Separating Words Problem on Groups

Neha Kuntewar, Anoop S. K. M. \& Jayalal Sarma

Indian Institute of Technology, Madras, India

> DCFS 2023, Potsdam, Germany

July 6, 2023

Introduction

- Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

Introduction

- Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

Introduction

- Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

- Can we have a smaller DFA in terms of its number of states?

Introduction

- Can we have a DFA that accepts HUMPTY and rejects DUMPTY?

- Can we have a smaller DFA in terms of its number of states?

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]
- If HammingDistance $(w, x) \leq d$, $\operatorname{sep}(w, x)=O(d \log n)$.[DESW11]

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]
- If HammingDistance $(w, x) \leq d, \operatorname{sep}(w, x)=O(d \log n)$.[DESW11]
- When $|w| \neq|x|, \exists$ an automaton $O(\log n)$ that separates w, x.

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]
- If HammingDistance $(w, x) \leq d, \operatorname{sep}(w, x)=O(d \log n)$.[DESW11]
- When $|w| \neq|x|, \exists$ an automaton $O(\log n)$ that separates w, x. If $0 \leq i \neq j \leq n, \exists p \leq O(\log n)$ such that $i \not \equiv j \bmod p$.

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]
Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]
- If HammingDistance $(w, x) \leq d, \operatorname{sep}(w, x)=O(d \log n)$.[DESW11]
- When $|w| \neq|x|, \exists$ an automaton $O(\log n)$ that separates w, x. If $0 \leq i \neq j \leq n, \exists p \leq O(\log n)$ such that $i \not \equiv j \bmod p$. Hence, counting modulo p separates w, x.

Separating Words Problem $(\operatorname{sep}(w, x))$

Separating Words Problem [GK86]

Given two words $w, x \in\{0,1\}^{*}$, what is the size of the smallest automaton (in terms of number of states) which accepts one of them and rejects the other.

- Trivial Upper Bound: $O(n)$
- Suppose w and x are words that differ in some symbol that occurs d positions from the start or end, then $\operatorname{sep}(w, x) \leq d+2$. [DESW11]
- If HammingDistance $(w, x) \leq d, \operatorname{sep}(w, x)=O(d \log n)$.[DESW11]
- When $|w| \neq|x|, \exists$ an automaton $O(\log n)$ that separates w, x. If $0 \leq i \neq j \leq n, \exists p \leq O(\log n)$ such that $i \not \equiv j \bmod p$. Hence, counting modulo p separates w, x.
- Separating Words Problem is NP-Complete [BKSS17]

Known Bounds

Choffrut Conjecture [Chr86]

Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{1 / 2}\right)$ [Rob89]

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 2}\right)$ [Rob89]

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{1 / 2}\right)$ [Rob89]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 3} \log ^{7} n\right)$ [Cha21]

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 2}\right)$ [Rob89]
- $O\left(n^{1 / 3} \log ^{7} n\right)$ [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$
w=0^{m-1} 1^{m-1+\ell c m(1,2, \ldots, m)}, x=0^{m-1+\ell c m(1,2, \ldots, m)} 1^{m-1}
$$

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{1 / 2}\right)$ [Rob89]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 3} \log ^{7} n\right)$ [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$
w=0^{m-1} 1^{m-1+\ell c m(1,2, \ldots, m)}, x=0^{m-1+\ell c m(1,2, \ldots, m)} 1^{m-1}
$$

Exponential Gap between Lower and Upper bounds!

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{1 / 2}\right)$ [Rob89]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 3} \log ^{7} n\right)$ [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$
w=0^{m-1} 1^{m-1+\ell c m(1,2, \ldots, m)}, x=0^{m-1+\ell c m(1,2, \ldots, m)} 1^{m-1}
$$

Exponential Gap between Lower and Upper bounds! still open!.

Known Bounds

Choffrut Conjecture [Chr86]
Given distinct words of length n, for all $\epsilon>0$, the value $\operatorname{sep}(w, x) \in O\left(n^{\epsilon}\right)$

Upper Bound :

- o(n) [GK86]
- $O\left(n^{1 / 2}\right)$ [Rob89]
- $O\left(n^{2 / 5} \log ^{3 / 5} n\right)$ [Rob96]
- $O\left(n^{1 / 3} \log ^{7} n\right)$ [Cha21]

Lower Bound : $\Omega(\log n)$ [DESW11]

$$
w=0^{m-1} 1^{m-1+\ell c m(1,2, \ldots, m)}, x=0^{m-1+\ell c m(1,2, \ldots, m)} 1^{m-1}
$$

Exponential Gap between Lower and Upper bounds! still open !.
Question: What if the automaton is restricted?

Permuting Automaton

Permuting Automaton

Permuting Automaton
An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

Permuting Automaton

Permuting Automaton

An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

- Robson [Rob89] :For any two words of length n, we can construct a permuting automaton with $O(\sqrt{n})$ states that separates them.

Permuting Automaton

Permuting Automaton

An Automaton such that for each $a \in \Sigma$, the transition function is a permutation of the set of states.

- Robson [Rob89] :For any two words of length n, we can construct a permuting automaton with $O(\sqrt{n})$ states that separates them.
- Each permuting automaton is associated with a subgroup of S_{n}.
- Motivated by this: we define the separating words problem over groups.

Separating Words with Groups

- Let G be a group.
- Let $\phi: \Sigma \rightarrow G$

Separating Words with Groups

- Let G be a group.
- Let $\phi: \Sigma \rightarrow G$
- $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{n}$, is said to yield $g \in G$ if $\prod_{i=1}^{n} \phi\left(w_{i}\right)=g$

Separating Words with Groups

- Let G be a group.
- Let $\phi: \Sigma \rightarrow G$
- $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{n}$, is said to yield $g \in G$ if $\prod_{i=1}^{n} \phi\left(w_{i}\right)=g$
- Given $w, x \in \Sigma^{*}$, a group G is said to separate w and x if there exists a function ϕ such that $\phi(w) \neq \phi(x)$.

Separating Words with Groups

- Let G be a group.
- Let $\phi: \Sigma \rightarrow G$
- $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{n}$, is said to yield $g \in G$ if $\prod_{i=1}^{n} \phi\left(w_{i}\right)=g$
- Given $w, x \in \Sigma^{*}$, a group G is said to separate w and x if there exists a function ϕ such that $\phi(w) \neq \phi(x)$.

Example: Consider $w, x \in\{0,1\}^{*}$ with $|w| \neq|x|$.

Separating Words with Groups

- Let G be a group.
- Let $\phi: \Sigma \rightarrow G$
- $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{n}$, is said to yield $g \in G$ if $\prod_{i=1}^{n} \phi\left(w_{i}\right)=g$
- Given $w, x \in \Sigma^{*}$, a group G is said to separate w and x if there exists a function ϕ such that $\phi(w) \neq \phi(x)$.

Example: Consider $w, x \in\{0,1\}^{*}$ with $|w| \neq|x|$.
the group \mathbb{Z}_{p} with prime $p=O(\log n)$, with $\phi(1)=1, \phi(0)=0$ (or vice versa), will separate w and x.

Can we always find a separating group?

```
Separating Group
Given any w and x, does there always exist a group G that separates them?
```


Can we always find a separating group?

Separating Group

Given any w and x, does there always exist a group G that separates them?

- Yes!

Can we always find a separating group?

Separating Group
Given any w and x, does there always exist a group G that separates them?

- Yes! Group associated with Robson's Permuting Automaton.
- The group is a subgroup of $\operatorname{Sym}(\sqrt{n})$.

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})!=2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})!=2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \Longrightarrow$ automaton of size k).

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})!=2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \Longrightarrow$ automaton of size k). Question: Still an exponential gap!

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})!=2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \Longrightarrow$ automaton of size k). Question: Still an exponential gap!

Universality of restricted group classes
A class of groups \mathcal{G} is said to be universal if for any two words $w, x \in \Sigma^{*}$, there exists a group $G \in \mathcal{G}$ for which a separating substitution map exists such that the yields of the words under the map are distinct.

Separating Words with Groups: Two Natural Questions

Size of the group
Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $(\sqrt{n})!=2^{O(\sqrt{n} \log n)}$ (directly from Robson's automaton).
- Lower bound : $\Omega(\log n)$ (group of size $k \Longrightarrow$ automaton of size k). Question: Still an exponential gap!

Universality of restricted group classes
A class of groups \mathcal{G} is said to be universal if for any two words $w, x \in \Sigma^{*}$, there exists a group $G \in \mathcal{G}$ for which a separating substitution map exists such that the yields of the words under the map are distinct.

Question: Which classes of groups are universal?

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x.
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x.
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x.
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGroupWords is NP-Complete

Robson's Permuting Automaton

Robson's Permuting Automaton

$M_{i, m}=\left(Q,\{0,1\}, q_{0}, \delta, F\right)$ accepts strings, where the parity of symbols at positions congruent to $i(\bmod m)$ is odd (where $m \leq O(\sqrt{n})$).

Robson's Permuting Automaton

$M_{i, m}=\left(Q,\{0,1\}, q_{0}, \delta, F\right)$ accepts strings, where the parity of symbols at positions congruent to $i(\bmod m)$ is odd (where $m \leq O(\sqrt{n})$).

- $Q=\{(p, q) \mid p \in\{0,1\} q \in\{0, . . m-1\}\},|Q|=2 m$

Robson's Permuting Automaton

$M_{i, m}=\left(Q,\{0,1\}, q_{0}, \delta, F\right)$ accepts strings, where the parity of symbols at positions congruent to $i(\bmod m)$ is odd (where $m \leq O(\sqrt{n})$).

- $Q=\{(p, q) \mid p \in\{0,1\} q \in\{0, . . m-1\}\},|Q|=2 m$
- $\delta: Q \times \Sigma \longrightarrow Q$
- $\delta((p, q), 0)=(p,(q+1) \bmod m)$
- $\delta((p, q), 1)= \begin{cases}(p,(q+1) \bmod m), & \text { if } q \neq i \\ (1-p,(q+1) \bmod m), & \text { otherwise }\end{cases}$

Robson's Permuting Automaton

$M_{i, m}=\left(Q,\{0,1\}, q_{0}, \delta, F\right)$ accepts strings, where the parity of symbols at positions congruent to $i(\bmod m)$ is odd (where $m \leq O(\sqrt{n})$).

- $Q=\{(p, q) \mid p \in\{0,1\} q \in\{0, . . m-1\}\},|Q|=2 m$
- $\delta: Q \times \Sigma \longrightarrow Q$
- $\delta((p, q), 0)=(p,(q+1) \bmod m)$
- $\delta((p, q), 1)= \begin{cases}(p,(q+1) \bmod m), & \text { if } q \neq i \\ (1-p,(q+1) \bmod m), & \text { otherwise }\end{cases}$

Robson's Permuting Automaton to Group

Robson's group $G_{m}=\langle g, h\rangle$ where,
$g=(1,2 \ldots m)(m+1, \ldots 2 m) \quad h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Robson's Permuting Automaton to Group

Robson's group $G_{m}=\langle g, h\rangle$ where, $g=(1,2 \ldots m)(m+1, \ldots 2 m) \quad h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Theorem : For any $w, x \in \Sigma^{*}$, with $|w|=|x|=n$, there is a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ that separates them.

Estimating the Size of Robson's Group

Robson's group $G_{m}=\langle g, h\rangle$ where,

- $g=(1,2 \ldots m)(m+1, \ldots 2 m)$
- $h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Theorem
$\left|G_{m}\right|=m 2^{m}$

Estimating the Size of Robson's Group

Robson's group $G_{m}=\langle g, h\rangle$ where,

- $g=(1,2 \ldots m)(m+1, \ldots 2 m)$
- $h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Theorem
$\left|G_{m}\right|=m 2^{m}$
We know $\left|G_{m}\right|=\left|H_{m}\right| *\left[G_{m}: H_{m}\right], H_{m}$ is the commutator subgroup of G_{m} and $\left[G_{m}: H_{m}\right.$] is the index (equal to the number of left cosets).

Estimating the Size of Robson's Group

Robson's group $G_{m}=\langle g, h\rangle$ where,

- $g=(1,2 \ldots m)(m+1, \ldots 2 m)$
- $h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Theorem
$\left|G_{m}\right|=m 2^{m}$
We know $\left|G_{m}\right|=\left|H_{m}\right| *\left[G_{m}: H_{m}\right], H_{m}$ is the commutator subgroup of G_{m} and $\left[G_{m}: H_{m}\right.$] is the index (equal to the number of left cosets).
We prove
(1) $\left|H_{m}\right|=2^{m-1}$

Estimating the Size of Robson's Group

Robson's group $G_{m}=\langle g, h\rangle$ where,

- $g=(1,2 \ldots m)(m+1, \ldots 2 m)$
- $h=(1, m+2, m+3 \ldots 2 m, m+1,2 \ldots m)$

Theorem
$\left|G_{m}\right|=m 2^{m}$
We know $\left|G_{m}\right|=\left|H_{m}\right| *\left[G_{m}: H_{m}\right], H_{m}$ is the commutator subgroup of G_{m} and $\left[G_{m}: H_{m}\right.$] is the index (equal to the number of left cosets).
We prove
(1) $\left|H_{m}\right|=2^{m-1}$
(2) $\left[G_{m}: H_{m}\right]=2 m$

Estimating the size of the commutator subgroup: $\left|H_{m}\right|$

Lemma

Consider a Robson's group G_{m}. Let H_{m} be the commutator subgroup of G_{m}. Consider $S=\{(1, m+1)(m-i+1,2 m-i+1) \mid \forall i \in[m-1]\}$. Then $H_{m}=\langle S\rangle$

Estimating the size of the commutator subgroup: $\left|H_{m}\right|$

Lemma

Consider a Robson's group G_{m}. Let H_{m} be the commutator subgroup of G_{m}. Consider $S=\{(1, m+1)(m-i+1,2 m-i+1) \mid \forall i \in[m-1]\}$. Then $H_{m}=\langle S\rangle$

Proof Idea

- We show that:(1) $S \subseteq H_{m}$ and (2) $H_{m} \subseteq\langle S\rangle$.

Estimating the size of the commutator subgroup: $\left|H_{m}\right|$

Lemma

Consider a Robson's group G_{m}. Let H_{m} be the commutator subgroup of G_{m}. Consider $S=\{(1, m+1)(m-i+1,2 m-i+1) \mid \forall i \in[m-1]\}$. Then $H_{m}=\langle S\rangle$

Proof Idea

- We show that:(1) $S \subseteq H_{m}$ and (2) $H_{m} \subseteq\langle S\rangle$.

Lemma
Let $G=\langle S\rangle$ be an Abelian group such that every generator $g \in S$ is a transposition. Then, $|G|=2^{m}$ where $m=|S|$.

Estimating the size of the commutator subgroup: $\left|H_{m}\right|$

Lemma

Consider a Robson's group G_{m}. Let H_{m} be the commutator subgroup of G_{m}. Consider $S=\{(1, m+1)(m-i+1,2 m-i+1) \mid \forall i \in[m-1]\}$. Then $H_{m}=\langle S\rangle$

Proof Idea

- We show that:(1) $S \subseteq H_{m}$ and (2) $H_{m} \subseteq\langle S\rangle$.

Lemma
Let $G=\langle S\rangle$ be an Abelian group such that every generator $g \in S$ is a transposition. Then, $|G|=2^{m}$ where $m=|S|$.

- Hence we prove $\left|H_{m}\right|=2^{m-1}$

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
The Robson's group G_{m} has a presentation

$$
\left\{\begin{array}{l}
\left\langle g, h \mid g^{m}=h^{2 m}=\left(g h^{2}\right)^{2 m / 3}=e\right\rangle \text { when } m=3 k \\
\left\langle g, h \mid g^{m}=h^{2 m}=\left(g h^{2}\right)^{m}=e\right\rangle \text { otherwise }
\end{array}\right.
$$

where e is the identity element and $k \in \mathbb{N}$.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
The Robson's group G_{m} has a presentation

$$
\left\{\begin{array}{l}
\left\langle g, h \mid g^{m}=h^{2 m}=\left(g h^{2}\right)^{2 m / 3}=e\right\rangle \text { when } m=3 k \\
\left\langle g, h \mid g^{m}=h^{2 m}=\left(g h^{2}\right)^{m}=e\right\rangle \text { otherwise }
\end{array}\right.
$$

where e is the identity element and $k \in \mathbb{N}$.

Lemma (from group theory)

For any group $G,[G: H]$ where H is a commutator subgroup of G is number of group homomorphisms $\phi: G \longrightarrow \mathbb{C}^{\times}$.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
There are exactly $2 m$ distinct homomorphisms $\phi: G_{m} \longrightarrow \mathbb{C}^{\times}$.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
There are exactly $2 m$ distinct homomorphisms $\phi: G_{m} \longrightarrow \mathbb{C}^{\times}$.

- $g^{m}=e$, we have $(\phi(g))^{m}=1$. Hence, $\phi(g)$ must be an $m^{t h}$ root of unity.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
There are exactly $2 m$ distinct homomorphisms $\phi: G_{m} \longrightarrow \mathbb{C}^{\times}$.

- $g^{m}=e$, we have $(\phi(g))^{m}=1$. Hence, $\phi(g)$ must be an $m^{t h}$ root of unity.
- $h^{2 m}=e$ that $\phi(h)$ must be a $2 m^{t h}$ root of unity.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
There are exactly $2 m$ distinct homomorphisms $\phi: G_{m} \longrightarrow \mathbb{C}^{\times}$.

- $g^{m}=e$, we have $(\phi(g))^{m}=1$. Hence, $\phi(g)$ must be an $m^{t h}$ root of unity.
- $h^{2 m}=e$ that $\phi(h)$ must be a $2 m^{t h}$ root of unity.
- $\left(\phi(g) \phi(h)^{2}\right)^{p}=1$ where $p=2 m / 3$ when $m=3 k$ and $p=m$ otherwise.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Lemma
There are exactly $2 m$ distinct homomorphisms $\phi: G_{m} \longrightarrow \mathbb{C}^{\times}$.

- $g^{m}=e$, we have $(\phi(g))^{m}=1$. Hence, $\phi(g)$ must be an $m^{t h}$ root of unity.
- $h^{2 m}=e$ that $\phi(h)$ must be a $2 m^{t h}$ root of unity.
- $\left(\phi(g) \phi(h)^{2}\right)^{p}=1$ where $p=2 m / 3$ when $m=3 k$ and $p=m$ otherwise.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Thus, we have the following constraints:

- $e^{\frac{2 \pi i p}{m}}\left(e^{\frac{2 \pi j p}{2 m}}\right)^{2}=1,0 \leq i, p \leq m-1,0 \leq j \leq 2 m-1$.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Thus, we have the following constraints:

- $e^{\frac{2 \pi i p}{m}}\left(e^{\frac{2 \pi j p}{2 m}}\right)^{2}=1,0 \leq i, p \leq m-1,0 \leq j \leq 2 m-1$.
- $e^{\frac{2 \pi i p}{m}} e^{\frac{2 \pi j p}{m}}=e^{2 \pi \ell}$ where $\ell \in \mathbb{N}$.

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Thus, we have the following constraints:

- $e^{\frac{2 \pi i p}{m}}\left(e^{\frac{2 \pi j p}{2 m}}\right)^{2}=1,0 \leq i, p \leq m-1,0 \leq j \leq 2 m-1$.
- $e^{\frac{2 \pi i p}{m}} e^{\frac{2 \pi j p}{m}}=e^{2 \pi \ell}$ where $\ell \in \mathbb{N}$.
- This gives, $i+j=\left(\frac{\ell}{p}\right) m$

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Thus, we have the following constraints:

- $e^{\frac{2 \pi i p}{m}}\left(e^{\frac{2 \pi j p}{2 m}}\right)^{2}=1,0 \leq i, p \leq m-1,0 \leq j \leq 2 m-1$.
- $e^{\frac{2 \pi i p}{m}} e^{\frac{2 \pi j p}{m}}=e^{2 \pi \ell}$ where $\ell \in \mathbb{N}$.
- This gives, $i+j=\left(\frac{\ell}{p}\right) m$
- For a fixed value of j there is a unique $0 \leq i \leq m-1$

Estimating Bounds on the Index: [$G_{m}: H_{m}$]

Thus, we have the following constraints:

- $e^{\frac{2 \pi i p}{m}}\left(e^{\frac{2 \pi j p}{2 m}}\right)^{2}=1,0 \leq i, p \leq m-1,0 \leq j \leq 2 m-1$.
- $e^{\frac{2 \pi i p}{m}} e^{\frac{2 \pi j p}{m}}=e^{2 \pi \ell}$ where $\ell \in \mathbb{N}$.
- This gives, $i+j=\left(\frac{\ell}{p}\right) m$
- For a fixed value of j there is a unique $0 \leq i \leq m-1$
- Number of distinct solutions to the equation is $2 m$.
- There are $2 m$ many one dimensional representations of G_{m}

Estimating the Size of Robson's Group

Size of Robson's Group G_{m} with commutator subgroup H_{m} is

$$
\begin{aligned}
\left|G_{m}\right| & =\left|H_{m}\right| *\left[G_{m}: H_{m}\right] \\
& =2^{m-1} * 2 m \\
& =m 2^{m}
\end{aligned}
$$

Estimating the Size of Robson's Group

Size of Robson's Group G_{m} with commutator subgroup H_{m} is

$$
\begin{aligned}
\left|G_{m}\right| & =\left|H_{m}\right| *\left[G_{m}: H_{m}\right] \\
& =2^{m-1} * 2 m \\
& =m 2^{m}
\end{aligned}
$$

Theorem
For any $w, x \in \Sigma^{*}$, with $|w|=|x|=n$, there is a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ that separates them.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x. \checkmark
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGroupWords is NP-Complete

Structure of the Separating Groups: Universal Groups

Theorem
The class of solvable groups and the class of p-groups are universal.

Structure of the Separating Groups: Universal Groups

Theorem

The class of solvable groups and the class of p-groups are universal.

- Commutator subgroup of Robson's permutation group is Abelian.
- Robson's group is thus solvable.

Structure of the Separating Groups: Universal Groups

Theorem

The class of solvable groups and the class of p-groups are universal.

- Commutator subgroup of Robson's permutation group is Abelian.
- Robson's group is thus solvable.

Lemma
Given a pair of distinct words $w, x \in\{0,1\}^{n}$ there exists $0 \leq i<m \leq[2 n]$ and $m=2^{k}$ for some $k \in \mathbb{N}$ such that this 2-group separates w, x.

- p-groups are universal.
- Nilpotent groups are universal.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x. \checkmark
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGroupWords is NP-Complete

Structure of the Separating Groups : Non-Universal Groups

Theorem
The class of groups \mathcal{G} is not universal where \mathcal{G} is an Abelian group.

Structure of the Separating Groups: Non-Universal Groups

Theorem
The class of groups \mathcal{G} is not universal where \mathcal{G} is an Abelian group.

- Consider $w, x \in \Sigma^{n}$ such that $\forall a \in \Sigma$, the number of occurrences of a is same in both w and x.

Structure of the Separating Groups : Non-Universal Groups

Theorem

The class of groups \mathcal{G} is not universal where \mathcal{G} is an Abelian group.

- Consider $w, x \in \Sigma^{n}$ such that $\forall a \in \Sigma$, the number of occurrences of a is same in both w and x.
- $\phi(w)=g_{1}^{n_{1}} g_{2}^{n_{2}} \ldots g_{k}^{n_{k}}=\phi(x), g_{i}$ generator and $\forall i, n_{i} \geq 0$.

Structure of the Separating Groups : Non-Universal Groups

Theorem

The class of groups \mathcal{G} is not universal where \mathcal{G} is an Abelian group.

- Consider $w, x \in \Sigma^{n}$ such that $\forall a \in \Sigma$, the number of occurrences of a is same in both w and x.
- $\phi(w)=g_{1}^{n_{1}} g_{2}^{n_{2}} \ldots g_{k}^{n_{k}}=\phi(x), g_{i}$ generator and $\forall i, n_{i} \geq 0$.
- For any Abelian group $G \& \phi: \Sigma \rightarrow G$, yield $(\phi(w))=$ yield $(\phi(x))$.

Structure of the Separating Groups : Non-Universal Groups

Theorem

The class of dihedral groups is not universal.

Structure of the Separating Groups: Non-Universal Groups

Theorem
The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon

Structure of the Separating Groups : Non-Universal Groups

Theorem
The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G=\left\{r_{0}, r_{1}, \ldots r_{m-1}, s_{0}, s_{1} \ldots s_{m-1}\right\}$.
- We know that $r_{i} r_{j}=r_{i+j}$ and $s_{i} s_{j}=r_{i-j}$.

Structure of the Separating Groups : Non-Universal Groups

Theorem

The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G=\left\{r_{0}, r_{1}, \ldots r_{m-1}, s_{0}, s_{1} \ldots s_{m-1}\right\}$.
- We know that $r_{i} r_{j}=r_{i+j}$ and $s_{i} s_{j}=r_{i-j}$.
- Consider $w=0^{2 k} 1^{2 k}, x=1^{2 k} 0^{2 k}$ where $k \in \mathbb{N}$.

Consider the following cases:
Case 1: The elements in the group that get mapped are $\left\{r_{i}, r_{j}\right\}$. Then yield $(w)=\left(r_{i}\right)^{2 k}\left(r_{j}\right)^{2 k}=\left(r_{j}\right)^{2 k}\left(r_{i}\right)^{2 k}=$ yield (x).

Structure of the Separating Groups : Non-Universal Groups

Theorem

The class of dihedral groups is not universal.

- Dihedral Group: Group of symmetries of regular polygon
- Consider any Dihedral group $G=\left\{r_{0}, r_{1}, \ldots r_{m-1}, s_{0}, s_{1} \ldots s_{m-1}\right\}$.
- We know that $r_{i} r_{j}=r_{i+j}$ and $s_{i} s_{j}=r_{i-j}$.
- Consider $w=0^{2 k} 1^{2 k}, x=1^{2 k} 0^{2 k}$ where $k \in \mathbb{N}$.

Consider the following cases:
Case 1: The elements in the group that get mapped are $\left\{r_{i}, r_{j}\right\}$. Then yield $(w)=\left(r_{i}\right)^{2 k}\left(r_{j}\right)^{2 k}=\left(r_{j}\right)^{2 k}\left(r_{i}\right)^{2 k}=$ yield (x).
Case 2: Suppose at least one of the elements gets mapped to some s_{j}. Then $\left(s_{j}\right)^{2 k}=\left(s_{j} s_{j}\right)^{k}=\left(r_{0}\right)^{k}=r_{0}$. Then $\operatorname{yield}(w)=h^{2 k} r_{0}=r_{0} h^{2 k}=\operatorname{yield}(x), h \in G \backslash\left\{s_{j}\right\}$.

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x. \checkmark
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGroupWords is NP-Complete

Sufficiency Conditions for Non-Universality

Lemma
Let \mathcal{G} be a family of groups such that $\forall G \in \mathcal{G}, \forall g \in G$ order of $g \leq k$ for some finite $k \in \mathbb{N}$. Then \mathcal{G} is not universal.

Lemma
If $\exists c \forall m$ such that $H_{m} \leq G_{m}$ is a maximal Abelian subgroup of G_{m} and $\operatorname{lcm}\left(G_{m} \backslash H_{m}\right) \leq c$ then $\left\{G_{m}\right\}_{m \geq 0}$ is not universal

Our Results

- Size Bounds: $\forall w, x \in\{0,1\}^{n}$, a group of size $O\left(\sqrt{n} 2^{\sqrt{n}}\right)$ separating w and x. \checkmark
- Universality :
- Class of solvable groups, nilpotent groups, in particular, p-groups, are universal.
- Class of Abelian groups and dihedral groups are not universal.
- Sufficiency conditions for non-universality of classes of groups.
- Computational Version : SepGroupWords Problem - Given two words $w, x \in \Sigma^{*}$, a set of permutations S that generates a group $G \leq S_{n}$ and a function $\phi: \Sigma \rightarrow S$, with the guarantee that yield $(w) \neq$ yield (x) and an integer k, check if there is an automaton of size k which separates w and x.

We show that SepGroupWords is NP-Complete

Separating Group Words Problem

```
Theorem
SepGroupWords is NP-complete.
```

- By reducing Separating Words Problem to SepGroupWords.
- SepWordProblem $(w, x, k) \Longleftrightarrow \operatorname{SepGroupWords}(w, x, S, \phi, k)$
- \exists Robson's permuting automaton $O(\sqrt{n})$.
- S is the set generators of Robson's group.
- Given $w, x \in\{0,1\}^{n}$, computing S can be done in poly (n) time.

Open Problems

$$
\begin{aligned}
& \text { Size of the group } \\
& \text { Given } w \text { and } x \text { of length } n \text {, what is the size of the smallest group which } \\
& \text { separates them? }
\end{aligned}
$$

Open Problems

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n} 2^{O}(\sqrt{n})$

Open Problems

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n} 2^{O}(\sqrt{n})$
- Lower bound : $\Omega(\log n)$.

Open Problems

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n} 2^{O}(\sqrt{n})$
- Lower bound : $\Omega(\log n)$.

Question : Still an exponential gap !

- Characterization of Universality and Non-universality among classes of Groups.

Open Problems

Size of the group

Given w and x of length n, what is the size of the smallest group which separates them?

- Upper bound : $\sqrt{n} 2^{O}(\sqrt{n})$
- Lower bound : $\Omega(\log n)$.

Question : Still an exponential gap !

- Characterization of Universality and Non-universality among classes of Groups.
- Bound on the size of p-groups used in Group Separation.

Thank You!

References I

(Andrei A. Bulatov, Olga Karpova, Arseny M. Shur, and Konstantin Startsev.
Lower bounds on words separation: Are there short identities in transformation semigroups?
Electron. J. Comb., 24(3):3, 2017.
固 Zachary Chase.
Separating words and trace reconstruction.
STOC 2021, page 21-31. Association for Computing Machinery, 2021.

- Marek Chrobak.

Finite Automata and Unary Languages.
Theoretical Computer Science, 47:149-158, 1986.

References II

Erik D. Demaine, Sarah Eisenstat, Jeffrey Shallit, and David A. Wilson.
Remarks on Separating Words.
In Markus Holzer, Martin Kutrib, and Giovanni Pighizzini, editors, Descriptional Complexity of Formal Systems, pages 147-157, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

國 William Fulton and Joe Harris.
Representation theory: a first course. Springer, New York, 1st ed. edition, 2004.

嗇 P. Goralčík and V. Koubek.
On Discerning Words by Automata.
In Laurent Kott, editor, Automata, Languages and Programming, pages 116-122, Berlin, Heidelberg, 1986. Springer Berlin Heidelberg.

References III

氥 J．M．Robson．
Separating strings with small automata．
Information Processing Letters，30（4）：209－214， 1989.
屢 J．M．Robson．
Separating words with machines and groups．
RAIRO－Theoretical Informatics and Applications－Informatique Théorique et Appl．，30（1）：81－86， 1996.

固 J Wiedermann．
Discerning Two Words by a Minimum Size Automaton．
Technical report，Institute of Computer Science，The Czech Academy
of Sciences， 2015.

