which is

- complete.
- deterministic and
- invertible.

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

p induces the identity function

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

- p induces the identity function
- $q \circ 000 = 100$

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

p induces the identity function

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

p induces the identity function

■ Idea: every state q induces a bijection $\Sigma^* \to \Sigma^*$ mapping input to output words

Example

- p induces the identity function
- $\begin{array}{c|cccc} \bullet & 0 & 0 & & & & q \circ 000 = 100 \\ \hline q & \downarrow & p & \downarrow & p & \downarrow & p \\ 1 & 0 & 0 & & & q \circ 100 = 010 \\ q & \downarrow & q & \downarrow & p & \downarrow & p \\ 0 & 1 & 0 & & & & \end{array}$

 \rightarrow q increments (reverse) binary representation (least significant bit first)

■ A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$:

■ A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

Such a group is an automaton group.

A \mathscr{G} -automaton \mathscr{T} with state set Q generates a group $\mathscr{G}(\mathscr{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

Such a group is all automaton group.

A \mathscr{G} -automaton \mathscr{T} with state set Q generates a group $\mathscr{G}(\mathscr{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

Example

Such a group is all automaton group.

A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

- **p**: identity
- q: increment

Such a group is all automaton group.

A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

- **p**: identity
- q: increment
- $qq \circ 000 = q \circ 100 = 010$
- \blacksquare q^n : "add n"

Such a group is an automaton group.

A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

- **p**: identity
- **q**: increment, q^{-1} : decrement
- $p = pq = q in \mathscr{G}(\mathcal{T})$
- $qq \circ 000 = q \circ 100 = 010$
- \blacksquare q^n : "add n", q^{-n} : "subtract n"

Such a group is a automaton group.

A \mathscr{G} -automaton \mathcal{T} with state set Q generates a group $\mathscr{G}(\mathcal{T})$: it is the closure under composition of the bijections induced by the states and their inverses.

- **p**: identity
- **q**: increment, q^{-1} : decrement
- $p = pq = q in \mathscr{G}(\mathcal{T})$
- $qq \circ 000 = q \circ 100 = 010$
- \blacksquare q^n : "add n", q^{-n} : "subtract n"

$$\mathscr{G}(\mathcal{T}) = \textit{F}(\textit{q}) \simeq \mathbb{Z}$$

A finitary automaton has no cycles except for self-loops at the identity state

A finitary automaton has no cycles except for self-loops at the identity state

→ it is a labeled directed acyclic graph

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Effectively all functions are $\Sigma^d \to \Sigma^d$

Finitary Automaton Groups as Finite Groups

A finitary automaton has no cycles except for self-loops at the identity state \rightsquigarrow it is a labeled directed acyclic graph

Finite Groups as Finitary Automaton Groups

An arbitrary finite group $\textit{G} = \{\mathrm{id}, \textit{g}_1, \ldots, \textit{g}_n\}$ is generated by the finitary \mathscr{G} -automaton

Finite Groups as Finitary Automaton Groups

An arbitrary finite group $G = \{id, g_1, \dots, g_n\}$ is generated by the finitary \mathscr{G} -automaton

Fact

G is finite \iff G is a finitary automaton group

Because: the presentation using automata is powerful

■ General case: Many groups with interesting properties are automaton groups

Because: the presentation using automata is powerful

General case: Many groups with interesting properties are automaton groups
 For Example: Grigorchuk's group

Because: the presentation using automata is powerful

■ General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented.

- General case: Many groups with interesting properties are automaton groups For Example: Grigorchuk's group, which is not finitely presented.
 - → finite automata can encode groups without traditional finite presentations

- General case: Many groups with interesting properties are automaton groups
 For Example: Grigorchuk's group, which is not finitely presented.
 → finite automata can encode groups without traditional finite presentations
- For finite groups: We can achieve a doubly exponential compression

- For finite groups: We can achieve a doubly exponential compression For Example:

Because: the presentation using automata is powerful

- For finite groups: We can achieve a doubly exponential compression For Example:

 $\begin{array}{c|c} \hline t_n & 0/0 & \cdots & 0/0 \\ \hline & & & 1/1 \\ \hline \end{array} \qquad \begin{array}{c|c} \hline t_1 & 0/1 \\ \hline & 1/0 \\ \hline \end{array} \qquad \begin{array}{c|c} \hline 0/0 \\ \hline & 1/1 \\ \hline \end{array}$

Automorphism group of the regular binary tree of depth n $|\mathcal{T}| = n + 1$ $\mathcal{G}(\mathcal{T}) = \operatorname{Aut} B_n$

Because: the presentation using automata is powerful

- For finite groups: We can achieve a doubly exponential compression For Example:

 $\begin{array}{c|c}
\hline
t_n & 0/0 & \cdots & 0/0 \\
\hline
t_1 & 1/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/1 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & \text{id} & 0/0 \\
\hline
1/1 & 0/0 & 0/0 \\
\hline
1/1 &$

Automorphism group of the regular binary tree of depth n tree $|\mathcal{T}| = n + 1$ $\mathcal{G}(\mathcal{T}) = \operatorname{Aut} B_n$ $\Rightarrow |\mathcal{G}(\mathcal{T})| = 2^{2^n - 1}$

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$ Input:

 $\mathbf{a} \in (Q^{\pm 1})^*$

Question: is $\mathbf{q} \circ u = u$ for all $u \in \Sigma^*$ (i. e. $\mathbf{q} = \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)?

is CONP-complete.

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

```
...it is PSpace—complete for general automaton groups w., Weiß (2020)
                       a finitary \mathscr{G}-automaton \mathcal{T} = (Q, \Sigma, \delta)
Input:
                       \mathbf{a} \in (Q^{\pm 1})^*
Question: is \mathbf{q} \circ u = u for all u \in \Sigma^* (i. e. \mathbf{q} = \mathbb{1} in \mathscr{G}(\mathcal{T}))?
```

is CONP-complete.

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

```
...it is PSpace—complete for general automaton groups
                     a finitary \mathscr{G}-automaton \mathcal{T} = (Q, \Sigma, \delta)
Input:
                     \mathbf{a} \in (Q^{\pm 1})^*
Question: is \mathbf{q} \circ u = u for all u \in \Sigma^* (i. e. \mathbf{q} = \mathbb{1} in \mathscr{G}(\mathcal{T}))?
                                                                                                                            W., Weiß (2020)
```

is coNP-complete.

Proof (complement is in NP).

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

...it is PSpace—complete for general automaton groups a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$ Input: $\mathbf{a} \in (Q^{\pm 1})^*$ Question: is $\mathbf{q} \circ u = u$ for all $u \in \Sigma^*$ (i. e. $\mathbf{q} = \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? W., Weiß (2020) is coNP-complete.

Proof (complement is in NP).

$$oldsymbol{q} \stackrel{u}{\underset{V}{\longrightarrow}} \mathrm{id}^{|oldsymbol{q}|} \quad ext{for all } u \in \Sigma^{\geq d}.$$

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

...it is PSpace—complete for general automaton groups a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$ Input: $\mathbf{a} \in (Q^{\pm 1})^*$ Question: is $\mathbf{q} \circ u = u$ for all $u \in \Sigma^*$ (i. e. $\mathbf{q} = \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? W., Weiß (2020)

is coNP-complete.

Proof (complement is in NP).

$$lackbox{\textbf{q}}
eq 1 \text{ in } \mathscr{G}(\mathcal{T}) \implies \exists u \in \Sigma^d : \boldsymbol{q} \circ u \neq u$$

$$q \xrightarrow{u} \operatorname{id}^{|q|} \quad \text{for all } u \in \Sigma^{\geq d}.$$

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

Input: a finitary
$$\mathscr{G}$$
-automaton $\mathcal{T}=(Q,\Sigma,\delta)$... it is PSpace—complete for $q\in (Q^{\pm 1})^*$ general automaton groups is $q\circ u=u$ for all $u\in \Sigma^*$ (i. e. $q=1$ in $\mathscr{G}(\mathcal{T})$)? W., Weiß (2020)

is coNP-complete.

Proof (complement is in NP).

$$q \xrightarrow{u} \operatorname{id}^{|q|} \quad \text{for all } u \in \Sigma^{\geq d}.$$

- $\mathbf{q} \neq \mathbb{1} \text{ in } \mathscr{G}(\mathcal{T}) \implies \exists u \in \Sigma^d : \mathbf{q} \circ u \neq u$
- Algorithm: "quess & check"

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

...it is PSpace—complete for general automaton groups a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$ Input: $\mathbf{a} \in (Q^{\pm 1})^*$ is $\mathbf{q} \circ u = u$ for all $u \in \Sigma^*$ (i. e. $\mathbf{q} = \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? Question: W., Weiß (2020)

is coNP-complete.

Proof (complement is in NP).

$$oldsymbol{q} \stackrel{u}{\underset{V}{\longrightarrow}} \mathrm{id}^{|oldsymbol{q}|} \quad ext{for all } u \in \Sigma^{\geq d}.$$

- $\mathbf{q} \neq \mathbb{1} \text{ in } \mathscr{G}(\mathcal{T}) \implies \exists u \in \Sigma^d : \mathbf{q} \circ u \neq u$
- Algorithm: "quess & check"
 - Guess witness u with |u| < |Q| (in time |Q|).

Theorem (Kotowsky, W.)

The uniform word problem for finitary automaton groups

...it is PSpace—complete for general automaton groups a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$ Input: $\mathbf{a} \in (Q^{\pm 1})^*$ is $\mathbf{q} \circ u = u$ for all $u \in \Sigma^*$ (i. e. $\mathbf{q} = \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$)? Question: W., Weiß (2020)

is coNP-complete.

Proof (complement is in NP).

$$egin{aligned} oldsymbol{q} & \stackrel{u}{\longrightarrow} \mathrm{id}^{|oldsymbol{q}|} & \mathrm{for \ all} \ u \in \Sigma^{\geq d}. \end{aligned}$$

- $\mathbf{q} \neq \mathbb{1} \text{ in } \mathscr{G}(\mathcal{T}) \implies \exists u \in \Sigma^d : \mathbf{q} \circ u \neq u$
- Algorithm: "quess & check"
 - Guess witness u with |u| < |Q| (in time |Q|).
 - Check $\mathbf{q} \circ \mathbf{u} \neq \mathbf{u}$ (in time $\approx |Q| \cdot |\mathbf{q}|$).

 A_5 : Group of even permutations over $\{a_1, \ldots, a_5\}$

 A_5 : Group of even permutations over $\{a_1, \ldots, a_5\}$

Fact
$$\sigma^{\alpha} = \alpha^{-1}\sigma\alpha$$
 There are $\sigma, \alpha, \beta \in A_5$ with $\sigma \neq \operatorname{id}$ and $\sigma = [\sigma^{\beta}, \sigma^{\alpha}]$.
$$[h, g] = h^{-1}g^{-1}hg$$

 A_5 : Group of even permutations over $\{a_1, \ldots, a_5\}$

Fact

$$\sigma^{\alpha} = \alpha^{-1} \sigma \alpha$$

There are $\sigma, \alpha, \beta \in A_5$ with $\sigma \neq \mathrm{id}$ and $\sigma = [\sigma^{\beta}, \overset{\searrow}{\sigma^{\alpha}}]$.

$$[h,g] = h^{-1}g^{-1}hg$$

Definition (Balanced Commutator)

$$B[\mathbf{q}_1] = \mathbf{q}_1$$

$$B[\boldsymbol{q}_t,\ldots,\boldsymbol{q}_1] = \left[B[\boldsymbol{q}_t,\ldots,\boldsymbol{q}_{\lfloor \frac{t}{2}\rfloor+1}]^{\beta},\ B[\boldsymbol{q}_{\lfloor \frac{t}{2}\rfloor},\ldots,\boldsymbol{q}_1]^{\alpha}\right]$$

 A_5 : Group of even permutations over $\{a_1, \ldots, a_5\}$

Fact

$$\sigma^{\alpha} = \alpha^{-1} \sigma \alpha$$

There are $\sigma, \alpha, \beta \in A_5$ with $\sigma \neq \mathrm{id}$ and $\sigma = [\sigma^{\beta}, \overset{\searrow}{\sigma^{\alpha}}]$.

$$[h,g] = h^{-1}g^{-1}hg$$

Definition (Balanced Commutator)

$$egin{aligned} B[oldsymbol{q}_1] &= oldsymbol{q}_1 \ B[oldsymbol{q}_t, \dots, oldsymbol{q}_1] &= \left[B[oldsymbol{q}_t, \dots, oldsymbol{q}_{\lfloor rac{t}{2}
floor}]^{eta}, \ B[oldsymbol{q}_{\lfloor rac{t}{2}
floor}, \dots, oldsymbol{q}_1]^{lpha}
ight] \end{aligned}$$

It's a logical conjunction!

Proposition '

$$g_1, \dots, g_t \in \{\sigma, \mathrm{id}\}$$
 $B[g_t, \dots, g_1] = \begin{cases} \sigma & \forall i : g_i = \sigma \\ \mathrm{id} & \mathsf{otherwise} \end{cases}$

 A_5 : Group of even permutations over $\{a_1, \ldots, a_5\}$

Fact

$$\sigma^{\alpha} = \alpha^{-1} \sigma \alpha$$

There are $\sigma, \alpha, \beta \in A_5$ with $\sigma \neq \mathrm{id}$ and $\sigma = [\sigma^{\beta}, \overset{\hookrightarrow}{\sigma}^{\alpha}]$.

$$[h,g] = h^{-1}g^{-1}hg$$

Definition (Balanced Commutator)

$$B[oldsymbol{q}_1] = oldsymbol{q}_1$$

$$B[\boldsymbol{q}_t,\ldots,\boldsymbol{q}_1] = \left[B[\boldsymbol{q}_t,\ldots,\boldsymbol{q}_{\lfloor \frac{t}{2}\rfloor+1}]^{\beta},\ B[\boldsymbol{q}_{\lfloor \frac{t}{2}\rfloor},\ldots,\boldsymbol{q}_1]^{\alpha}\right]$$

It's a logical conjunction!

Proposition

$$g_1, \dots, g_t \in \{\sigma, \mathrm{id}\}$$

$$B[g_t, \dots, g_1] = \begin{cases} \sigma & \forall i : g_i = \sigma \\ \mathrm{id} & \text{otherwise} \end{cases}$$

Proposition

 $B[\boldsymbol{q}_t,\ldots,\boldsymbol{q}_1]$ can be computed in LOGSPACE.

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

 $C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$ over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

 $C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$ over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

to the complement of the word problem.

• We need a map $\varphi \mapsto (\mathcal{T}, \mathbf{q})$ in logarithmic space s.t. φ is satisfiable $\iff \mathbf{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

$$C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$$
 over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

- lacksquare We need a map $\varphi\mapsto (\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\iff \boldsymbol{q}\neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- \blacksquare alphabet: $\Sigma = \{a_1, \ldots, a_5\}$

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

 $C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$ over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

- lacksquare We need a map $\varphi\mapsto (\mathcal{T}, \boldsymbol{q})$ in logarithmic space s.t. φ is satisfiable $\iff \boldsymbol{q}\neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- \blacksquare alphabet: $\Sigma = \{a_1, \ldots, a_5\} \ni \bot, \top$

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

$$C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$$
 over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

- lacksquare We need a map $arphi \mapsto (\mathcal{T}, oldsymbol{q})$ in logarithmic space s.t. arphi is satisfiable $\iff oldsymbol{q}
 eq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma = \{a_1, \dots, a_5\} \ni \bot, \top$ $\langle A \rangle \in \{\bot, \top\}^N$: encoding of A

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

$$C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$$
 over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

to the complement of the word problem.

- lacksquare We need a map $arphi \mapsto (\mathcal{T}, oldsymbol{q})$ in logarithmic space s. t. arphi is satisfiable $\iff oldsymbol{q}
 eq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma = \{a_1, \dots, a_5\} \ni \bot, \top$ $\langle A \rangle \in \{\bot, \top\}^N$: encoding of A
- technical states:

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

$$C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$$
 over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

- We need a map $\varphi \mapsto (\mathcal{T}, \mathbf{q})$ in logarithmic space s.t. φ is satisfiable $\iff \mathbf{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma = \{a_1, \dots, a_5\} \ni \bot, \top$ $\langle \mathcal{A} \rangle \in \{\bot, \top\}^N$: encoding of \mathcal{A}
- technical states:

$$\overbrace{\alpha_N} \xrightarrow{a/a} \overbrace{\alpha_{N-1}} \xrightarrow{a/a} \cdots \xrightarrow{a/a} \overbrace{\alpha_0} \xrightarrow{a/\alpha(a)} \underbrace{\text{id}} \xrightarrow{a/a} \text{ for all } a \in \Sigma$$

■ We reduce 3SAT

Input: boolean formula $\varphi = \bigwedge_{k=1}^K C_k$ with

$$C_k = (\neg) X_{n_{k,3}} \lor (\neg) X_{n_{k,2}} \lor (\neg) X_{n_{k,1}}$$
 over variables $\mathbb{X} = \{X_1, \dots, X_N\}$

Question: $\exists A : \mathbb{X} \to \mathbb{B} : A \models \varphi$?

to the complement of the word problem.

- We need a map $\varphi \mapsto (\mathcal{T}, \mathbf{q})$ in logarithmic space s.t. φ is satisfiable $\iff \mathbf{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$
- alphabet: $\Sigma = \{a_1, \dots, a_5\} \ni \bot, \top$ $\langle A \rangle \in \{\bot, \top\}^N$: encoding of A
- technical states:

$$\overbrace{\alpha_N} \xrightarrow{a/a} \underbrace{\alpha_{N-1}} \xrightarrow{a/a} \cdots \xrightarrow{a/a} \underbrace{\alpha_0} \xrightarrow{a/\alpha(a)} \underbrace{\operatorname{id}} \xrightarrow{a/a} \operatorname{for all } a \in \Sigma$$

 \blacksquare same for β

■ Important part:

Important part:

Important part:

Important part: Example: $C_k = X_{n_2} \vee \neg X_{n_2} \vee X_{n_1}$ (w.l.o.g.: $n_3 < n_2 < n_1$)

Important part: Example: $C_k = X_{n_2} \vee \neg X_{n_3} \vee X_{n_3}$ (w.l.o.g.: $n_3 < n_2 < n_1$)

Important part: Example: $C_k = X_{n_3} \vee \neg X_{n_2} \vee X_{n_1}$ (w. l. o. g.: $n_3 < n_2 < n_1$)

Important part: Example: $C_k = X_{n_2} \vee \neg X_{n_2} \vee X_{n_1}$ (w.l.o.g.: $n_3 < n_2 < n_1$)

■ Important part: Example: $C_k = X_{n_3} \vee \neg X_{n_2} \vee X_{n_1}$ (w. l. o. g.: $n_3 < n_2 < n_1$)

missing transition go to id with b/b

■ Invariant for $w \in \Sigma^N$: $c_k = c_{k,N} \xrightarrow{w}_{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$

Invariant for $w \in \Sigma^N$:

$$c_k \stackrel{w}{\underset{w}{\longmapsto}} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \mathrm{id} & \text{otherwise} \end{cases}$$

Let $w \in \Sigma^N$.

$$c_1 \stackrel{w}{\longrightarrow} \sigma_0$$
 or id
 $c_k \stackrel{w}{\longrightarrow} \sigma_0$ or id

Invariant for $w \in \Sigma^N$:

$$c_k \stackrel{W}{\underset{w}{\longleftrightarrow}} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal:

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Let $w \in \Sigma^N$.

$$c_{1} \xrightarrow{W} \sigma_{0} \text{ or id}$$

$$W$$

$$\vdots \quad \vdots \qquad \vdots$$

$$W$$

$$c_{k} \xrightarrow{W} \sigma_{0} \text{ or id}$$

$$W$$

$$\vdots \quad \vdots \qquad \vdots$$

$$W$$

$$c_{K} \xrightarrow{W} \sigma_{0} \text{ or id}$$

$$W$$

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff \mathbf{q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, \ldots, c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let $w \in \Sigma^N$.

$$c_1 \xrightarrow{W} \sigma_0 \text{ or id}$$

$$W : \vdots : \vdots : W$$

$$c_k \xrightarrow{W} \sigma_0 \text{ or id}$$

$$W : \vdots : \vdots : W$$

$$c_K \xrightarrow{W} \sigma_0 \text{ or id}$$

W

Invariant for $w \in \Sigma^N$:

$$c_k \stackrel{W}{\underset{w}{\longleftrightarrow}} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, \ldots, c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let $w \in \Sigma^N$.

$$c_1 \xrightarrow{W} \sigma_0$$
 or identify $c_k \xrightarrow{W} \sigma_0$ or identify $c_K \xrightarrow{W} \sigma_0$

Invariant for $w \in \Sigma^N$:

$$c_k \stackrel{w}{\underset{w}{\longmapsto}} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, ..., c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let
$$w = \langle \mathcal{A} \rangle$$
 for $\mathcal{A} \models \varphi$.

$$c_1 \xrightarrow{W} \sigma_0$$
 or id
 $c_1 \xrightarrow{W} \sigma_0$ or id
 $c_k \xrightarrow{W} \sigma_0$ or id
 $c_k \xrightarrow{W} \sigma_0$ or id
 $c_k \xrightarrow{W} \sigma_0$ or id

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal:

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, \ldots, c_1] \neq 1$$
 in $\mathscr{G}(\mathcal{T})$
Convention: B_n uses α_n and β_n
instead of α and β

Let
$$w = \langle \mathcal{A} \rangle$$
 for $\mathcal{A} \models \varphi$.

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, \ldots, c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let
$$w = \langle \mathcal{A} \rangle$$
 for $\mathcal{A} \not\models \varphi$.

$$c_1 \xrightarrow{w} \sigma_0 \text{ or id}$$
 $c_1 \xrightarrow{w} \sigma_0 \text{ or id}$
 $c_k \xrightarrow{w} \sigma_0 \text{ or id}$
 $c_k \xrightarrow{w} c_0 \text{ or id}$

$$\begin{array}{ccc}
 & w \\
 & c_K & \longrightarrow \sigma_0 \text{ or i} \\
 & w & & & & & & \\
 & & & & & & & & \\
\end{array}$$

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal:

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, ..., c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let
$$w = \langle \mathcal{A} \rangle$$
 for $\mathcal{A} \not\models \varphi$.

$$\begin{array}{c}
w \\
\hline
c_1 & \longrightarrow \sigma_0 \text{ or id} \\
w \\
\vdots & \vdots & \vdots \\
w \\
c_k & \longrightarrow \sigma_0 \text{ or id} \\
w \\
\vdots & \vdots & \vdots \\
w \\
c_K & \longrightarrow \sigma_0 \text{ or id} \\
w \\
\vdots & \vdots & \vdots \\
w \\
c_K & \longrightarrow \sigma_0 \text{ or id} \\
\end{array}$$

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, ..., c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let $w \notin \{\bot, \top\}^N$.

$$c_1 \xrightarrow{W} \sigma_0$$
 or id

 $c_1 \xrightarrow{W} \sigma_0$ or id

 $c_k \xrightarrow{W} \sigma_0$ or id

 $c_k \xrightarrow{W} \sigma_0$ or id

 $c_k \xrightarrow{W} \sigma_0$ or id

Invariant for $w \in \Sigma^N$:

$$c_k \xrightarrow{w}_{w} \begin{cases} \sigma_0 & \text{if } w = \langle \mathcal{A} \rangle, \mathcal{A} \models C_k \\ \text{id} & \text{otherwise} \end{cases}$$

Goal

$$\varphi$$
 is satisfiable $\iff {\pmb q} \neq \mathbb{1}$ in $\mathscr{G}(\mathcal{T})$

Set
$$q = B_N[c_K, \dots, c_1]$$

Convention: B_n uses α_n and β_n instead of α and β

Let $w \notin \{\bot, \top\}^N$.

$$\begin{array}{c}
w \\
\hline
c_1 & \longrightarrow \sigma_0 \text{ or id} \\
w \\
\vdots & \vdots & \vdots \\
w \\
c_k & \longrightarrow \sigma_0 \text{ or id} \\
w \\
\vdots & \vdots & \vdots \\
w \\
c_K & \longrightarrow \sigma_0 \text{ or id} \\
w \\
c_K & \longrightarrow \sigma_0 \text{ or id} \\
\end{array}$$

$$\begin{array}{c}
u \\
u \\
u \\
\vdots \\
w \\
c_K & \longrightarrow \sigma_0 \text{ or id} \\
\end{array}$$

The uniform compressed word problem for finitary automaton groups

Input: a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$

a straight-line program encoding $\mathbf{q} \in (Q^{\pm 1})^*$

Question: is q = 1 in $\mathcal{G}(\mathcal{T})$?

The uniform compressed word problem for finitary automaton groups

```
Input:
                  a finitary \mathscr{G}-automaton \mathcal{T} = (Q, \Sigma, \delta)
```

a straight-line program encoding $\mathbf{q} \in (Q^{\pm 1})^*$

Question: is q = 1 in $\mathcal{G}(T)$? a context-free grammar generating a single word

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

Input: a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$

a straight-line program encoding $\mathbf{q} \in (Q^{\pm 1})^*$

Question: is q = 1 in $\mathcal{G}(\mathcal{T})$? a context-free grammar generating a single word is PSPACE-complete.

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

Input: a finitary \mathscr{G} -automaton $\mathcal{T} = (Q, \Sigma, \delta)$

a straight-line program encoding $\mathbf{q} \in (Q^{\pm 1})^*$

Question:

is PSPACE-complete.

is q = 1 in $\mathcal{G}(\mathcal{T})$?

a context-free grammar generating a single word

...it is ExpSpace-complete for general automaton groups W., Weiß (2020)

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups

```
...it is ExpSpace-complete for
Input: a finitary \mathscr{G}-automaton \mathcal{T} = (Q, \Sigma, \delta)
                                                                           general automaton groups
               a straight-line program encoding \mathbf{q} \in (Q^{\pm 1})^*
                                                                                             W., Weiß (2020)
Question:
```

is q = 1 in $\mathcal{G}(T)$?

a context-free grammar generating a single word is PSPACE-complete.

We prove this using a similar reduction form QBF.

Theorem (Kotowsky, W.)

is PSPACE-complete.

The uniform compressed word problem for finitary automaton groups

```
...it is ExpSpace-complete for
Input: a finitary \mathscr{G}-automaton \mathcal{T} = (Q, \Sigma, \delta)
                                                                           general automaton groups
               a straight-line program encoding \mathbf{q} \in (Q^{\pm 1})^*
             is q = 1 in \mathcal{G}(\mathcal{T})? a context-free grammar
                                                                                             W., Weiß (2020)
                                     generating a single word
```

- We prove this using a similar reduction form QBF.
- However: One may also finitely approximate various other groups with PSPACE-complete compressed word problem Bartholdi, Figelius, Lohrev, Weiß (2020)

Thank you!