

Defying Gravity and Gadget Numerosity: The Complexity of the Hanano Puzzle

In this talk

A Useful Tool: Nondeterministic Constraint Logic

Defying Gravity: Visibility Representations
是
Tool of the Trade: Gadget-Making

What is the
 Hanano
 Puzzle?

Windows-only video game

Played as a series of
levels that must be "cleared"

Combinatorial game with gravity

Played on a "grid board"

Previous work: NPhard (Liu and Yang, 2019)

Components of a level

Solving a level

We want to determine the complexity of

As a decision problem

HANANO $=\{H \mid H$ is a solvable level of the Hanano Puzzle $\}$

Known: HANANO is NP-hard (Liu and Yang, 2019)

Typical Game Complexities (Hearn and Demaine 2009)

Zero-player

- Bounded: P-complete
- Unbounded: PSPACE-complete

One-player

- Bounded: NP-complete
- Unbounded: PSPACE-complete

Two-player

- Bounded: PSPACE-complete
- Unbounded: EXP-complete

Team

- Bounded: NEXP-complete
- Unbounded: RE-complete

See "Games, Puzzles, and Computation" by Hearn and Demaine (2009) for concrete examples.

Nondeterministic Constraint Logic (NCL) (Hearn and Demaine 2009)

- Directed graph with only red (weight 1) and blue (weight 2) edges
- Inflow constraint: Sum of weight of incoming edges ≥ 2

Question: Given an NCL graph and an edge in the graph, is there a sequence of flips such that the given edge is eventually flipped?
One move: flip an arbitrary edge

Additional restrictions

- Still PSPACE-complete if (1) all vertices are AND/OR vertices, (2) graph is planar.
- AND vertex: exactly 2 incident red edges and 1 incident blue edge
- OR vertex: exactly 3 incident blue edges
- Only need 2 gadgets

From now on, we will assume that the NCL graphs have these restrictions

How Will Gadgets Work?

Each vertex is represented by a gadget, and each gadget has 3 entry points (one for each incident edge).

If an edge is into a vertex, then a blue block is placed at the corresponding entry point. The location of the block represents the direction of the edge.

For each block in a gadget, there is only one flower in that gadget that can bloom it.

If the target edge is (u, v), then gadget for v is modified to have one less flower.
NCL is fully
reversible, but

Hanano is not. | Some edges |
| :--- |
| may need to flip |
| multiple times |

Challenge

Our gadgets and their interactions need to be fully reversible*

Contributions

HANANO is PSPACEcomplete

Show how to use structured NCL variant using only three gadgets (regardless of the game)

Added structure creates an explosion in number of gadgets

Defying Gravity: Visibility Representation

Sketch of a Reduction

Each gadget will have exactly three entry points.

So how many gadgets do we need?

They can each lie either on the left or the right of the gadget.

We need 8 OR gadgets and 24 AND gadgets.

OR Gadget ($B \cdot \cdot \cdot \cdot B B$)

AND Gadget ($R \cdots \cdot \cdot R B$)

Red Bend Gadget (not needed in Hanano)

Defying Gadget Numerosity: Schemas

Schema of $\cdot R \cdot \mid R \cdot B$

Some Future Directions

Apply

Apply the technique to other games

Reduce

Reduce number of gadgets

Lower

Lower number of faces on gray blocks

