
COMPUTER	90

SOF T WARE TECHNOLOGIES

Simplicity as a Driver
for Agile Innovation

L ooking at software system
production and use today,
we can easily compare
the industry’s current life

cycle to that experienced by the auto-
mobile industry 80 years ago. The
following statement, attributed to
Gottlieb Daimler, characterizes car-
makers’ expectations at that time:
“The market for automobiles will
never grow beyond one million cars,
for a very simple reason: Who would
educate all those chauffeurs?”

This skepticism is understandable—
back then, cars were handcrafted and
cost more than a house. At the time,
they were technically amazing—they
could go up to 100 kph—but they had
a hefty downside—the mean distance
between flat tires averaged 30 km
thanks to nail damage from horses
and carts.

Not surprisingly, the number
of extra tires constituted a status
symbol: two full wheels were normal,
with some cars carrying up to eight
extra wheels to weather longer trips.
But those who could afford a car were
neither willing to change tires nor
eager to maintain the engine, making
well-trained chauffeurs an indispens-
able commodity in the 1920s.

So it goes with software. Despite
the promises and effort, working

with software products still offers
a comparable adventure, one that
rarely proceeds as expected. Dif-
ficulties with deployment and use
lead to enormous system, organiza-
tional, and personal performance
losses, not only at first deployment
but even more so when we factor in
the inevitable upgrades, migrations,
and version changes.

THE PRICE FOR THE PACE
Millions of users suffer when stan-

dard software with a large market
share evolves. Maybe it undergoes a
radical redesign of the graphical user
interface (GUI) or offers a new genera-
tion of tools not readily compatible
with previous versions. Users must
then desperately search for previ-
ously well-understood functionality,
spending hours or even days bring-
ing perfectly designed documents to a
satisfactory state within this changed
technical environment.

This frustrating catch-up phase
causes an enormous productivity loss
that can force customers to shy away
from updates and migrations, sticking
instead with old and even outdated
or discontinued products or versions.
In many situations, customers fear
any kind of innovation involving IT
because they immediately associate

a change with enormous disruptions
and long periods of instability. With
technology-driven innovations, this
fear is justified thanks to the new
technologies themselves. However,
even small and technically simple
adaptations to a business process
typically require a major IT project,
with all its involved risks.

Thus, decision makers act con-
servatively, preferring patches and
exchanging functionality only when
it’s absolutely necessary. Even the
automobile industry fails when it
comes to IT adoption and, particu-
larly, IT agility. Much of a car’s control
software runs on specific hardware,
which limits the software’s applica-
bility, especially after the hardware
becomes obsolete—the software can’t
be ported elsewhere, meaning the
manufacturer is more or less stuck
with that hardware.

It takes engineers years to inno-
vate, which the product life cycle then
outlives by factors beyond that of the
electronics and software within. The
central problem is the IT lock-in at
design time: decisions on which tech-
nology to use and long-term deals
with the manufacturers are frozen
before production starts and often
last beyond the facelifts that periodi-
cally refresh these products.

	 Tiziana Margaria, Potsdam University

	 Bernhard Steffen, TU Dortmund University

Software and hardware vendors long avoided interoperation
for fear of opting out of their own product lines. Yet decisive
change came to the automobile industry from a holistic
evolution and maturation on many fronts.

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE	

Even pure software-based
IT is often caught in the
platform lock-in trap.

91JUNE 2010

In the aerospace industry, this life-
time mismatch is even more evident:
it takes decades to plan and design
a mission, which leaves the IT used
in the field in a typically decades-old
state. IT innovation is the fastest we
observe, and it systematically out-
paces the life cycle of the products
built using it. Inevitably, the products’
life spans shorten to those of the IT
they embody, as in consumer elec-
tronics, but this is unacceptable for
expensive products.

Today, we have a similar situation
in IT: singularly taken, the technolo-
gies and products are well-designed
and innovative, but aren’t made for
working together and can’t evolve
independently. Consequently, we
work with systems whose stability
isn’t proven and in which we can
thus pose only limited trust. Once a
bearable situation is achieved, and a
constellation works, we tend to stick
to it, bending the business and pro-
cedures to fit the working system,
then running it until support is dis-
continued, if then. This shows that
even pure software-based IT is often
caught in the platform lock-in trap:
business needs too often outpace
the life cycle of the IT platforms that
steer a company’s organization and
production.

STATES OF THE ART
Various factors contributed to

our current state of the art. Some
are rooted in the business models of
major software and hardware ven-
dors, who long avoided interoperation
for fear the consequences of opting
out of their own product lines would
be dire. The frantic pace of technology
provides its own chaos: before a cer-
tain technology reaches maturity and
can repay the enormous investments
for its development and production, a
newer option attracts attention with
novelty and fresh promises.

Decisive change came to the auto-
mobile industry not from the isolated
improvement of single elements but

from a holistic evolution and matu-
ration on many fronts, with the
interplay of numerous factors:

•	 Better, more robust compo-
nents. The modern car platform
approach builds on compara-
tively few well-engineered
individual components, such as
the tires, motor, and the chassis.

•	 Better streets. Today, we hardly
need worry about flat tires.

•	 Better driving comfort. Cars
run smoothly, reliably, and
safely, even if maltreated. User
orientation has made a huge dif-
ference: drivers don’t need to be
mechanics.

•	 Better production processes.
Modern construction supports
cars tailored to their customers,
even if all are built on platforms.
Essentially, no two delivered cars
are identical, but all are bound
to only a few well-developed
platforms.

•	 Better maintenance and support.
Drivers have access to support
worldwide, which can even
include home transportation.

These modern developments have
a straightforward match to the situ-
ation in IT, while also revealing the
weaknesses of today’s IT industry:

•	 Better, more robust compo-
nents. Today’s components are
typically too complicated and
fragile, and therefore are difficult
to integrate in larger contexts.
Service orientation seems to be
a potentially strong step in the
right direction, but it must be
combined with a clear policy.

•	 Better connection and interop-

eration. We still lack seamless
connection and integration, with
numerous mismatches at the
protocol, interface, or behavioral
level. Meanwhile, the intended
semantics and accompanying
security provide an everlasting
concern and a hot research topic.

•	 Better user comfort. Experts
might know various specifically
optimized solutions, but normal
users find none. Even getting a
modern phone to simply make
a call can be rather frustrating,
with many perceived extra steps
and commands.

•	 Better production processes.
Application development and
quality assurance should be
directly steered by user require-
ments, controlled via user
experience, and continuously
subject to modification during
development.

•	 Better maintenance and sup-
port. Established scenarios and
often-used functionality should
continue to work, while support
should be immediate and inte-
grated into the normal workflow.

The transition to overcoming these
weaknesses will depend on adopt-
ing economical principles that favor
dimensions of maturity and simplic-
ity over sheer novelty. In our analogy,
Formula One car racing is an attrac-
tive platform for high-end research,
but is unsuited for the needs and
requirements of mass driving due to
different skills, costs, and traffic con-
ditions. Taking ideas and results from
the high-end and specialized labora-
tory product requires diverse and
extensive research to succeed. Trans-
ferred to the IT domain, this kind of
research spans several dimensions:

•	 Human-computer interaction has
led to GUIs that provide an intui-
tive user interface.

•	 Domain modeling and seman-
tic technologies can establish a

COMPUTER	92

SOF T WARE TECHNOLOGIES

success and new market creation.
Most often, technology-driven

innovation accompanies risk caused
by the new technologies themselves.
Innovations rooted in the business
purpose, such as the service to the
user or customer, have a much higher
chance of success because user-level
advantages are easier to commu-
nicate in the market, especially if
detached from technological risks.

Improved levels of maturity
can enable a new culture of
innovation on the application

side. Once we overcome the fear of
change, true agility will guide the
application experts, leading to new
business models and new markets.
History shows that with the availabil-
ity of reliable cars, totally new forms
of transportation and business arose.

For the software industry, matu-
rity could revolutionize software’s
mass construction and mass custom-
ization far beyond our experience in
the automotive industry. Theoreti-
cally, we can easily “change wheels
while driving” and decompose and
reassemble the entire car or bring
new passengers aboard at the speed
of light without being bound to spe-
cific hardware.

From a higher perspective, draw-
ing adequate lines here can be
considered a distinguishing trait for
this new line of research and play a
central role in the evolution of our
economy and society.

Tiziana Margaria is chair of ser-
vice and software engineering at the
Institute of Informatics, Potsdam
University, Germany. Contact her at
margaria@cs.uni-potsdam.de.

Bernhard Steffen is chair of program-
ming systems in the Department of
Computer Science, TU Dortmund
University, Germany. Contact him at
steffen@cs.tu-dortmund.de.

reliably create complex solutions.
Developers might argue that there

is no universal approach, but several
domain-, purpose-, and profile-spe-
cific approaches within their scope are
possible that capture the vastness of
today’s programming problems much
more simply, reliably, and economi-
cally than most people think. This
approach trades generality, which
must be complex to accommodate
diverse and sometimes antagonistic
needs, with simplicity.

Companies such as Apple have
successfully adopted simplicity as a
fundamental design principle—for
example, insights that simplify its
users’ lives concern both the handling
of its products and their maintenance
and robustness. Users adopted these
innovations enthusiastically and pay
a premium price for this “IT simply
works” experience. Similarly, Win-
dows 7 attempts to overcome the
tendency to provide cutting-edge and
increasingly complicated technology
in favor of a more user-driven philoso-
phy. Combining extensive interviews
and agile methods in its development
accelerated this paradigm shift.

While promising beginnings,
these initiatives fall short of making
mature technologies that simply work
a widespread reality. We need exten-
sive research and a clear engineering
approach tailored to simplicity.

IT SIMPLY WORKS
The potential of a slogan like “IT

simply works” offers vast opportu-
nities unrestrained by the physical
limitations of classical engineering.
In principle, every software compo-
nent can be exchanged at any time,
almost everywhere, without leaving
any waste—an ideal situation for
truly component-based engineering.

Leveraging this potential would
economically surpass the impact of
producing new products based on
leading-edge IT. Studies of product
innovation show that technologi-
cal leadership corresponds only to
a relatively small fraction of market

user-level understanding of the
involved entities.

•	 Cloud computing and other forms
of platform virtualization pro-
vide stable user-level access to
functionality.

•	 Service orientation and process
technologies offer easy interactive
control at the user process level.

•	 Integrated product line man-
agement and quality assurance
requires validation and moni-
toring to guarantee correctness
criteria at design, orchestration,
and runtime.

•	 Rule-based control helps develop-
ers react flexibly to unforeseen
situations.

•	 Security and safety affect not
only business-critical applica-
tions but also technologies for
establishing a high level of fault
tolerance, be it at the infrastruc-
tural, software, or human level.

•	 Major application domains, such
as business, biology, or medi-
cine, keep the focus on constant
awareness of the primary issue—
user requirements.

The contributions of these individ-
ual research areas must be combined
holistically to successfully control,
adapt, and evolve systems composed
of mature components.

THE PRICE FOR MATURITY
Achieving a sufficient level of matu-

rity across components, connections,
interoperation, and evolution is a com-
plex and highly interdisciplinary task
that requires technological knowledge
and deep domain modeling expertise.

In this setting, standard inves-
t igat ion topics in IT such as
complex architectural design and
computational complexity are only of
secondary and ancillary importance.
The key to success is application of
the “less is more” principle, with the
goal of treating simple things simply,
by a correspondingly simple design
reminiscent of Lego blocks: primitive
and well-defined blocks combine to

Editor: Mike Hinchey, Lero—The Irish
Software Engineering Research Centre;
mike.hinchey@lero.ie

