Merging two Hierarchies of External Contextual Grammars with Subregular Selection

Bianca Truthe Justus-Liebig-Universität Giessen

DCFS, Potsdam, July 4-6, 2023

• In the area of formal languages and automata theory, regular languages and finite automata are widely studied.

- In the area of formal languages and automata theory, regular languages and finite automata are widely studied.
- Several classes of specific finite automata and their accepted languages have been investigated separately.

- In the area of formal languages and automata theory, regular languages and finite automata are widely studied.
- Several classes of specific finite automata and their accepted languages have been investigated separately.
- Many papers have been published by different authors on subregular families of languages.

- In the area of formal languages and automata theory, regular languages and finite automata are widely studied.
- Several classes of specific finite automata and their accepted languages have been investigated separately.
- Many papers have been published by different authors on subregular families of languages.
- Focus is often on the decrease of descriptional or computational complexity when going from arbitrary regular languages to special ones.

- In the area of formal languages and automata theory, regular languages and finite automata are widely studied.
- Several classes of specific finite automata and their accepted languages have been investigated separately.
- Many papers have been published by different authors on subregular families of languages.
- Focus is often on the decrease of descriptional or computational complexity when going from arbitrary regular languages to special ones.
- Here, the generative capacity of contextual grammars with special selection languages is considered.

Contextual grammars

- introduced by Solomon Marcus in 1969,
- formal model for generating languages,
- starting with an initial finite set of words,
- wrapping a context around a (sub)word

Solomon Marcus: Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–1534.

Contextual grammars

- introduced by Solomon Marcus in 1969,
- formal model for generating languages,
- starting with an initial finite set of words,
- wrapping a context around a (sub)word

External: a context (u, v) wrapped around a word x yields the word uxv

Solomon Marcus: Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–1534.

Contextual grammars

- introduced by Solomon Marcus in 1969,
- formal model for generating languages,
- starting with an initial finite set of words,
- wrapping a context around a (sub)word

External: a context (u, v) wrapped around a word x yields the word uxv

Internal: (u, v) added to x gives all words $x_1ux_2vx_3$ where $x_1x_2x_3 = x$

Solomon Marcus: Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–1534.

Contextual grammars

- introduced by Solomon Marcus in 1969,
- formal model for generating languages,
- starting with an initial finite set of words,
- wrapping a context around a (sub)word

External: a context (u, v) wrapped around a word x yields the word uxv

Internal: (u, v) added to x gives all words $x_1ux_2vx_3$ where $x_1x_2x_3 = x$

Contexts equipped with conditions where they can be applied

Solomon Marcus: Contextual grammars. Revue Roum. Math. Pures Appl. 14 (1969), 1525–1534.

Contextual grammar with selection in \mathcal{F} is a construct

$$G = (V, \{(S_1, C_1), (S_2, C_2), \dots, (S_n, C_n)\}, A)$$

where

- -V is an alphabet,
- for $1 \leq i \leq n$, S_i is a language over some $U \subseteq V$ in \mathcal{F} (selection language),
- for $1 \le i \le n$, C_i is a finite set of pairs (u, v) (contexts) with $u, v \in V^*$,
- -A is a finite subset of V^* (the set of axioms).

Contextual grammar with selection in \mathcal{F} is a construct

$$G = (V, \{(S_1, C_1), (S_2, C_2), \dots, (S_n, C_n)\}, A)$$

where

- -V is an alphabet,
- for $1 \leq i \leq n$, S_i is a language over some $U \subseteq V$ in \mathcal{F} (selection language),
- for $1 \le i \le n$, C_i is a finite set of pairs (u, v) (contexts) with $u, v \in V^*$, A is a finite subset of V^* (the set of axioms).

External derivation step: $x \Longrightarrow_{\text{ex}} y$ if $x \in S_i$ for some $i \in \{1, \ldots, n\}$ and y = uxv for some $(u, v) \in C_i$.

Contextual grammar with selection in \mathcal{F} is a construct

$$G = (V, \{(S_1, C_1), (S_2, C_2), \dots, (S_n, C_n)\}, A)$$

where

- -V is an alphabet,
- for $1 \leq i \leq n$, S_i is a language over some $U \subseteq V$ in \mathcal{F} (selection language),
- for $1 \le i \le n$, C_i is a finite set of pairs (u, v) (contexts) with $u, v \in V^*$, A is a finite subset of V^* (the set of axioms).

External derivation step: $x \Longrightarrow_{ex} y$ if $x \in S_i$ for some $i \in \{1, \ldots, n\}$ and y = uxv for some $(u, v) \in C_i$.

Internal derivation step: $x \implies y$ if $x = x_1x_2x_3$ with $x_2 \in S_i$ for some $i \in \{1, \ldots, n\}$ and $y = x_1ux_2vx_3$ for some $(u, v) \in C_i$.

Languages generated:

$$L_{\mathrm{ex}}(G) = \{ z \mid x \stackrel{*}{\underset{\mathrm{ex}}{\Longrightarrow}} z \text{ for some } x \in A \},$$

$$L_{\rm in}(G) = \{ z \mid x \stackrel{*}{\Longrightarrow} z \text{ for some } x \in A \}$$

Languages generated:

$$L_{\mathrm{ex}}(G) = \{ z \mid x \stackrel{*}{\underset{\mathrm{ex}}{\Longrightarrow}} z \text{ for some } x \in A \},$$

$$L_{\rm in}(G) = \{ z \mid x \xrightarrow[]{\text{ in }} z \text{ for some } x \in A \}$$

 $\mathcal{EC}(\mathcal{F})$ and $\mathcal{IC}(\mathcal{F})$: family of all languages generated externally or internally by contextual grammars with selection in \mathcal{F} .

Let L be a language over an alphabet V. We say that the language L – with respect to the alphabet V – is

Let L be a language over an alphabet V.

We say that the language L – with respect to the alphabet V – is

• monoidal if and only if $L = V^*$,

Let L be a language over an alphabet V.

- monoidal if and only if $L = V^*$,
- *nilpotent* if and only if it is finite or its complement $V^* \setminus L$ is finite,

Let L be a language over an alphabet V. We say that the language L – with respect to the alphabet V – is

- monoidal if and only if $L = V^*$,
- *nilpotent* if and only if it is finite or its complement $V^* \setminus L$ is finite,
- combinational if and only if it has the form $L = V^*A$ for some subset $A \subseteq V$,

Let L be a language over an alphabet V.

- monoidal if and only if $L = V^*$,
- *nilpotent* if and only if it is finite or its complement $V^* \setminus L$ is finite,
- combinational if and only if it has the form $L=V^*A$ for some subset $A\subseteq V$,
- definite if and only if it can be represented in the form $L = A \cup V^*B$ where A and B are finite subsets of V^* ,

Let L be a language over an alphabet V.

We say that the language L – with respect to the alphabet V – is

- monoidal if and only if $L = V^*$,
- *nilpotent* if and only if it is finite or its complement $V^* \setminus L$ is finite,
- combinational if and only if it has the form $L = V^*A$ for some subset $A \subseteq V$,
- definite if and only if it can be represented in the form $L = A \cup V^*B$ where A and B are finite subsets of V^* ,
- suffix-closed (or fully initial or multiple-entry language) if and only if, for any words $x \in V^*$ and $y \in V^*$, the relation $xy \in L$ implies $y \in L$,

Let L be a language over an alphabet V. We say that the language L – with respect to the alphabet V – is

• ordered if and only if the language is accepted by some deterministic finite automaton $\mathcal{A} = (V, Z, z_0, F, \delta)$ where (Z, \preceq) is a totally ordered set and, for any $a \in V$, the relation $z \preceq z'$ implies $\delta(z, a) \preceq \delta(z', a)$,

Let L be a language over an alphabet V.

- ordered if and only if the language is accepted by some deterministic finite automaton $\mathcal{A} = (V, Z, z_0, F, \delta)$ where (Z, \preceq) is a totally ordered set and, for any $a \in V$, the relation $z \preceq z'$ implies $\delta(z, a) \preceq \delta(z', a)$,
- commutative if and only if it contains with each word also all permutations of this word,

Let L be a language over an alphabet V.

- ordered if and only if the language is accepted by some deterministic finite automaton $\mathcal{A} = (V, Z, z_0, F, \delta)$ where (Z, \preceq) is a totally ordered set and, for any $a \in V$, the relation $z \preceq z'$ implies $\delta(z, a) \preceq \delta(z', a)$,
- commutative if and only if it contains with each word also all permutations of this word,
- *circular* if and only if it contains with each word also all circular shifts of this word,

Let L be a language over an alphabet V.

- ordered if and only if the language is accepted by some deterministic finite automaton $\mathcal{A} = (V, Z, z_0, F, \delta)$ where (Z, \preceq) is a totally ordered set and, for any $a \in V$, the relation $z \preceq z'$ implies $\delta(z, a) \preceq \delta(z', a)$,
- commutative if and only if it contains with each word also all permutations of this word,
- *circular* if and only if it contains with each word also all circular shifts of this word,
- non-counting (or star-free) if and only if there is a natural number $k \ge 1$ such that, for any words $x \in V^*$, $y \in V^*$, and $z \in V^*$, it holds $xy^k z \in L$ if and only if $xy^{k+1}z \in L$,

Let L be a language over an alphabet V.

We say that the language L – with respect to the alphabet V – is

• power-separating if and only if, there is a natural number $m \ge 1$ such that for any $x \in V^*$, either $J_x^m \cap L = \emptyset$ or $J_x^m \subseteq L$ where $J_x^m = \{x^n \mid n \ge m\}$,

Let L be a language over an alphabet V. We say that the language L – with respect to the alphabet V – is

- power-separating if and only if, there is a natural number $m \ge 1$ such that for any $x \in V^*$, either $J_x^m \cap L = \emptyset$ or $J_x^m \subseteq L$ where $J_x^m = \{x^n \mid n \ge m\}$,
- *union-free* if and only if L can be described by a regular expression which is only built by product and star.

Further Subregular Language Families

 $REG_n^Z = \{ L \mid L \in REG \text{ with } State(L) \le n \},\$

where

 $State(L) = \min \{ State(A) \mid A \text{ is a det. finite automaton accepting } L \},\$

with

State(A) = |Z|

Further Subregular Language Families

 $REG_n^Z = \{ L \mid L \in REG \text{ with } State(L) \le n \},\$ $RL_n^V = \{ L \mid L \in REG \text{ with } Var_{RL}(L) \le n \},\$

where

 $State(L) = \min \{ State(A) \mid A \text{ is a det. finite automaton accepting } L \},$ $Var_{RL}(L) = \min \{ Var(G) \mid G \text{ is a right-linear grammar generating } L \},$

with

$$State(A) = |Z|, Var(G) = |N|$$

Further Subregular Language Families

$$REG_n^Z = \{ L \mid L \in REG \text{ with } State(L) \le n \},$$
$$RL_n^V = \{ L \mid L \in REG \text{ with } Var_{RL}(L) \le n \},$$
$$RL_n^P = \{ L \mid L \in REG \text{ with } Prod_{RL}(L) \le n \},$$

where

 $\begin{aligned} State(L) &= \min \left\{ \ State(A) \mid A \text{ is a det. finite automaton accepting } L \right\}, \\ Var_{RL}(L) &= \min \left\{ \ Var(G) \mid G \text{ is a right-linear grammar generating } L \right\}, \\ Prod_{RL}(L) &= \min \left\{ \ Prod(G) \mid G \text{ is a right-linear grammar generating } L \right\}. \end{aligned}$

with

$$State(A) = |Z|, Var(G) = |N|, Prod(G) = |P|.$$

Families Under Consideration

$$\begin{split} \mathcal{F} \in \{FIN, MON, NIL, COMB, DEF, SUF, ORD\} \\ & \cup \{COMM, CIRC, NC, PS, UF, REG\} \\ & \cup \{REG_n^Z \mid n \geq 1 \} \cup \{RL_n^V \mid n \geq 1 \} \cup \{RL_n^P \mid n \geq 1 \} \end{split}$$

EC Grammars with Subregular Selection – Previous Work

Jürgen Dassow: FI 2005.

 $\mathcal{F} \in \{FIN, MON, COMB, NIL, DEF, COMM, SUF\}$

(finite, monoidal, combinational, nilpotent, definite, commutative, suffix-closed)

Jürgen Dassow, Florin Manea, Bianca Truthe: TCS 2012 (DCFS 2011)

$$\mathcal{F} \in \{\mathit{CIRC}, \mathit{ORD}, \mathit{UF}\} \cup \{ \mathit{REG}_n^Z, \mathit{RL}_n^V, \mathit{RL}_n^P \mid n \geq 1 \}$$
 (circular, ordered, union-free)

Bianca Truthe: FI 2021 (NCMA 2017) $\mathcal{F} \in \{ REG_n^Z, RL_n^V, RL_n^P \mid n \ge 1 \}$, Survey

Merging two Hierarchies of External Contextual Grammars with Subregular Selection

Results - One Hierarchy: Incomparabilities

• Inclusion relations and incomparabilities between classes based on strictly locally testable languages and those classes here

- Inclusion relations and incomparabilities between classes based on strictly locally testable languages and those classes here
- Other subregular families for the selection languages

- Inclusion relations and incomparabilities between classes based on strictly locally testable languages and those classes here
- Other subregular families for the selection languages
- Further properties of the generated language families

- Inclusion relations and incomparabilities between classes based on strictly locally testable languages and those classes here
- Other subregular families for the selection languages
- Further properties of the generated language families
- Merging the two hierarchies of internal contextual grammars (submitted)