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Introduction The Word Problem

The Word Problem of a Group

Consider a group G

generated by a finite set Q
i. e. every element g ∈ G can be written as g = qδ11 . . . qδℓℓ with qi ∈ Q, δi ∈ {−1, 1}

The word problem of G is the decision problem
Constant: the group G generated by Q
Input: a word q ∈ (Q±1)∗

Question: is q = 1 in G?

…as a formal language: WPQ(G) = {q ∈ (Q±1)∗ | q = 1 in G}

Fact (Anisimov 1971)
G is finite ⇐⇒ WPQ(G) is regular
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Introduction The Word Problem

The Uniform Word Problem for Groups

But: We can also consider the group as part of the input!

Definition
The uniform word problem for groups is the decision problem
Input: a group G generated by Q and

a word q ∈ (Q±1)∗

Question: is q = 1 in G?

Problem: How can we give a group as an input to an algorithm?
Typically: using a finite presentation G = 〈Q | r1 = 1, . . . , rk = 1〉

“finitely presented”

Today: We only consider finite groups!

Possible: Q = G

Possible descriptions: Cayley tables, Cayley graphs, matrices, permutations, …
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Introduction The Word Problem

Some Known Results: Upper Bounds

Fact
The word problem for groups given as Cayley tables
Input: a Cayley table G × G → G, (g, h) 7→ gh of a finite group G and

group elements g1, . . . , gn ∈ G
Question: is g1 · . . . · gn = 1?

is in LogSpace.

Theorem (Lipton, Zalcstein 1977/Simon 1979)
The word problem of a finitely generated linear group
Constant: G ≤ GL(d,F)
Input: matrices M1, . . . ,Mn ∈ G
Question: is M1 · . . . · Mn the identity matrix?

is in LogSpace.
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Introduction The Word Problem

Some Known Results: Lower Bounds

Theorem (Cook, McKenzie 1987)
The problem
Input: permutations π1, . . . , πℓ in cycle notation
Output: the product π1 . . . πℓ in cycle notation

is complete for functional LogSpace.

Theorem (Barrington 1986)
The word problem WP(A5) of the group of even permutations over {a1, . . . , a5} is
NC1-complete.

Boolean circuits, bounded fan-in, O(log n) depth;
NC1 ⊆ LogSpace

In fact: this holds for any non-solvable finite group!
This yields: The uniform word problem for any group presentation (allowing A5) is

NC1-hard!
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Introduction Presenting Groups Using Automata

Presenting Groups Using Automata
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Introduction Presenting Groups Using Automata

Automata

In this setting, a G-automaton is a
finite-state,
letter-to-letter

transducer
without final or initial states

which is
complete,
deterministic and
invertible.

Example

q p

1/0

0/1

0/0
1/1
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Introduction Presenting Groups Using Automata

State Actions

Idea: every state q induces a bijection Σ∗ → Σ∗ mapping input to output words

Example

q p

1/0

0/1

0/0
1/1

p induces the identity function
0 0 0

q p p p
1 0 0

q q p p
0 1 0

q ◦ 000 = 100

q ◦ 100 = 010

q ◦ 010 = 110

⇝ q increments (reverse) binary representation
(least significant bit first)
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Introduction Presenting Groups Using Automata

Automaton Groups

A G -automaton T with state set Q generates a group

Such a group is anautomaton group.

G (T ):

it is the closure under composition of the bijections induced by the states and their inverses.

Example

q p

1/0

0/1

0/0
1/1

p: identity
q: increment

, q−1: decrement
qp = pq = q in G (T )

qq ◦ 000 = q ◦ 100 = 010

qn: “add n”

, q−n: “subtract n”

G (T ) = F(q) ' Z
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Introduction Presenting Groups Using Automata

Finitary Automaton Groups

as Finite Groups
A finitary automaton has no cycles except for self-loops at the identity state
⇝ it is a labeled directed acyclic graph

Example

id

depth d of T

Effectively all functions
are Σd → Σd

⇝ all finitary automaton
groups are finite
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Introduction Presenting Groups Using Automata

Why Automata?

Because: the presentation using automata is powerful
General case: Many groups with interesting properties are automaton groups

For Example: Grigorchuk’s group, which is not finitely presented.
⇝ finite automata can encode groups without traditional finite presentations

For finite groups: We can achieve a doubly exponential compression

For Example:

tn . . . t1 id
0/0

1/1

0/0

1/1

0/1

1/0

0/0
1/1

|T | = n + 1

G (T ) = Aut Bn

Automorphism group of
the regular binary treeof depth n

=⇒ |G (T )| = 22
n−1
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The Word Problem The Main Result

The Uniform Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)
The uniform word problem for finitary automaton groups
Input: a finitary G-automaton T = (Q,Σ, δ)

q ∈ (Q±1)∗

Question: is q ◦ u = u for all u ∈ Σ∗ (i. e. q = 1 in G (T ))?
is coNP-complete.

…it is PSpace-complete forgeneral automaton groups
W., Weiß (2020)

Proof (complement is in NP).

For the depth d < |Q|, we have:
u

q id|q|

v
for all u ∈ Σ≥d.

q 6= 1 in G (T ) =⇒ ∃u ∈ Σd : q ◦ u 6= u
Algorithm: “guess & check”

◦ Guess witness u with |u| < |Q| (in time |Q|).
◦ Check q ◦ u 6= u (in time ≈ |Q| · |q|).
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The Word Problem Barrington’s Approach

Barrington’s Idea (1986)

A5: Group of even permutations over {a1, . . . , a5}

Fact
There are σ, α, β ∈ A5 with σ 6= id and σ =[

[h, g] = h−1g−1hg

σβ , σα

σα = α−1σα

].

Definition (Balanced Commutator)

B[q1] = q1

B[qt, . . . , q1] =
[
B[qt, . . . , q⌊ t

2
⌋+1]

β , B[q⌊ t
2
⌋, . . . , q1]

α
]

It's a logical conjunction
!

Proposition
g1, . . . , gt ∈ {σ, id}

B[gt, . . . , g1] =
{
σ ∀i : gi = σ

id otherwise

Proposition
B[qt, . . . , q1] can be computed in
LogSpace.
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The Word Problem The Main Proof

Proof (complement is NP-hard)

We reduce 3SAT
Input: boolean formula φ =

∧K
k=1 Ck with

Ck = (¬)Xnk,3 ∨ (¬)Xnk,2 ∨ (¬)Xnk,1 over variables X = {X1, . . . ,XN}
Question: ∃A : X → B : A |= φ?

to the complement of the word problem.
We need a map φ 7→ (T ,q) in logarithmic space s. t. φ is satisfiable ⇐⇒ q 6= 1 in G (T )

alphabet: Σ = {a1, . . . , a5}

3 ⊥,> 〈A〉 ∈ {⊥,>}N: encoding of A

technical states:

id a/a

α0. . .αN−1αN
a/a a/a a/a a/α(a)

for all a ∈ Σ

same for β
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alphabet: Σ = {a1, . . . , a5}
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technical states:

id a/a

α0. . .αN−1αN
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for all a ∈ Σ
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The Word Problem The Main Proof

Proof (continued)

Important part:

Example: Ck = Xn3 ∨ ¬Xn2 ∨ Xn1 (w. l. o. g.: n3 < n2 < n1)

σN . . . σn3 σn3−1 . . . σn2 σn2−1 . . . σ0

id

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

a/σ(a)

ck,N . . . ck,n3 ck,n3−1 . . . ck,n2 ck,n2−1 . . .
⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥
>/>

⊥/⊥

>/>

Xn3

>/>

⊥/⊥

¬Xn2

missing transition go to id with b/b

Invariant for w ∈ ΣN:
w

ck = ck,N
w

{
σ0 if w = 〈A〉,A |= Ck
id otherwise
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The Word Problem The Main Proof

Proof (continued further)
Invariant for w ∈ ΣN:

w
ck

w

{
σ0 if w = 〈A〉,A |= Ck
id otherwise

Goal:
φ is satisfiable ⇐⇒ q 6= 1 in G (T )

Set q = BN[cK, . . . , c1]

6= 1 in G (T )

Convention: Bn uses αn and βn
instead of α and β

Let w ∈ ΣN.
w

c1 σ0 or id
w... ... ...
w

ck σ0 or id
w... ... ...
w

cK σ0 or id
w

B N
[

]

B 0
[

]

u
= id id

u
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Proof (continued further)
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The Word Problem The Compressed Word Problem

The Uniform Compressed Word Problem for Finitary Automaton Groups

Theorem (Kotowsky, W.)

The uniform compressed word problem for finitary automaton groups
Input: a finitary G-automaton T = (Q,Σ, δ)

a straight-line program

a context-free grammar

generating a single word

encoding q ∈ (Q±1)∗

Question: is q = 1 in G (T )?

is PSpace-complete.

…it is ExpSpace-complete forgeneral automaton groups
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Thank you!
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