Separating Words Problem on Groups Neha Kuntewar, Anoop S. K. M. & Jayalal Sarma

Indian Institute of Technology, Madras, India

DCFS 2023, Potsdam, Germany

July 6, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

• Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

• Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

• Can we have a smaller DFA in terms of its number of states?

• Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

• Can we have a smaller DFA in terms of its number of states?

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

• Trivial Upper Bound : O(n)

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]
- If $HammingDistance(w, x) \le d$, $sep(w, x) = O(d \log n)$.[DESW11]

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]
- If $HammingDistance(w, x) \le d$, $sep(w, x) = O(d \log n)$.[DESW11]
- When $|w| \neq |x|, \exists$ an automaton $O(\log n)$ that separates w, x.

< ロ > < 同 > < 三 > < 三 >

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]
- If $HammingDistance(w, x) \le d$, $sep(w, x) = O(d \log n)$.[DESW11]
- When $|w| \neq |x|, \exists$ an automaton $O(\log n)$ that separates w, x. If $0 \le i \ne j \le n$, $\exists p \le O(\log n)$ such that $i \ne j \mod p$.

・ロト ・ 一 マ ・ ー マ ・ ー ー ・

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]
- If $HammingDistance(w, x) \le d$, $sep(w, x) = O(d \log n)$.[DESW11]
- When |w| ≠ |x|,∃ an automaton O(log n) that separates w, x. If 0 ≤ i ≠ j ≤ n, ∃p ≤ O(log n) such that i ≠ j mod p. Hence, counting modulo p separates w, x.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Separating Words Problem [GK86]

Given two words $w, x \in \{0, 1\}^*$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound : O(n)
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then sep(w, x) ≤ d + 2. [DESW11]
- If $HammingDistance(w, x) \le d$, $sep(w, x) = O(d \log n)$.[DESW11]
- When |w| ≠ |x|,∃ an automaton O(log n) that separates w, x. If 0 ≤ i ≠ j ≤ n, ∃p ≤ O(log n) such that i ≠ j mod p. Hence, counting modulo p separates w, x.
- Separating Words Problem is NP-Complete [BKSS17]

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

Choffrut Conjecture [Chr86]

Given distinct words of length *n*, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Choffrut Conjecture [Chr86]

Given distinct words of length *n*, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

• o(n) [GK86]

Choffrut Conjecture [Chr86]

Given distinct words of length *n*, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86]
- $O(n^{1/2})$ [Rob89]

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

• o(n) [GK86]

•
$$O(n^{2/5} \log^{3/5} n)$$
 [Rob96]

• $O(n^{1/2})$ [Rob89]

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86]
- $O(n^{1/2})$ [Rob89]

• $O(n^{2/5} \log^{3/5} n)$ [Rob96]

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86] • $O(n^{2/5} \log^{3/5} n)$ [Rob96]
- $O(n^{1/2})$ [Rob89] $O(n^{1/3}\log^7 n)$ [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$w = 0^{m-1} 1^{m-1+\ell cm(1,2,...,m)}, x = 0^{m-1+\ell cm(1,2,...,m)} 1^{m-1}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86] • $O(n^{2/5} \log^{3/5} n)$ [Rob96]
- O(n^{1/2}) [Rob89]
 O(n^{1/3} log⁷ n) [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$w = 0^{m-1} 1^{m-1+\ell cm(1,2,...,m)}, x = 0^{m-1+\ell cm(1,2,...,m)} 1^{m-1}$$

Exponential Gap between Lower and Upper bounds!

- 4 同 6 4 日 6 4 日 6 - 日

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86] • $O(n^{2/5} \log^{3/5} n)$ [Rob96]
- O(n^{1/2}) [Rob89]
 O(n^{1/3} log⁷ n) [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$w = 0^{m-1} 1^{m-1+\ell cm(1,2,...,m)}, x = 0^{m-1+\ell cm(1,2,...,m)} 1^{m-1}$$

Exponential Gap between Lower and Upper bounds! still open !.

(ロ) (同) (三) (三) 三

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon > 0$, the value $sep(w, x) \in O(n^{\epsilon})$

Upper Bound :

- o(n) [GK86] • $O(n^{2/5} \log^{3/5} n)$ [Rob96]
- O(n^{1/2}) [Rob89]
 O(n^{1/3} log⁷ n) [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$w = 0^{m-1} 1^{m-1+\ell cm(1,2,...,m)}, x = 0^{m-1+\ell cm(1,2,...,m)} 1^{m-1}$$

Exponential Gap between Lower and Upper bounds! still open !. Question: What if the automaton is restricted?

・ロット (雪) (目) (日) ヨ

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

メロト メポト メヨト メヨ

Permuting Automaton

An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

• Robson [Rob89] :For any two words of length *n*, we can construct a permuting automaton with $O(\sqrt{n})$ states that separates them.

An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

- Robson [Rob89] :For any two words of length *n*, we can construct a permuting automaton with $O(\sqrt{n})$ states that separates them.
- Each permuting automaton is associated with a subgroup of S_n .
- Motivated by this : we define the separating words problem over groups.

- Let G be a group.
- Let $\phi: \Sigma \to G$

< □ > < 同 >

- Let G be a group.
- Let $\phi: \Sigma \to G$
- $w = w_1 w_2 \dots w_n \in \Sigma^n$, is said to yield $g \in G$ if $\prod_{i=1}^n \phi(w_i) = g$

- Let G be a group.
- Let $\phi: \Sigma \to G$
- $w = w_1 w_2 \dots w_n \in \Sigma^n$, is said to yield $g \in G$ if $\prod_{i=1}^n \phi(w_i) = g$
- Given w, x ∈ Σ*, a group G is said to separate w and x if there exists a function φ such that φ(w) ≠ φ(x).

- Let G be a group.
- Let $\phi: \Sigma \to G$
- $w = w_1 w_2 \dots w_n \in \Sigma^n$, is said to yield $g \in G$ if $\prod_{i=1}^n \phi(w_i) = g$
- Given $w, x \in \Sigma^*$, a group G is said to separate w and x if there exists a function ϕ such that $\phi(w) \neq \phi(x)$.

Example: Consider $w, x \in \{0, 1\}^*$ with $|w| \neq |x|$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Let G be a group.
- Let $\phi: \Sigma \to G$
- $w = w_1 w_2 \dots w_n \in \Sigma^n$, is said to yield $g \in G$ if $\prod_{i=1}^n \phi(w_i) = g$
- Given w, x ∈ Σ*, a group G is said to separate w and x if there exists a function φ such that φ(w) ≠ φ(x).

Example: Consider $w, x \in \{0, 1\}^*$ with $|w| \neq |x|$. the group \mathbb{Z}_p with prime $p = O(\log n)$, with $\phi(1) = 1$, $\phi(0) = 0$ (or vice versa), will separate w and x.

(日) (同) (三) (三) (三)

Can we always find a separating group?

Separating Group

Given any w and x, does there always exist a group G that separates them?

Can we always find a separating group?

Separating Group

Given any w and x, does there always exist a group G that separates them?

Yes!

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

Can we always find a separating group?

Separating Group

Given any w and x, does there always exist a group G that separates them?

- Yes! Group associated with Robson's Permuting Automaton.
- The group is a subgroup of $Sym(\sqrt{n})$.

Separating Words with Groups : Two Natural Questions

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

Separating Words with Groups : Two Natural Questions

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

• Upper bound : $(\sqrt{n})! = 2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})! = 2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \implies$ automaton of size k).

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})! = 2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \implies$ automaton of size k).

July 6, 2023

8/31

Question : Still an exponential gap !

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})! = 2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \implies$ automaton of size k).

Question : Still an exponential gap !

Universality of restricted group classes

A class of groups \mathcal{G} is said to be *universal* if for any two words $w, x \in \Sigma^*$, there exists a group $G \in \mathcal{G}$ for which a separating substitution map exists such that the yields of the words under the map are distinct.

< ロ > < 同 > < 回 > < 回 >

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})! = 2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \implies$ automaton of size k).

Question : Still an exponential gap !

Universality of restricted group classes

A class of groups \mathcal{G} is said to be *universal* if for any two words $w, x \in \Sigma^*$, there exists a group $G \in \mathcal{G}$ for which a separating substitution map exists such that the yields of the words under the map are distinct.

Question : Which classes of groups are *universal*?

• Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.

イロト イボト イヨト イヨト

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
 - Class of Abelian groups and dihedral groups are **not** universal.
 - Sufficiency conditions for non-universality of classes of groups.

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
 - Class of Abelian groups and dihedral groups are not universal.
 - Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

・ロト ・ 一下 ・ ト ・ ト ・ ト

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
 - Class of Abelian groups and dihedral groups are not universal.
 - Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that $\operatorname{SepGroupWORDS}$ is NP-Complete

・ロト ・ 一下 ・ ト ・ ト ・ ト

э

Image: Image:

 $M_{i,m} = (Q, \{0, 1\}, q_0, \delta, F)$ accepts strings, where the parity of symbols at positions congruent to $i \pmod{m}$ is odd (where $m \le O(\sqrt{n})$).

 $M_{i,m} = (Q, \{0, 1\}, q_0, \delta, F)$ accepts strings, where the parity of symbols at positions congruent to $i \pmod{m}$ is odd (where $m \le O(\sqrt{n})$).

• $Q = \{(p,q) \mid p \in \{0,1\} \ q \in \{0,..m-1\}\}, \ |Q| = 2m$

 $M_{i,m} = (Q, \{0,1\}, q_0, \delta, F)$ accepts strings, where the parity of symbols at positions congruent to $i \pmod{m}$ is odd (where $m \le O(\sqrt{n})$).

•
$$Q = \{(p,q) \mid p \in \{0,1\} \ q \in \{0,..m-1\}\}, \ |Q| = 2m$$

• $\delta : Q \times \Sigma \longrightarrow Q$
• $\delta((p,q),0) = (p,(q+1) \mod m)$
• $\delta((p,q),1) = \begin{cases} (p,(q+1) \mod m), & \text{if } q \neq i \\ (1-p,(q+1) \mod m), & \text{otherwise} \end{cases}$

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

 $M_{i,m} = (Q, \{0,1\}, q_0, \delta, F)$ accepts strings, where the parity of symbols at positions congruent to $i \pmod{m}$ is odd (where $m \le O(\sqrt{n})$).

•
$$Q = \{(p,q) \mid p \in \{0,1\} \ q \in \{0,..m-1\}\}, \ |Q| = 2m$$

• $\delta : Q \times \Sigma \longrightarrow Q$
• $\delta((p,q),0) = (p,(q+1) \mod m)$
• $\delta((p,q),1) = \begin{cases} (p,(q+1) \mod m), & \text{if } q \neq i \\ (1-p,(q+1) \mod m), & \text{otherwise} \end{cases}$

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

Robson's Permuting Automaton to Group

Robson's group $G_m = \langle g, h \rangle$ where, $g = (1, 2 \dots m)(m + 1, \dots 2m)$ $h = (1, m + 2, m + 3 \dots 2m, m + 1, 2 \dots m)$

July 6, 2023 11 / 31

Robson's Permuting Automaton to Group

Robson's group $G_m = \langle g, h \rangle$ where, $g = (1, 2 \dots m)(m+1, \dots 2m)$ $h = (1, m+2, m+3 \dots 2m, m+1, 2 \dots m)$

Theorem : For any $w, x \in \Sigma^*$, with |w| = |x| = n, there is a group of size $O\left(\sqrt{n}2^{\sqrt{n}}\right)$ that separates them.

July 6, 2023 11 / 31

Robson's group $G_m = \langle g, h \rangle$ where,

Theorem

 $|G_m| = m2^m$

Robson's group $G_m = \langle g, h \rangle$ where,

Theorem

 $|G_m| = m2^m$

We know $|G_m| = |H_m| * [G_m : H_m]$, H_m is the commutator subgroup of G_m and $[G_m : H_m]$ is the index (equal to the number of left cosets).

Robson's group $G_m = \langle g, h \rangle$ where,

Theorem

 $|G_m| = m2^m$

We know $|G_m| = |H_m| * [G_m : H_m]$, H_m is the commutator subgroup of G_m and $[G_m : H_m]$ is the index (equal to the number of left cosets). We prove

1
$$|H_m| = 2^{m-1}$$

• • = • • = • = •

Robson's group $G_m = \langle g, h \rangle$ where,

Theorem

 $|G_m| = m2^m$

We know $|G_m| = |H_m| * [G_m : H_m]$, H_m is the commutator subgroup of G_m and $[G_m : H_m]$ is the index (equal to the number of left cosets). We prove

•
$$|H_m| = 2^{m-1}$$

 $[G_m:H_m] = 2m$

Lemma

Consider a Robson's group G_m . Let H_m be the commutator subgroup of G_m . Consider $S = \{(1, m+1)(m-i+1, 2m-i+1) | \forall i \in [m-1]\}$. Then $H_m = \langle S \rangle$

Lemma

Consider a Robson's group G_m . Let H_m be the commutator subgroup of G_m . Consider $S = \{(1, m+1)(m-i+1, 2m-i+1) | \forall i \in [m-1]\}$. Then $H_m = \langle S \rangle$

Proof Idea

• We show that:(1) $S \subseteq H_m$ and (2) $H_m \subseteq \langle S \rangle$.

Lemma

Consider a Robson's group G_m . Let H_m be the commutator subgroup of G_m . Consider $S = \{(1, m+1)(m-i+1, 2m-i+1) | \forall i \in [m-1]\}$. Then $H_m = \langle S \rangle$

Proof Idea

• We show that:(1)
$$S \subseteq H_m$$
 and (2) $H_m \subseteq \langle S \rangle$.

Lemma

Let $G = \langle S \rangle$ be an Abelian group such that every generator $g \in S$ is a transposition. Then, $|G| = 2^m$ where m = |S|.

Lemma

Consider a Robson's group G_m . Let H_m be the commutator subgroup of G_m . Consider $S = \{(1, m+1)(m-i+1, 2m-i+1) | \forall i \in [m-1]\}$. Then $H_m = \langle S \rangle$

Proof Idea

• We show that:(1)
$$S \subseteq H_m$$
 and (2) $H_m \subseteq \langle S \rangle$.

Lemma

Let $G = \langle S \rangle$ be an Abelian group such that every generator $g \in S$ is a transposition. Then, $|G| = 2^m$ where m = |S|.

• Hence we prove
$$|H_m| = 2^{m-1}$$

July 6, 2023 13 / 31

Lemma

The Robson's group G_m has a presentation

$$\begin{cases} \langle g, h \mid g^m = h^{2m} = (gh^2)^{2m/3} = e \rangle \ when \ m = 3k \\ \langle g, h \mid g^m = h^{2m} = (gh^2)^m = e \rangle \ otherwise \end{cases}$$

where e is the identity element and $k \in \mathbb{N}$.

Lemma

The Robson's group G_m has a presentation

$$\begin{cases} \langle g, h \mid g^m = h^{2m} = (gh^2)^{2m/3} = e \rangle \ when \ m = 3k \\ \langle g, h \mid g^m = h^{2m} = (gh^2)^m = e \rangle \ otherwise \end{cases}$$

where e is the identity element and $k \in \mathbb{N}$.

Lemma (from group theory)

For any group G, [G : H] where H is a commutator subgroup of G is number of group homomorphisms $\phi : G \longrightarrow \mathbb{C}^{\times}$.

Lemma

There are exactly 2m distinct homomorphisms $\phi : G_m \longrightarrow \mathbb{C}^{\times}$.

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

Lemma

There are exactly 2m distinct homomorphisms $\phi: G_m \longrightarrow \mathbb{C}^{\times}$.

• $g^m = e$, we have $(\phi(g))^m = 1$. Hence, $\phi(g)$ must be an m^{th} root of unity.

Lemma

There are exactly 2m distinct homomorphisms $\phi : G_m \longrightarrow \mathbb{C}^{\times}$.

- g^m = e, we have (φ(g))^m = 1. Hence, φ(g) must be an mth root of unity.
- $h^{2m} = e$ that $\phi(h)$ must be a $2m^{th}$ root of unity.

Lemma

There are exactly 2m distinct homomorphisms $\phi : G_m \longrightarrow \mathbb{C}^{\times}$.

- g^m = e, we have (φ(g))^m = 1. Hence, φ(g) must be an mth root of unity.
- $h^{2m} = e$ that $\phi(h)$ must be a $2m^{th}$ root of unity.
- $(\phi(g)\phi(h)^2)^p = 1$ where p = 2m/3 when m = 3k and p = m otherwise.

Lemma

There are exactly 2m distinct homomorphisms $\phi : G_m \longrightarrow \mathbb{C}^{\times}$.

- g^m = e, we have (φ(g))^m = 1. Hence, φ(g) must be an mth root of unity.
- $h^{2m} = e$ that $\phi(h)$ must be a $2m^{th}$ root of unity.
- $(\phi(g)\phi(h)^2)^p = 1$ where p = 2m/3 when m = 3k and p = m otherwise.

•
$$e^{\frac{2\pi i p}{m}} \left(e^{\frac{2\pi j p}{2m}}\right)^2 = 1, \ 0 \le i, p \le m-1, 0 \le j \le 2m-1.$$

•
$$e^{\frac{2\pi i p}{m}} \left(e^{\frac{2\pi j p}{2m}}\right)^2 = 1, \ 0 \le i, p \le m-1, 0 \le j \le 2m-1.$$

• $e^{\frac{2\pi i p}{m}} e^{\frac{2\pi j p}{m}} = e^{2\pi \ell}$ where $\ell \in \mathbb{N}$.

•
$$e^{\frac{2\pi i p}{m}} \left(e^{\frac{2\pi j p}{2m}}\right)^2 = 1, \ 0 \le i, p \le m-1, 0 \le j \le 2m-1.$$

• $e^{\frac{2\pi i p}{m}} e^{\frac{2\pi j p}{m}} = e^{2\pi \ell}$ where $\ell \in \mathbb{N}$.
• This gives, $i + j = \left(\frac{\ell}{p}\right) m$

Thus, we have the following constraints:

•
$$e^{\frac{2\pi i p}{m}} \left(e^{\frac{2\pi j p}{2m}}\right)^2 = 1, \ 0 \le i, p \le m-1, 0 \le j \le 2m-1.$$

•
$$e^{\frac{2\pi i p}{m}}e^{\frac{2\pi j p}{m}} = e^{2\pi \ell}$$
 where $\ell \in \mathbb{N}$.

• This gives,
$$i + j = \left(\frac{\ell}{p}\right) m$$

• For a fixed value of j there is a unique $0 \le i \le m-1$

•
$$e^{\frac{2\pi i p}{m}} \left(e^{\frac{2\pi j p}{2m}}\right)^2 = 1, \ 0 \le i, p \le m-1, 0 \le j \le 2m-1.$$

•
$$e^{\frac{2\pi i p}{m}}e^{\frac{2\pi j p}{m}} = e^{2\pi \ell}$$
 where $\ell \in \mathbb{N}$.

- This gives, $i + j = \left(\frac{\ell}{p}\right) m$
- For a fixed value of j there is a unique $0 \le i \le m-1$
- Number of distinct solutions to the equation is 2m.
- There are 2m many one dimensional representations of G_m

Size of Robson's Group G_m with commutator subgroup H_m is

$$|G_m| = |H_m| * [G_m : H_m]$$
$$= 2^{m-1} * 2m$$
$$= m2^m$$

Estimating the Size of Robson's Group

Size of Robson's Group G_m with commutator subgroup H_m is

$$|G_m| = |H_m| * [G_m : H_m]$$
$$= 2^{m-1} * 2m$$
$$= m2^m$$

Theorem

For any
$$w, x \in \Sigma^*$$
, with $|w| = |x| = n$, there is a group of size $O\left(\sqrt{n}2^{\sqrt{n}}\right)$ that separates them.

Our Results

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
 - Class of Abelian groups and dihedral groups are not universal.
 - Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that $\operatorname{SepGroupWORDS}$ is NP-Complete

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Theorem

The class of solvable groups and the class of p-groups are universal.

Theorem

The class of solvable groups and the class of p-groups are universal.

- Commutator subgroup of Robson's permutation group is Abelian.
- Robson's group is thus solvable.

Theorem

The class of solvable groups and the class of p-groups are universal.

- Commutator subgroup of Robson's permutation group is Abelian.
- Robson's group is thus solvable.

Lemma

Given a pair of distinct words $w, x \in \{0, 1\}^n$ there exists $0 \le i < m \le [2n]$ and $m = 2^k$ for some $k \in \mathbb{N}$ such that this 2-group separates w, x.

July 6, 2023

19/31

- *p*-groups are universal.
- Nilpotent groups are universal.

Our Results

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal. ✓
 - Class of Abelian groups and dihedral groups are not universal.
 - Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGROUPWORDS is NP-Complete

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Theorem

The class of groups G is not universal where G is an Abelian group.

NehaKuntewar, AnoopSKM, JayalalSarma SeparatingWordsProblemOnGroups:DCFS23

Theorem

The class of groups G is not universal where G is an Abelian group.

Consider w, x ∈ Σⁿ such that ∀a ∈ Σ, the number of occurrences of a is same in both w and x.

Theorem

The class of groups G is not universal where G is an Abelian group.

Consider w, x ∈ Σⁿ such that ∀a ∈ Σ, the number of occurrences of a is same in both w and x.

•
$$\phi(w) = g_1^{n_1} g_2^{n_2} \dots g_k^{n_k} = \phi(x)$$
, g_i generator and $\forall i, n_i \ge 0$.

Theorem

The class of groups G is not universal where G is an Abelian group.

- Consider w, x ∈ Σⁿ such that ∀a ∈ Σ, the number of occurrences of a is same in both w and x.
- $\phi(w) = g_1^{n_1} g_2^{n_2} \dots g_k^{n_k} = \phi(x)$, g_i generator and $\forall i, n_i \ge 0$.
- For any Abelian group $G \& \phi : \Sigma \to G$, $yield(\phi(w)) = yield(\phi(x))$.

Theorem

The class of dihedral groups is not universal.

Theorem

The class of dihedral groups is not universal.

• Dihedral Group: Group of symmetries of regular polygon

Theorem

The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G = \{r_0, r_1, \dots, r_{m-1}, s_0, s_1 \dots s_{m-1}\}$.
- We know that $r_i r_j = r_{i+j}$ and $s_i s_j = r_{i-j}$.

Theorem

The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G = \{r_0, r_1, \dots, r_{m-1}, s_0, s_1 \dots s_{m-1}\}$.
- We know that $r_i r_j = r_{i+j}$ and $s_i s_j = r_{i-j}$.
- Consider $w = 0^{2k} 1^{2k}$, $x = 1^{2k} 0^{2k}$ where $k \in \mathbb{N}$. Consider the following cases:

Case 1: The elements in the group that get mapped are $\{r_i, r_j\}$. Then $yield(w) = (r_i)^{2k}(r_j)^{2k} = (r_j)^{2k}(r_i)^{2k} = yield(x)$.

Theorem

The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G = \{r_0, r_1, \dots, r_{m-1}, s_0, s_1 \dots s_{m-1}\}$.
- We know that $r_i r_j = r_{i+j}$ and $s_i s_j = r_{i-j}$.
- Consider $w = 0^{2k} 1^{2k}$, $x = 1^{2k} 0^{2k}$ where $k \in \mathbb{N}$. Consider the following cases:
 - Case 1: The elements in the group that get mapped are $\{r_i, r_j\}$. Then $yield(w) = (r_i)^{2k}(r_j)^{2k} = (r_j)^{2k}(r_i)^{2k} = yield(x)$.
 - Case 2: Suppose at least one of the elements gets mapped to some s_j . Then $(s_j)^{2k} = (s_j s_j)^k = (r_0)^k = r_0$. Then $yield(w) = h^{2k}r_0 = r_0h^{2k} = yield(x), h \in G \setminus \{s_j\}.$

(ロ) (同) (三) (三) 三

Our Results

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal. ✓
 - ullet Class of Abelian groups and dihedral groups are **not** universal. \checkmark
 - Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that $\operatorname{SepGroupWORDS}$ is NP-Complete

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Sufficiency Conditions for Non-Universality

Lemma

Let \mathcal{G} be a family of groups such that $\forall G \in \mathcal{G}, \forall g \in G$ order of $g \leq k$ for some finite $k \in \mathbb{N}$. Then \mathcal{G} is not universal.

Lemma

If $\exists c \forall m \text{ such that } H_m \leq G_m \text{ is a maximal Abelian subgroup of } G_m \text{ and } lcm(G_m \setminus H_m) \leq c \text{ then } \{G_m\}_{m \geq 0} \text{ is not universal}$

Our Results

- Size Bounds : $\forall w, x \in \{0, 1\}^n$, a group of size $O(\sqrt{n}2^{\sqrt{n}})$ separating w and x.
- Universality :
 - Class of solvable groups, nilpotent groups, in particular, p-groups, are universal. ✓
 - ullet Class of Abelian groups and dihedral groups are **not** universal. \checkmark
 - Sufficiency conditions for non-universality of classes of groups. \checkmark
- Computational Version : SEPGROUPWORDS Problem Given two words w, x ∈ Σ*, a set of permutations S that generates a group G ≤ S_n and a function φ : Σ → S, with the guarantee that yield(w)≠ yield(x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that $\operatorname{SepGroupWORDS}$ is NP-Complete

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 うのの

Separating Group Words Problem

Theorem

SEPGROUPWORDS *is* NP-complete.

- By reducing Separating Words Problem to SEPGROUPWORDS.
- SEPWORDPROBLEM $(w, x, k) \iff$ SEPGROUPWORDS (w, x, S, ϕ, k)
 - \exists Robson's permuting automaton $O(\sqrt{n})$.
 - *S* is the set generators of Robson's group.
 - Given $w, x \in \{0, 1\}^n$, computing S can be done in poly(n) time.

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

• Upper bound : $\sqrt{n}2^{O(\sqrt{n})}$

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n}2^{O(\sqrt{n})}$
- Lower bound : $\Omega(\log n)$.

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n}2^{O(\sqrt{n})}$
- Lower bound : $\Omega(\log n)$.

Question : Still an exponential gap !

• Characterization of Universality and Non-universality among classes of Groups.

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n}2^{O(\sqrt{n})}$
- Lower bound : $\Omega(\log n)$.

Question : Still an exponential gap !

- Characterization of Universality and Non-universality among classes of Groups.
- Bound on the size of *p*-groups used in Group Separation.

Thank You!

<ロト < 同ト < ヨト < ヨト

References I

Andrei A. Bulatov, Olga Karpova, Arseny M. Shur, and Konstantin Startsev.

Lower bounds on words separation: Are there short identities in transformation semigroups? *Electron. J. Comb.*, 24(3):3, 2017.

Zachary Chase.

Separating words and trace reconstruction. STOC 2021, page 21–31. Association for Computing Machinery, 2021.

Marek Chrobak.

Finite Automata and Unary Languages.

Theoretical Computer Science, 47:149 - 158, 1986.

References II

Erik D. Demaine, Sarah Eisenstat, Jeffrey Shallit, and David A. Wilson.

Remarks on Separating Words.

In Markus Holzer, Martin Kutrib, and Giovanni Pighizzini, editors, *Descriptional Complexity of Formal Systems*, pages 147–157, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

William Fulton and Joe Harris. *Representation theory: a first course.* Springer, New York, 1st ed. edition, 2004.

P. Goralčík and V. Koubek.

On Discerning Words by Automata.

In Laurent Kott, editor, *Automata, Languages and Programming*, pages 116–122, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

July 6, 2023

30/31

References III

J.M. Robson.

Separating strings with small automata. Information Processing Letters, 30(4):209 – 214, 1989.

🔋 J. M. Robson.

Separating words with machines and groups. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Appl., 30(1):81–86, 1996.

J Wiedermann.

Discerning Two Words by a Minimum Size Automaton.

Technical report, Institute of Computer Science, The Czech Academy of Sciences, 2015.